

ZOT-MK: A NEW ALGORITHM FOR BIG INTEGER

MULTIPLICATION

BY

SHAHRAM JAHANI

Thesis submitted in fulfillment of the requirements

for the degree of

Master of Science

June 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/32599815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

Acknowledgements

There is no word to express my thankful respecting to god that always has mercy on

me.

This is a great opportunity to express my deep appreciation to my supervisor,

(Assoc. Prof.) Dr. Azman, who spares his invaluable patience in guiding me in my

research work. I am short in word to express his contribution to this thesis, with

criticism, suggestions and discussions. I’d like to thank him because of having trust

in me and support me to carry out my research with encouragement. Also I’d like to

thank him for his support on my research through his grant. I’m pleased to make

grateful acknowledgement to the Dean and all staff members of the School of

Computer Science, USM, for making all this possible.

I would like to express my deep feeling to my family members especially to my

wife and my son for their kindness and encouragement.

 iii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS iii

LIST OF TABLE vii

LIST OF FIGURES ix

ABSTRAK xii

ABSTRACT xiv

CHAPTER ONE: INTRODUCTION

1.1 Introduction 1

1.2 Problem Statement
5

1.3 Research Objectives and Scope
6

1.4 Research Methodology
7

 1.4.1 Designing the proposed Model
7

 1.4.2 Implementation and Evaluation the proposed model
10

 1.4.3 Analyzing Results
10

1.5 Research Contributions
11

1.6 Thesis Outline
11

 iv

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction
13

2.2 Multiplication Algorithm
14

 2.2.1 Computational Complexity
14

2.3 School-book Multiplication
16

2.3.1 Time Complexity of the School-book

 Multiplication Algorithm

18

2.3.2 Space Complexity of the School-book

 Multiplication Algorithm

19

2.4 Karatsuba Multiplication Algorithm
19

 2.4.1 Divide and Conquer Algorithm
20

2.4.2 Karatsuba Multiplication Algorithm Construction and

 Specifications

21

 2.4.3 Related work to Karatsuba Algorithm
24

2.5 Toom–Cook Multiplication Algorithm
27

 2.5.1 Toom–Cook Algorithm Structure
27

 2.5.2 Variants of Toom-Cook for Common Small Values
30

 2.5.3 Related Works of Toom-Cook Multiplication Algorithm
31

 2.5.4 Complexity of Toom-Cook Algorithm
32

2.6 Schönhage–Strassen Multiplication Algorithm
33

 2.6.1 Discrete Fourrier Transform (DFT)
34

 2.6.2 Schönhage–Strassen Multiplication Algorithm Structure
35

2.6.3 Optimizations on Schönhage–Strassen

 Multiplication Algorithm

36

2.7 Summary
37

 v

CHAPTER THREE: ZOT-MK

3.1 Introduction
38

3.2 Concept of Big-Digits
38

 3.2.1 Big-Zeros
39

 3.2.2 Big-Ones
39

 3.2.3 Big-Twos
40

 3.2.4 Big-Digits
40

3.3 Representation of Integers and Big Numbers with Big-Digits
41

3.4 ZOT: New Structure for Big Numbers Representation
42

3.5 Big-Digits Multiplication
43

3.6 Big-Digits Multiplication Algorithms
46

 3.6.1 Big Zero-Big Digits Multiplication Algorithm (BZ×BD)
46

 3.6.2 Big One-Big One Multiplication Algorithm (BO×BO)
47

 3.6.3 Big One-Big Two Multiplication Algorithm (BO×BT)
51

 3.6.4 Big Two-Big Two Multiplication Algorithm
60

3.7 ZOT-MK: Karatsuba Multiplication Algorithm in ZOT Structure
61

3.8 Summary

64

CHAPTER FOUR: IMPLEMENTATION

4.1 Introduction

65

4.2 Big Integer Arithmetic

65

 vi

4.3 Arbitrary Precision Software
67

4.4 Requirements and Specification of Implementing ZOT

69

4.5 Structures and Main Functions of Developed Software

 Based on ZOT

72

4.6 Software Description

74

 4.6.1 Logical Functions
74

 4.6.2 Converters
77

 4.6.3 Arithmetic Functions

81

4.7 Summary

90

CHAPTER FIVE: RESULTS AND DISSCUTIONS

5.1 Introduction
91

5.2 Tools and Test Specification
91

5.3 Experimental Results Based on Different Types of

 ZOT Representation

92

 5.3.1 Experimental Results of ZOT
93

 5.3.2 Experimental Results of Double-ZOT
95

 5.3.3 Comparing Results of ZOT and Double-ZOT
97

 5.3.4 Experimental Results of ZOT-MK in Comparison to

 Karatsuba’s algorithm

99

 5.3.5 Experimental Results of ZOT-MK
99

 5.3.6 Comparison Result of Karatsuba’s Algorithm against ZOT-MK
100

5.4 Discussion
102

5.5 Summary
104

 vii

CHAPTER SIX: SUMMARY AND CONCLUSION

6.1 Conclusion 106

6.2 Further work
109

REFERENCES 110

APPENDIX A : DATA AND TABLES 115

 viii

LIST OF TABLES

 Page

Table 1.1 Main objectives of the research

6

Table 2.1 Summarized result after splitting the long integers

 into 2 to 10 parts

26

Table 3.1 Binary times table

43

Table 3.2 Decimal times table

43

Table 3.3 “Big one-big one” times table

44

Table 3.4 “Big two-big two” times table

44

Table 3.5 “Big one-big two” times table

44

Table 4.1 Famous software libraries for big Integer computation

67

Table A-1 Number length in ZOT (big-digits) to

 number length in binary(bits) 116

Table A-2 Time taken (µsec) for converting numbers from binary to ZOT

117

Table A-3 Number length in Double-ZOT (big-digits) to

 number length in binary (bits)

118

Table A-4 Time taken (µsec) for converting numbers from

 binary to Double-ZOT

119

Table A-5 Execution time of ZOT-MK algorithm (msec)

120

Table A-6 Execution time of Karatsuba’s algorithm (msec) 121

 ix

LIST OF FIGURES

 Page

Figure 2.1 Complexity definition graph 15

Figure 2.2 School-book multiplication example 17

Figure 2.3 Multi precision School-book Multiplication Algorithm 18

Figure 2.4 Recursive Karatsuba Algorithm 23

Figure 2.5 General Toom-Cook Multiplication Algorithm 30

Figure 3.1 “Big One-Big One” computationless multiplication algorithm 48

Figure 3.2 Big One-Big Two computationless multiplication

 algorithm (case 1) 51

Figure 3.3 Big One-Big Two computationless multiplication

 algorithm (case 2) 55

Figure 3.4 Big One-Big Two computationless multiplication

 algorithm (case 3) 58

Figure 3.5 ZOT-MK multiplication algorithm (step 1) 62

Figure 3.6 ZOT-MK multiplication algorithm (step 2) 62

Figure 3.7 ZOT-MK multiplication algorithm (step 3) 62

Figure 3.8 ZOT-MK multiplication algorithm (step 4) 63

Figure 3.9 ZOT-MK multiplication algorithm (step 5) 64

Figure 4.1 Structure of Developed software based on ZOT 73

Figure 4.2 Pesudocode for ANDBIT 75

Figure 4.3 Pesudocode for ORBIT 75

Figure 4.4 Pesudocode for XORBIT 75

 x

Figure 4.5 Pesudocode for ANDBinaryString 76

Figure 4.6 Pesudocode for ORBinaryString 76

Figure 4.7 Pesudocode for XORBinarystring 76

Figure 4.8 Pesudocode for XORBinarystring 77

Figure 4.9 Pesudocode for ConvertBinaryToZOTForOneBit 78

Figure 4.10 Pesudocode for ConvertBinaryToZOTForTwoBits 79

Figure 4.11 Pesudocode for ConvertBinaryToZOTForThreeBits 80

Figure 4.12 Pesudocode for ConvertZOTToBinary 81

Figure 4.13 Pesudocode for StandardBinaryAddition 82

Figure 4.14 Pesudocode for BinaryTwosComplement 82

Figure 4.15 Pesudocode for StandardBinarySubtraction 83

Figure 4.16 Pesudocode for StandardBinaryMultiplication 83

Figure 4.17 Pesudocode for BinaryShiftToLeft 83

Figure 4.18 Pesudocode for BinaryShiftToRight 84

Figure 4.19 Pesudocode for NormalKaratsubaBinary 84

Figure 4.20 Pesudocode for NormalKaratsubaBinary –Twobits 85

Figure 4.21 Pesudocode for ZOTAddition 86

Figure 4.22 Pesudocode for MultiplicationBigOneBigOne 86

Figure 4.23 Pesudocode for MultiplicationBigOneBigTwo 87

Figure 4.24 Pesudocode for ZOT-MKMultiplicationBinary 88

Figure 4.25 Pesudocode for ZOT-MKMultiplicationBinary-TwoDigits 89

Figure 5-1 Length of Numbers represented in ZOT against Binary 93

Figure 5-2 Time taken for converting numbers from binary to ZOT 94

 xi

Figure 5-3 Length of numbers represented in Double-ZOT against Binary 95

Figure 5-4 Result of converting representation of number from

 Binary to Double-ZOT 96

Figure 5-5 Length ratio of numbers in different representations

 (Double-ZOT to ZOT 97

Figure 5-6 Comparison of execution time for converting binary

 to ZOT and Double-ZOT 98

Figure 5-7 Execution time of the multiplication algorithm ZOT-MK 99

Figure 5-8 Comparison of the execution time for ZOT-Mk and

 Karatsuba algorithms 100

Figure 5-9 Percentage of execution time of ZOT-Mk to Karatsuba algorithm 101

Figure 5-10 Percentage of execution time of ZOT-Mk to Karatsuba algorithm 103

 xii

ZOT-MK: SATU ALGORITMA BARU UNTUK

PENDARABAN INTEGER BESAR

Abstrak

Pendaraban nombor besar banyak digunakan dalam pengkomputeran saintifik.

Walau bagaimanapun, terdapat hanya beberapa alogritma yang ada kini,

memperoleh keefisienan mereka melalui pendaraban integer besar. Oleh sebab

pendaraban integer tidak natif terhadap struktur penomboran arkitektur komputer

bagi bit dan bait, maka pelaksanaan algoritma tersebut akan menjadi agak lambat

Penyelidikan ini menekankan algoritma pendaraban nombor besar berdasarkan

simbol yang terekstrak daripada sistem nombor perduaan. Kami namakan struktur

penomboran baru ini sebagai “ZOT”. Algoritma baru bagi pendaraban nombor

besar, ZOT-MK, dibina daripada gabungan algoritma Karatsuba dan struktur ZOT.

Bagi tujuan penilaian, kami merangsang suatu persekitaran yang mampu

mengendalikan nombor yang besar untuk membandingkan prestasi algoritma yang

dicadangkan terhadap algoritma Karatsuba, yang sudah dikenali ramai. Keputusan

berjulat di antara julat nombor 25 hingga 5000 bit, menunjukkan bahawa kadar

pemampatan nombor tersebut yang diwakili oleh struktur ZOT terhadap perwakilan

normal perduaan adalah 41 peratus. Oleh itu, secara teorinya, dalam purata halaju

perlakuan ZOT-MK, ia sepatutnya dua kali lebih laju daripada algoritma Karatsuba.

 xiii

Walau bagaimanapun, disebabkan penggunaan memori ZOT-MK yang efisien, yang

menghilangkan memori kelui, keputusan eksperimen menunjukkan bahawa masa

perlakuan purata daripada ZOT-MK dalam nombor berjulat rendah (25 bit hingga 1

Kbit) adalah lebih kurang 35 peratus daripada alogritma Karatsuba. Nilai purata ini

akan berkurangan bagi nombor berjulat tinggi (1 Kbit hingga 5 Kbit) sehingga 25

peratus.

Kesimpulannya, keputusan yang diperoleh mengesahkan keefisienan algoritma

pendaraban ZOT-MK terhadap algoritma Karatsuba, yang merupakan “de-facto

standard” bagi alogritma pendaraban nombor besar.

 xiv

ZOT-MK: A NEW ALGORITHM FOR BIG INTEGER

MULTIPLICATION

Abstract

Multiplication of big numbers is being used heavily in scientific computation.

However, there are only a few existing algorithms today that gain their efficiency

through the multiplication of the big integer characteristic. Since the multiplication

on integers is not native to the computer architecture numbering structure of bits and

bytes, such algorithms are bound to be a bit slower on the implementation.

This research focuses on big number multiplication algorithm that is based on the

symbols extracted from the binary numbering system. We named the new

numbering structure as “ZOT”. The new algorithm for big numbers multiplication,

ZOT-MK, is constructed from the combination of Karatsuba algorithm and the ZOT

structure.

For evaluation purposes, we simulate an environment capable of handling big

numbers to compare the performance of the propose algorithm against the well

known Karatsuba algorithm. Over the range of 25 to 5000 bits numbers, results

show that the compression rate of those numbers represented by the ZOT structure

against the normal binary representation is 41 percent. Therefore, theoretically, in

average the execution speed of ZOT-MK should be about double of the Karatsuba

 xv

algorithm. However because of efficient memory utilization of ZOT-MK that

eliminates extensive memory paging, the experimental result shows the average

execution time of ZOT-MK in lower range numbers (25 bits to 1Kbits) is about 35

percent of the Karatsuba algorithm. This average value will decrease for higher

range numbers (1Kbits to 5Kbits) to 25 percent.

In conclusion, the available results validate the efficiency of the ZOT-MK

multiplication algorithm against Karatsuba algorithm, which is currently the de-

facto standard for big number multiplication algorithm.

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Before the widespread use of data processing equipment, the security of information

was primarily provided by physical and administrative means. An example of this is

the former use of rugged filing cabinets with a combination lock for storing sensitive

documents. As the computer was introduced, a need for an automated lock for

protecting sensitive documents became evident [1]. As society’s dependence upon

digital computing and telecommunication increases, the need for quantitative computer

security increases proportionally. In this study, we will scrutinize the different models

of numerical systems, and institute a new method to increase the time efficiency and

decreases the memory usage to facilitate the increased overall efficiency of the security

(cryptographic) computational algorithm.

As stated by McLennan, Cryptography is a discipline of Mathematics and Computer

Science concerned with information security using encryption and authentication

techniques [2]. The discipline of writing messages as ciphertext, with the aim of

protecting a secret from adversaries, interceptors, intruders, interlopers, eavesdroppers,

opponents or simply attackers [3]. The application of information security must be

instituted into the software programs, through mathematical algorithms with the proper

procedural techniques to create an efficient system of data integrity. In Computer

 2

Science, a numeral system is a mathematical notation of number that represents a

positional notation allowing computational applications. This allows internal

representation of arbitrarily large integers or arbitrarily precise rational numbers and the

arithmetic operations on such numbers. Numbers are typically stored as (ratios of) digit

lists which can grow using dynamically allocated memory. The most prevalent need for

multiple precision arithmetic, often referred to as “bignum” or “big number” math is

within the implementation domain of Cryptography, Mathematics, Cosmology,

Statistical Mechanics and others [4]. Yet, the most widespread usage of bignum

arithmetic is probably for Cryptography. In this study, we will focus on two aspects of

the bignum system, the application and the computation.

The modern field of Cryptography can be divided into main two areas of study, the

symmetric-key and asymmetric-key cryptography. Symmetric-key cryptosystems use

the same key for encryption and decryption of a message. A significant disadvantage of

symmetric ciphers is the issue of key management. To maintain the integrity of the

sensitive data, it is necessary for each distinct pair of communicating parties to ideally

share a different key, and perhaps for each cipher text exchanged as well. Asymmetric-

key (also, more generally, known as public-key) cryptography is conceptualized with

two different but mathematically related keys: a public key and a private key.

Asymmetric-key cryptosystem is constructed such that calculation of one key (the

'private key') is computationally infeasible from the other key (the 'public key'), even

though the keys are related. In asymmetric-key cryptosystems, the public key may be

freely distributed, while its paired private key must remain secret, known only to the

 3

receiving party. Hence, the public key is typically used for encryption, while the private

key is used for decryption [3].

RSA [5] is a type of asymmetric-key cryptosystem, which uses modular exponential

module on the product of two large prime numbers. RSA encryption is defined by the

exponential notation of (g
e
)

d
 mod m = g. The modulus which is based on n = pq, where

p and q are big prime numbers, with an exponent e, which is relatively prime to (p-1)(q-

1). To produce a valid private key, the values of two large primes must be found. Yet,

due to the size of the value of p and q, the length of time to find the values may be

lengthy. Hence, the time efficiency is low, resulting in the decrease in the overall

effectiveness of the cryptosystem.

Due to the difficulty of factoring large numbers using the RSA cryptosystem, EIGamal

[6] cryptosystem based on the discrete logarithm was theorized. The discrete logarithm

uses number raised to large exponentials, defined by modulo p that relies on the

difficulty of the inverse computation of the discrete logarithm. Hence, even though the

EIGamal cryptosystem is efficient in comparison to the application of the RSA

cryptosystem, due to the complexity of the arithmetic module, its simulation will cause

a need for high memory capacitance, as well as low time efficiency.

In most of the cryptosystems, there is a need of big number calculation, especially for

the multiplication of large numbers. The three most popular big number multiplication

algorithms are the Karatsuba-Ofman, Toom-Cook, and FFT
1
.

1 -Fast Fourier Transform

 4

The Karatsuba-Ofman [7] method is an efficient procedure for performing the

multiplication of large numbers. It reduces the multiplication of two n-digit numbers to

at most single-digit multiplications. It is therefore faster than the classical algorithm,

which requires n
2
 single-digit products. In other words, the multiplication of a 2 n-digit

integer is reduced to two n-integers multiplications, one (n+1) digits multiplication, two

n-digit subtractions, and two 2 n-digit additions. This form of binary splitting can be

used to analyze the efficiency of the program, using the basic steps of the recursive

algorithm, which is n
c
 , where c = log2 n. Hence, if a computer has a 32-bit multiplier,

one could choose B = 2
31

 = 2,147,483,648 or B = 10
9
 = 1,000,000,000, and store each

digit as a separate 32-bit binary word. Then the sums x1 + x0 and y1 + y0 will not need

an extra carry-over digit and the Karatsuba recursion can be applied until the numbers

are only 1 digit long. Therefore, the Karatsuba algorithm allows hardware

implementation performance with fewer shifts. Hence, it increases the time efficiency

of the application.

Toom-Cook algorithm is a well known convolution algorithm that was first proposed in

1963 [8]. If we construct two sequences using the polynomial coefficients of two

polynomials, when their linear convolution is computed, the elements of the resulting

sequence give the coefficients of the product of the two polynomials. Hence, any linear

convolution algorithm may easily be adapted to compute polynomial multiplications.

The Toom–Cook algorithm works by treating the two operands as polynomials of

maximum degree k − 1. This is done by partitioning the integer representations into k

 5

digits. Both polynomials are evaluated at 2k − 1 points and multiplied together. Solving

the linear system of equations gives the coefficients of the product [3].

The usual convolution of polynomial multiplication is less efficient than the Fast

Fourrier Transform (FFT) [9]. Convolution is a bilinear form associated to the

syntactical encoding of polynomials as a coefficient list, whereas FFT recalls that a

polynomial is a function and hence, it takes advantage of the semantical features of the

polynomials to multiply (FFT evaluates polynomials at sufficiently many points and

then interpolates to get the coefficients of the polynomial product) [9]. Shonhage and

Strassen [10] introduced a Discrete Fourrier Transformer (DFT)-based integer

multiplication method that achieves an exciting asymptotic complexity of

()nnnO logloglog .

1.2 Problem Statement

It is apparent that the multiplication of big numbers is being heavily used in area such as

Cryptography. However there are only a few existing big number multiplication

algorithms that gain their efficiency through the manipulation of the big integer

characteristics. Since the manipulation on integers is not native to the computer

architecture numbering structure of bits and bytes, such algorithms are bound to be a bit

slower on the implementation. Therefore, in this research we are working on a new big

number multiplication algorithm that is based on the symbols originated from the binary

numbering system.

 6

1.3 Research Objectives and Scope

The main objectives of this research are listed as below:

Table 1.1: Main objectives of the research

Main Objectives Activities Details

Introducing big-digits
Definitions, rules and
different types

Proposing new
model for

representation of
big numbers Introducing ZOT structure

Converting binary numbers
to ZOT representation

Introducing big-digits
multiplication algorithm

Definitions, rules and
different types

Proposing new
model for big

numbers
multiplication

algorithm Introducing big number
multiplication algorithm

Mixing ZOT and Karatsuba

Simulation

Simulation of ZOT, ZOT-Mk
and Karatsuba
multiplication for big
numbers

Evaluation of the
proposed
algorithms

Analyzing and evaluation
Evaluate the efficiency of

ZOT and ZOT-Mk
algorithms

 7

As we can see from Table (1.1) the main objectives of this research are:

• To propose a new representation of big number system that we call ZOT. A

tabulated system will be created for the conversion of binary system to the ZOT

structure.

• To propose a new algorithm for big number multiplication, this is a combinatory

method of the ZOT structure and the Karatsuba algorithm.

• To analyze and evaluate the new proposed algorithms in comparison with

similar algorithms.

1.4 Research Methodology

As mentioned in Table (1.1), the research methodology, is divided into three main parts:

• Designing the proposed model

• Implementation and evaluation the proposed model

• Analyzing the efficiency of the proposed model

1.4.1 Designing and Proposed Model

We first propose a new structure for representation of Bignum, driven from binary

representation of numbers, called ZOT. The main differences between our

multiplication algorithm and others are derived from the structure and related properties

of ZOT.

 8

The first step is to introduce and define the main elements and concepts of ZOT. Big-

digits is a general name in the ZOT structure. Big-digits are categorized to three types:

• Big-zero: we use the symbol of AZL to represent this type of “Big-digits”. Any

group (in binary representation) of “0” is a big-zero. ‘L’ is the length of “0”

elements in ZLA .

 Example: AZ5=”00000” and AZ7=”0000000”

• Big-one: we use the symbol of AOL to represent this type of “Big-digits”. Any

group (in binary representation) of “1” is a big-one. ‘L’ is the length of “1”

elements in OLA .

Example: AO5=”11111” and AO7=”1111111”

• Big-two: we use the symbol of ATL to represent this type of “Big-digit”. Any

group (in binary representation) of “10” that ends to “1” is a big-two. ‘L’ is the

length of “10” elements in TLA .

Example: AT5=”10101010101” and AT7=”101010101010101”

Concepts and methods for converting binary to ZOT representation, and vice versa is

the main contribution of this section.

 9

The second step is extending our discussion to define new operations for Big-digits.

Multiplication of Big-digits is the main operation in which we will detail our work in

this section. Big-digit multiplication is categorized into four types of multiplication as

shown below:

• ZOT-M0: Big - zero – Big - digits multiplication

• ZOT-M11: Big - one – Big - one multiplication

• ZOT-M12: Big - one – Big - two multiplication

• ZOT-M22: Big - two – Big - two multiplication

We will proceed with our work by presenting new algorithms for all types of Big-digits

multiplication as mentioned above.

Extending the concept of multiplication from Big-digits multiplication to big number

multiplication (with the help from literature) is the next conceptual step in our research.

Integrating ZOT and Karatsuba, the well-known multiplication algorithm for bignum

multiplication is the last step in this phase. According to our literature review,

Karatsuba multiplication algorithm is a good candidate to be coded with the ZOT

structure. Firstly, Karatsuba algorithm is more efficient than school-book method for

bignum multiplication and secondly, Karatsuba algorithm is a special case of the Toom-

Cook algorithm. Consequently our result can be extended to a wide range of big

numbers multiplication algorithms such as the Toom-Cook algorithm as well.

 10

1.4.2 Implementation and Evaluation of the Proposed Model

To provide with a proper evaluation tool is the purpose of this section. This part of work

is divided and implemented as below:

• Recognizing the specification of the software library

• Providing big number requirements in the software library

• Simulating of ZOT , ZOT-MK and Karatsuba algorithms

• Evaluating of Karatsuba and ZOT-Mk algorithms

C++ is as a powerful language with the ability to simulate low level operation, therefore

C++ is our choice of computer language for the implementation and evaluation. For

compatibility with our requirements, we need a complementary library. We create the

library especially to handle the followings:

• Managing bignum as input/output parameter

• Computational functions for bignum

• Logical functions for bignum

• Special algorithms

• Evaluation algorithms

1.4.3 Analysis Results

We performed a detailed analysis on the results obtained from simulation scenarios. We

analyzed the effectiveness of the proposed algorithms over our simulated range of

numbers.

 11

1.5 Research Contributions

Contributions of this thesis are as follows:

• Propose a new structure representing big numbers

• Propose a new multiplication algorithm for big-digits

• Propose a new multiplication algorithm for big numbers

1.6 Thesis Outline

The thesis is organized into six chapters:

Chapter One: Provides an overview of the thesis content and directions of the thesis

Chapter Two: Reviews in brief the number theory used in Cryptography. Then the

chapter continues with related works on big number multiplication as one of the main

operations in cryptography computation. Finally, well known algorithms in this area are

studied and compared against each other.

Chapter Three: ZOT-MK as the new algorithm is being introduced in this chapter.

New related concepts to ZOT structure such as Big-digit’s, Big-zero’s, Big-one’s and

Big-two’s will be defined. The main algorithm for Big-digits multiplication is discussed

in detail as well.

Chapter Four: Detailed implementation of ZOT-MK with the most important

functions is presented. This chapter will focus on the main parts of the algorithm that

 12

has been designed in C++. Single ZOT and Double ZOT are two variations of ZOT

algorithms that we will explain in detail, as the fundamental algorithms for fast

multiplication algorithms that we are proposing.

Chapter Five: Research results and analyses are presented in this chapter. General

discussion about the results as a whole is being presented in this chapter as well.

Chapter Six: Concludes the thesis and presents the future direction of the research.

 13

CHAPTER 2

LITERATURE REVIEW

1. f

2.

2.1 Introduction

Many modern scientific computations require the manipulation of numbers that are too

big to fit in a word of memory [12]. Big numbers are a compound representation for

integers, created for scientific computation. Big number multiplication is one of the

fundamental algorithms in this representation, that many mathematicians and computer

scientists are continuously working to come up with lower complexity algorithms [7, 8,

10]. Knuth [11] has dedicated a significant part of the second volume in his Art of

Computer Programming book to such algorithms, where he also discusses the School-

book arbitrary precision algorithms, and various advanced multiplication algorithms. In

this chapter we will proceed to the most popular and best known algorithm of big

numbers multiplication, specifically Schoolbook, Karatsuba [7], Toom-Cook [8] and

Shonang-Strassen [10] multiplication algorithms. We will study these algorithms and

their variants. Algorithm complexity, as an analysis tool will be discussed as well.

In this chapter, Karatsuba algorithm has been given more attention than the other

algorithms, specifically because our proposed method for improving the efficiency of

multiplication algorithm has been implemented based on this algorithm. On top of that,

as we will discover in this chapter, some variants of Karatsuba [13, 14] are more

 14

efficient than the other well-known big numbers multiplication algorithms (especially

for the use in the cryptography).

2.2 Multiplication Algorithm

Multiplication is the process of repeating additions of the same number [15]. On the

other hand a multiplication algorithm is a method of multiplying two numbers.

Depending on the size of the numbers, different algorithms will be used. Consequently

many efficient multiplication algorithms had been proposed.

Introducing important related concepts such as complexity of computation is necessary

when analyzing such algorithms. Employing this concept will help us to compare and

evaluate different algorithms in a well-structured manner.

 2.2.1 Computational Complexity

Any given algorithm has a certain complexity, which is essentially a measure for how

long it takes to run the algorithm [17]. Complexity theory analyzes the difficulty of

computational problems against many different computational resources such as time,

space, randomness, alternation, etc. [18, 19, 20, 21].

One of the main objectives of computational complexity theory is to categorize

algorithms. Thus for designing the cryptosystems, computational complexity can help

us to design algorithms that are easy to use but hard to break [3].

 15

Running time is the most important computational resources and it depends on the basic

steps taken by an algorithm. Typically, the running time is measured as a function of the

input length. For numerical problems, we assume the input is represented in binary, so

the length of an integer n is roughly n2log [11]. For example, adding two n-bit numbers

has running time proportional to n. [3]

The common way for showing the complexity of algorithm is, the symbol of Big O

notation (is also known as “Big Oh” notation or asymptotic notation). Big O notation

usually describes only upper bound on the growth rate of a function. There are several

related notations, using the symbols �, �, and �, to describe other kinds of bounds on

asymptotic growth rates [22, 23, 24].

Definition 2.1: Big O is a theoretical measure of the execution of an algorithm, usually

the time or memory utilization, given the problem size n, which is usually the number

of items being processed. Informally, saying some equation f(n) = O(g(n)) means it is

less than some constant multiple of g(n) (see Figure 2.1). The notation is read, "f of n is

big oh of g of n" [24, 25].

Figure 2.1: Complexity definition graph

 16

There are three types of complexity (for more detail, see [3]):

• Best-case complexity

• Average-case complexity

• Worst-case complexity

As can be seen in Section 2.3 the running time of schoolbook multiplication algorithm

or its complexity is O(n
2
). In this example, the running time is measured in the worst

case. Typically, in much of complexity theory, we measure the maximum running time

over all inputs of length n.

 Another important point in the study of algorithm complexity is the behavior of the

algorithm for very large inputs. Differences between two algorithms with complexity

of, 2n
3

and n
3
, or n

2
and 100n

2
, are irrelevant by a many fold increase in the speed of

computers. On the other hand, for large enough n, slowing growing terms in a function

will be affected by faster terms (like the 5n term in comparison with n
2
 in the (nn 52 +))

[17].

2.3 Schoolbook Multiplication

The integer multiplication operation lies at the many cryptographic algorithms [3].

Naturally, remarkable effort went into developing efficient multiplication algorithms.

The simplest of such algorithms is the schoolbook multiplication.

 17

In positional numeral system [11], the natural way of multiplying numbers known as

schoolbook multiplication is multiplying the multiplicand by each digit of the

multiplier and then add up all the properly shifted results. It requires the multiplication

table for single digits. Humans do this algorithm usually in base 10 on paper, by writing

down all the products and then add them together. Computers usually use a very similar

algorithm in base 2 and will sum the products as soon as each one is computed.

Following example uses symbolic schoolbook multiplication to multiply

baaaaA)(0123= (multiplicand) by bcccC)(012= (multiplier) in arbitrary base b.

a3 a2 a1 a0

 × c2 c1 c0

 a3c0 a2c0 a1c0 a0c0

 + a3c1 a2c1 a1c1 a0c1

 + a3c2 a2c2 a1c2 a0c2

__

 s6 s5 s4 s3 s2 s1 s0

Figure 2.2: Schoolbook multiplication example

As can be seen from the above example, schoolbook multiplication method can be

stated as follows:

 18

Multi precision schoolbook Multiplication Algorithm

Input: positive integers u (um-1um 2 . . . u1u0)b

 and v (vn-1vn 2 . . . v1v0)b

Output: The integer product t=u.v

 For i=0 to m+n-1 do ti= 0;

 End For

 C= 0;

 For i=0 to m-1 do

 For j=0 to n-1 do

 (cs)b=ti+j+ui.vj+c;

 Ti+j= s;

 End For

 Ti+n+1= c;

 End For

Return (t)

Figure 2.3: Multi precision schoolbook multiplication algorithm

The algorithm proceeds in a row-wise manner. That is, it takes one digit of one operand

and multiplies it with the digits of the other operand. Shifting and accumulating the

product is the next step for computation. The subscript b indicates that the digits are

represented in radix-b. As can be easily seen the number of digit multiplications

performed in the overall execution of the algorithm is m×n.

2.3.1 Time Complexity of the Schoolbook Multiplication Algorithm

Based on Definition 2.1, time complexity is a theoretical measure of the execution time

that is needed for an algorithm to run. The schoolbook multiplication algorithm has

O(n
2
) complexity [11], meaning that the amount of time needed to multiply two n-digit

numbers needs about n
2

operations. This means for large values of n the computation

time basically explodes (i.e. asymptotic).

 19

2.3.2 Space Complexity of the Schoolbook Multiplication Algorithm

According to the Definition 2.1, space complexity is a theoretical measure of the

memory usage for an algorithm. Let n be the total number of bits in the two input

numbers. Schoolbook multiplication has the advantage that it can easily be formulated

as a log space algorithm; that is, an algorithm that only needs working space

proportional to the logarithm of the number of digits in the input ()nO log [11]. In

Schoolbook multiplication (see Figure 2.2) the process that is needed is only adding the

columns right-to-left and keeping the carry of each column. The maximum number of

total sum can never exceed 2n and the carry is at most n. Thus both of these values can

be stored in O (log n) bits.

2.4 Karatsuba Multiplication Algorithm

As we mentioned before, in some applications such as computer algebra systems and

big number libraries, there is a need to multiply numbers in the range of several

thousand digits. In these cases schoolbook multiplication will be too slow.

Karatsuba's algorithm is an efficient procedure for multiplying two large numbers or

two polynomials. It was introduced by Anatolii Alexeevitch Karatsuba in 1960 and

published in 1962 [26, 27]. This algorithm is a notable example of the divide and

conquer [28, 29,30] paradigm, specifically of binary splitting [31, 32]. Hence before

entering to the main discussion about Karatsuba algorithms and its different variants,

we will review briefly, the structure and specifications of the processing paradigm,

which is the divide and conquer algorithm.

 20

2.4.1 Divide and Conquer Algorithm

Divide and conquer algorithm is a method for solving a problem by dividing it into two

or more smaller sub-problems. Each of these smaller sub-problems is recursively

solved, and the solutions to the sub-problems are then combined to give a solution to the

original problem [28].

The name "divide and conquer" is occasionally applied also to algorithms that reduce

each problem to only one sub-problem, the binary search algorithm for finding a record

in a sorted list [28] is an example for this application. Every algorithm that uses

recursion or loops can be expressed as a "divide and conquer algorithm". Hence, some

authors use the name "decrease and conquer" instead [29]. This technique is the basis

of efficient algorithms for all kinds of problems, such as sorting (e.g., quick sort, merge

sort), multiplying large numbers (e.g. Karatsuba), and computing the discrete Fourier

transform (DFT) [28].

Improvement in the asymptotic cost of the solution is one of the important advantages

of using the divide and conquer algorithm. For example, if the base cases have constant-

bounded size, the work of splitting the problem and combining the partial solutions is

proportional to the problem's size n, and there are a bounded number p of sub-problems

of size n/p at each stage, then the cost of the divide and conquer algorithm will be O(n

log n) [28].

For execution in multi-processor machines, especially shared-memory systems, because

distinct sub-problems can be executed on different processors, the divide and conquer

 21

algorithms performance will improve. Therefore parallelism techniques can be easily

applied for the algorithms, in which constructed based on divide and conquer algorithm.

2.4.2 Karatsuba Multiplication Algorithm Construction and Specifications

We stated previously that the Karatsuba algorithm is an efficient method for large

numbers multiplication. It reduces the multiplication of two n-digit numbers to

585.13log2 nn = (i.e. asymptotic) single-digit multiplications and saves coefficient

multiplications at the cost of extra additions compared to the School-book

multiplication algorithm. The lower exponent of Karatsuba algorithm shows; it is faster

than the School-book algorithm, which requires n
2
 single-digit products. The Karatsuba

algorithm is a notable example of the divide and conquer algorithm. The basic

Karatsuba algorithm is performed as follows [11]:

Consider two degree-1 polynomials A(x) and B(x) with n 2 coefficients.

A(x) = a1x + a0

B(x) = b1x + b0.

Let D0, D1, D0,1 be auxiliary variables with

 D0 a0b0

D1 a1b1

D0,1 (a1 a0)(b1 b0)

Then the polynomial C(x) A(x) × B(x) can be calculated in the following way:

C(x) D1x
2
 (D0,1 - D0 -D1)x D0.

 22

Example: assume we want to compute the product of 1234 and 5678.

12 34 = 12 × 10
2
+ 34

56 78 = 56 × 10
2
 + 78

D0 = 34 × 78 = 2652

D1 = 12 × 56 = 672

D0,1 = (12 + 34)(56 + 78) − D1 − D0 = 46 × 134 − 672 − 2652 = 2840

C(x) = D1 × 10
2×2

 + D0,1 × 10
2
 + D0 = 672 × 10000 + 2840 × 100 + 2652 =

7006652

This method requires three multiplications and four additions. The School-book method

requires n
2
 multiplications and (n-1)

2
 additions, i.e., four multiplications and one

addition for n=2. Clearly, the Karatsuba algorithm can also be used to multiply integer

numbers and can be generalized for polynomials of arbitrary degree. Let the number of

coefficients be even. To apply the algorithm both polynomials are split into a lower and

an upper half:

 A(x) Au(x) x
n/2

 Al (x)

 B(x) Bu(x) x
n/2

 Bl (x).

These halves are used as before. The polynomials Au, Al, Bu, and Bl are split again in

half in the next iteration step. Since every step exactly halves the number of

coefficients, the algorithm terminates after nt 2log= steps. Figure 2.4 shows this

algorithm, where n is the number of coefficients of A(x) and B(x).

 23

Recursive Karatsuba Algorithm, C = KA(A, B)

INPUT: Polynomials A(x) and B(x)

OUTPUT: C(x) = A(x) B(x)

 N= max(degree(A), degree(B)) 1

 IF n 1 Return A B

 A(x) Au(x) x
n/2

Al (x)

 B(x) Bu(x) x
n/2

 Bl (x)

 D0 = KA(Al , Bl)

 D1 = KA(Au, Bu)

 D0,1 = KA(Al Au, Bl Bu)

Return D1x
n
 (D0,1 - D0 - D1)x

n/2
 D0

Figure 2.4: Recursive Karatsuba algorithm

Let NMUL and NADD be the number of multiplications and additions, respectively. Then

the complexity to multiply two polynomials with n 2
i
 coefficients are as follows [33]:

NMUL 585.13log2 nn ==

NADD 286
3log2 +− nn

The recursive Karatsuba algorithm versions are more efficient than the one-iteration

Karatsuba algorithm. For example, instead of using the one-iteration Karatsuba

algorithm for n 31 coefficients, Karatsuba algorithm can use the recursive Karatsuba

algorithm and split the 31- coefficient polynomial into two polynomials of 15 and 16

coefficients, respectively. Alternatively one could split the 31-coefficient polynomial

into three parts of 10, 10, and 11 coefficients, respectively. In the next recursion step,

the polynomials are again split in two or three parts, and so on. However, a number of

intermediate results have to be stored due to the recursive nature. This might reduce the

efficiency of the recursive Karatsuba algorithm variants for small size polynomials.

 24

When the number of coefficients is unknown at implementation time, the simple

recursive Karatsuba algorithm is the most efficient way to implement the Karatsuba

algorithm [33]. Using the one-iteration Karatsuba algorithm for special cases, n 2 and

n 3 as well as for n 9 that splits the operands into three parts recursively yield

efficient running times.

Using the dummy coefficients is another technique for improving the performance. For

example, to multiply two polynomials of n 15 coefficients it might be useful to

append a zero coefficient and use a recursive Karatsuba algorithm for k 16 coefficients.

Some operations can be saved whenever the leading zero coefficient is involved.

However, this is only little improvement. For some cases the Karatsuba algorithm is

always faster than the School-book method, it needs less multiplications and additions.

However, there are also cases where it is more efficient to use a combination of

Karatsuba algorithm and the School-book method [33].

In most cases, if n is not very small, the squaring Karatsuba algorithm outperforms the

ordinary squaring method [33]. Further information about the Karatsuba and similar

algorithms can be found in [34, 35, 36].

2.4.3 Related Work to Karatsuba Algorithm

Work on combination multiplication algorithms with Karatsuba algorithm is another

technique that researchers have been engaged on. J. V. Gathen, et al. [37] worked on

the combination of the School-book and the Karatsuba methods, and reported

