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ZOT-MK: SATU ALGORITMA BARU UNTUK 

PENDARABAN INTEGER BESAR 
 

Abstrak  

 

Pendaraban nombor besar banyak digunakan dalam pengkomputeran saintifik.  

Walau bagaimanapun, terdapat hanya beberapa alogritma yang ada kini, 

memperoleh keefisienan mereka melalui pendaraban integer besar.  Oleh sebab 

pendaraban integer tidak natif terhadap struktur penomboran arkitektur komputer 

bagi bit dan bait, maka pelaksanaan algoritma tersebut akan menjadi agak lambat  

 

Penyelidikan ini menekankan algoritma pendaraban nombor besar berdasarkan 

simbol yang terekstrak daripada sistem nombor perduaan.  Kami namakan struktur 

penomboran baru ini sebagai “ZOT”. Algoritma baru bagi pendaraban nombor 

besar, ZOT-MK, dibina daripada gabungan algoritma Karatsuba dan struktur ZOT. 

 

Bagi tujuan penilaian, kami merangsang suatu persekitaran yang mampu 

mengendalikan nombor yang besar untuk membandingkan prestasi algoritma yang 

dicadangkan terhadap algoritma Karatsuba, yang sudah dikenali ramai.  Keputusan 

berjulat di antara julat nombor 25 hingga 5000 bit, menunjukkan bahawa kadar 

pemampatan nombor tersebut yang diwakili oleh struktur ZOT terhadap perwakilan 

normal perduaan adalah 41 peratus.  Oleh itu, secara teorinya, dalam purata halaju 

perlakuan ZOT-MK, ia sepatutnya dua kali lebih laju daripada algoritma Karatsuba. 
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Walau bagaimanapun, disebabkan penggunaan memori  ZOT-MK yang efisien, yang 

menghilangkan memori kelui, keputusan eksperimen menunjukkan bahawa masa 

perlakuan purata daripada  ZOT-MK dalam nombor berjulat rendah (25 bit hingga 1 

Kbit) adalah lebih kurang 35 peratus daripada alogritma Karatsuba.  Nilai purata ini 

akan berkurangan bagi nombor berjulat tinggi (1 Kbit hingga 5 Kbit) sehingga 25 

peratus. 

 

Kesimpulannya, keputusan yang diperoleh mengesahkan keefisienan algoritma 

pendaraban ZOT-MK terhadap algoritma Karatsuba, yang merupakan “de-facto 

standard” bagi alogritma pendaraban nombor besar. 
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ZOT-MK: A NEW ALGORITHM FOR BIG INTEGER 

MULTIPLICATION 

 

 

 

Abstract 
 

 

Multiplication of big numbers is being used heavily in scientific computation. 

However, there are only a few existing algorithms today that gain their efficiency 

through the multiplication of the big integer characteristic. Since the multiplication 

on integers is not native to the computer architecture numbering structure of bits and 

bytes, such algorithms are bound to be a bit slower on the implementation.  

 

This research focuses on big number multiplication algorithm that is based on the 

symbols extracted from the binary numbering system. We named the new 

numbering structure as “ZOT”. The new algorithm for big numbers multiplication, 

ZOT-MK, is constructed from the combination of Karatsuba algorithm and the ZOT 

structure. 

 

For evaluation purposes, we simulate an environment capable of handling big 

numbers to compare the performance of the propose algorithm against the well 

known Karatsuba algorithm. Over the range of 25 to 5000 bits numbers, results 

show that the compression rate of those numbers represented by the ZOT structure 

against the normal binary representation is 41 percent. Therefore, theoretically, in 

average the execution speed of ZOT-MK should be about double of the Karatsuba 
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algorithm. However because of efficient memory utilization of ZOT-MK that 

eliminates extensive memory paging, the experimental result shows the average 

execution time of ZOT-MK in lower range numbers (25 bits to 1Kbits) is about 35 

percent of the Karatsuba algorithm. This average value will decrease for higher 

range numbers (1Kbits to 5Kbits) to 25 percent. 

 

In conclusion, the available results validate the efficiency of the ZOT-MK 

multiplication algorithm against Karatsuba algorithm, which is currently the de-

facto standard for big number multiplication algorithm. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1  Introduction 

Before the widespread use of data processing equipment, the security of information 

was primarily provided by physical and administrative means.  An example of this is 

the former use of rugged filing cabinets with a combination lock for storing sensitive 

documents.  As the computer was introduced, a need for an automated lock for 

protecting sensitive documents became evident [1]. As society’s dependence upon 

digital computing and telecommunication increases, the need for quantitative computer 

security increases proportionally. In this study, we will scrutinize the different models 

of numerical systems, and institute a new method to increase the time efficiency and 

decreases the memory usage to facilitate the increased overall efficiency of the security 

(cryptographic) computational algorithm. 

As stated by McLennan, Cryptography is a discipline of Mathematics and Computer 

Science concerned with information security using encryption and authentication 

techniques [2]. The discipline of writing messages as ciphertext, with the aim of 

protecting a secret from adversaries, interceptors, intruders, interlopers, eavesdroppers, 

opponents or simply attackers [3]. The application of information security must be 

instituted into the software programs, through mathematical algorithms with the proper 

procedural techniques to create an efficient system of data integrity. In Computer 
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Science, a numeral system is a mathematical notation of number that represents a 

positional notation allowing computational applications. This allows internal 

representation of arbitrarily large integers or arbitrarily precise rational numbers and the 

arithmetic operations on such numbers. Numbers are typically stored as (ratios of) digit 

lists which can grow using dynamically allocated memory. The most prevalent need for 

multiple precision arithmetic, often referred to as “bignum” or “big number” math is 

within the implementation domain of Cryptography, Mathematics, Cosmology, 

Statistical Mechanics and others [4]. Yet, the most widespread usage of bignum 

arithmetic is probably for Cryptography. In this study, we will focus on two aspects of 

the bignum system, the application and the computation. 

The modern field of Cryptography can be divided into main two areas of study, the 

symmetric-key and asymmetric-key cryptography. Symmetric-key cryptosystems use 

the same key for encryption and decryption of a message. A significant disadvantage of 

symmetric ciphers is the issue of key management. To maintain the integrity of the 

sensitive data, it is necessary for each distinct pair of communicating parties to ideally 

share a different key, and perhaps for each cipher text exchanged as well. Asymmetric-

key (also, more generally, known as public-key) cryptography is conceptualized with 

two different but mathematically related keys: a public key and a private key. 

Asymmetric-key cryptosystem is constructed such that calculation of one key (the 

'private key') is computationally infeasible from the other key (the 'public key'), even 

though the keys are related. In asymmetric-key cryptosystems, the public key may be 

freely distributed, while its paired private key must remain secret, known only to the 
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receiving party. Hence, the public key is typically used for encryption, while the private 

key is used for decryption [3]. 

RSA [5] is a type of asymmetric-key cryptosystem, which uses modular exponential 

module on the product of two large prime numbers. RSA encryption is defined by the 

exponential notation of (g
e
)

d
 mod m = g.  The modulus which is based on n = pq, where 

p and q are big prime numbers, with an exponent e, which is relatively prime to (p-1)(q-

1).  To produce a valid private key, the values of two large primes must be found. Yet, 

due to the size of the value of p and q, the length of time to find the values may be 

lengthy.  Hence, the time efficiency is low, resulting in the decrease in the overall 

effectiveness of the cryptosystem. 

Due to the difficulty of factoring large numbers using the RSA cryptosystem, EIGamal 

[6] cryptosystem based on the discrete logarithm was theorized.  The discrete logarithm 

uses number raised to large exponentials, defined by modulo p that relies on the 

difficulty of the inverse computation of the discrete logarithm. Hence, even though the 

EIGamal cryptosystem is efficient in comparison to the application of the RSA 

cryptosystem, due to the complexity of the arithmetic module, its simulation will cause 

a need for high memory capacitance, as well as low time efficiency. 

In most of the cryptosystems, there is a need of big number calculation, especially for 

the multiplication of large numbers. The three most popular big number multiplication 

algorithms are the Karatsuba-Ofman, Toom-Cook, and FFT
1
.  

 

                                                 
1 -Fast Fourier Transform 
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The Karatsuba-Ofman [7] method is an efficient procedure for performing the 

multiplication of large numbers. It reduces the multiplication of two n-digit numbers to 

at most single-digit multiplications. It is therefore faster than the classical algorithm, 

which requires n
2
 single-digit products. In other words, the multiplication of a 2 n-digit 

integer is reduced to two n-integers multiplications, one (n+1) digits multiplication, two 

n-digit subtractions, and two 2 n-digit additions. This form of binary splitting can be 

used to analyze the efficiency of the program, using the basic steps of the recursive 

algorithm, which is n
c
 , where c = log2 n.  Hence, if a computer has a 32-bit multiplier, 

one could choose B = 2
31

 = 2,147,483,648 or B = 10
9
 = 1,000,000,000, and store each 

digit as a separate 32-bit binary word. Then the sums x1 + x0 and y1 + y0 will not need 

an extra carry-over digit and the Karatsuba recursion can be applied until the numbers 

are only 1 digit long. Therefore, the Karatsuba algorithm allows hardware 

implementation performance with fewer shifts.  Hence, it increases the time efficiency 

of the application. 

Toom-Cook algorithm is a well known convolution algorithm that was first proposed in 

1963 [8]. If we construct two sequences using the polynomial coefficients of two 

polynomials, when their linear convolution is computed, the elements of the resulting 

sequence give the coefficients of the product of the two polynomials. Hence, any linear 

convolution algorithm may easily be adapted to compute polynomial multiplications. 

The Toom–Cook algorithm works by treating the two operands as polynomials of 

maximum degree k − 1. This is done by partitioning the integer representations into k 
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digits. Both polynomials are evaluated at 2k − 1 points and multiplied together. Solving 

the linear system of equations gives the coefficients of the product [3]. 

The usual convolution of polynomial multiplication is less efficient than the Fast 

Fourrier Transform (FFT) [9]. Convolution is a bilinear form associated to the 

syntactical encoding of polynomials as a coefficient list, whereas FFT recalls that a 

polynomial is a function and hence, it takes advantage of the semantical features of the 

polynomials to multiply (FFT evaluates polynomials at sufficiently many points and 

then interpolates to get the coefficients of the polynomial product) [9]. Shonhage and 

Strassen [10] introduced a Discrete Fourrier Transformer (DFT)-based integer 

multiplication method that achieves an exciting asymptotic complexity of 

( )nnnO logloglog . 

 

1.2  Problem Statement 

 
It is apparent that the multiplication of big numbers is being heavily used in area such as 

Cryptography. However there are only a few existing big number multiplication 

algorithms that gain their efficiency through the manipulation of the big integer 

characteristics. Since the manipulation on integers is not native to the computer 

architecture numbering structure of bits and bytes, such algorithms are bound to be a bit 

slower on the implementation. Therefore, in this research we are working on a new big 

number multiplication algorithm that is based on the symbols originated from the binary 

numbering system.  
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1.3  Research Objectives and Scope 

The main objectives of this research are listed as below: 

 

Table 1.1: Main objectives of the research 

 
Main Objectives Activities Details 

Introducing big-digits 
Definitions, rules and 
different types  

Proposing new 
model  for 

representation  of 
big numbers Introducing ZOT structure 

Converting binary numbers 
to ZOT representation 

Introducing big-digits 
multiplication algorithm 

Definitions, rules and 
different types 

Proposing new 
model  for  big 

numbers 
multiplication 

algorithm Introducing big number 
multiplication algorithm 

Mixing ZOT and Karatsuba 

Simulation 

Simulation of ZOT, ZOT-Mk 
and  Karatsuba 
multiplication for big 
numbers 

Evaluation of the 
proposed 
algorithms 

 

Analyzing  and evaluation 
Evaluate the efficiency of 

ZOT and  ZOT-Mk 
algorithms 
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As we can see from Table (1.1) the main objectives of this research are: 

• To propose a new representation of big number system that we call ZOT. A 

tabulated system will be created for the conversion of binary system to the ZOT 

structure. 

• To propose a new algorithm for big number multiplication, this is a combinatory 

method of the ZOT structure and the Karatsuba algorithm. 

• To analyze and evaluate the new proposed algorithms in comparison with 

similar algorithms.  

 

1.4  Research Methodology 

As mentioned in Table (1.1), the research methodology, is divided into three main parts: 

• Designing the proposed model 

• Implementation and evaluation the proposed model 

• Analyzing the efficiency of the proposed model 

 

1.4.1  Designing and Proposed Model 

We first propose a new structure for representation of Bignum, driven from binary 

representation of numbers, called ZOT. The main differences between our 

multiplication algorithm and others are derived from the structure and related properties 

of ZOT.  
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The first step is to introduce and define the main elements and concepts of ZOT. Big-

digits is a general name in the ZOT structure. Big-digits are categorized to three types: 

 

• Big-zero: we use the symbol of AZL to represent this type of “Big-digits”. Any 

group (in binary representation) of “0” is a big-zero. ‘L’ is the length of “0” 

elements in ZLA . 

      Example:   AZ5=”00000”     and    AZ7=”0000000” 

• Big-one: we use the symbol of AOL to represent this type of “Big-digits”. Any 

group (in binary representation) of “1” is a big-one. ‘L’ is the length of “1” 

elements in OLA . 

Example:   AO5=”11111”     and    AO7=”1111111” 

  

• Big-two: we use the symbol of ATL to represent this type of “Big-digit”. Any 

group (in binary representation) of “10” that ends to “1” is a big-two. ‘L’ is the 

length of “10” elements in TLA . 

Example:   AT5=”10101010101”     and    AT7=”101010101010101” 

  

Concepts and methods for converting binary to ZOT representation, and vice versa is 

the main contribution of this section. 
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The second step is extending our discussion to define new operations for Big-digits. 

Multiplication of Big-digits is the main operation in which we will detail our work in 

this section. Big-digit multiplication is categorized into four types of multiplication as 

shown below: 

• ZOT-M0: Big - zero – Big - digits multiplication   

• ZOT-M11: Big - one – Big - one  multiplication  

• ZOT-M12: Big - one – Big - two  multiplication   

• ZOT-M22: Big - two – Big - two  multiplication   

 

We will proceed with our work by presenting new algorithms for all types of Big-digits 

multiplication as mentioned above. 

Extending the concept of multiplication from Big-digits multiplication to big number 

multiplication (with the help from literature) is the next conceptual step in our research. 

Integrating ZOT and Karatsuba, the well-known multiplication algorithm for bignum 

multiplication is the last step in this phase. According to our literature review, 

Karatsuba multiplication algorithm is a good candidate to be coded with the ZOT 

structure. Firstly, Karatsuba algorithm is more efficient than school-book method for 

bignum multiplication and secondly, Karatsuba algorithm is a special case of the Toom-

Cook algorithm. Consequently our result can be extended to a wide range of big 

numbers multiplication algorithms such as the Toom-Cook algorithm as well.   
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1.4.2  Implementation and Evaluation of the Proposed Model 

To provide with a proper evaluation tool is the purpose of this section. This part of work 

is divided and implemented as below: 

• Recognizing the specification of the software library 

• Providing big number requirements in the software library 

• Simulating of ZOT , ZOT-MK and Karatsuba algorithms 

• Evaluating of Karatsuba and ZOT-Mk algorithms 

C++ is as a powerful language with the ability to simulate low level operation, therefore 

C++ is our choice of computer language for the implementation and evaluation. For 

compatibility with our requirements, we need a complementary library. We create the 

library especially to handle the followings: 

• Managing bignum as input/output parameter 

• Computational functions for bignum 

• Logical functions for bignum 

• Special algorithms 

• Evaluation algorithms 

 

1.4.3  Analysis Results 

We performed a detailed analysis on the results obtained from simulation scenarios. We 

analyzed the effectiveness of the proposed algorithms over our simulated range of 

numbers.  
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1.5  Research Contributions 

Contributions of this thesis are as follows: 

• Propose a new  structure representing big numbers  

• Propose a new  multiplication algorithm for big-digits 

• Propose a new  multiplication algorithm for big numbers 

 

1.6  Thesis Outline 

The thesis is organized into six chapters: 

Chapter One: Provides an overview of the thesis content and directions of the thesis 

Chapter Two: Reviews in brief the number theory used in Cryptography. Then the 

chapter continues with related works on big number multiplication as one of the main 

operations in cryptography computation. Finally, well known algorithms in this area are 

studied and compared against each other. 

Chapter Three: ZOT-MK as the new algorithm is being introduced in this chapter. 

New related concepts to ZOT structure such as Big-digit’s, Big-zero’s, Big-one’s and 

Big-two’s will be defined. The main algorithm for Big-digits multiplication is discussed 

in detail as well. 

Chapter Four: Detailed implementation of ZOT-MK with the most important 

functions is presented. This chapter will focus on the main parts of the algorithm that 
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has been designed in C++. Single ZOT and Double ZOT are two variations of ZOT 

algorithms that we will explain in detail, as the fundamental algorithms for fast 

multiplication algorithms that we are proposing. 

Chapter Five: Research results and analyses are presented in this chapter. General 

discussion about the results as a whole is being presented in this chapter as well. 

Chapter Six: Concludes the thesis and presents the future direction of the research. 
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CHAPTER 2 

LITERATURE REVIEW 

1. f 

2.  

2.1  Introduction 

Many modern scientific computations require the manipulation of numbers that are too 

big to fit in a word of memory [12]. Big numbers are a compound representation for 

integers, created for scientific computation. Big number multiplication is one of the 

fundamental algorithms in this representation, that many mathematicians and computer 

scientists are continuously working to come up with lower complexity algorithms [7, 8, 

10]. Knuth [11] has dedicated a significant part of the second volume in his Art of 

Computer Programming book to such algorithms, where he also discusses the School-

book arbitrary precision algorithms, and various advanced multiplication algorithms. In 

this chapter we will proceed to the most popular and best known algorithm of big 

numbers multiplication, specifically Schoolbook, Karatsuba [7], Toom-Cook [8] and 

Shonang-Strassen [10] multiplication algorithms. We will study these algorithms and 

their variants. Algorithm complexity, as an analysis tool will be discussed as well. 

In this chapter, Karatsuba algorithm has been given more attention than the other 

algorithms, specifically because our proposed method for improving the efficiency of 

multiplication algorithm has been implemented based on this algorithm. On top of that, 

as we will discover in this chapter, some variants of Karatsuba [13, 14] are more 



 14 

efficient than the other well-known big numbers multiplication algorithms (especially 

for the use in the cryptography).  

 

2.2 Multiplication  Algorithm 

Multiplication is the process of repeating additions of the same number [15]. On the 

other hand a multiplication algorithm is a method of multiplying two numbers. 

Depending on the size of the numbers, different algorithms will be used. Consequently 

many efficient multiplication algorithms had been proposed. 

Introducing important related concepts such as complexity of computation is necessary 

when analyzing such algorithms. Employing this concept will help us to compare and 

evaluate different algorithms in a well-structured manner.  

 

  2.2.1  Computational Complexity  

Any given algorithm has a certain complexity, which is essentially a measure for how 

long it takes to run the algorithm [17]. Complexity theory analyzes the difficulty of 

computational problems against many different computational resources such as time, 

space, randomness, alternation, etc. [18, 19, 20, 21]. 

One of the main objectives of computational complexity theory is to categorize 

algorithms. Thus for designing the cryptosystems, computational complexity can help 

us to design algorithms that are easy to use but hard to break [3].  
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Running time is the most important computational resources and it depends on the basic 

steps taken by an algorithm. Typically, the running time is measured as a function of the 

input length. For numerical problems, we assume the input is represented in binary, so 

the length of an integer n is roughly n2log [11]. For example, adding two n-bit numbers 

has running time proportional to n. [3] 

The common way for showing the complexity of algorithm is, the symbol of Big O 

notation (is also known as “Big Oh” notation or asymptotic notation). Big O notation 

usually describes only upper bound on the growth rate of a function. There are several 

related notations, using the symbols �, �, and �, to describe other kinds of bounds on 

asymptotic growth rates [22, 23, 24]. 

Definition 2.1: Big O is a theoretical measure of the execution of an algorithm, usually 

the time or memory utilization, given the problem size n, which is usually the number 

of items being processed. Informally, saying some equation f(n) = O(g(n)) means it is 

less than some constant multiple of g(n) (see Figure 2.1). The notation is read, "f of n is 

big oh of g of n" [24, 25]. 

 

Figure 2.1: Complexity definition graph 
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There are three types of complexity (for more detail, see [3]): 

• Best-case complexity 

• Average-case complexity 

• Worst-case complexity 

As can be seen in Section 2.3 the running time of schoolbook multiplication algorithm 

or its complexity is O(n
2
).  In this example, the running time is measured in the worst 

case. Typically, in much of complexity theory, we measure the maximum running time 

over all inputs of length n. 

 Another important point in the study of algorithm complexity is the behavior of the 

algorithm for very large inputs. Differences between two algorithms with complexity 

of, 2n
3 

and n
3
, or n

2 
and 100n

2
, are irrelevant by a many fold increase in the speed of 

computers. On the other hand, for large enough n, slowing growing terms in a function 

will be affected by faster terms (like the 5n term in comparison with n
2
 in the ( nn 52 + )) 

[17]. 

 

2.3  Schoolbook Multiplication 

The integer multiplication operation lies at the many cryptographic algorithms [3]. 

Naturally, remarkable effort went into developing efficient multiplication algorithms. 

The simplest of such algorithms is the schoolbook multiplication. 
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In positional numeral system [11], the natural way of multiplying numbers known as 

schoolbook multiplication is  multiplying the multiplicand by each digit of the 

multiplier and then add up all the properly shifted results. It requires the multiplication 

table for single digits. Humans do this algorithm usually in base 10 on paper, by writing 

down all the products and then add them together. Computers usually use a very similar 

algorithm in base 2 and will sum the products as soon as each one is computed. 

Following example uses symbolic schoolbook multiplication to multiply 

baaaaA )( 0123=  (multiplicand) by bcccC )( 012=  (multiplier) in arbitrary base b.  

 

 

 

 

 

a3 a2 a1 a0 

                                                          ×        c2 c1 c0 

                       _______________________________ 

                                            a3c0    a2c0    a1c0    a0c0 

         +                      a3c1    a2c1   a1c1    a0c1 

         +            a3c2   a2c2    a1c2    a0c2     

__________________________________________ 

 

            s6         s5            s4           s3         s2        s1          s0 

 

Figure 2.2: Schoolbook multiplication example 

 

 

 

 

 

As can be seen from the above example, schoolbook multiplication method can be 

stated as follows: 
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Multi precision schoolbook Multiplication Algorithm 

Input: positive integers   u (um-1um 2 . . . u1u0)b   

                              and   v (vn-1vn 2 . . . v1v0)b 

Output: The integer product t=u.v 

           For i=0 to m+n-1 do ti= 0; 

           End For      

           C= 0; 

           For i=0 to m-1 do 

                For j=0 to n-1 do 

                  (cs)b=ti+j+ui.vj+c; 

                  Ti+j= s; 

                End For 

                Ti+n+1= c; 

           End For 

Return (t) 

 

Figure 2.3: Multi precision schoolbook multiplication algorithm 

 

The algorithm proceeds in a row-wise manner. That is, it takes one digit of one operand 

and multiplies it with the digits of the other operand. Shifting and accumulating the 

product is the next step for computation. The subscript b indicates that the digits are 

represented in radix-b. As can be easily seen the number of digit multiplications 

performed in the overall execution of the algorithm is m×n.  

 

2.3.1 Time Complexity of the Schoolbook Multiplication Algorithm 

Based on Definition 2.1, time complexity is a theoretical measure of the execution time 

that is needed for an algorithm to run. The schoolbook multiplication algorithm has 

O(n
2
) complexity [11], meaning that the amount of time needed to multiply two n-digit 

numbers  needs about n
2 

operations. This means for large values of n the computation 

time basically explodes (i.e. asymptotic). 
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2.3.2  Space Complexity of the Schoolbook Multiplication Algorithm 

According to the Definition 2.1, space complexity is a theoretical measure of the 

memory usage for an algorithm. Let n be the total number of bits in the two input 

numbers. Schoolbook multiplication has the advantage that it can easily be formulated 

as a log space algorithm; that is, an algorithm that only needs working space 

proportional to the logarithm of the number of digits in the input ( )nO log [11]. In 

Schoolbook multiplication (see Figure 2.2) the process that is needed is only adding the 

columns right-to-left and keeping the carry of each column. The maximum number of 

total sum can never exceed 2n and the carry is at most n. Thus both of these values can 

be stored in O (log n) bits. 

 

2.4  Karatsuba Multiplication Algorithm 

As we mentioned before, in some applications such as computer algebra systems and 

big number libraries, there is a need to multiply numbers in the range of several 

thousand digits. In these cases schoolbook multiplication will be too slow.  

Karatsuba's algorithm is an efficient procedure for multiplying two large numbers or 

two polynomials. It was introduced by Anatolii Alexeevitch Karatsuba in 1960 and 

published in 1962 [26, 27]. This algorithm is a notable example of the divide and 

conquer [28, 29,30] paradigm, specifically of binary splitting [31, 32]. Hence before 

entering to the main discussion about Karatsuba algorithms and its different variants, 

we will review briefly, the structure and specifications of the processing paradigm, 

which is the divide and conquer algorithm. 
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2.4.1  Divide and Conquer Algorithm 

Divide and conquer algorithm is a method for solving a problem by dividing it into two 

or more smaller sub-problems. Each of these smaller sub-problems is recursively 

solved, and the solutions to the sub-problems are then combined to give a solution to the 

original problem [28].  

The name "divide and conquer" is occasionally applied also to algorithms that reduce 

each problem to only one sub-problem, the binary search algorithm for finding a record 

in a sorted list [28] is an example for this application. Every algorithm that uses 

recursion or loops can be expressed as a "divide and conquer algorithm". Hence, some 

authors use the name "decrease and conquer" instead [29].  This technique is the basis 

of efficient algorithms for all kinds of problems, such as sorting (e.g., quick sort, merge 

sort), multiplying large numbers (e.g. Karatsuba), and computing the discrete Fourier 

transform (DFT) [28]. 

Improvement in the asymptotic cost of the solution is one of the important advantages 

of using the divide and conquer algorithm. For example, if the base cases have constant-

bounded size, the work of splitting the problem and combining the partial solutions is 

proportional to the problem's size n, and there are a bounded number p of sub-problems 

of size  n/p at each stage, then the cost of the divide and conquer algorithm will be O(n 

log n) [28]. 

For execution in multi-processor machines, especially shared-memory systems, because 

distinct sub-problems can be executed on different processors, the divide and conquer 
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algorithms performance will improve. Therefore parallelism techniques can be easily 

applied for the algorithms, in which constructed based on divide and conquer algorithm. 

 

2.4.2  Karatsuba Multiplication Algorithm Construction and Specifications 

We stated previously that the Karatsuba algorithm is an efficient method for large 

numbers multiplication. It reduces the multiplication of two n-digit numbers to   

585.13log2 nn =  (i.e. asymptotic) single-digit multiplications and saves coefficient 

multiplications at the cost of extra additions compared to the School-book 

multiplication algorithm. The lower exponent of Karatsuba algorithm shows; it is faster 

than the School-book algorithm, which requires n
2
 single-digit products. The Karatsuba 

algorithm is a notable example of the divide and conquer algorithm. The basic 

Karatsuba algorithm is performed as follows [11]: 

Consider two degree-1 polynomials A(x) and B(x) with n 2 coefficients. 

A(x) = a1x + a0 

B(x) = b1x + b0. 

 

Let D0, D1, D0,1 be auxiliary variables with 

    D0 a0b0 

D1 a1b1 

D0,1 (a1 a0)(b1 b0) 

 

 

Then the polynomial C(x) A(x) ×  B(x) can be calculated in the following way: 

C(x) D1x
2
 (D0,1 - D0 -D1)x D0. 
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Example: assume we want to compute the product of 1234 and 5678. 

12 34 = 12 × 10
2
+ 34  

56 78 = 56 × 10
2
 + 78 

D0 = 34 × 78 = 2652 

D1 = 12 × 56 = 672 

D0,1  = (12 + 34)(56 + 78) − D1 − D0 = 46 × 134 − 672 − 2652 = 2840 

C(x) = D1 × 10
2×2

 + D0,1   × 10
2
 + D0 = 672 × 10000 + 2840 × 100 + 2652 = 

7006652 

 

This method requires three multiplications and four additions. The School-book method 

requires n
2
 multiplications and (n-1)

2
 additions, i.e., four multiplications and one 

addition for n=2. Clearly, the Karatsuba algorithm can also be used to multiply integer 

numbers and can be generalized for polynomials of arbitrary degree. Let the number of 

coefficients be even. To apply the algorithm both polynomials are split into a lower and 

an upper half: 

 

   A(x) Au(x) x
n/2

 Al (x) 

  B(x) Bu(x) x
n/2

 Bl (x). 

 

These halves are used as before. The polynomials Au, Al, Bu, and Bl are split again in 

half in the next iteration step. Since every step exactly halves the number of 

coefficients, the algorithm terminates after nt 2log=   steps. Figure 2.4 shows this 

algorithm, where n is the number of coefficients of A(x) and B(x). 
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Recursive Karatsuba Algorithm, C = KA(A, B) 

INPUT: Polynomials A(x) and B(x) 

OUTPUT: C(x) = A(x) B(x) 

                N= max(degree(A), degree(B)) 1 

                IF n 1 Return A B 

                A(x) Au(x) x
n/2 

Al (x)  

                B(x) Bu(x) x
n/2

 Bl (x) 

                D0 = KA(Al , Bl ) 

                D1 = KA(Au, Bu) 

                D0,1 = KA(Al Au, Bl Bu) 

Return  D1x
n
 (D0,1 - D0 - D1)x

n/2
 D0 

 

Figure 2.4: Recursive Karatsuba algorithm 

 

 

Let NMUL and NADD be the number of multiplications and additions, respectively. Then 

the complexity to multiply two polynomials with n 2
i
 coefficients are as follows [33]: 

 

NMUL 585.13log2 nn ==  

NADD 286
3log2 +− nn  

 

 

 

The recursive Karatsuba algorithm versions are more efficient than the one-iteration 

Karatsuba algorithm. For example, instead of using the one-iteration Karatsuba 

algorithm for n 31 coefficients, Karatsuba algorithm can use the recursive Karatsuba 

algorithm and split the 31- coefficient polynomial into two polynomials of 15 and 16 

coefficients, respectively. Alternatively one could split the 31-coefficient polynomial 

into three parts of 10, 10, and 11 coefficients, respectively. In the next recursion step, 

the polynomials are again split in two or three parts, and so on. However, a number of 

intermediate results have to be stored due to the recursive nature. This might reduce the 

efficiency of the recursive Karatsuba algorithm variants for small size polynomials. 
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When the number of coefficients is unknown at implementation time, the simple 

recursive Karatsuba algorithm is the most efficient way to implement the Karatsuba 

algorithm [33]. Using the one-iteration Karatsuba algorithm for special cases, n 2 and 

n 3 as well as for n 9 that splits the operands into three parts recursively yield 

efficient running times. 

 

Using the dummy coefficients is another technique for improving the performance. For 

example, to multiply two polynomials of n 15 coefficients it might be useful to 

append a zero coefficient and use a recursive Karatsuba algorithm for k 16 coefficients. 

Some operations can be saved whenever the leading zero coefficient is involved. 

However, this is only little improvement. For some cases the Karatsuba algorithm is 

always faster than the School-book method, it needs less multiplications and additions. 

However, there are also cases where it is more efficient to use a combination of 

Karatsuba algorithm and the School-book method [33].  

 

In most cases, if n is not very small, the squaring Karatsuba algorithm outperforms the 

ordinary squaring method [33]. Further information about the Karatsuba and similar 

algorithms can be found in [34, 35, 36].  

 

2.4.3  Related Work to Karatsuba Algorithm 

Work on combination multiplication algorithms with Karatsuba algorithm is another 

technique that researchers have been engaged on. J. V. Gathen, et al.  [37] worked on 

the combination of the School-book and the Karatsuba methods, and reported 




