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Abstract. This study compares the effectiveness of the Box-Jenkins model and neural networks model in 
making a forecast. An eighteen years bimonthly water consumption in Penang data set is analyzed. Multi­
layer perceptron (MLP) in neural network with single hidden layer and double hidden layers using error­
backpropagation algorithm models are used. Four MLP programs with double hidden layers which are the 
original data (0), the deseasonalized with the smoothing moving average method (DS), the linear detrended 
model (DTL) and both deseasonalized and detrended model (DSTL) and a single hidden layer MLP with 
both deseasonalized and detrended (DSTL) were simulated. For time series analysis, a Box-Jenkins SARIMA 
model is generated. The performance of the models are measured using three types of error measurement, 
which are mean absolute error (MAE). absolute percentage error (MAPE) and root mean squared error 
(RMSE). The model with smallest value of MAE, MAPE and RMSE stands out to be the best model in 
predicting the water consumption in Penang for the year 2008. The results showed that both SARIMA and 
double hidden layers MLP models perform relatively well. Furthermore, double hidden layers MLP model 
shows an improvement in prediction as compared with the single hidden layer MLP model. 
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1. Introduction 

Neural network has the ability to represent both linear and non-linear relationships and the network can 
learn these relationships directly from the raw data. Multi-layered Perceptron (MLP) model is the most 
common model in neural network and is a feed-forward model (Looney, 1997). Each node in one layer 
connects with a certain weight to every other node in the following layer. In general, more hidden layers can 
prevent the necessity of using unnecessary neurons to achieve highly non-linear classification. The error 
back-propagation algorithm used adjusts the weights to obtain more accurate forecast values. A time series is 
a sequence of data points (observations), collected typically at successive times, spaced at often uniform time 
intervals. Data collected inconsistently or only once may not be considered as a time series. Time series 
analysis consists of methods that attempt to understand the specific time series, identifying the underlying 
context of the observations and tit a suitable model to make predictions. Time series forecasting means the 
use of a model to predict future events based on the past data; to forecast future data points before they are 
measured. Time series can be applied into various fields, such as economic forecasting, sales forecasting, 
stock market analysis, process and quality control, inventory forecasting, production planning and many 
more (Chatfield, 2004). 

In recent years, artificial neural networks have been widely used as a useful tool to model many areas of 
engineering applications. Sandemir (2008) presented the models in artificial neural networks (ANN) for 
predicting compressive strength of concretes containing metakaolin and silica fume that had been developed 
at the age of 1, 3,7, 28, 56, 90 and 180 days. The multi-layered feed forward neural networks models were 
fed with these parameters to predict the compressive strength values of concretes containing metakaolin and 
silica fume. The results of this Shldy showed that neural networks have strong potential for prediction, which 
proved that a11ificial neural networks are capable of learning and generalizing from examples and 
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experiences. Ong, et al. (2008) gave on a functional approximation comparison between neural networks and 
polynomial regression. The results showed that approximation using polynomial regression generates lower 
fraction of variance unexplained (FVU) value as compared to approximation using neural networks with 
single hidden layer multi-layered perceptron (MLP) and double hidden layer MLP except for the 
complicated functions. Moreover, double hidden layer MLP showed better estimation results than single 
hidden layer MLP without considering the number of parameters being used. On the other hand, statistical 
models have commonly been used in time series data analysis and forecasting. Zou and Yang (2003) 
proposed combining time series model for forecasting for a better performance. Lam, et al. (2008) used 
autoregressive integrated moving average (ARIMA) model to measure the intervention effects and the 
asymptotic change in the simulation results of the business process reengineering that is based on the activity 
model analysis. A case study of a purchasing process of a household appliance manufacturing enterprise that 
involves 20 purchasing activities was used as the training data. The results indicated that the changes can be 
explicitly quantified and the effects of business process reengineering can be measured. In general, many 
time series are asymptotically unstable and intrinsically non-stationary. Box-Jenkins models solve these 
problems by imposing on data transformations, such as differencing and logarithm. Grillenzoni (1998) 
discussed on a method for modeling time series with unstable roots and changing parameters. A method of 
adaptive forecasting which is based on the optimization of recursive estimators was applied to well-known 
data sets. He had demonstrated its validity in several implementations and for different model structures. 

3. Methodology 

3.1. Neural network - multi-layered perceptron 
Multi -layered perceptron is the most common neural network model. It's abilities in achieving highly 

nonlinear classification and noise tolerance make it suitable to be used in this study. Bipolar sigmoid 
function is applied in this study. In a single hidden layer model, the perceptron computes associated outputs 
from mUltiple real-valued inputs by forming a linear combination according to its input weights. The data set 
is treated as inputs and denoted as { Xi }, where i = number of data and has an associated set of exemplar 
outputs target vector. A random initial synaptic weight set for the hidden and output layers are selected. 
Finally, the current weights are re-iterated and updated using the error back-propagation algorithm to force 
each of the input exemplar feature vectors to be mapped closer to the target vector that identifies a class in 
the input space. In the double hidden layered MLP, the perceptrons also computes associated outputs from 
multiple real-valued inputs by forming a linear combination according to its input weights and the data set is 
treated as inputs. The main difference is that the synaptic weight set has an additional second hidden layer. 
Error back-propagation is used to update the error computed in the network with respect to the network's 
modifiable weights. The error value which is the difference between output value and desired value is then 
computed. The errors will be propagated back into the network using a gradient descent technique so that 
weights adjustment can be done. 

3.2. Design of Box-Jenkins model 
There are three primary stages in building a Box-Jenkins time series model, which are model 

identification, model estimation and model diagnostics. 

I) Model identification: There is a need to determine if the series is stationary, has a trend component 
and if there is any sign of seasonality that needs to be modeled. Stationarity, trend and seasonality can be 
detected by plotting the time series graph. If there is trend component present in the data, the graph will not 
be in a random form. Stationarity can also be checked via sample auto-correlation (ACF). In a stationary 
series, the auto-covariance function , Yk and the auto-correlation function, Pk show the following properties: 

=~~==I_·_I1'J ~ Yu ' 

2. Po = 1 and - I < Pk < 1 for k i= I. 

3. Yk = Y-k and Pk = P-k for all k . 

Seasonality can be accessed from sample auto-correlation (ACF) at various lag k and also sample partial 
auto-correlation (PAC F) at various lag k of the process. The behavior of the ACF and PACF is shown in 
Table 1. After stationarity and seasonality have been addressed, the next step is to identify the order (the p 
and q) of the autoregressive and moving average terms. The behavior of ACF and PACF will indicate the 
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order form of the autoregressive and moving average terms. 

TABLE I. BEHA VIOR OF ACF AND PACF 

AR(P) MA(q) ARMA(p,q) 

ACF Tails off Cuts off after lag q Tails off 

PACF Cuts off after lag p Tails off Tails off 

2) Model estimation: Parameters estimation for the Box-Jenkins models is a quite complicated non­
linear estimation problem. Therefore, high quality software program that fits Box-Jenkins model should be 
used to estimate the parameter (Anderson, 1994). 

Consider ~ is stationary time series and {c,} are independently and identically distributed with N (0, c:r,2 ) , 

an ARMA(p,q) model with unknown parameters <p = {ifVPz, .. .. .. <P,,} , 8 = { 81 A , .. .... 8q } and c:r; = E (en is 

gIven as : 

The main approaches to fitting Box-Jenkins models are maximum likelihood estimation and least squares 
estimation. 

3) Model diagnostics : The ACF plot and PACF plot of the estimated residual {;,} have the ability to 

indicate whether the residuals are independent and normally distributed. If the ACF plot and P ACF plot 
show the points are distributed randomly or do not show any pattern, then this indicates that the residuals are 
independent and normally distributed. However, if these assumptions are not satisfied, a more appropriate 
model needs to be fitted. This means that, the model identification step has to be redone to re-develop a 
better model that satisfies the diagnostic test. Although a good model may not be obtained on the first trial, 
however a new and better model can be easily derived (Wei, 1990). Correlogram of residuals and 
correlogram of residuals squared are sufficient for determining the status of white noise. Q-statistics is useful 
to test normality of the residuals within a range of an independent variable. In other words, it served as a tool 
to test whether the series is white noise. The last two columns in the correlogram represent Ljung-Box Q­
statistics and their p-value respectively. The Q-statistics at lag k is a test statistics for the null hypothesis 
where there is no auto-correlation up to order k. It is computed as follows : 

k 

Q = T(T + 2) L (T - it rj
2 

jr::.1 

where r j represents the j -th auto-correlation and T represents number of observations. If the p-value is less 
than 0.05, then it is significant. Therefore, the null hypothesis is rejected, and the error terms are correlated. 
If the p-values are greater or equal to 0.05, then the p-values are not significant at all lags. Thus, the null 
hypothesis is not rejected, and the residuals are not correlated (Harvey, 200 I) . 

3.3. Criteria comparison by error measurement 
Three types of error measurement are used in this study, which are the mean absolute error (MAE), the 

percentage error (MAPE) and the root mean squared error (RMSE). 
Mean Absolute Error (MAE) 
MAE = Average of the absolute values of forecasting error 

= t lXi -Xi I 
1 

A 

where i = 1, 2, .. . . . . , I, X; = original data, X = forecast data 
; 

Mean Absolute Percentage Error (MAPE) 
MAPE = Percentage of the mean ratio of the error to the original data 
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