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A B S T R A C T

This thesis describes a longitudinal study on factors which predict aca-

demic success in introductory programming at undergraduate level, in-

cluding the development of these factors into a fully automated web-

based system (which predicts students who are at risk of not succeed-

ing early in the introductory programming module) and interventions

to address attrition rates on introductory programming courses (CS1).

Numerous studies have developed models for predicting success in CS1,

however there is little evidence on their ability to generalise or on their

use beyond early investigations. In addition, they are seldom followed

up with interventions, after struggling students have been identified.

The approach overcomes this by providing a web-based real time sys-

tem, with a prediction model at its core that has been longitudinally

developed and revalidated, with recommendations for interventions

which educators could implement to support struggling students that

have been identified.

This thesis makes five fundamental contributions. The first is a reval-

idation of a prediction model named PreSS. The second contribution

is the development of a web-based, real time implementation of the

PreSS model, named PreSS#. The third contribution is a large longi-

tudinal, multi-variate, multi-institutional study identifying predictors

of performance and analysing machine learning techniques (including

deep learning and convolutional neural networks) to further develop

the PreSS model. This resulted in a prediction model with approxi-

mately 71% accuracy, and over 80% sensitivity, using data from 11 in-

stitutions with a sample size of 692 students. The fourth contribution

is a study on insights on gender differences in CS1; identifying psycho-

xi



logical, background, and performance differences between male and

female students to better inform the prediction model and the interven-

tions. The final, fifth contribution, is the development of two interven-

tions that can be implemented early in CS1, once identified by PreSS#

to potentially improve student outcomes.

The work described in this thesis builds substantially on earlier work,

providing valid and reliable insights on gender differences, potential in-

terventions to improve performance and an unsurpassed, generalizable

prediction model, developed into a real time web-based system.
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1
I N T R O D U C T I O N

1.1 the introductory programming landscape

Computer Science (CS) non-progression (from year one into year two)

rates in Ireland are alarming, with a large number of students failing

to progress each year. Currently non-progression rates are 25% in CS,

which is significantly higher than the national average of 16% (across

all higher education disciplines). In two recent reports (2010 and 2016

respectively), CS was found to have one of the largest rates of non-

progression across all National Framework of Qualification (NFQ) levels

in Ireland, from level 6 to level 8 [77, 82]. In addition, CS is one of only

two fields of study, where the non-progression rate has increased since

the first report in 2010. It is well acknowledged that a main contributor,

is that students struggle to succeed in their initial programming module

(CS1), a staple in most first year CS courses. Several studies have investi-

gated CS1 failure rates in particular, reporting 33% [14] and 32.3% [140]

failure rates. While these are higher than the overall CS attrition rates

in Ireland, Watson noted that pass rates may not be trivial to measure,

for example some institutions in their study required a C grade to pass,

thus perhaps accounting for the difference.

Early identification of students who are at risk of non-progression is

often hindered by the very high student-lecturer ratio (100:1 or greater).

Lecturers may not be aware that students are struggling until a consid-

erable time has passed and early problematic threshold concepts have

been encountered. Numerous approaches have been trialled with vary-

1



1.1 the introductory programming landscape

ing degrees of success to improve learning and assessment outcomes.

At our institution, numerous initiatives have been implemented to im-

prove outcomes, including the development of automated adaptive as-

sessment systems [133], novel teaching approaches such as problem

based learning [64] and more recently a Programming Support Centre

run by peer tutors [89]. As computer programming is not currently a

traditional Leaving Certificate subject, there are no formal indicators of

a student’s previous performance available at an early stage to enable

the introduction of appropriate interventions. This often renders inter-

ventions inadequate, as their introduction may be too late in the course

to make a significant difference.

Computer Science Education (CSEd) research is a relatively young

field of study (≈ 50 years). A number of models exist to identify stu-

dents at risk of dropping out or failing, however, most models are only

used for a brief period of time and are not developed further. This

was highlighted by a call from the ITiCSE ’15 working group, which

identifies several grand challenges. One of the challenges asserts, that

while there are several studies in the literature that predict performance

or identify students at risk of not progressing, the studies are seldom

revalidated. In addition the models have not been employed in actual

interventions where if the findings were positive or of value, they could

then be put into practice. The working group also highlighted as a sep-

arate grand challenge, the critical need for re-validation of educational

data mining models. [62].

The development of a complete system that can predict struggling

students in a timely manner and act accordingly (using one or multi-

ple interventions), would make a significant contribution to the CSEd

community.
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1.2 the starting point - press

1.2.1 why press?

Over twelve years ago, a detailed study on factors that influence success

in CS1 was presented by Bergin at SIGCSE 05, in St. Louis, Missouri,

USA [17]. Subsequently this led on to the development of a compu-

tational model that could predict student success with 77.5% accuracy

(at a very early stage) in a CS1 module, named PreSS (Predict Student

Success) [16, 18].

PreSS was developed between 2003 and 2006. It was composed of

three studies, one in each year. Multiple institutions at various tertiary

levels took part. Several investigations on factors that influence suc-

cess and on the development of machine learning models to predict

performance, were carried out with best practice techniques to improve

generalisation, (for example: data stratification, 10 fold cross validation

and performance measures). The PreSS model is described in detail in

Chapter 2. This body of work is well regarded, having the 43rd highest

cited publication in any of the ACM SIGCSE sponsored proceedings or

publications, from a total of 13,389 [17].

PreSS has since been successfully used locally, but the model required

paper-based data collection with manual processing and computation.

This time consuming process inhibited the uptake and usage of the

model on a large scale. A detailed review of other comparable models

and related literature on factors that influence success when learning to

program, is provided in chapter 2. Given the high performance of PreSS

over several studies (with different student cohorts at different tertiary

levels) this model was selected for use in this thesis.

Bergin concluded her PhD thesis, with several suggested recommen-

dations for future work. The first recommendation was further research
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on programming predictors to try to improve the performance of the

PreSS model. The second recommendation was to refine the measure

of mathematical performance to make it more generalizable to differ-

ent student cohorts. The third call was for the development of suitable

interventions so that once struggling students are identified, timely in-

terventions can be applied. Finally, gender was a strong point of dis-

cussion throughout the thesis, and although the dichotomous factor of

gender did not make it into the final model, it was believed that it was

of significant value. Bergin recommended that further investigation into

gender related factors, may lead to a deeper insight and value when de-

veloping PreSS further. Between 2006 and the start of this thesis, little

progress on these recommendations was made. This thesis describes a

substantial body of work to address each recommendation. The goals

are described in detail in Section 1.3.1.

1.2.2 reference terms

As this work will be referenced throughout this thesis, to avoid any

confusion as to what work is being discussed, the following terms will

be applied:

Original PreSS Study : This refers to the PhD thesis of Bergin, and the

development of the PreSS model within.

Original PreSS Model : This refers to the final prediction model as

discussed in Bergin’s PhD thesis.
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1.3 introduction to this research

1.3.1 research goals

The research goals (RG) of this thesis are to:

1. Investigate if the original PreSS model, is still a valid prediction model a

decade after it was initially developed

2. Develop a web-based real time implementation of the original PreSS

model

3. Investigate if the original PreSS model can be improved upon using:

a) New factors for the model

b) Alternative machine learning algorithms for the model

4. Investigate insights on gender differences in CS1 to further inform the

PreSS model and interventions

5. Develop and investigate interventions that could reduce attrition rates

in CS1

1.3.2 ethical approval

For all studies conducted in this thesis, ethical approval was sought

and granted by Maynooth University. Due to the nature of the data

collected (grades, psychometric, demographic), student and institution

anonymity was essential. For both ethical and participation reasons (as

many institutions cited this as a concern), the study was not a compar-

ison of specific institutions. All data was stored securely, anonymised,

using keys and only the person’s named on the ethical approval were

allowed access to the data.
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1.3.3 thesis contributions

This thesis makes several fundamental contributions to these objectives

outlined in the research goals, as follows:

1. The revalidation of the original PreSS model using a large multi-institutional

data set.

2. The development of a web based real time system with PreSS at its core.

3. The further development of PreSS with the identification of several new

factors and machine learning algorithms.

4. The identification of several insights into gender differences in CS.

5. The development of two interventions for reducing attrition rates in CS1.

Each of these contributions are discussed in the following section:

RG1: Revalidation of PreSS

The revalidation of PreSS was conducted by an initial justification study

(and following its positive findings), followed by a large study, referred

to in this thesis as the main study. Both are summarized in this section.

Justification Study: Initially a small justification study was carried out

to examine if PreSS was still an accurate predictor of programming suc-

cess [97]. The study used two small independent data sets, collected

in the academic years 2013-14 and 2014-15. The justification study re-

ported that PreSS was able to predict with a statistically similar accuracy

the original Press work that took place over a decade previously. [97].

Although these results were very promising, given the small sample

size and the fact that it only represented a single institution, a large

study was required to re-validate the model and to examine its general-

izability. The justification study is discussed in detail in Chapter 3.1.
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Main Study: A large scale multi-institutional revalidation study was

conducted in the academic year 2015-2016. The study and its purpose

was multi faceted and in essence it was the core body of work in this the-

sis. In total, 692 complete student data sets were collected and used in

the main large scale study. This contribution provides evidence that the

PreSS model was still a valid model several years after it was developed

and is detailed in Chapter 3.2.

RG2: Web Application: PreSS#

In 2015 the PreSS model was developed into a web-based educational

system named PreSS# [102]. PreSS# is able to predict student success

in real time. The system is fully automated allowing institutions to

create users, run the prediction and examine outputs. To ensure PreSS#

was producing comparable results to that of PreSS, the original data

set was used for validation. Both PreSS and PreSS# produced the same

results, with no significant differences found [102], thus validating the

developed on-line system. PreSS# is discussed in detail in Chapter 4.

RG3: Model Development

Investigating Additional Factors: Research conducted in 2016 investi-

gated additional factors that may increase the accuracy of PreSS. Two

data sources were examined: the first consisted of factors gathered dur-

ing the original PreSS study that were not used in the final model. The

second consisted of additional factors collected in the justification study.

The research successfully identified 16 factors that when used in com-

bination or substitution with the original PreSS factors either produced

significant increases in model performance or were otherwise worthy
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of note. The newly identified factors were then included as part of the

main study and investigated examining if the PreSS model could be

further improved using the multi-institutional large scale data set. This

piece of work found several factors that improved the PreSS model. This

research is presented in Chapter 5.

Machine Learning Algorithms: Using the main study data set, an in-

vestigation was conducted of multiple machine learning techniques to

predict performance to further improve the PreSS. A multitude of al-

gorithms were compared that include: naïve Bayes, logistic regression,

support vector machines, decision tree, k-nearest neighbour, single layer

artificial neural network, deep learning artificial neural network, and a

convolutional artificial neural network. This contribution reports an

increase in performance when using artificial neural networks, and in

particular deep learning, over the original PreSS algorithm, and is dis-

cussed in detail in Chapter 6.

RG4: Insights on Gender Differences

In the original PreSS study, gender was found to have significance when

developing the model and it was noted that future work and a deeper

investigation may add prediction value to the model. Thus, using the

main data set, a comparative study was carried out in 2017, comparing

the profile of male and female students enrolled on CS1, to determine if

any significant differences could be identified by gender. The findings

contributed to both the development of the PreSS model (RG3) and the

development of two interventions (RG5). This study is presented in

Chapter 7.
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RG5: Interventions

This section describes the development of two interventions. With the

PreSS model revalidated and further developed, the goal then shifted to

interventions to help improve student success in CS1. The main focus of

both interventions was to positively influence the main predictor of suc-

cess, programming self-efficacy, in the hope of improving programming

performance.

Scratch to improve self-efficacy and performance in CS1: This study

investigated when students were exposed to Scratch, a block type pro-

gramming language, at the same time as their CS1 module, which was

delivered using C#, would their programming self-efficacy increase (a

prominent factor identified in the original PreSS study and in this the-

sis). This study is presented in Chapter 8.1.

Promoting a Growth Mindset, as an Intervention in CS1: This study

was based on the work of Dweck [46], to promote a growth mindset

in an effort to increase performance in CS1. This intervention reported

a significant increase in performance over the previous control group

where no intervention was deployed and is presented in Chapter 8.2.
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1.3.4 thesis visual overview

This research is broken into five main sections as presented in Figure 1.1.

This figure maps the research goals (RG) to the sections and chapters

in this thesis and provides a time-line of the research. It also illustrates

where the prior research finishes (vertical division).

Figure 1.1: Visual Overview of Research

As a reference guide, the mappings of RG’s to chapters is provided in

Table 1.1:

Table 1.1: Reference guide for mapping RG’s to chapters.

Section Research Goal Chapter(s)

Revalidating the PreSS model 1 3

PreSS Web Application (PreSS#) 2 4

Improving the PreSS Model 3 5, 6

Insights on Gender Differences 4 7

Developing Interventions 5 8
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2
L I T E R AT U R E R E V I E W

2.1 introduction

Over the years there has been a significant amount of research related to CS1 and pre-

dicting student success using varying techniques. The literature review only focuses

on models/literature for predicting success on introductory programming modules

(CS1), where this approach served three purposes. The first was to identify if a more

suitable model to PreSS was developed since the original PreSS study in 2006. Second

was to investigate how models have been developed further/revalidated after their ini-

tial work. Third was to detail the original PreSS model, to make familiar and describe

the foundations for this thesis, and to compare PreSS to the findings of the literature

review. For the literature review itself, PreSS is omitted, but is described in detail in

Section 2.3. The main findings of the literature review are presented in Table 2.1. For

this body of research including Research Goal 4 and 5, a multitude of additional lit-

erature was considered/reviewed, where these are presented in the relevant sections.

Thus allowing the literature review to focus on the core of this thesis, investigating

the current landscape of predicting success in CS1 and the prediction model PreSS.

2.2 review of the literature

2.2.1 methodology

An approach that would ensure the identification of relevant research, given the large

quantity available was required (some searches returned hits in excess of 70,000 re-

sults). Search terms were identified that included one or more of: predicting, predict,

CS1, introductory programming, factors, ability, performance, success, failure and

student. Combinations of these terms where then searched in the ACM and IEEE

databases with some additional searching in Google Scholar. The search terms were

examined in title, abstract and the body of publications.
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In the case of large search returns, the first 200 results were reviewed, where results

were filtered on relevance to the search term. Where the search returned less than 200

results, all the results were reviewed. In total 1,884 articles were reviewed based on

search terms appearing in the title, abstract and/or body. From there, articles were

short listed, based on their relevance to CS, factors and/or prediction models. This

resulted in 93 articles (when repeating articles were removed due to being returned

in multiple searches). After this a detailed analysis of each article and its relevance

was conducted. Each of the 93 articles were reviewed in full and were summarized

under headings as defined later in this section. This process ensured that the articles

were predicting and/or examining factors for CS1 or other introductory programming

courses (and not for example a business course). This final selection process resulted

in 49 articles that were included in this literature review.

Ideally models to predict student’s performance in CS1 would broadly display as

many of the following criteria as possible: multi-institutional, longitudinal, large sam-

ple size, high prediction accuracy, high sensitivity and early prediction. Many of these

criteria were also highlighted in the ITiCSE working group report [62]. Almost all of

the 49 articles examined, exhibited one or many (but not all) of these criteria and have

been grouped and presented under these headings to give a sense of how the research

available spans various criteria. Three of the articles did not satisfy any of the criteria

[49, 94, 95]. Table 2.1 presents the criteria per study, and in doing so helps visualize

what studies have met more than one criteria, and how the criteria overlap.

2.2.2 multi-institutional

To create a generalizable prediction model, it would need to be tested over several

institutions, preferably in diverse districts or even countries. From the 49 articles

examined, only two studies were conducted in more than a single institution [23,

122]. A study by Bornat, Dehnadi and Simon [23] revisited a predictor of CS1 success,

developed by Dehnadi in 2006 [40]. Bornat et al., conducted this revalidation study

of Dehnadi’s predictor of programming success across six institutions. The study

reported that the predictor failed to produce a strong prediction when validated across

six institutions. Simon et al. [122] conducted a study across 11 institutions (n = 177),

exploring issues that influence success in learning to program, using four diagnostic

tasks. The study reported findings and general correlations (without reporting the

actual values). The study pointed out the challenges and costs associated with a

multi-institutional study, and perhaps this is the reason for an average participation

of ∼ 16 students per institution.
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2.2.3 longitudinal

Studies are often conducted once, on a single cohort. Given that CS is a constantly

evolving area, studies should be repeated over several years, to examine if they stand

the test of time. The literature review found that only eight studies were conducted

over more than one year or semester [3, 26, 48, 57, 74, 135, 143]. This is concerning,

if several prediction models exhibit a strong prediction accuracy and value to the

CSEd community, why were they never revalidated? No study that was longitudinal

involved more than one institution.

2.2.4 generalizable sample size

To test a prediction model, a reasonable sample size is required. A small sample size

can be acceptable if it represents the entire population. As the goal of this model

is to generalize across institutions and countries (large populations > 5000 [33]), a

10% acceptable margin of error was selected as the boundary value for the minimum

generalizable sample size [33, 86]. This resulted in a minimum sample size of 96

students. Several studies involved relatively small samples sizes, (n < 96) where some

did not include the sample size at all. This may pose problems with over-fitting. Some

models in an effort to combat the small sample size, while trying to minimise over-

fitting (a common problem with small data sets), used methods like bootstrapping.

In several studies that had a large sample size, there was no model, just correlations

reported. These have value, but unless they are developed into a final model, may not

serve practitioners in a useful immediate way. A positive finding was that 35 of the

articles reported a sample size greater than 96 students [3, 4, 8, 9, 12, 13, 15, 23, 26, 28,

30, 34, 42, 48, 57, 60, 67, 71, 73–76, 88, 109, 110, 118, 122, 131, 135, 136, 141–144, 147].

A positive note from this was that all studies that were longitudinal also included a

generalizable sample size.

2.2.5 prediction accuracy

Several of the articles, reported no significant prediction accuracies or correlations.

This was also concerning, as this whittled the list down considerably. A prediction

slightly higher than that of chance was selected as a search criteria. A similar corre-

lation coefficient was selected so not to rule out this research. Ten articles reported
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significant prediction accuracies, although some did not predict early in CS1 [3, 22,

40, 57, 72, 74, 136, 138, 143, 146]. All articles irrespective of time of prediction, were

included in the literature review as they may give insight, into factors not considered

in this research. Only four studies that were both longitudinal and included generaliz-

able sample sizes, produced a significant prediction accuracy, which included: [3, 57,

74, 143].

2.2.6 prediction timing

In addition to prediction accuracy, prediction timing examined the point in the course

the prediction could be made. The ideal timing is the earliest possible point into CS1,

thus allowing educators to implement interventions in a timely manor.

Early in CS1

The limit for this sub group of articles was less than approximately 25% of the module

completion, with 20 articles meeting this criteria [3, 4, 9, 23, 28–30, 40, 42, 57, 58, 60,

74–76, 96, 109, 110, 118, 122].

Throughout CS1

Some models made predictions at multiple stages throughout CS1, with varying levels

of prediction accuracy at each stage [12, 45, 48, 63, 71, 106, 131, 135, 138, 141, 143]

Prior to CS1

A very positive finding in the literature is that some models were able to predict before

the commencement of CS1. [26, 52, 57, 67]

The four studies that met all of the criteria (excluding multi-institutional) that could

predict in a timely manner are: Ahadi, Glorfeld, Liao and Wiig [3, 57, 74, 143].

2.2.7 prediction sensitivity & specificity

Prediction models are often presented with a high accuracy, but that alone does not

always reveal the entire story of the model. If sensitivity and specificity are not pre-

sented and identified, two concerns can be raised. First, a biased model could have

been constructed. For example, if 90% of the students in a study were strong (high per-

forming), the model could predict every student as strong and report an accuracy of

90%. This model presents as very successful, but its ability to identify weak students

(the model’s main goal) would in-fact be 0% as it predicted every student as strong,

thus the 10% of students that are weak, were incorrectly identified. Second, the accu-
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racy does not present outcomes for a particular class, therefore making appraisals of

models that aim to predict students who are struggling, masked when the study only

presents accuracy. This measurement of sensitivity and specificity, was only reported

in three studies (in some cases indirectly, but it could be calculated) [22, 57, 74].

Only two studies remained that met all of the criteria (excluding multi-institutional)

that also reported sensitivity and specificity: Glorfeld and Liao [57, 74].

2.2.8 revalidated prediction models

From the literature it appears that models are rarely revisited. In all of the literature re-

viewed, only two instances where the work was revisited presented themselves (some

of the authors were even emailed directly to confirm if this was the case, if the article

stated a possible follow up study).

Dehnadi

In 2006, Dehnadi developed a prediction model, that reported a 100% accuracy (100%

sensitivity and specificity) [40]. This work seemed to have made a breakthrough. It

was disclosed at the the PPIG (Psychology of Programming Interest Group) workshop

in 2006. Dehnadi built a "mental model" that could predict success with 100% accuracy

(n = 60 students). Based on this reported accuracy, two follow up studies were com-

pleted. In 2007, Caspersen repeated the study using approximately 142 students [30].

It should be noted at this point that Dehnadi completed the study in the UK, whereas

Caspersen conducted the study in Denmark. The findings of Caspersen’s work is best

described in the abstract: "We have repeated their test in our local context in order

to verify and perhaps generalise their findings, but we could not show that the test

predicts students success in our introductory programming course". Subsequently, a

study by Bornat in the following year (2008, co-authored by Dehnadi) examined six

experiments, with more than 500 students, across six institutions and three countries

[23]. Bornat reported that "the predictive effect of our test has failed to live up to that

early promise" with performance, just higher than chance.

Glorfeld & Fowler

In 1981, Glorfeld and Fowler, developed a predictive model using a sample size of 151

students in a CS1 course [52]. The model was developed using three pools of data:

personal, academic and aptitude. From this data a classification model was developed

using the logistic discrimination model. The model produced an accuracy of 80.8%

and not only was the accuracy presented but also the sensitivity and specificity. For
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identifying weaker students the model was 76.6% accurate. A year later Fowler and

Glorfeld, revisited the study with a new cohort [57]. From the 1040 students enrolled

in the CS1 course, 150 were randomly selected. The model still performed well, al-

though the accuracy decreased (∼ 6%). This is perhaps to be expected when models

are exposed to new data sets and being tested for generalizability. Glorfeld and Fowler

reported that: "The validation study showed that the model would have a predictive

accuracy of approximately 75% in actual application".

The most significant model following the Literature review was developed by Glo-

rfeld and Fowler [52], but as outlined in the following section PreSS performs at a

comparably high or higher level and is therefore a good choice of model for further

development.

2.3 the original press study and model

PreSS was developed between 2002 and 2006 based on three studies (a pilot study, a

main study and an epilogue study) with four participating institutions, n= 184 [16–

18]. These institutions consisted of a University, two Institutes of Technology, and a

Community College, thus spanning all levels of Higher Education, from the National

Framework of Qualifications (NFQ) level 5 to level 8. The pilot study recorded data

using a questionnaire, which in turn lead to the development of the instruments that

were used in the main study. The main study recorded a substantial amount of data

from 102 students during the academic year of 2004-2005. Four paper-based instru-

ments were used to collect the data in the main study: a background questionnaire, a

programming self-esteem questionnaire, a self-efficacy questionnaire and a motivation

and learning strategies questionnaire [16, 17]. An epilogue study with 21 participating

students was also conducted after the main study and was used in further analysis

and validation of findings from the main study.

2.3.1 factor selection

In the original PreSS study 25 factors were examined, using four instruments. The

original PreSS study used multiple statistical techniques in the development of the

prediction model. Stratification was used as the initial step to ensure that all the data

was in a homogeneous state. Initially, the original PreSS study examined over 40

logistic regression models using combinations of the 25 factors on the data from the
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main study 1. This prediction model used three factors: programming self-esteem 2,

mathematical ability (based on a high school mathematics exit examination) and the

number of hours per week that a student plays computer games. The programming

self-esteem and mathematical performance were found to have a positive relationship

with performance while the number of hours a student plays computer games was

found to have a negative effect.

2.3.2 data preprocessing

The pre-processed programming self-esteem data consisted of ten questions and was

based on the Rosenberg self-esteem questionnaire but modified to reflect a student’s

perception of their programming ability [107]. Cronbach alpha values were calculated

to compare the internal consistency of the self-esteem questionnaire and were found

to be comparable with the Rosenberg self-esteem questionnaire (Appendix A.1). Prin-

ciple Component Analysis (PCA) was used to reduce the programming self-esteem

questionnaire that consisted of multiple data points to one value which accounted for

as much of the variance in the multiple data points as possible (Appendix A.1).

2.3.3 machine learning algorithm

Six machine learning algorithms were examined in the development of PreSS: logistic

regression, k-nearest neighbour, backpropagation (single layer artificial neural net-

work), C4.5 (decision tree), SVMs (support vector machine) and naïve Bayes. Naïve

Bayes was selected as it was found to have the highest prediction accuracy. As naïve

Bayes is used extensively throughout this paper a detailed description of the machine

learning algorithm can be found in Section 6.3.4.

1 This resulted in a single prediction model that produces the highest measurement of

programming performance.
2 With respect to programming self-esteem, it should be noted that there are several

related terms used within this space and their boundaries are sometimes unclear.

These terms have included (from the literature): programming self-esteem, CS con-

fidence, programming self-efficacy, and programming self-confidence. At the time

of Bergin’s work this physiological phenomena was referred to as programming self-

esteem, whereas nowadays its more often than not referred to as programming self-

efficacy, with both terms referring to the same physiological phenomena. As the

original PreSS study published it as programming self-esteem it will be referenced as

this, if referring to the original PreSS study, while in all other cases the term will be

referred to as programming self-efficacy.
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2.3 the original press study and model

2.3.4 performance measures

For the development of the PreSS model, ten-fold cross validation was implemented

to obtain a prediction accuracy. This is a best practice method to avoid over fitting

[148] with machine learning algorithms. This method is far superior to a hold-out

method as it uses every sample in a data set for both testing and training. A detailed

description of this technique is presented in Appendix A.2.

Accuracy, sensitivity and specificity were recorded for each prediction. These

recordings were calculated based on the following variables: true positive rate (TP

- the correct identification of a weak student), true negative rate (TN - the correct

identification of a strong student), false positive rate (FP - type I error) and the false

negative rate (FN - type II error). As the overall priority of PreSS is to identify weak

students, sensitivity was the main focus. Thus sensitivity in this thesis, was the mea-

sure of performance of the model to predict students at risk of failing or dropping out,

and specificity was the measure of performance of the model to predict students who

would pass or be successful. All three measurements were recorded and presented

for every prediction in this study. A detailed description and the formula for each

measure is presented in Appendix A.3.

2.3.5 results and performance

PreSS was able to achieve an accuracy of 77.5% [16] in the main study, with n = 102. In

fact using a variation of factors, higher performance could be achieved for a specific

sample set, for example, by gender or per institution, however Bergin’s goal was to

produce the most generic model possible to maximise generalizability. The sensitivity

achieved by PreSS (predicting students whom are at risk of failing or dropping out)

was 78%.
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2.4 summary

2.4 summary

In summary the literature review revealed that while many of the 49 articles contribute

to the CSEd community, the process confirmed several of the ITiCSE working group

concerns [62]. One of the most prominent issues is that the CSEd community find

repeatability a challenge, replication studies are rare, and that they may still be as rare

a decade from now [62]. It is also concerning that not only do the studies fall short of

acquiring all of the desired model criterion, they struggle to attain multiple criteria.

Glorfeld in 1981 and in 1982 [52, 57] developed a strong prediction model. In addition,

statistical techniques for generalization were implemented (ten fold cross validation)

and even confusion matrices were presented (allowing specificity and sensitivity to

be calculated). This really was remarkable work for the early 1980’s. The paper con-

cluded with a call for models in other institutions, and comparisons to be investigated.

In addition the paper promised to run this research on a yearly basis, to that end at-

tempts were made to contact the authors as no further publications in this space were

found. Sadly Fowler has since passed away and it was not possible to contact Glorfeld,

however colleagues of his who were familiar with the work were reached, and they

confirmed that the work was never repeated.

The original PreSS model shared some factors with the Glorfeld model, namely age

and mathematical ability. While the model had a strong prediction accuracy, and

was able to predict at an early stage in the CS1 module, the initial study and the

re-validation were conducted in consecutive years, in the same institution. Thus it is

difficult to assess how this model would perform 35 years after its development and

generalize to other institutions, different academic levels and countries. The original

PreSS model predicted with marginal increases over the Glorfeld model, but the origi-

nal PreSS model was validated across multiple institutions, over three years. Thus the

PreSS model remains the starting point for this thesis, but factors identified by Glor-

feld will be examined in the PreSS model development, in particular the age factor.
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2.4 summary

The literature did not present (from the search terms and methodology used, as out-

lined in Section 2.2.1) a prediction model that would offer value over the original

PreSS model. In fact when examining the literature, while it has become apparent

that there is a large amount of related models, the majority seem to follow the pattern

of a one-off study, in a single institution, seldom revisited after the model has been

developed. This is concerning for the CSEd community and shapes the overall direc-

tion of this thesis. If the PreSS model could address the shortfalls of these educational

prediction models, an updated PreSS model may be a model of real value to the CSEd

community.

2.4.1 additional finding : date of studies

While reviewing the literature, and the dates of the studies (ranging back as far as

1975) from the 49 articles, a natural clustering of the dates became apparent. This

interesting finding, found three natural clusters of predicting student success in CS1

research. The initial cluster centred around the mid 1980’s [9, 26, 29, 49, 52, 57, 60,

67, 72, 88, 141, 143, 144] , the second cluster was centred around the mid 2000’s [4,

8, 12, 13, 15, 22, 23, 30, 40, 45, 58, 63, 94, 106, 109, 110, 122, 135, 142, 146] and the

third cluster gathers in the past five years or so [3, 28, 34, 48, 71, 73–76, 95, 96, 118,

131, 136, 138] . A noteworthy finding, is that no study attempted to validate from one

cluster to another. The studies did not seem to egress past their own cluster. This is

disappointing when one’s focus is to develop a model that performs well over time.
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2.4 summary

Table 2.1: Summary of Literature Review References

Year Lead Author Ref
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2006 PreSS [16] X X X X X X X

2015 Ahadi [3] X X X X

2004 Allert [4] X X

1983 Barker [9] X X

2009 Barker [8] X

2005 Bennedsen [12] X X

2006 Bennedsen [13] X

2008 Bennedsen [15] X

2005 Boetticher [22] X X

2008 Bornat [23] X X X

1985 Butcher [26] X X X

2016 Campbell [28] X X

1975 Capstick [29] X

2007 Caspersen [30] X X X

2015 Cukierman [34] X

2006 Dehnadi [40] X X X

2010 Denny [42] X X

2009 Doyle [45] X

2016 Estey [48] X X X
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Table 2.1: Summary of Literature Review References

Year Lead Author Ref
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1989 Evans [49]

1981 Glorfeld [52] X X X X X X

1982 Glorfeld [57] X X X X X X

2006 Golding [58] X

1983 Hostetler [60] X X

2003 Katz [63] X

1983 Konvalia [67] X X

2015 Lambert [71] X X

1982 Leeper [72] X

2017 Leinonen [73] X

2016 Liao [74] X X X X X

2016 Lishinski [75] X X

2016 Lishinski [76] X X

1975 Newsted [88] X

2004 Pioro [94]

2014 Porter [96] X

2014 Porter [95]

2009 Rodrigo [106] X

2002 Rountree [109] X X
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Table 2.1: Summary of Literature Review References

Year Lead Author Ref
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2004 Rountree [110] X X

2016 Shell [118] X X

2006 Simon [122] X X X

2016 Tarimo [131] X X

2005 Ventura [135] X X X

2013 Vihavanen [136] X X

2013 Watson [138] X X

1986 Werth [141] X X

2007 Wiedenbeck [142] X

1989 Wiig [143] X X X X

1981 Wileman [144] X

2001 Wilson Shrock [147] X X
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3
R E VA L I D AT I N G T H E P R E S S M O D E L

introduction

The re-validation of the original PreSS model was conducted over three academic years

from 2013 to 2016. This initial body of work was concerned with addressing the first

research goal, to investigate if the original PreSS model was still valid almost a decade

after it was first developed. Since 2006, there have been multiple significant changes

in the computer science landscape, for example, with the advent of mainstream social

media such as Facebook (circa late 2006) and smartphones (circa 2007 with the first

iPhone). Even forms of more formal communication such as email have migrated to

platforms like Microsoft Teams, with success across many levels of education 1. All

of these changes, arguably have changed the landscape significantly, for both student

experiences and computer science subject content. In addition, as mentioned in Chap-

ter 2, revalidation attempts often result in lower performance or fail to replicate at

all, even over small periods of time. Thus given the changes in landscape and the

time lapse between the original PreSS study and this body of work, examining if the

PreSS model is still valid is a critical initial Research Goal. This is addressed using

two studies, a justification study and the main study of this thesis.

1 https://www.microsoft.com/en-ie/education/stories/default.aspx
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3.1 justification study

3.1 justification study

3.1.1 introduction

The justification study, as presented in this chapter, consisted of two consecutive inde-

pendent studies. The two studies were carried out in the academic years of 2013-14

(Initial Study) and 2014-15 (Second Study) respectively and were both hosted by a

Community College. This is a similar institution to one of the institutions investigated

in the PreSS main study. The participants were studying on a National Framework of

Qualifications (NFQ) Level 6 Computer Science course where all students completed

the same “Introduction to Computer Programming” CS1 module.

The language used was C# and this was the first time that this language was used

with PreSS. It also appears to be the first time it was used in any documented study to

predict programming performance. The grading criteria in the CS1 course consisted

of two programming assignments worth a total of 600 grade points and a written ex-

amination worth 400 grade points. Each student also completed an online survey that

contained additional questions that are later explored, which is presented in Appendix

D.

The work described in this chapter was published in the proceedings of the Interna-

tional Conference on Engaging Pedagogy (ICEP), College of Computing Technology,

Dublin in 2015 [97].

3.1.2 factors explored

Students completed a questionnaire that contained the original PreSS study questions

on self-efficacy, prior maths performance and game playing. Students also provided

responses on other factors for separate investigation. These factors were then collected

as part of the main study (Chapter 3.2) and examined further in Section 5.3. The

additional factors collected are presented in Table 3.1 and Appendix D.
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3.1 justification study

Table 3.1: Justification study, additional survey questions

Factor

1 Age Bracket?

2 Gender?

3 How many hours per day would you play computer games on a mobile device?

4 If you play games on a mobile device, what genre of games do you play the most?

5 How many hours per day would you play computer games on a Console, PC or laptop?

6 If you play games on a console, PC or laptop, what genre of games do you play the most?

7

How many hours per day would you use the internet (not including social media or messaging

services)?

8

What would your primary use of the internet consist of (not including social media or messaging

services)?

9 How many hours per day would you use a social networking service?

10 If you do use social networking, what particular service do you use the most?

11 How many hours per day would you use a messaging service?

12 If you do use messaging service, what particular service do you use the most?

Initial Justification Study

The first study consisted of 34 students (all students in the class participated). There

was no missing data entries, thus no student was excluded from the final sample. The

study consisted of five females and 29 males. The overall final results showed the ratio

of weak to strong students was 16:18 respectively (as developed in Appendix B) and

the ratio between mature students (students 23 years of age or older) and non-mature

students (students under the age of 23) was 12:22 respectively.

Second Justification Study

The second study consisted of 26 students (all students in the class participated). There

was no missing data entries so no student was excluded from the final sample. Four

females and 22 males took part in the study. The overall final results showed the
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3.1 justification study

ratio of weak to strong students was 9:17 respectively and the ratio between mature

students and non-mature students was 3:23 respectively.

3.1.3 results

The goal of the two studies was to determine if they could replicate the results of the

original PreSS study, using the original PreSS model. The original PreSS data samples

(n = 102, from the main study of the original PreSS study) were used as training data.

The process was identical to the process used in the development of original PreSS

model, using the same machine learning toolbox and methods to compute prediction.

Both prediction accuracies using the two justification studies were independently com-

pared to the original PreSS model accuracy. Statistical t-tests (using a Welch’s t-Test

and a binomial distribution to calculate the variance) indicated there was no statisti-

cally significant difference between the accuracy achieved on the original PreSS study

and either of the justification studies (initial study: Accuracy = 76.5%, p = 0.86 second

study: Accuracy = 77%, p = 0.57).

This is a significant result as both studies consisted of very different student profiles,

for example institution representation (community colleges represented less than 7%

of institutions in the original PreSS study, coupled with the lower entry requirements

for a community college compared to a university or an institute of technology). This

suggested that even though the original PreSS model was developed nearly a decade

ago, that similar levels of accuracy may be achievable in a considerably changed land-

scape.

3.1.4 summary

The positive preliminary findings of the justification work, provide the pretext for

this thesis to continue and address RG 2 - 5 (that is to develop a web-based system

(RG2), to improve on the model’s performance (RG3), to examine gender (RG4), and

to evaluate possible interventions (RG5).
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3.2 main large scale study

3.2 main large scale study

3.2.1 introduction

Given the positive findings from the justification study, a large scale revalidation

was undertaken to determine if PreSS generalized on a substantially larger data set.

The work described in this section was published in the proceedings of the 23rd an-

nual ACM conference on Innovation and Technology in Computer Science Education

(ITiCSE), 2018 [100].

Additional Positioning

In 2015 an ITiCSE working group identified a "critical need" for re-validation studies

in educational data mining and learning analytics [62]. The working group reported

that the majority of the studies reviewed, focused on simplistic metric analysis and

were conducted within a single institution and a single course. This highlighted a

critical need for validation and replication to better understand the contributing fac-

tors and reasons that certain results occur in computer science education [62]. The

working group concluded with several Grand Challenges, the second of which was

to systematically analyse and verify previous studies using data from multiple con-

texts to tease out tacit factors that contribute to previously observed outcomes [62].

This chapter contributes to the computer science education (CSEd) community and

the working group’s call (in particular the second grand challenge), by revalidating

the original PreSS model, twelve years after it was developed, on a modern disparate,

multi-institutional data set.

3.2.2 data collection

During the academic year 2015-16, a large-scale multi institutional study [103] took

place in Ireland (ten institutions) and Denmark (one institution) consisting of two
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3.2 main large scale study

universities, five institutes of technology (comparable in academic level to colleges in

the US) and four community colleges. The data collected was captured under two

categories. The first category captured student data, including background, institu-

tion/course and psychological data, which was captured at approximately 4-6 hours

into CS1 (this is approximately, when students are 10% of the way through the mod-

ule). The second category captured final CS1 performance data, such as grade. In

total, 692 complete student data sets were used in the study. Six programming lan-

guages were used which included: Java (n=553), C# (n=75), Python (n=33), Processing

(n=24), Visual Basic (n=4) and C++ (n=3). In total 45 factors were recorded from the

data gathered in the first category. Details of the instruments used and all of the data

collected can be found in the references [103].

3.2.3 the main study : the core of this research

This study involved a large number of participants, at multiple institutions, at varying

tertiary levels. Uptake was very positive, with institutions volunteering to participate,

during presentations at conferences of the PreSS model. The integration and set-up

needs with each participating group were different and several months of discussion

(even addressing ethics boards in person in some cases) was needed. With institutions

on-board, log-in credentials (consisting of anonymous keys provided by the institu-

tions) had to be agreed and then the users created on the PreSS# system (Chapter 4).

In addition, at the end of the academic year, the final grade was collected and matched

with each anonymous user key.

The main study while addressing RG 1 also collected a multitude of additional fac-

tors and data so that RG 3 (further development of the original PreSS model) could be

addressed. This study also provides a baseline for any model development improve-

ments, to be compared against. In addition, the information collected also provided a

rich data source for RG 4 (insights into gender differences in CS1). This study lays the

foundations for Chapter 5 and Chapter 6.

31



3.2 main large scale study

3.2.4 results

The PreSS model, data pre-processing techniques, and machine learning algorithm

were unchanged from the original PreSS study [16], with the same three factors: pro-

gramming self-efficacy, mathematical ability based on a high school mathematics exit

examination and number of hours per week a student plays computer games [17].

The results and comparison between the original study and this study are presented

in Table 3.2.

Table 3.2: The original PreSS study compared to the main study, using

the original PreSS Model.

Data Set N Accuracy Sensitivity Specificity

2005 102 77% 85% 66%

Current Study 692 67% 78% 53%

The original PreSS model was able to predict with a high accuracy (for two out of

every three students), 12 years on, with an n = 692, from 11 institutions with diverse

academic levels in two different countries. Although the accuracy reduced by 10%, this

result is still significant as previous revalidation attempts on other models (Chapter 2)

have seen the model rejected or an accuracy reduction of 6% in the span of a single

year, within a single institution. More importantly PreSS was able to identify weak

students (the main goal of PreSS) with a sensitivity of 78%. It was anticipated that the

accuracy would decline, given the substantial increase in student numbers, diversity

of institutions/academic levels and change in student profile over time. From the

literature it appears that no other model for predicting programming performance has

been revisited over ten years after its creation (multi-institutional and longitudinal),

thus these results may provide a benchmark for future revalidation studies, predicting

student success in CS1.
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3.2 main large scale study

3.2.5 summary

This chapter describes a multi-institutional and longitudinal revalidation study of the

original PreSS model and even though the CS landscape has changed considerably,

and the cohort of participants are considerably different, the model was found to pre-

dict with high accuracy (correctly predicting 2 out 3 students). This chapter builds

upon the work of previous studies and makes a solid contribution to the CSEd com-

munity, laying the foundation for future revalidation and replication studies. In doing

so, this chapter has addressed the second of the grand challenges as laid out by the

ITiCSE working group in 2015. Previous revalidation attempts in the literature (as

outlined in Section 2.2.8), reported a reduction in accuracy over a single year in a

single institution, or failed to reproduce the findings at all. PreSS was revalidated a

decade later using a significantly larger cohort of students from 11 institutions (com-

pared to the four institutions in the original PreSS study). Thus it was anticipated that

the accuracy would decline, but most positively the original PreSS model still had a

sensitivity of 78%. New factors such as social media usage rather than time spent

playing computer games, could be more indicative now [99]. The revalidation of the

original PreSS model confirms that the model still performs well, over a decade after

its conception.
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P R E S S #

4.1 introduction

A web-based implementation of the original PreSS model was developed named

PreSS#, to increase accessibility to the model and reduce the amount of manual com-

putation required. This chapter describes the development of an on-line version of the

original PreSS model, named PreSS#. This chapter contributes to RG2 (Develop a web-

based real time implementation of PreSS). The goal of this system was to allow the original

PreSS model to be used on a large scale, to add the additional factors recorded in the

justification study, and to have plug and play machine learning algorithms. Before the

system was developed, consideration was given to usability, security and the overall

system architecture. Thus before any development began the system requirements

were shaped. The work described in this chapter was published in the International

Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 12,

2015 [102].

4.2 system requirements

The design process which developed the system requirements was largely taken from

Requirements Engineering (RE) [68]. Activity one was the software requirement elici-

tation which identified four main headings as the pillars for the system. These were:

security, user, device and system. These pillars were then (activity two) negotiated

and developed in UML diagrams (presented later in this section). Activity three was

the development of the software requirements and finally (activity four) validated the
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4.2 system requirements

requirements using the the main large scale study, using the verbal feedback from

institutions who participated in the study.

System requirements rationale:

• Security: The system for ethical approval and institution uptake needed to

employ the latest security measures.

• User: For a large scale study, user roles and ease of bulk creation was vital.

It was envisioned that institutions would provide a key, thus PreSS# would

have no user identifiable data. When an institution provided the keys and

passwords, for log on credentials, a timely user creation was necessary, and

with some institutions having over 300 students, automating this task was vital.

• Device: With a multitude of devices available to participating students and in-

stitutions, the system should function on all commonly used systems, including

mobile devices, and be intuitive to use, promoting uptake of the study.

• System: The system, required rapid development and deployment techniques.

A system that employed a separation of concerns would again complement

the security requirement. As additional models and data reduction techniques

may be identified and used in the final model, a plug and play model would be

beneficial at the core of the system.

The specific software requirements for each key area are referenced by an ID tag

which is used throughout this chapter when referring to a specific requirement and

are shown in Table 4.1 and 4.2 ; for example if the Software Requirement in Table 4.1

had an ID of 1, the reference will be (SR1).
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Table 4.1: Software requirements for the development of PreSS# - Part 1

ID Domain Description Rational

SR1 Security IP address capture of user
Track users of system, in

case of a breach

SR2 Security Encryption of all content
If server is breached, data

is unusable

SR3 Security
XXS, CSFR and brute

force

Three main cyber-attack

methods needing

attention

SR4 Security HTTPS Encryption during transit

SR5 Security Authentication
Robust authentication,

user details encrypted.

SR6 User
User creation (single &

bulk upload)

If server is breached, data

is unusable

SR7 User Reset user password
Reset (not view to change)

user password if required

SR8 User
Training data (single &

bulk upload)

Allow rapid creation of

large training instances

SR9 User Prediction system
Real time system, with

reporting facilities
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Table 4.2: Software requirements for the development of PreSS# - Part 2

ID Domain Description Rational

SR10 User
Roles: student, lecturer &

admin

Roles used for specific

controller access

SR11 User
Student can only take

survey once
Survey only required once

SR12 User
Lecturer and admin reset

survey

Student can redo survey if

needed

SR13 Device Device compatibility

Phone, tablet, PC and

smart TV, HTML5 and

CSS3

SR14 Device Dynamic controls
Web controls change to be

intuitive on native device

SR15 System
Development &

deployment

Fast development and

deployment required

SR16 System Separation of concerns
Development in an MVC

architecture

SR17 System PCA
Integration of PCA into

the system

SR18 System Naïve Bayes
Integration of naïve Bayes

into the system.
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4.3 platform selection

4.3.1 server selection

Selection of an appropriate software platform is vital in developing a secure, robust

and reliable system. The two major leading software platforms are Ubuntu Server

(Java) and Microsoft Server (.NET). There have been many debates over which plat-

form is superior based on market share, pricing etc. Market share is highly variable

based on time and the area of deployment [117] and pricing can be considered less

important if the quality of the system is a priority, thus attributes such as security,

vulnerabilities and performance are considerably more important here given the na-

ture of the student data being processed and the real time performance requirements.

These criteria are paramount if PreSS# as a tool is to be used across multiple institu-

tions with large student numbers. This section discusses security, vulnerabilities and

performance in detail and concludes with platform and language selection.

4.3.2 security and vulnerabilities

Security was a major factor in the selection of the overall platform. A recent study

of vulnerabilities and errors in .NET and Java found, other than input data validation

vulnerabilities (which have been addressed in the latest release of .NET), IIS (Internet

Information Services, the .NET web server) was less vulnerable than Apache (Ubuntu

Server Web Server) in every other examination of error including access validation,

configuration and design errors [149]. Similarly, a study on security focusing on en-

cryption concluded that most Java encryption API’s demonstrated relatively poor per-

formances on the Linux platform as compared to those on the Windows platform [53].

One example of the poor encryption performance in Java was the openSSL vulnerabil-

ity, referred to as “Heart bleed” [137], which was present on the Apache system, but

as Windows used a different SSL (SChannel) it was unaffected by this vulnerability.
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4.3.3 database management system (dbms)

Performance relating to data storage and retrieval is key to a real-time system, with

large data sets. The Microsoft platform typically uses Microsoft SQL Server whereas

Apache typically uses MySQL. These two database management systems (DBMS) are

associated with .NET and Java respectively. A study by Bassil [10] analysed the perfor-

mance of several DBMS, which included SQL Server and MySQL. The database design

was identical on each DBMS, which included 15 distinct tables and relationships with

1,000,000 records. The study consisted of running ten queries varying in complexity

from a simple select-all query to highly mathematical complex queries, thus complet-

ing a thorough analysis of the performance of each DBMS. Bassil measured the length

of execution time of each query and found that SQL server was 1% faster over the ten

queries and also faster in 80% of the individual queries [10].

4.3.4 language selection

The initial short-listing of possible languages was based on the use of the Model-View-

Controller (MVC) architecture as shown in the MVC architecture diagram in Figure

4.1. This architecture was selected based on the separation of concerns (SoC) design

principle which fulfils the requirements of PreSS# with modular and secure develop-

ment at the forefront (SR16). In MVC, the architecture is composed of three separate

interconnected parts. The controller is the core and is implemented on the server side.

The controller returns generated views to the user and the controller gets its data

from models which consist of Plain Old CLR objects (POCO). The language short-list

consisted of MVC4 .NET and Rails for Ruby, both of which use MVC architecture.

Both languages have their own variation of MVC. Microsoft .NET was selected as the

development language. In addition .NET easily integrates with the selected platform

(Microsoft Server) and DBMS (Microsoft SQL Server) and includes some additional

factors not found in Rails for Ruby, which include data annotations and the Entity

framework which can increase the speed of development. Both are described further

in the following sections.
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Figure 4.1: MVC architecture diagram

4.3.5 platform selection summary

Even though there is a lot of public debate over which platform and DBMS to use,

evidence that the Microsoft Server is arguably less vulnerable, has faster execution

times and has a more robust encryption algorithm than Apache [149]. The Microsoft

platform was chosen as a suitable platform for the development of the web-based

educational system. Server 2008R2 and SQL Server 2008R2, both the market leaders in

the Microsoft platform range were selected. The server used was a VPS server, located

in a data centre in Ireland. Additional security consisted of an industry standard

hardware firewall (Cisco ASA 5500), which only allows remote access to the server

operating system via RDC (Remote Desktop Connection) from valid Irish IP address

ranges, thereby narrowing the possibility of geographical attacks. The web system

hosted on IIS can be accessed via the HTTPS port 443. Access via the Remote Desktop

Services (RDS) was secured with SSL encryption and the latest server updates were

automatically installed.
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4.4 design

The design specification is shown in Figure 4.2 and Figure 4.3. Figure 4.2 provides the

UML use case diagram for all three types of users, outlining each case that the user

may access (SR10). Figure 4.3 illustrates the UML diagram of the MVC architecture

used with the actors accessing the views from the controller. If the actor is a student

they may then complete the form in the view which is returned to the controller.

The controller then validates the data in the form (if there are any validation errors,

the same view is returned to the student with validation error messages, and this

is repeated until the validation passes), and passes the data into the naïve Bayes and

PCA models to compute the predictions. The predictions are returned to the controller

which may be sent to a lecturer/teacher via a view.

4.5 development of press#

The development phase of PreSS# was composed of three parts: PCA and naïve Bayes

model development (Section 4.5.1), integration of both models into PreSS# (Section

4.5.2) using the MVC controller, and the development of the web system’s interface

and front end (MVC views) that are generated by the controller, Section 4.5.3 focusing

on the system requirements set out in Table 4.1 and C.3. Although this was a solo

development process, the size of the system required it to be developed in phases

with testing at each phase using an iterative approach. This allowed for defined de-

velopment phases, key to the successful development of PreSS#, where a traditional

methodology (waterfall), may have not been as efficient. The testing is discussed fur-

ther in Section 4.6.

4.5.1 pca and naïve bayes development

Two separate model classes were independently developed and then examined to

determine if they could accurately replicate the results of the PCA and naïve Bayes
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Figure 4.2: UML use case diagram for the three types of users.

implementations used in PreSS. The models were developed using C# (.NET) and the

Accord.Net machine learning framework [126]. Two independent software applica-

tions were developed to investigate the .NET performance of PCA and naïve Bayes.
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Figure 4.3: UML architecture diagram of PreSS#

These applications were developed using libraries that (once validated independently)

could be ported into PreSS#, conforming to the Agile-like approach.

PCA Application

The PCA application needed to be tested to determine that data sets of different size

and format would work before it was finally integrated into the web system. This

was essential as the data set size in future studies may vary significantly. The original

PreSS study only used the first principal component (Appendix A.1), where PreSS#

also calculated the second and third principal components for future proofing, even if

not currently implemented. The system was able to open files in two formats which

allowed for quick loading of different test data, either from WEKA (.ARFF format) or

from Comma Separated Values (.CSV) file formats. The results were added to a visual

output form and the system allowed for the export of the results either via .CSV
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format or to print the data. A visual reporting tool was also developed to graphically

display the first principal component to aid the user in visualising the first principal

components for any post-hoc analysis of the data.

Naïve Bayes Application

A standalone development system was used to investigate the Accord.Net naïve Bayes

ability to replicate the findings of the PreSS study while also validating the PCA of

PreSS itself [16][126]. In addition, as the core of this application was library based,

other libraries could be used, for example with different machine learning algorithms,

allowing PreSS# to implement alternative cores if later work (RG 3) identifies perfor-

mance improvements using alternate techniques. This system was also developed to

test input data sets varying in type and size allowing for the possibility of multiple

investigations such as holdout testing and future studies. All data was classified as

continuous using the Accord.net <IUnivariateDistribution> composite data type. The

system also produced the probability (confidence) of each classification as shown in

Figure 4.4. This was also very useful for testing the model as if both .NET and/or

WEKA produced a different classification this could be used as a measure of variance

between the predictions.

The results table also contained a confusion matrix, as shown in Figure 4.5 and

outlined in Appendix A.3. Ten-fold cross validation (10FCV) was also implemented.

10FCV was not part of the Accord.NET framework so it had to be developed separately

in this application. 10FCV was required for comparison testing of the models of

WEKA and .NET as WEKA has 10FCV as a standard feature and it was the method

used in the PreSS study to obtain the overall accuracy of the model [16].
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Figure 4.4: A screen shot of the naïve Bayes application developed run-

ning on the PreSS study, showing the probability break

down of each classification.

Figure 4.5: A screen shot of the naïve Bayes application developed run-

ning on the PreSS study, showing the confusion matrix.
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4.5.2 pca and naïve bayes integration into press#

The naïve Bayes and PCA models were integrated into the overall system as shown in

Figure 4.6 (SR17, SR18). The web application can have multiple controllers for sepa-

rate tasks such as authentication, roles and computation. A controller was developed

to handle the interaction with the naïve Bayes and PCA models, named TestingCon-

troller. A third model (class) named NBResult was also developed which was used as

a reporting model for logging the naïve Bayes predictions (SR9).

Figure 4.6: UML class diagram showing the PCA and naïve Bayes

classes interacting with the Testing Controller.

4.5.3 press# front end

The overall development of the front end of PreSS# was broken down into four sub

areas, namely: ease of use, rapid development methods, security and services. At

each stage references are made to the software requirements as outlined in Table 4.1

and C.3 using the ID.
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Ease of use

Ease of use and device compatibility was important for PreSS#. HTML5 was used in

conjunction with CSS3. The development of the front end views in HTML5 allowed

the package to be dynamic on multiple device platforms. HTML5 is adapted for

strong mobile integration which is a key feature for the long term success of the web

system, as a large increasing proportion of current internet access is on varying mobile

devices (SR13).

Razor was used to enhance HTML5. Razor is a programming syntax used to develop

dynamic web pages. Razor is written in C# and is classified as a “view engine”. It

is written directly into the raw HTML view and is run server side before the view

is returned to the client. This can eliminate the need for multiple pages by creating

a single page with conditional Razor statements, for example depending on mobile

or desktop requests. Razor will select different controls as it is processed on the

server side before the HTML is generated allowing dynamic pages to be produced

depending on the device requesting it, without having to create multiple pages with

similar content. In PreSS# Razor was used extensively (SR14, SR15).

Rapid Development Methods

Razor

One feature of models in MVC is the ability to pass a model or a list of models

from a Controller into a View. Once passed into the View, Razor was able to parse

the model or list of models and create controls, such as, tables using iteration, to

display each of the model’s properties. Razor also had the use of IntelliSense (context

aware automatic code completion) which allowed for faster development (IntelliSense

is aware of Models and variables in the scope of that View) in a more abstract manor.

Razor was able to significantly reduce the development time needed for views (SR15).

Data Annotations

Data annotations are a method of describing validation rules (such as a range for val-

ues and error messages) and Database properties (such as a primary Key or Nullable
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field) which are written into the model as part of its properties. When the view used

a model these data annotations were also used for data validation on forms in views;

if the data annotation was changed in the model this filtered into every view. This

method of validation removed the need for the creation of multiple additional java

scripts significantly reducing development time and was a more robust method ensur-

ing consistency for the user with every instance of the model in different views having

the same validation (SR15).

Entity Framework

The Entity Framework consists of an object-relational mapper that works with models

(POCO objects) and translates the models to relational data storage. A class named

DB was developed which contained properties (collection of the models), which in

turn translate to the tables in the physical database; this is shown in Figure 4.7. The

DB class is the Entity access control to the live Microsoft SQL Server database. If

no database exists either in development or at release, Entity will create a database

matching the schema outlined in the collection of models in the DB class thus allowing

the focus to be on the development of the application and models, and not the SQL

database development, saving a considerable amount of development time (SR15).

Figure 4.7: Illustration of Entity class and the Models (properties) used.
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LINQ

In the Controllers LINQ (Language-Integrated Query) was used in preference to us-

ing SQL (Structured Query Language). LINQ consists of a native C# data querying

language and was able to query the list of models using native C# code replacing

the need for SQL statements. LINQ was integrated with IntelliSense and was able to

produce run time compile errors, two features that SQL does not exhibit, thus leading

to significant gains in terms of development time as well as debugging time (SR15).

Security

Authentication

Authentication was handled by the ASP.NET web security model, which validates

and manages users and roles. The model was modified to accommodate additional

properties required for the web system such as school and institution details. The

model was also used for access control to controllers which could be sub-divided by

user roles, which allowed for hierarchical access control for users in specific roles. A

single view could also be customised for different roles, both contributing to a faster

development of a secure and robust system (SR5).

Encryption

Password data is hashed by the .NET web security and a cryptography class was

developed to encrypt all the data stored in the system using the AES standard with

a 256 bit key. The class uses a salt function to prevent standard dictionary attacks on

the data. All data stored in the database was encrypted using this class. The data in

transit is encrypted by Microsoft IIS7 using HTTPS with SSL. (SR2, SR4).

Attack Prevention

To address automated brute force log in attacks, a three attempt system was developed.

The user after three failed log in attempts is locked out of the system for ten minutes

(SR3). The IP addresses of each student surveyed were also logged (SR1). Cross

site scripting attacks (XXS) were addressed with HTML encoding using Razor in all

HTML input and retrieval fields, so if a malicious Java Script is injected into the site

or database only the raw HTML is displayed making the script redundant when it
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reaches the browser (SR3). Cross site forgery requests (CSFR) were also addressed by

sending two independent random tokens to the view, one as a cookie and the other

token was randomly hidden in a field on the form. On the submission of the form

both tokens are required by the controller, otherwise the server rejects the request

(SR3).

Services

Three roles were created: (i) administrators, (ii) lecturers and (iii) students, each with

different levels of functionality (as shown in the use case diagram in Figure 4.2) (SR10)

• Administrator: Can create users on the system, delete users, modify a user’s

details, reset passwords, upload training set(s), run prediction analysis and

observe the survey (SR6, SR7, SR8, SR12)

• Lecturer: Can see surveys taken, allow students to retake a survey if needed,

and can run prediction analysis with a limited report (SR12).

• Student: Can only sit a survey once and cannot redo it unless sanctioned by a

teacher; as shown in Figure 4.2(SR11)

Administrators can upload users in batch mode via a .CSV file (SR6). The system

validates the data upon uploading and returns a log of each entry, containing details

of its success or failure (and the cause of any validation error). This bulk upload of

users would be very beneficial for large institutions. The training data set can also be

bulk uploaded via a similar function.

4.6 testing

The next phase was to test and validate the PreSS# web-based system itself. For this

testing phase the focus was on user interactions and validation of those actions to

ensure that the web based system features and actions passed all test cases. Both

alpha and beta test cases were performed. The alpha involved white box testing at

each phase of development. The beta investigation was a pre-pilot study conducted
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in the 2013-14 academic year which consisted of 34 users using multiple device types;

this will be expanded upon further in the following two sections.

4.6.1 alpha testing

White box alpha testing was completed at each stage of the system development. Ta-

bles 4.3 and 4.4 show the twelve main test cases which consisted of class, API and

method testing. As both the PCA and naïve Bayes classes were previously exam-

ined they are not considered in these test cases. As mentioned previously, an agile

approach was used, where the test cases were completed iteratively throughout the

development to allow each phase to be validated and the next phase built upon this

validated phase.

Table 4.3: Results from alpha testing test cases - Part 1

ID Description Result
Pass /

Fail

1 Security – IP address capture
Address stored in DB, even

when Proxy used.
Pass

2 Security – Encryption
All data in DB encrypted,

salt functionality working
Pass

3

Security – XXS, CSFR and

brute force

CSFR and brute force failed,

XXS raw displayed
Pass

4

Security – HTTPS (SSL in

IIS7)

HTTPS enabled, on all

browser types.
Pass

5 Security – Authentication

Log in successful with all

three roles, each action

restricted or allowed specific

roles.

Pass

6 User - User creation
User creation with .CSV

upload with validation.
Pass
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Table 4.4: Results from alpha testing test cases - Part 2

ID Description Result
Pass /

Fail

7 User - Reset user password

Reset password for user,

admin cannot see current

password as per ADDC

standard practice.

Pass

8 User - Training data

Single training data set

creation with validation,

.CSV bulk upload with

validation on all aspects that

include file type and missing

values.

Pass

9 User - Prediction output

Predictions completed using

PCA and naïve Bayes classes,

compared and validated

using the two .NET

applications.

Pass

10

User Roles: student, lecturer

& admin

Each role was tested; no user

had access to any control or

action even with URL

injection.

Pass

11 User - Reset a survey

Survey reset for student

allowing resit. (admin and

lecturer only)

Pass

12

Device - Submit survey as

student on multiple devices

Survey submitted successful

in every browser on every

device.

Pass
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4.6.2 beta testing

Black box beta testing was carried out using a small group of 34 volunteering students.

This beta test was completed to test and validate the system using a multitude of de-

vices which included PC’s, iPhone, Android phone, iPad and a Surface tablet. Testing

was completed in April 2014. The results of this testing are outlined in Table 4.5. Each

test case passed successfully.

Table 4.5: Results from beta testing test cases

ID Description Result
Pass /

Fail

1

Security – IP address

capture

Address stored in DB,

even when Proxy used.
Pass

2 Security – Encryption
All data in DB encrypted,

salt functionality working
Pass

3

Security – XXS, CSFR and

brute force

CSFR and brute force

failed, XXS raw displayed
Pass

4

Security – HTTPS (SSL in

IIS7)

HTTPS enabled, on all

browser types.
Pass

4.7 replication of press

4.7.1 overview

PCA and naïve Bayes replication testing was carried out to investigate if both could

replicate the results of the PreSS study. If the replication was a success the .NET imple-

mentation of PreSS could then be confidently integrated into the web-based system.
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4.7.2 pca replication of results

The PCA implementation was based on that used in the original PreSS model and

a tutorial by Souza [127] as described in Smith’s tutorial paper [125]. Examples in

Smith’s paper were used to compare with the PCA class in .NET. In Smith’s study, the

results were first calculated on paper and then confirmed in Scilab [125], a freeware

alternative to MATLAB. Even though the languages differ, the calculations/pre-steps

and most importantly the results that Smith computed, would be used to compare the

accuracy of the PCA model developed. Souza’s tutorial was based on the accord.NET

framework and successfully replicated the results of Smith. The aim was to replicate

Smith’s result and confirm the accuracy of the PCA class.

The .NET implementation results were compared with the results of Smith using

the same input data. The results were replicated to the ninth decimal place as shown in

Table 4.6. These results were identical to that of both Smith and Souza. The replication

of results indicated that the PCA model was statistically the same when using the .NET

implementation.
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Table 4.6: The Results from Smith’s study and from the .NET PCA sys-

tem

PCA Results

Lindsay I Smith .NET System

0.827970186 0.827970186

-1.777580325 -1.777580325

0.992197494 0.992197494

0.274210416 0.274210416

1.675801419 1.675801419

0.912949103 0.912949103

-0.099109438 -0.099109438

-1.144572164 -1.144572164

-0.438046137 -0.438046137

-1.223820555 -1.223820555

4.7.3 naïve bayes replication of results

Table 4.7 shows the naïve Bayes application (labelled .NET) and WEKA’s prediction

accuracies along with sensitivity (the true positive rate) and specificity (the true nega-

tive rate) [148]. Both systems used the dataset from the original PreSS study with all

of the 102 data samples as the input and 10FCV to produce the results in Table 4.7.

Table 4.7: Results from naïve Bayes and WEKA applications using

10FCV on the PreSS study.

Model Accuracy % Sensitivity % Specificity %

.NET 80.39% 81.53% 78.38%

WEKA 80.39% 80.05% 80.00%
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The results from Table 4.7 show that .NET had an accuracy of 80.4%, identical to the

accuracy of WEKA. A two tail t-Test for a binomial distribution was run to confirm

both applications prediction accuracies were not statistically different. No significant

statistical differences were found. The t-Test results with a 95% confidence level were:

p (value) = 1.0 and a t (value) = 0.0, showing that the WEKA results were not statistically

different to the .NET results. Sensitivity and specificity were also recorded, but as

it was felt that sensitivity was the most important factor for PreSS# (inferring that

correctly predicting a weak student is more significant and takes precedence over

correctly predicting a strong student) this was the examined measure.

A t-Test was completed on sensitivity and specificity in both .NET and WEKA.

The sensitivity between .NET and WEKA concluded with no statistically significant

difference and the following result: p (value) = 0.09 and a t (value) = 1.6. The specificity

between .NET and WEKA concluded that there was a statistical difference with the

following result: p (value) = 0.006 and a t (value) = 2.81. However with the raw sensitivity

slightly higher with the .NET application, specificity was going to be lower, as the

accuracies were identical. Finally as sensitivity was the valued measure for this project,

it was positive to see it perform slightly higher than WEKA.

4.8 summary

PreSS# is a completed functioning tool, that is ready to be integrated into the edu-

cational domain and to begin the data collection for the main study. This tool will

be invaluable for the early detection of students who may be at risk of failing CS1.

The tool may also expedite the development of educational methodologies, both for

students who are likely to fail and for students who are likely to be very strong, hence

developing methodologies for differentiation. This differentiation and early detection

of weak and strong students may lead to effective interventions that may be applied

faster than current efforts, thus enabling students to possibly achieve at a higher rate

than predicted and increase the progression rates of computer science. In addition, as

this research progressed, the plug and play nature of the classifier and PCA classes,

allowed for examination and collection of additional data, without full scale redevel-

opment.
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5
A D D I T I O N A L FA C T O R S

5.1 introduction

This chapter documents three pieces of work. The first piece of work is an investi-

gation on factors from the original PreSS study dataset, which were not used in the

final (2006) model. This is important as several factors were found to be significant at

the time but were excluded as their associated sample size was small. This work is

presented in Section 5.2.

The second piece of work is an investigation of additional factors collected during the

justification study, as presented in Chapter 3.1. This was to determine if incorporating

some or all of these new factors could improve the accuracy of PreSS. This work is

presented in Section 5.3.

The third piece of work, incorporates the most predictive factors from the two prior

pieces of work to examine if the newly identified factors in combination or substitution

with the original PreSS model factors could improve the model’s performance. This

work is presented in Section 5.4.

The first two pieces of work described in this chapter were published within one

article in the 27th annual workshop of the Psychology of Programming Interest Group

(PPIG, Cambridge University, Cambridge, UK) [99]. The third phase of this work was

published at the 23rd Annual ACM Conference on Innovation and Technology in

Computer Science Education (ITiCSE’18, Larnaca, Cyprus) [100].
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5.2 factors from the original press study

A total of 123 students participated in the original PreSS study (pilot, main and epi-

logue studies). The study also recorded 113 factors. Five instruments (in the form of

questionnaires) were used to collect data: background, comfort-level [145], program-

ming self-efficacy (Appendix E), motivation and learning strategies [93]. These 113

recorded factors consisted of questions (from the five instruments) and normalisation

or summations/differences of combinations of questions. To evaluate which factors

might be the most useful for predicting performance standard deviation and variance

were calculated for each factor.

Not all participants had recorded data for each of the 113 factors (due to the manual

data collection technique and missing data). For comparison purposes and to ensure

an unbiased statistical comparison, the original PreSS model was re-run only using

the students that had provided data for the factors investigated. A Student’s t-test

was used to examine if a significant difference was found in accuracy between the

baseline accuracy and the updated model’s accuracy. This piece of work presents the

top eight models and their factors that may have value in an updated PreSS model

(further models and details are provided in the related publication) [99]. The results

are presented in Table 5.1.
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Table 5.1: The 8 models that resulted in a significant gain in accuracy

with the PreSS model.

ID New Model Attributes Sa
m

pl
e

Si
ze

(N
)

A
cc

ur
ac

y
In

cr
ea

se
%

P
va

lu
e

1

Mathematical grade, hours spent playing computer games and what a stu-

dent believed their final overall grade would be at the beginning of the mod-

ule.

56 8.93 <0.001 ***

2

Mathematical grade, programming self-efficacy and the difference in hours

spent playing computer games before the commencement of the course with

that of the hours spent playing computer games during the course.

107 7.5 <0.001 ***

3

Mathematical grade, programming self-efficacy, hours spent playing com-

puter games and what a student believed their final overall grade would

be at the beginning of the module.

56 7.2 <0.001 ***

4

Mathematical grade, programming self-efficacy, hours spent playing com-

puter games and a student’s anxiety, fear and/or uneasiness of examinations

and assessment, and a focus on the negative while completing them.

68 2.94 <0.001 ***

5

Mathematical grade, programming self-efficacy, hours spent playing com-

puter games and a student’s feeling on their own ability, on programming

concepts, design of programming logic and completion of lab assignments.

110 1.82 0.0010 ***

6

Mathematical grade, programming self-efficacy and the number of hours a

week the student worked in a part time job.
111 1.81 0.0024 **

7

Mathematical grade, programming self-efficacy, hours spent playing com-

puter games and a student opting for more challenging / relevant course

material when given a choice, even at the cost of a higher grade if less chal-

lenging material was chosen.

68 1.40 0.010 *

8

Mathematical grade, programming self-efficacy, hours spent playing com-

puter games and a belief the student has, that if they work hard that they

will succeed and if they do not work, that they will fail and it will be the

student’s own fault that they did.

68 1.40 0.010 *

* Significant at p <0.05; ** Significant at p <0.005; *** Significant at p <0.001;
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5.3 factors from the justification study

This section examines 12 additional factors collected during the justification study as

discussed in Chapter 3.1 [99] (Appendix D). From the additional 12 factors in com-

bination and substitution with the original PreSS factors, several new models were

developed and investigated. With the use of PreSS# for data collection, no student

had missing or dirty data, so all 26 students from the second justification study (2015)

were included in each experiment (as the additional factors for the first justification

study was collected towards the end of the introductory module, it was not used).

From the developed models, three factors emerged, that added value to the PreSS

model: hours spent on social media, gender and age. In the original PreSS study, it

was suggested that gender may be of value to the model, thus gender was incorpo-

rated into the additional factors recorded in the two justification studies. It was also

hypothesised that age may positively affect the accuracy of PreSS. This was based on

prior experience that mature students may rate their programming self-efficacy lower

than its true value, resulting in an incorrect prediction and the work of Glorfeld who

identified age as a significant prediction factor ([52]). Research has shown that there

is a positive relationship between age and programming ability/attainment [83]. The

use of social media was hypothesised as a new factor for programming prediction.

This was based on the significant average time spent on social media as identified

in the pre-survey (Appendix D). Distinct differences were found in the social media

habits between mature and non-mature students. The same data reduction techniques,

and performance evaluation as used in the original PreSS study were implemented. A

Student’s t-test was used to examine if a significant difference was found in accuracy

between the baseline result and the experiment result.
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5.3.1 resulting models from the justification study

When age was added as a factor (as identified by Glorfeld [52]), represented in years,

or dichotomously, it produced statistically significant increases in accuracy over the

original PreSS model. Although the addition of gender (in dichotomous form) did

not provide an increase in accuracy when introduced into the original PreSS model, it

yielded a statistically significant increase in accuracy at ∼ 4% on the justification study

dataset. The time spent on social media when added to the PreSS model did not in-

crease the accuracy, however it did produce an interesting outcome. When time spent

on social media was substituted for the programming self-efficacy factor, it resulted

in an identical accuracy as the original PreSS model, thus showing a correlation or

perhaps that both factors may be measuring the same underlying phenomenon. The

models incorporating the new factors are presented in Table 5.2.

Table 5.2: Justification study additional survey factors that may have

shown to have value

ID New Model Attributes Sa
m

pl
e

Si
ze

(N
)

A
cc

ur
ac

y
In

cr
ea

se
%

P
va

lu
e

1

Mathematical grade, programming self-efficacy, hours spent playing com-

puter games and age (actual age in years).
26 7.7 <0.001 ***

2 Mathematical grade, programming self-efficacy and gender. 26 3.85 <0.001 ***

3

Mathematical grade, programming self-efficacy, hours spent playing com-

puter games and age (dichotomous age value for mature and non-mature

students)

26 3.85 <0.001 ***

4

Mathematical grade, hours spent playing computer games and the amount

of time spent on social media.
26 0 1

* Significant at p <0.05; ** Significant at p <0.005; *** Significant at p <0.001;
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5.4 investigating the new factors using the main study

5.4.1 introduction

From the investigations outlined in 5.2 and 5.3, 16 updated models were identified

using a multitude of factors identified in this thesis and in the original PreSS study.

These were then added to the PreSS# survey and captured during the main study

from this thesis. In total, 39 factors (inclusive of the original PreSS model factors)

were recorded in the PreSS# survey during the main study of this thesis. This resulted

in (after data reduction) 17 factors that could be examined as part of an updated PreSS

model, using the main study dataset. The factors collected as part of the main study

are presented in Table 5.3.

Table 5.3: The 17 factors included in the main study (after data reduc-

tion)

Factor Name Factor Details

Institution type University, Institute of Technology, Community College {1, 2, 3}

Time to complete the survey Seconds

Age Years as an integer

Mature Student Dichotomous

Gender Dichotomous

Social Media Average time in hours per day spent on social media

Part Time Job Average time in hours per week spent working in a part time job

Expected end of year result Percentage Grade {0 -100%}

Concepts, Design and Completion of a

program
Likert Scale - Normalized

Intrinsic Goal Orientation Likert Scale - Normalized

Intrinsic Questioning Categorized based on Intrinsic goal Orientation {1, 2, 3}

Control of Learning Beliefs Likert Scale - Normalized

Test Anxiety Likert Scale - Normalized

Mathematical Grade Normalized using Appendix C

Playing Games During Average time in hours per day spent playing computer games during the course

Playing Games Before
Average time in hours per day spent playing computer games before taking the

course

Programming Self-Efficacy Ten questions reduced to one value using PCA
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5.4.2 factor selection

Two factor selection algorithms were chosen to select the most useful factors for predic-

tion: correlation evaluation and information gain [148]. Both of these algorithms were

run on the data set and combinations of the highest ranked factors were examined.

5.4.3 updated models

A multitude of models were investigated with the top two presented in this chapter.

These two models produced either the strongest performance or added value to the

model. The following models are proposed as preferable to the original PreSS model,

with performances reported in Table 5.4:

recommended model 1

Model 1 included: student’s age in raw integer form, a student’s self-reported ex-

pected end of module result, a student’s mathematical ability normalized and a stu-

dent’s programming self-efficacy. This model was selected as a primary candidate for

the updated PreSS model as it reported the highest accuracy and one of the highest

sensitivities (an increase of 4%).

recommended model 2

Model 2 included: Institution type (University, College or Community College), ma-

ture student, over 23 years of age, in dichotomous form, a student’s end of school

mathematical result normalized (as per Appendix C) and a student’s programming

self-efficacy. This model was also selected as a primary candidate for the updated

PreSS model. Its accuracy was among the highest recorded and the model’s sensitiv-

ity was higher than model 1 (an increase of 2%).
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Table 5.4: Recommended PreSS updated models, based on factors devel-

oped from recent research

Model Factors Accuracy Sensitivity Specificity

1

Age (years)

Expected end of year result

Mathematical grade

Programming self-efficacy

71% 75% 66%

2

Institution type

Mature student

Mathematical grade

Programming self-efficacy

69% 80% 54%

5.5 summary

The results presented in this chapter are very positive. The increases in performance

show that PreSS may be able to produce further performance gains. The final recom-

mended models, (model 1 and model 2) are gender, age and institution independent.

With updated models developed, this work contributes to RG 3 (further developing

the PreSS model). Next, the core machine learning algorithms are explored (Chapter

6), as a capstone to RG3 and improving the model.

64



6
M A C H I N E L E A R N I N G T E C H N I Q U E S

6.1 introduction

Given that new factors have been identified which resulted in higher performance

(model 1 and model 2), a different machine learning algorithm could potentially im-

prove the PreSS model’s performance even further. In addition as some algorithms

were not readily accessible a decade previous (such as deep learning), critiquing these

new algorithms, may improve the PreSS model further. This chapter is divided into

two investigations, machine learning algorithms and artificial neural networks.

6.2 method

6.2.1 machine learning algorithms

This section first presents the findings of the original PreSS study, where six machine

learning algorithms were compared, as a starting point for this section of work [16].

Then using the updated PreSS models 1 and 2 (Section 5.4.3), this investigation is

repeated (using the main study data and newly developed models including updated

factors), comparing the performance of six machine learning algorithms.
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6.2.2 artificial neural networks

An investigation of deep artificial neural networks was conducted. While the algo-

rithms did exist in 2006 (and the original PreSS study used a single layer artificial

neural network), access to the resources and computational power required to con-

duct deep learning was not as accessible as it is today, thus hampering the use of

these algorithms over a decade previous. The techniques employed and the results

are presented in detail in Sections 6.5 and 6.5.4.

6.3 machine learning algorithms

The algorithms discussed in this section and in the findings, sought to implement

a blend of algorithms using diverse machine learning and artificial neural network

techniques to determine if further improvements could be made to PreSS#.

6.3.1 logistic regression

Logistic regression is a statistical technique to predict a discrete outcome, such as

group membership from a set of variables. The dependent variable does not need

to be linearly related to the independent variables, homoscedasticity is not required

nor do the variables need to be normally distributed. The independent variables can

be continuous, discrete or dichotomous. It is a particularly useful technique when

there is a non-linear relationship between the dependent variable and one or more of

the independent variables [130]. The standard representation for logistic regression is

given by Figure 6.1:
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Pi =
1

1+e−b0+bi+Xi

Figure 6.1: Logistic regression formula and visual representation of the

algorithm.

6.3.2 k-nearest neighbour

K-Nearest Neighbor (KNN) is an instance-based learning technique. This type of

learning is ’lazy’ as it defers generalization until the classification stage. The nearest

neighbour algorithm is based on the principal that the properties of any particular

instance are likely to be similar to those instances within its neighbourhood. Each

new instance is compared with existing ones using a distance metric and the new

instance is classified based on the majority class of the nearest K neighbours. Typically

Euclidean distance is used and is presented in Figure 6.2.
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Ed =

√∑k
i=1(xi − yi)2

Figure 6.2: KNN formula and visual representation of the algorithm.

6.3.3 backpropagation

Backpropagation is a learning algorithm that can be used to train multi-layer feed-

forward networks. In the backpropagation learning process one of the training in-

stances is applied to the network, and the network produces some output based on

the current state of its weights (initially the output will be random). This output is

compared to the target output and an error signal is calculated. The total error, E, over

all of the network output units is defined in equation 6.1:

E =
1

2

∑
d∈D

∑
k∈outputs

(tkd − okd)
2 (6.1)

Where D is the set of training examples, outputs is the set of output units in the

network, tkd and okd are the target and output values for the k th output unit for

training example d . The error value is propagated backwards through the network,

and changes are made to the weights in each layer. Weights can be updated after

every input-output case and therefore no separate memory is required for the deriva-

tives. Figure 6.3 presents a single perception (neuron) in an Artificial Neural Network

(ANN):
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Figure 6.3: Single perceptron in ANN

The whole process is repeated for each of the training instances and the cycle is re-

peated until the overall error value drops below a pre-determined threshold, in this

case using stochastic gradient descent. Section 6.4 presents a further investigation of

artificial neural networks, using deep learning and convolutional neural networks.

6.3.4 naïve bayes

Naïve Bayes is a non-parametric probabilistic model based on an assumption of con-

ditional independence among variable attributes. Although this assumption is often

violated, naïve Bayes classifiers have been shown to work surprisingly well and often

have comparable prediction performance even when compared with some state-of-the

art classifiers [81, 148]. A naïve Bayes classifier is denoted by Equation 6.2:

P(c | x) =
P(x | c)P(c)

p(x)
(6.2)

Where P(x | c) = posterior probability, P(c | x) = likelihood, P(c) = class prior proba-

bility and P(x) = predictor prior probability.
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6.3.5 decision trees

Decision Trees involve the recursive partitioning of a dataset. An attribute is selected

to place at the root node and a branch is created for each possible value. This pro-

cess is repeated recursively for each branch, using only those instances that reach the

branch. If all instances at a node belong to the same class, no further partitioning is

performed. C4.5 is a popular decision tree algorithm, based on ID3 but contains sev-

eral improvements, such as handling continuous attributes and measures for choosing

an appropriate attribute selection scheme [81, 113, 148]. Figure 6.4, illustrates a deci-

sion tree.

Figure 6.4: A visual example of a decision tree

6.3.6 support vector machines

Support Vector Machines (SVMs) are a relatively new generation of learning system

based on advances in statistical learning theory [116]. The principal idea behind linear

SVMs is the optimal hyperplane. During the generation of a discriminant function,

standard techniques such as the perceptron will stop as soon as the last sample is

classified without error. This provides a quick but potentially poor solution as it leaves

the separation surface very close to the last sample classified. This will classify all the

data in the training set correctly but may provide poor generalisation. To counteract

this problem the linear SVM learning algorithm is modified so that the hyperplane
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is positioned in an optimal location between the two classes. To do this a conceptual

margin is used. The margin is the perpendicular distance between the closest vector

to the hyperplane and the hyperplane itself. The optimal hyperplane is the one that

maximises the margin [56]. Suppose we have a dataset (x1, y1), .......(xm, ym) ∈ X ×

{±1} where X is some space from which the Xi have been sampled. The optimal

hyperplane can be found by solving the dual form Lagrangian (Equation 6.3) and

visual hyperplanes are presented in Figure 6.5:

W(α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj(xi • xj) (6.3)

Figure 6.5: SVM example hyperplanes (linear and non-linear)

6.4 comparing machine learning algorithms

6.4.1 original press study

This section presents the findings of the original PreSS study (and a recent follow

up study), which examined the performance of machine learning algorithms, using

the original PreSS study data set. Initially, a study in 2004 by Kotsiantis [69], first

compared a multitude of algorithms for a distance learning course. Using the original

PreSS factors, the performance measures are presented in Table 6.1. Both the original
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PreSS study and Kotsiantis found naïve Bayes to be the strongest performer, and k-

nearest neighbour to be the weakest [69]. This was later followed up in a study [19],

which re-examined the findings and conducted additional analysis (ANOVA tests with

Tukey post-hoc analysis, [130]), this study re-affirmed the naiïve Bayes as the most

suitable algorithm for PreSS.

Table 6.1: Performance of machine learning algorithms from the original

PreSS study

Algorithm Acc % Sen % Spec %

Naïve Bayes 78.28 87 66

Logistic regression 76.47 84 65

Backpropagation 75.46 84 63

SVM 77.49 87 63

C4.5 74.49 85 63

K-nearest neighbour 74.49 85 63

6.4.2 updated press models

The algorithms were re-examined, but this time using the recommended models as

developed in Chapter 5.4. For analysis of both models, ANOVA analysis incorporating

a Tukey HSD post-hoc test was implemented.
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Recommended Model 1

Model 1 as presented in Table 6.2, reported that for accuracy the first three algorithms,

naïve Bayes, SVM and Logistic Regression, produced statistically similar performance.

Algorithms C4.5 and Backpropagation produced results that were significantly lower

than the first three, while k-nearest neighbour was the lowest performing algorithm.

For sensitivity however (the prominent measurement of PreSS), naïve Bayes was lower

(statistically significant) than SVM and Logistic Regression.

Table 6.2: Performance of machine learning algorithms for Model 1

Algorithm Acc % Sen % Spec %

Naïve Bayes 71 75 66

SVM 70 79 57

Logistic regression 70 78 59

C4.5 68 72 62

Backpropagation 66 72 58

K-nearest neighbour 61 67 54
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Recommended Model 2

For Model 2, the algorithm that produced statistically poorer performance was k-

nearest neighbour. For sensitivity, naïve Bayes was statistically significantly higher

than all other algorithms. Thus one could argue that naïve Bayes is still the strongest

performing machine learning algorithm. The results are presented in Table 6.3.

Table 6.3: Performance of machine learning algorithms for Model 2

Algorithm Acc % Sen % Spec %

Naïve Bayes 69 80 54

Backpropagation 69 74 62

SVM 68 77 55

Logistic regression 68 78 55

C4.5 67 70 62

K-nearest neighbour 59 63 54

6.5 artificial neural networks

6.5.1 environment

An investigation of artificial neural networks (ANNs) is presented in this section using

the Python programming environment [108]. The machine learning library that was

used to develop the neural networks was TensorFlow [1]. The Keras high level neural

networks API [31], was also used on top of TensorFlow, the standard in applied deep

learning frameworks [24].
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6.5.2 hyper-parameter tuning

ANNs are reasonably simplistic to write in code (for example in Python with the use

of API’s and libraries, such as Keras and TensorFlow), but the difficulty arises when

ensuring strong performance while being able to stand over the generalizability of the

final model. An approach has been developed in this thesis for developing educational

data mining (EDM) ANN, which usually consist of a significantly lower amount of

instances and attributes (compared, for example, to image recognition). Thus steps

are included, which are not common practice in the deep learning community due

to this computation constraint but may add value to the EDM model. As work in

this space is only commencing and there is limited literature, especially in computer

science education, it is important to establish a white box approach for repeatability

and generalizability. The approach is as follows:

• First, set out the parameters that the network may use. This is in four forms:

optimizers, network initializers, the number of epochs and finally the batch

size. Use pre-defined acknowledged initializers for initial weight selection, and

optimizers as that reduces the complexity in selecting learning rate, momentum

and decay rates.

• Second, perform a grid search using the above parameters. This is very time

consuming, thus the network parameters should be carefully chosen. The grid

search is performed using the entire dataset. The results of the grid search

return an optimum set of parameters for the ANN.

• The third part of the approach is not usually conducted in deep learning ex-

periments due to the learning computation associated with significantly large

datasets. Ten fold-cross validation should be applied, which is the gold stan-

dard for performance measurements on traditional machine learning models

[148].
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• To add to the generalizability of the model, drop-out regularization will be

applied to both the visible and to the hidden layers of the network. This is the

fourth step of developing the EDM ANN.

For the following experiments, the ANN parameters are presented in Table 6.4. The

optimizers selected were based on their default parameters, such as learning rate and

momentum, provided by Keras [31, 66, 132]. The initializers were selected based on

distribution: normal and uniform. The epoch selection was based on applied practices

[24]. The batch sizes were selected from best practice [24], but as the instance size was

comparably small (compared to image recognition), this batch size option was also

included in the grid search parameters (n=692).

Table 6.4: ANN Grid Search Parameters

Parameter Details

Optimizers rmsprop & adam & stochastic gradient descent

Initializers normal & uniform

Epochs [10, 50, 100, 150, 500, 1000]

Batch Size [5, 10, 20, 50, 100, 150, 250, 500, 692]

Once the grid search was completed, the strongest performing network was selected

and drop-out regularization was added (20% [24]), to each layer of the network. Then,

10 fold-cross validation was used to obtain an accuracy for the model.

6.5.3 network topologies

Three network topologies were selected. There is a large amount of topologies to select

from, thus for this initial investigation, three fundamental network configurations

were selected [24]. This sought to implement a blend of topologies to determine their

effectiveness at predicting performance in CS1. A simple single layer ANN, a deep

ANN and a convolutional ANN (often referred to as a CNN) were selected as starting
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Figure 6.6: Network topology: Single Layer ANN

Figure 6.7: Network topology: Deep Learning ANN

points, as this is the initial investigation to justify (if any) future investigations may be

worth while. To present the topologies in detail, the Keras environment allowed for

the topologies to be visualized and these are presented in Figures 6.6, 6.7 and 6.8. In

addition, the input and output dimensions are presented for each layer. This is again

to avoid the black box paradigm that is prevalent in machine learning and artificial

intelligence studies. It is acknowledged that the network topology selection is by no

means exhaustive and represents an initial starting point to examine if performance

gains are plausible using ANNs.
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Figure 6.8: Network topology: Convolutional ANN

6.5.4 results

Table 6.5: Performance of deep learning ANN’s.

Algorithm Acc % Sen % Spec %

Single layer ANN 67 80 51

Deep Learning ANN 69 83 51

Convolutional ANN 66 87 38

Tables 6.2, Table 6.3 & Table 6.5 reveal that the accuracies of the top performing al-

gorithms are very similar (with the exception of naïve Bayes in Table 6.2, where the

difference in naïve Bayes performance compared to the other algorithms was statis-

tically significantly higher). However, the deep neural network and the CNN both

achieve sensitivity levels that are statistically higher than the other algorithms. As

the main goal of PreSS is to predict students at risk of failing, both may provide per-
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formance gains over the previous machine learning models. Future research should

involve a deeper grid search with multiple network topologies and perhaps custom

optimizers with learning rate schedules.

6.6 summary

An investigation of machine learning algorithms reported that naïve Bayes was still

the strongest performing algorithm in terms of accuracy and sensitivity. However for

recommended model 2, SVM and Logistic Regression outperformed naïve Bayes in

terms of sensitivity. This is an important finding, as sensitivity is such an important

measure in this work.

An investigation using artificial neural networks was also performed. An approach

was developed for ANN model development for educational data mining (Section

6.5.2) that differed to usual deep learning practice. This may provide greater gener-

alizability for educational data mining prediction models for this work and in future

projects. While the results of the ANNs did not provide an increase in performance

(in fact a drop of 2-4%) a significant increase was found in sensitivity. With the deep

learning ANN sensitivity at 83% and for the CNN, sensitivity was 87%. This means

that the deep learning ANN and the CNN were significantly stronger at predicting

students who were likely to fail or drop out. This bodes very well for the use of

artificial neural networks in predicting success in CS1 and integration into PreSS.

This chapter concludes along with the previous chapter (Chapter 5), addressing RG 3,

recommending two updated PreSS models. This chapter also recommends the same

machine learning algorithm (naïve Bayes) as the original PreSS model, but suggests

future work with deep artificial neural networks and convolutional neural networks.
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I N S I G H T S I N T O G E N D E R D I F F E R E N C E S I N C S 1

7.1 introduction

CSEd is often a male dominated discipline, with declining female enrolments [27, 87,

139]. In the late 1970’s and early 1980’s female enrolment increased but subsequently

declined again [27]. On average, Irish enrolment of female students in CS courses

is currently around 20% [77] and this can be seen in many other western regions

with the U.S. seeing a significant decline from 28.3% in 1993 to 18.2% in 2012 [87].

Increasing the number of female students is vital, given the growing need for CS

graduates. Research leading to a better understanding of the factors that influence

female students studying CS is timely, necessary and valuable. The work described in

this chapter was published as part of the proceedings for the 2017 ACM Conference

on Innovation and Technology in Computer Science Education (ITiCSE), 2017 [103].

7.1.1 motivation

During the original PreSS study, gender was used in a multitude of models and the

study found that models built using gender were more predictive, with some factors

more indicative for male or female students. Gender as a factor was not included in

the original PreSS model, as the model aimed to be as generalizable as possible (for

both male and female students). The investigations outlined in Chapter 5 provided

further evidence on the importance of gender (from Table 5.2), increasing prediction

accuracy by ∼ 4%.
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A hypothesis was presented that using gender dichotomously may not be fully repre-

sentative of underlying gender specific phenomena, as in this thesis and in the original

PreSS study, it did not generalize well outside of gender specific models. This chap-

ter aims to address RG 4’s goal of examining differences between male and female

students in CS1.

7.1.2 literature

Several studies are documented in the literature on gender differences in CS. The

most prominent repeated finding appears to be the lower programming self-efficacy

of female students [7, 20, 75, 105, 124]. Programming self-efficacy has been shown

in multiple studies to significantly correlate to success [7, 16, 18, 97]. The effect of

self-efficacy is not just prominent in CS, but also in mathematics where male student’s

self-reported self-efficacy was significantly higher than that of females [105, 124]. A re-

cent study examined the time spent on social media early in CS1, and found the time

in hours negatively correlated to success in introductory programming [99]. Social

media for the student’s personal use and as an educational tool has become a much-

debated topic in education for many years. Several studies have reported correlations

between time spent on social media and self-esteem (to which self-efficacy is related),

some focusing on gender specific correlations [6]. Some studies have found that male

students outperform female students during early stage programming tasks/exams

[59, 105]. The early difference in performance could be directly related to program-

ming self-efficacy: female students have been shown to take longer on programming

tasks, thus possibly inhibiting a true reflective result on programming ability [55, 115].

This may also contribute to the longer time required to complete programming tasks.

A noteworthy finding was that female and male students did not differ in science

self-efficacy [41]. This may be due to the high male to female ratio in CS courses,

with many studies reporting that female students feel out of place, or that they are

minorities within their CS classes [105], which can lead to female students experienc-
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ing stereotype-threat [20, 85, 105]. Furthermore, female students have been shown to

have far less confidence when it comes to asking questions in a CS class [105].

While examining the literature it became apparent that it is difficult to generalize

on the findings. The studies were predominantly based on a single institution [7, 20,

50, 54, 59, 70, 75, 90, 105, 111, 112, 115, 129, 146] (with a single programming language

and teaching and assessment methodology). In addition, several of the studies had

small sample sizes (n < 96) [20, 50, 54, 85, 112, 115]. Where sample sizes were large

and/or included multiple institutions, the studies were often conducted towards the

end of CS1 or later. This mimics the research literature of prediction models in CS1

(Chapter 2). Timely data is required (early on in CS1) if uptake and attrition rates are

to be addressed so that appropriate recruitment strategies and early interventions can

be developed. This is particularly important given that some studies have found that

gender differences are less temporally stable than expected [21].

No study could be found on gender during the early stages of CS1, that used a large

multi-institutional student cohort, while simultaneously examining multiple gender

differences. The study presented in this chapter makes two significant contributions

to the CS education community. First, the study examines a multitude of gender

differences, early in CS1, using the main study from this thesis. Second, it allows

educators to generalize on the findings, as they are arguably institution, academic

level, programming language and teaching/assessment methodology independent.

7.2 data collection

The data was collected as part of the main study of this thesis, as detailed in Chapter

3.2 using PreSS#. In total, 692 complete student data sets were collected in the study,

with a male to female ratio of ∼ 80:20 respectively. This ratio is in-line with CS courses

in Ireland, the US and many other countries [77, 115]. As presented in Chapter 5,

the main study collected 17 factors. Many of which were not included in the final

two updated PreSS models 5.4.3. This gender study revisited all of these factors and

presents the insights on gender differences where the findings were of interest. Thus

the 17 factors are presented again in Table 7.1.
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When reviewing the literature on gender in CS1, differences in early programming per-

formance was highlighted [59, 105]. In addition, for the main study, a programming

test (PT) was added to the PreSS# survey consisting of three questions, of increasing

difficulty and was administered without prior notice, which was included after the

factors were collected in the main study. Q1 was a single print statement, Q2 was a

similar print statement that executed n-times (iteration) and Q3 was similar to Q2 but

had a conditional statement for each iteration.

Maynooth University was the institution selected for this preliminary examination

of the PT as it had 36% of the student cohort, with a male to female ratio of ∼73:27

respectively. The PT recorded the time it took for a student to answer each question,

the percentage of students who actually completed a question (by completion it is

implied that a student submitted work, not that the work was correct), the percentage

of students who ran out of time, and which question that they ran out of time on, and

finally a dichotomous result, as a correct or incorrect answer.
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Table 7.1: A recap of the 17 factors included in the main study

Factor Name Factor Details

Institution type University, Institute of Technology, Community College {1, 2, 3}

Time to complete the survey Seconds

Age Years as an integer

Mature Student Dichotomous

Gender Dichotomous

Social Media Average time in hours per day spent on social media

Part Time Job Average time in hours per week spent working in a part time job

Expected end of year result Percentage Grade {0 -100%}

Concepts, Design and Completion of a

program
Likert Scale - Normalized

Intrinsic Goal Orientation Likert Scale - Normalized

Intrinsic Questioning Categorized based on Intrinsic goal Orientation {1, 2, 3}

Control of Learning Beliefs Likert Scale - Normalized

Test Anxiety Likert Scale - Normalized

Mathematical Grade Normalized using Appendix C

Playing Games During
Average time in hours per day spent playing computer games

during the course

Playing Games Before
Average time in hours per day spent playing computer games

before taking the course

Programming Self-Efficacy Ten questions reduced to one value using PCA

7.3 analysis

7.3.1 approach

A Welch’s t-test was used to examine differences between male and female students

using the main study factors and the additional PT. This is more suitable than a Stu-

dent’s t-test as the male and female data sets could report unequal variance, where,

even if the variance is similar, a Welch’s t test still performs strongly (unless a very

small sample size which is not the case here, typically n < 5 [2]). The factors due to

their large size (n = 17) have been broken into two instruments best reflecting their

measurements, background factors (such as age, prior mathematics grade) and psy-

chological factors (such as programming self-efficacy and test anxiety), this coupled

with the PT, results in three instruments recorded and discussed in this chapter.

84



7.4 results

7.4 results

7.4.1 instrument 1 : background factors

No significant difference was found in the age profile between male and female stu-

dents, opposing some literature where female students were found to enter the field

at a later stage [21].

Female students reported a significantly higher previous achievement in mathematics,

in line with other research [20]. A significantly higher percentage of female students

also reported that they took the highest level of mathematics in Ireland.

Male students spend significantly more time playing computer games than female

students do, while when it comes to social media, the trend inverts where female

students spend significantly longer on social media.

For time spent working in a part time job, this study found no significant difference

between male and female students. That said this factor could warrant further analy-

sis, given a standard deviation of 7.26 and 7.11 hours respectively. This could suggest

that many CS students do not have a part time job, while many others work up to 13

hours a week.

No significant difference was found in the time it took to complete the survey section

of this study. The recorded time included both the background survey and the psy-

chological questionnaire, but not the programming test as this was timed separately.

The results to the background factors are presented in Table 7.2:

85



7.4 results

Background Factors Summary Results

Table 7.2: Background results with Welch’s t-test p values.

Data Point Male Female p value

Average age 22.37 21.32 0.902

Average Mathematics grade prior to CS1 (nor-

malized)
7.67 8.32 0.0030

Students who took the higher level mathemat-

ics before entry to the course
25.41% 38.36% < 0.001

Student overall pass rate 70.75% 76.71% <0.0001

Average hours spent a day playing computer

games
1.68 0.66 <0.0001

Average hours spent a day on social media 2.57 4.19 <0.0001

Average hours per week spent working at a

part time job
5.16 5.63 0.4806

Percentage of students who dropped out dur-

ing the year
6.95% 4.11% <0.0001

7.4.2 instrument 2 : psychological factors

Programming Self-Efficacy

As with the original PreSS model, programming self-efficacy was recorded and PCA

applied. The recorded values ranged from -3.6 up to +4.6. A student with high

programming self-efficacy was in the negative region, while the students with low

programming self-efficacy was in the positive region, in both cases approaching the

upper and lower ranges suggested the highest or lowest programming self-efficacy

respectively. Not only did these results show that there is a significant difference

between male and female self-reported programming self-efficacy (Table 7.3), but that

86



7.4 results

male students rate their programming self-efficacy positively whereas female students

rate their programming self-efficacy in a negative light, this is also echoed in a large

body of literature: [7, 20, 21, 41, 55, 91, 105].

Concepts, Design And Completion Of A Program

This measurement recorded how students felt about the level of difficulty that they

associated with three programming areas: understanding programming concepts, de-

signing the logic of a program without help and completing lab assignments. This

measure used a normalized 5-point Likert scale, which ranked each area: concepts,

design and completion ranging from very difficult (1), to very easy (5), and was sum-

mated to give an overall value. Male students reported a significantly larger value

than females. This measure could be related to other measurements recorded in this

study, such as programming self-efficacy.

Intrinsic Goal Orientation

Intrinsic Goal Orientation is a component of self-regulated learning [92, 93] which

measures the curiosity, desire for challenge or an ambition to master a task rather

than just getting by. A student with a higher intrinsic goal orientation is likely to

promote a higher level of persistence toward learning a subject, in both the short

term and long term [134]. The questions used in this instrument were based on the

motivated strategies for learning questionnaire (MSLQ) using a seven point Likert

scale [92, 93], as investigated in the original PreSS study. Males reported a significantly

higher average intrinsic goal orientation value than females, which opposes some

literature [38], where female students reported a higher intrinsic goal orientation.

Test Anxiety

Test anxiety is a self-reported measure of one or a combination of tension, fear, worry,

nervousness or unease that may occur on or before test situations, based upon the

MSLQ using a seven point Likert scale. Female students returned values significantly

higher than that of males. This is also examined across the three institution types,
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which may have value in future research if one institution type has lower test anxiety

than another, as presented in Section 7.4.4.

Predicted Overall Result Vs Actual Result

Chapter 5 determined that the grade a student expects to receive in CS1 had value as

a factor an updated PreSS model (Model ID 1). In this study male students predicted,

that they will achieve significantly higher results compared to their female counter-

parts. Male students have been found to perceive programming to be easier than

females do [91], which could be related to general lower programming self-efficacy of

female students, in turn contributing to the lower expected result early on. Contrary

to this factor, when the end of year pass rates were examined, female students had a

statistically significant higher pass rate than their male counterparts, as presented in

Table 7.3. This may align with other research where findings show at least an equal

par on performance at the end of the course compared to a male dominated initial

period [59, 77].

Psychological Summary Results

Table 7.3: Psychological results with Welch’s t-test p values.

Data Point Male Female p value

Programming Self-Efficacy -0.1956 +0.7328 <0.0001

Concepts, Design and Completion in Program-

ming
9.48 8.5 <0.0001

Intrinsic Goal Orientation 20.83 20.00 <0.0211

Test Anxiety 21.14 25.33 <0.0001

Average expected end of year grade 76.89% 71.95% 0.0007
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7.4.3 instrument 3 : programming test

Programming Timing Analysis

The average time it took male students to answer Q1 compared to female students

was not significantly different, but it is noteworthy to examine the actual difference in

average time. This was 18 seconds, or in other words, it took female students just over

10% longer on average to complete the question. The time difference was substantially

less in Q2. Although a significant difference was found in Q3, this must be interpreted

with caution as the number of students that attempted Q3 was comparatively small,

thus bringing into question its value. The percentage of students who attempted (at

least attempted, but not necessarily completed) a question revealed a trend. Other

than Q1 (which all students attempted), a significantly higher proportion of male

students attempted Q2 and Q3. The percentage of female students who either ran out

of time on Q1 or overall was significantly higher than that of their male counterparts.

Programming Performance

The submitted code of each student for each submission was corrected. This was in

dichotomous form, either correct or incorrect. The statistical analysis was completed

using a binomial distribution and a Welch’s t-test. Male students performed signifi-

cantly better than female students did, even when individual questions are examined.

There could be a strong link in this finding to that of time taken to answer the ques-

tions, which perhaps could correlate to programming self-efficacy at this very early

stage of tuition. At this point in our study, it is noteworthy to consider that although

female students may be performing at a lower standard than males in early program-

ming tests, they perform as good if not better at the end of year examinations. In

addition, students did not know in advance that there was a test, thus if students had

known in advance, perhaps female students would have prepared more than male stu-

dents, influencing the result [25]. Table 7.4 presents the results for the programming

test.
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Programming Summary Results

Table 7.4: Programming Test results with Welch’s t-test p values.

Data Point Male Female p value

Average time to complete: Q1 02:44 03:02 0.1346

Average time to complete: Q2 02:09 02:05 0.6682

Average time to complete: Q3 00:56 00:38 0.0023

Percentage who attempted: Q1 100.00% 100.00% NA

Percentage who attempted: Q2 77.78% 76.47 <0.0285

Percentage who attempted: Q3 30.56% 16.18% <0.0001

Percentage who ran out of time overall 84.44% 88.24% <0.0001

Percentage who ran out of time on Q1 17.22% 19.12% 0.0006

Percentage who answered Q1 correctly 64.44% 61.76% <0.0001

Percentage who answered Q2 correctly 27.86% 19.23% <0.0001

Percentage who answered Q3 correctly 1.82% 9.09% <0.0001

7.4.4 additional analysis

Using the same instruments and recorded data, differences in the genders, across the

two countries and then over each of the three types of institutions from the main

study were examined. This analysis examined if male and female students exhibit the

same characteristics as found in the previous sections, when examined in independent

countries or academic institutions.

Country Specific Differences

When each of the factors for both female and male students in Ireland and Denmark

were compared, only one significant difference was found. This was the average hours

spent per week working on a part time job, where Irish male and female students
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worked significantly longer hours. While this is interesting, it is important to note that

in this comparison 95% of students were from Ireland with only 5% of the students

from a single institution in Denmark. Further work is required to determine if this

finding would hold true on a large sample with other countries or institutions in

Denmark.

Institution Specific Differences

The 692 students were compared based on the three institution types in this study,

which included two universities, five institutes of technology and four community col-

leges. First gender specific measurements that were not significantly different across

all three of the institution types are presented. These included: the hours spent on

social media per day, concepts, design and completion of a program, test anxiety, and

intrinsic goal orientation. These findings are of value as they can be used for the devel-

opment of gender focused retention and recruitment strategies while being institution

and academic level independent. Second, gender specific measurements that differed

across the three institutions were examined. Differences were expected in some mea-

surements, for example, prior mathematical ability, which may be due to institution

entry requirements.

A finding, which was identical for both male and female students, was the average

expected end of year grade recorded in the background factors. University students

had the lowest average expected end of year grade, followed by the institutes of tech-

nology with community colleges reporting the highest average expected grade. A

similar result was found when programming self-efficacy was examined across the

three institution types, with university students reporting the lowest value (for both

male and female students). For female students community colleges reported the

highest average programming self-efficacy whereas for male students it was the insti-

tute of technology. This finding may be of value when developing institution specific

strategies or methodologies.
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7.5 summary

The study described in this chapter has found that female students have multiple pos-

itively correlated factors for female students learning programming, such as higher

mathematical grade prior to CS1, higher end of year pass rates, and lower drop-out

rates compared to their male counterparts. This holds true, even though female stu-

dents underrate their programming self-efficacy compared to their end of year grade.

This early, low programming self-efficacy is compounded by several measurements

recorded: female students have a significantly lower end of year grade expectation,

a significantly lower self-rating on programming concepts, program design and com-

pletion and a greater level of anxiety for tests or test situations all at the beginning

of CS1 compared to their male counterparts. This low programming self-efficacy and

higher test anxiety of female students compared to their male counterparts may be a

disadvantage early in CS1 (where female students do not perform as well on average

as their male counterparts in early programming tests) but could be advantageous in

the later stages. These negative factors combined, may be the catalyst for additional

programming practice or study towards the end of the module. Thus resulting in the

observed higher performance than their male counterparts in the overall module. The

reverse may also be true for males, as their higher self-efficacy and lower test anxiety

may result in less study effort towards the end of the module.

Contributing to the development of interventions as discussed in the following two

chapters and in addressing RG 4 (Investigate insights on gender differences in introductory

programming courses to further inform the PreSS model and interventions), this chapter

reported some noteworthy insights on gender differences in Cs1. Not only could this

be used to help inform interventions, methodologies and pedagogical approaches in

the classroom, but may ultimately help in computer science promotion and addressing

the concerning low female uptake of computer science, with insights taken from this

research [103], and presented in the media: "Girls just as good as Boys at computer

science " [43].
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I N T E RV E N T I O N S

introduction

As PreSS can predict struggling students with very high levels of accuracy (71% and

∼ 80% sensitivity), the next research goal focused on interventions to assist struggling

students to improve outcome. The most prominent factor for predicting success, for

both the original PreSS study and this body of work has been programming self-

efficacy. In addition, the PreSS model could identify students early in CS1 at risk

of failing or dropping out, thus improving student programming self-efficacy at this

early stage (thus improving performance) is the primary goal of the proposed inter-

ventions. While examining the literature, it became very apparent that there was little

to no interventions targeting programming self-efficacy in CS1. While some studies

cite or mention self-efficacy during their interventions [47], there was no focus on,

or quantitative data recorded for self-efficacy, thus making it difficult to evaluate if

any positive changes as a product of the intervention (such as performance), could be

solely attributed to the interventions affect on self-efficacy, and not other factors.

Developing interventions specifically targeting programming self-efficacy early in

CS1, while quantitatively analysing the results, is novel and with little to no literature

to establish a foundation, this chapter implements two pilot interventions. The two

interventions were conducted over a two year period, with the first investigating the

use of Scratch alongside CS1 and the second on the promotion of a growth mindset

during the delivery of CS1. With no literature to establish if the interventions are

applicable to all students or student sub-groups, the pilot interventions were applied

to the entire student cohort. This allowed the interventions to be enacted early in CS1,
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and using the PreSS survey, factors such as programming self-efficacy was recorded

and tracked. This quantitative data enables this work (and future work) to examine

the affects of the intervention over time, and its affect on specific student sub-cohorts,

for example, by gender or age. This would then inform the CSEd community, if

the interventions are of value and if they are applicable to all student cohorts (or

specific sub-cohorts). Thus setting the foundation for future works on interventions

to promote programming self-efficacy in CS1. This chapter addresses RG 5, which

investigates interventions to reduce attrition rates by focusing on increasing student

self-efficacy and therefore student performance. The rationale for the selection of each

interventions is further discussed within the following two sections, in addition to a

description of each intervention and the main findings.

8.1 scratch to improve self-efficacy and performance in cs1

8.1.1 introduction

This section describes a study conducted in the 2015-2016 academic year, with con-

sideration to data from the previous three years. The study examined when stu-

dents learned Scratch, in parallel to their CS1 module, would their programming

self-efficacy improve, and as a result, their performance in the CS1 module.

Scratch was chosen as students do not need to learn code syntax, rather it is a

programming by discovery language. Arguably it may help struggling novice pro-

grammers to comprehend coding concepts (even threshold concepts [80, 119]) that

they have not grasped in their mainstream text based language. This may be due to

the fact that in a text based programming language such as Python, Java or C#, if a

student could not master the syntax, they may not be able to transverse to the next

topic, causing a student to fail or drop-out. This section describes the study, which

is also discussed further in the proceedings for International Conference on Engaging

Pedagogy (ICEP), Maynooth University, Ireland, 2016 [98].
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Motivation

The delivery of a Scratch module in parallel to the staple introductory CS1 program-

ming module was proposed due to its simplicity. Programming in Scratch consists of

dragging and snapping blocks of code together to construct a program. The blocks

are predefined and available through a sorted visual display thus allowing a program-

mer with no previous knowledge to explore and find and code block required. Thus

Scratch may allow novice programmers to reach threshold concepts before they are

reached in the CS1 module or allow the students to access the threshold concept, even

if they have not mastered the required CS1 text based code. A threshold concept is

a concept that is likely to trouble a student as it is a previously inaccessible way of

thinking about something [80].

The exposure to Scratch, in addition to CS1, may help students better compre-

hend threshold concepts, even if the student has not mastered the text based code.

This in-turn could increase student’s programming self-efficacy, a critical predictor

in the PreSS model. Programming self-efficacy has a positive relationship between

a student’s programming self-efficacy and programming performance [28, 136, 140].

Recent research has reported that use of Scratch (in a middle school) aided the stu-

dents in learning more advanced concepts (although the end of year results were not

significantly different to those student’s who were not exposed to Scratch) [5].

There is little literature on the use of Scratch in third level; the small amount that

exists, is usually part of a pre-third level course, summer course or CS0 module and

not used or examined in the initial academic year [5, 79]. One study attempted to

introduce CS1 via Scratch [39]. The study while finding no improvements in results

found an increase in student motivation. Stajkovic reports that self-efficacy makes an

important contribution to work motivation [128], thus improvements in motivation

due to the inclusion of Scratch, may be the result of increases in self-efficacy. Kereki

only introduced Scratch for the initial three weeks of a fifteen week CS1 module, then

reverted to Java. A longer period of Scratch use may have value. If Scratch can increase

student self-efficacy, it could lead to increased success or results.
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8.1.2 data collection

This study was conducted at a community college in the academic year 2015-2016 us-

ing PreSS# as the data collection tool. The community college delivers an Advanced

Certificate in Software Development (ACSD) course (at Level 6 on the National Frame-

work of Qualifications). Results from students who participated on the same course in

the three previous years were used for comparison. The CS1 module is comparable to

many introductory programming modules delivered at third level. This CS1 module

had the same notes, course content and lecturer for the four years, (including the year

the study was conducted 2015-16). Entry to the course is based solely on an interview,

thus students were not selected competitively based on grades. Table 8.1 presents

the student numbers and breakdown of gender and age from each year group. The

2015-2016 year group were the focus for the intervention.

Table 8.1: Cohort data for the four years of the Scratch study

Attribute 2012-13 2013-14 2014-15 2015-16

Number of students who

completed course
24 31 28 30

Male to Female ratio 21:3 28:3 24:4 29:1

Mature* to Non-Mature ratio 4:20 13:18 1:19 2:28

* A mature student is any student 23 years of age or older, a non-mature student is under

the age of 23

8.1.3 methodology

Introductory Programming Module

The CS1 module was compulsory for each student enrolled in the Advanced Certifi-

cate in Software Development course. The CS1 module was taught using C# and the

.NET platform. In the initial three years of this study, no other programming language
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was taught alongside the CS1 module. The module was taught over 10 weeks and con-

sisted of the following structure: four hours of lectures per week and four hours of

laboratories a week. Further specifics of the course topics and grading structure can

be found in the publication [98].

Scratch - Game development Module

Scratch was delivered as an introductory standalone games module in semester one

alongside CS1 in the academic year 2015-16. The module used the Scratch 2.0 IDE.

The aim of this module was to introduce students to computer games, before they un-

dertook the more advanced second semester variant which consisted of Unity and C#

scripting. This introductory module ran for the same 10 weeks as CS1 and consisted

of one hour of lectures and a one hour and twenty-minute laboratory per week.

8.1.4 results

Programming Self-Efficacy

Programming self-efficacy was measured using the same method as in the original

PreSS study and collected using PreSS#. This study collected programming self-

efficacy at ∼ 10% into the module delivery. The study also had access to the previous

cohort’s programming self-efficacy data, at the same point in the course delivery for

comparison, collected from 2013 to the 2015. As per previous studies detailed in this

thesis, the same factors and data reduction techniques were applied.

The results presented in Table 8.2, found no significant difference in the student pro-

gramming self-efficacy between the two control groups and the intervention group. Al-

though no difference was found, it should be noted that the programming self-efficacy

questionnaire was administered (as with all studies in this thesis) at approximately

10% of the course delivery. This perhaps may have been too early to see significant

differences in programming self-efficacy.
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Table 8.2: ANOVA analysis of student’s self-efficacy from all three year

groups

ANOVA Analysis: 2013-2014, 2014-2015, 2015-2016

Total Students 88

f -ratio 2.3822

p-value 0.0985

Programming Performance

The results from each year group were compared using an ANOVA analysis. Student

results consisted of the overall module marks in CS1. The ANOVA analysis investi-

gated if CS1 with and without the Scratch intervention, differed significantly. Table

8.3 presents the performance results for each year group and Table 8.4 presents the

ANOVA analysis. Table 8.4 reports no significant differences between any of the four

year groups (control and treatment) with a p value = 0.7.

Table 8.3: Student programming performance data

Attribute 2012-13 2013-14 2014-15 2015-16

Average grade in CS1 78.56% 72.18% 69.53% 67.20%

Std. Dev. (Grades in CS1) σ 16.81% 16.73% 18.00% 12.91%
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Table 8.4: ANOVA analysis of student’s performance from all four year

groups

ANOVA Analysis - All four year groups

Total Students 113

Grade (Mean) 69.86%

Grade (Std. Dev σ) 16.35%

f -ratio 0.4851

p-value 0.6932

8.1.5 additional findings

Upon further investigation, a substantial variance in the average module pass rates

between the first three year groups (control groups) and the final year intervention

group was found. The average module pass rate is calculated across all ten modules

delivered in the ACSD course (ten in 2015-2016 which included the additional games

module and nine in the three previous years 2013 – 2015 where Scratch was not in-

cluded). The average module pass rates for each year group is presented in Table

8.5.

Table 8.5: Average overall module pass rates from each year group

2012-13 2013-14 2014-15 2015-16

Average pass rate over all

modules
81.51% 77.83% 70.45% 46.37%

Std. Dev σ 13.71% 19.65% 17.44% 18.74%
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Initially an ANOVA analysis was completed on the three control years (2012-2014)

concluding that no statistical difference was found between the average pass rates of

each delivered module, with a p value of 0.4. Next an ANOVA analysis was completed

on all four year groups (control and intervention), resulting in a significant difference

found in the average module pass rates with a p value of 0.0004.

A Tukey HSD post-hoc analysis confirmed that it was the intervention cohort results

that were significantly statistically lower to the control groups. This suggests that the

intervention cohort was significantly weaker overall, than the previous three control

cohorts. Given this, the CS1 performance results were statistically similar to that of the

previous three years, thus it could be inferred that while the intervention group was

weaker, the cohort performed as well as the previous three years in the CS1 module.

This may be attributed to the additional Scratch gaming module. Further investigation

is required.
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8.2 promoting a growth mindset in cs1

8.2.1 introduction

This section describes an intervention conducted in the academic year of 2016-2017.

The intervention promoted a growth mindset during a CS1 module in an effort to in-

crease performance. This study was motivated by the work of Dweck [46] on mindset

which has received wide spread adoption across primary and more recently, second

level education.

8.2.2 literature

Dweck has provided compelling evidence that mindset towards ability can impact

upon student performance [46]. She describes two mindset types: a growth mindset

and a fixed mindset. Fixed mindset supports the idea that ability is innate, thus your

result reflects your innate ability and can not be improved upon. Growth mindset on

the other hand supports the idea that ability can be improved, both through effort and

learning from failure and constructive feedback.

Although there is very little literature on using mindset interventions to increase

performance on introductory programming courses, the studies available have re-

ported promising or mixed results [36, 51, 123]. Cutts reports that although mind-

set did not change significantly, there was a positive change in performance. This

perhaps could be in part due to Cutts reporting (both from their experiences and lit-

erature) that students in introductory programming, tend to change towards a fixed

mindset during the course, as "that learning to program may foster a fixed mindset

due to the very high number of potential error points" [36]. Simon conducted a study

spanning three institutions and reported no significant findings while employing their

"saying is believing" mindset intervention [123]. However it must be noted that the

intervention exposure was very minimal consisting of a single lecture and a one page

handout reminder. Flanigan did not employ an intervention, but measured mindset
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across the semester and reported "for all students, there were significant increases in

fixed mindset and significant decreases in growth mindset across the semester. How-

ever, results showed that students had higher scores for growth mindset than fixed

mindset at both the beginning and end of the semester" [51]. Flanigan also reported

that student mindset was a weak predictor of performance.

Overall the literature reports mixed outcomes at third level. This perhaps is due

to the limited exposure that students have received. The largest was four consecutive

weeks, which reported some success [36]. This study in an effort to address RG 5

(develop and investigate interventions that could reduce attrition rates in introduc-

tory programming modules) has implemented an intervention based on the work of

Dweck.

8.2.3 data collection

During the academic year 2016-17, two institutions participated in this study (with a

total n = 42 participants), where the data was collected using PreSS#. Both institutions

also participated in the main study (Chapter 3.2). This allowed for the comparison

of the previous student population (the control group with no intervention) to the

student cohort from this study (treatment groupy) to examine the effectiveness of the

intervention.

The two institutions consisted of a community college and an institute of technol-

ogy. The data collection process and analysis techniques were identical to the main

study outlined in this thesis. There was also the addition of a mindset survey adopted

from the work of Dweck [46], by D’Anca [37] as presented in Appendix F. The only

difference in this work to that of the main study in this thesis (other than the mindset

survey), was that the same data was collected at three stages through out the academic

year. Initially before the intervention was deployed (stage one, at approximately 10%

into the delivery of CS1), at the end of CS1 (stage two, in semester 1 before the exami-

nations) and at the end of the academic year (stage three, at the end of CS2 in semester
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2, before the examinations). This allowed for the tracking of changes in attributes such

as mindset and programming self-efficacy over the entire academic year.

The survey was optional, that coupled with absenteeism meant that not all students,

participated in all stages. When analysing one or more stages, only students who

were present across all stages examined are investigated. Where this was the case, the

sample size is reported.

8.2.4 methodology

Stage one to stage two, was where the intervention was applied. This consisted of

several approaches to promote a growth mindset. The methodology was developed

from previous studies [36, 46, 78, 84]. The approaches fall under three headings:

Lecture: At the start of each lecture/lab, the lecturer described Dweck’s work through

a discussion of fixed mindset vs. growth mindset. This approach promoted the fun-

damentals of growth mindsets and presented case studies from Dweck’s work. The

methodology also drew upon personal experiences, and relayed the correlation be-

tween work ethic (grit) and attainment of ability. In addition, testimonials from stu-

dents who had completed the course, especially students who initially struggled were

presented to the cohort. This was conducted for all 12 weeks from stage one to stage

two and typically lasted for the first ten minutes of the lecture.

Research: In addition to the lectures, at approximately each quarter of the course de-

livery, case studies were presented to the students with scientific findings (in contrast

to qualitative). This was drawn from Dweck’s work, the related literature and neuro-

science. This aimed to further target students with a fixed mindset, who believe that

they cannot improve and who may disbelieve the findings presented in the lectures.

An example of this was research on neuroplasticity [114].

Feedback: Feedback was delivered regularly during the programming labs, but also

formally after assessment. The main goal of the feedback was to praise the process,

not the person. In addition, if the feedback was on a poor result, it was delivered
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positively, critiquing the process and output, but not the student or ability. This was

compounded by promotion, that if feedback was based on a poor result, that the

feedback itself is a tool to learn how to improve and if worked upon will lead an

increase in performance. This aimed to modify the perception that failure is a negative

end point, to a positive starting point with direction on how to succeed.

8.2.5 student cohort analysis

First, before any investigations into self-efficacy or performance gains could be con-

ducted, an analysis of differences between the two student cohorts (the control and

treatment group) was completed using the same data collected at the same time via

PreSS#. This was conducted at stage one, before the intervention was applied to in-

vestigate if any differences existed that may account for variance (if any) in the affect

of the intervention on performance. It must be noted the both institutions were deliv-

ering the exact same course both years, with no additional interventions or teaching

methodologies applied. Also the same lecturer, lectured in both institutions to both

groups of students (both years), thus ruling out different lecturer delivery methods or

the lecturer themselves as a contributor to any difference in performance. A Welch’s

t - test was used to examine if any statistically significant differences existed between

both data sets.

The results presented in Table 8.6, show that other than gender balance (2015-16 = 51%

female students compared to this study which only had 13% female representation), no statis-

tically significant differences existed between the two cohorts. Thus any increases in

performances can reasonably be attributed to the intervention, and not pre underlying

population differences.
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Table 8.6: Comparison of two student cohorts, at stage one,pre interven-

tion.

Attribute p-value Significant

Programming Self-Efficacy 0.0521 N

Predicted End of Year Grade 0.6171 N

Gender Balance <0.00001 Y

Age 0.1541 N

Maths Grade Normalized 0.2655 N

Maths Grade Raw 0.6624 N

Hours Spent Playing Computer Games 0.5170 N

Time to Complete Survey 0.8135 N

Condesco 0.4622 N

Intrinsic Goal Orientation 0.3199 N

Test Anxiety 0.5054 N

Hours Spent on Social Media 0.3490 N

8.2.6 results

The results as presented in Table 8.7 were statistically significant, with the 2015-16 co-

hort having a pass rate of 41.07%, and this study including the intervention, reporting

a pass rate of 66.67%. This was a significant increase in performance given the only

underlying population difference was the reduction in ratio of female students in the

intervention cohort. It is also significant as female students typically outperform male

students.
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Table 8.7: Comparison of two student cohorts, at stage two, the end of

CS1.

Results p-value Significant

Raw Results <0.00001 Y

Dicotomous Results (As per PreSS) 0.0034 Y

8.2.7 additional analysis

The average mindset value in stage one was 41.69 (where higher values correlate to a

Growth mindset), with the average mindset value of stage two was 43.03 (n = 24), thus

there was no statistically significant difference between the two stages with, p = 0.0613.

This was interesting as student performance increased with this intervention. Next,

the change in programming self-efficacy was examined, from stage one to stage two.

The data again reports no statistically significant overall difference in programming

self-efficacy from stage one to stage two, with a p = 0.8. Both of these findings

were unexpected, as with the performance increase, it was envisioned that perhaps

either programming self-efficacy or mindset may have been positively affected by the

intervention, from stage one to stage two.

To visually examine mindset and programming self-efficacy, the values were graphed

to investigate if any patterns or clusters existed that might explain why no signifi-

cant changes were observed from stage one to stage two. A very interesting pattern

emerged, which is presented in Figure 8.1.

106



8.2 promoting a growth mindset in cs1

Figure 8.1: Programming self-efficacy and mindset values plotted at

stage one.

Figure 8.1 presents a multi-modal distribution with three visual groups. To investigate

the change in self-efficacy and mindset from stage one to stage two, the data was

grouped in relation to performance (n = 20). The three groups consisted of the poor

performing students, middle performing students and top performing students. The

rationale was to investigate if the intervention was more effective (or not) for a specific

cohort of performers in CS1, as Figure 8.1. Figure 8.2 presents the findings.

Figure 8.2: Changes in programming self-efficacy and mindset over CS1,

grouped by performance
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Figure 8.2 shows that changes in programming self-efficacy 1 and mindset from stage

one to stage two are somewhat visually correlated (r = 0.41). Middle performing

students reported the largest positive change in mindset (towards growth), whereas

their programming self-efficacy decreased. The weakest students reported the largest

positive change in programming self-efficacy while experiencing a positive change in

mindset. Top performing students reported the least amount of change in program-

ming self-efficacy and mindset.

8.2.8 summary

Promoting a growth mindset as an intervention in CS1, resulted in a statistically sig-

nificant increase in performance. Although there is very little literature in this space,

studies have reported similar results [36]. Average mindset and programming self-

efficacy did not significantly change during the intervention. However this chapter

also examined the changes in programming self-efficacy and mindset throughout CS1

for students grouped by performance (stage one, two), showing that programming

self-efficacy reduced for high performing students (with the smallest change in mind-

set) whereas for the lowest performing students self-efficacy improved during the

intervention. Students in the middle performing group, had similar self-efficacy and

mindset to those students who were top performers, but showed the largest change in

mindset.

Perhaps these opposing changes for strong and weak students may be the reason

that the overall changes in mindset and programming self-efficacy were not significant

(as was reported in the literature). This finding suggests that although the intervention

saw a significant increase in performance, that changes in programming self-efficacy

and a student’s mindset vary depending on the student and their performance. This

finding requires a deeper analysis on a significantly larger cohort of students, as this

study has a number of limitations due to data set size.

1 Note: due to the data reduction algorithm applied to the programming self-efficacy

data, a negative value correlates to a positive change in programming self-efficacy

whereas a positive value correlates to a negative change in programming self-efficacy.
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9
C O N C L U S I O N A N D F U T U R E D I R E C T I O N

9.1 conclusion

This thesis detailed the development of PreSS#, a fully automated web-based system,

that can identify (for 2 out of 3 students, and 8 out of 10 struggling students), students

at risk of dropping out or failing, early in CS1. In addition, early interventions were

developed, that may have real impact when used with the findings of PreSS#. This lon-

gitudinal research and development, (extending the work of the original PreSS study

and model), documents a multi-institutional, international, multivariate study. This

thesis developed the PreSS model further, on a significantly larger disparate cohort of

students. This was achieved by multiple revalidation studies, the development of a

web-based real time system, factor and machine learning algorithm development and

two developed interventions. This thesis presents an overall system that educators

could use, to attempt to address attrition rates in CS1. This concluding chapter sum-

marises the contributions made by this thesis and possible future directions of this

work, some of which have already begun.

9.2 thesis contributions

9.2.1 longitudinal revalidation of press

This thesis documents two studies that examined PreSS several years after its original

development, to determine if PreSS is still a valid prediction model, a decade after it

was developed. The justification study contributed further by: providing additional

data/factors that were used as part of a main study.
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This then led to the main study in this thesis, which involved 11 institutions and

just under 700 students. The institutions and the student cohort differed significantly,

with two Universities, five Institutes of Technology and four Community Colleges

participating. Not only did the programming languages differ across institutions, so

did the assessment criteria and weighting. With that in mind, PreSS was still able to

successfully predict 67% of student’s end of year result, with sensitivity of 78%, repre-

senting students who were likely to fail or drop out. This body of work contributed to

and addressed RG 1, to investigate if PreSS, is still a valid prediction model, a decade

after it was initially developed. In addition this contribution answered a call from the

CSEd community, where revalidation studies were seldom conducted [62].

9.2.2 a web-based real time implementation of press

As the original PreSS model used a paper-based data collection method, it was time

consuming to collect the data. If PreSS was to be used across multiple institutions

with large student numbers, administration would grow and this could deter institu-

tions from participating. A web based system named PreSS# which has PreSS at its

computational core was developed, thus addressing RG 2 (develop a web-based real time

implementation of the original PreSS model).

PreSS# can be used to allow educators to make informed decisions about method-

ologies, differentiation, and interventions at an earlier stage. The web-based system

was also compared for accuracy to the original PreSS model and no statistically signif-

icant difference in prediction performance was found. Additionally this thesis’s large

scale study used PreSS# as its data collection tool.

9.2.3 development of the press model

Two investigations were conducted, which contributed to the improvement of the

PreSS model. First, new factors were identified and an updated PreSS model was

developed. Second, several machine learning algorithms were investigated to examine
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if algorithms not used in the original PreSS model may add value to the updated PreSS

model. In doing so this addressed RG 3 (Investigate if the original PreSS model can be

improved upon using: new factors for the model and Alternative machine learning algorithms

for the model)

New factors: This thesis examined combinations of factors not used in the original

PreSS model. Seventeen additional factors were identified (after data reduction algo-

rithms were applied). Multiple models were developed using subsets and two up-

dated models were produced, with performance gains compared to the original PreSS

model.

Machine Learning Algorithms: A multitude of machine learning algorithms and its

subset, artificial neural networks, were examined next. The goal was to determine if

further improvements to the PreSS model could be achieved. The machine learning al-

gorithms included: naïve Bayes, logistic regression, support vector machines, decision

tree, k-nearest neighbour, single layer artificial neural network, deep learning artificial

neural network and a convolutional artificial neural network. This work reported an

increase in performance when using artificial neural networks, and in particular deep

learning over the original PreSS algorithm, naïve Bayes.

9.2.4 analysis of gender differences in cs1

Based on the findings from the original PreSS PhD thesis, gender differences in CS1

were investigated. Although gender specific models performed well they did not gen-

eralize when gender was added as a dichotomous factor. Thus a deeper investigation

would contribute significantly to the further development of PreSS and in parallel help

inform intervention development. This used a combination of instruments from the

main study and institution data. This work highlighted multiple areas where male

and female CS1 students differ significantly, such as early programming self-efficacy

and early performance in contrast to overall CS1 performance. These insights and

their implications are important, as some did not conform to literature findings, when

developing future interventions and methodologies to help reverse the dwindling fe-

male enrolment numbers in western CSEd.
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9.2.5 interventions to improve performance in cs1

The final contribution that this thesis makes, is the development of two interventions

(RG5, Develop and investigate interventions that could reduce attrition rates in introductory

programming modules). The primary target of the interventions were programming self-

efficacy as this was the prominent predictor of performance through-out this thesis

and the original PreSS PhD thesis. Two interventions were developed in this thesis:

Scratch in parallel to CS1 and promoting a growth mindset in CS1.

Scratch in Parallel to CS1: This work investigated when students learned Scratch, a

block type programming language, at the same time as CS1, would their performance

in the CS1 module increase? Scratch was chosen as arguably, it may help struggling

novice programmers to comprehend coding concepts that they have not grasped in

their mainstream text-based language. This contribution at first, reported no im-

provement in performance, however using a deeper analysis of the student cohort,

especially in other subjects, this work found that the intervention cohort was overall,

significantly weaker than previous cohorts. Given this, the intervention group, their

CS1 performance results were statistically similar to that of the previous years, where

this may be attributed to Scratch improving the intervention group’s programming

performance.

Promoting a Growth Mindset in CS1: The second intervention developed was based

on the work of Dweck, to promote a growth mindset in an effort to increase perfor-

mance in CS1. This work also examined data from a previous year (as a control group)

to compare results. The factors recorded were measured at multiple intervals through-

out the course, to monitor changes as the intervention was delivered. This work found

a significant increase in performance over the previous control group where no inter-

vention was deployed (with the analysis finding no underlying population differences

prior to the intervention). This contribution could help educators with future method-

ology and intervention development.
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9.3 future direction

The work as outlined in this thesis provides numerous possible directions for future

work. This section outlines some potential fruitful areas.

9.3.1 roll out of press#

PreSS# was successfully rolled out to just under 700 students, in 11 institutions. Going

forward it is important to promote usage of the system as broadly as possible. Dur-

ing conference presentations from publications associated with this thesis, significant

interest has been expressed in using this system. A follow-up study for improving

retention rates and early interventions used by participating institutions would be a

very valuable piece of work.

9.3.2 improving press further

With new factors identified, and an investigation of machine learning techniques,

PreSS is able to predict correctly for 2 out of every 3 students. However there are

still 33% of the students incorrectly identified. Future work should attempt to investi-

gate this further. A further investigation into varying ANN network topologies would

be useful as this thesis reported improvements to the model using deep learning and

convolutional neural networks. For ANNs, a large sample size is desired, thus with

PreSS# as a ready to use tool, and the level of interest shown in it, a significantly larger

study, suitable for ANN’s could be considered, to further investigate these algorithms.

9.3.3 learning analytics

A topic gaining traction in recent times, is learning analytics [120]. The literature sug-

gests that models developed in this field can have value in predicting programming

success [61, 65, 121]. During the main study, this body of work (as part of the pro-
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gramming test), collected learning analytics data. This data consisted of key strokes,

mouse movements, compile attempts, compiler errors, and the final submitted code.

Each data point also had timestamps associated with them. Future work would com-

bine the educational data mining data from this study with the learning analytics

data collected from the programming test, to investigate new/updated PreSS models

to predict success. It is acknowledged that there are several studies in CS1 which use

learning analytics data, such as the data collected in the programming test, but from

reviewing the literature, to the authors knowledge, there has been no study that has

combined the two fields of data. This novel work could perhaps add to the predictive

power of PreSS.

9.3.4 gender research

Gender in CSEd is a topic of increasing research, with many interventions and initia-

tives being deployed nationally and internationally. A popular theory in the litera-

ture is imposter syndrome [32]. It would be an interesting investigation to measure,

imposter syndrome, mindset [46] and self-efficacy, and examine if there is any mul-

ticollinearity between the phenomena. In addition, it would be of value to measure

self-efficacy across multiple educational domains, to identify if self-efficacy differences

between male and female students report similar values and if not could there be an

underlying cause (as there is no gender self-efficacy differences in science).

9.3.5 promoting a growth mindset in cs1

This study found a statistically significant increase in performance, promoting a growth

mindset to students in CS1. While this finding is of value to the CSEd community, the

study also presented the findings (cautiously, as it was on a small data set) that the in-

tervention effected sub groups of students based on performance in varying measures.

Future work should involve clustering of the data, to investigate these subgroups fur-

ther. Also, revalidating the performance increase of the intervention on a large data

set would be desirable.
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9.3.6 migrating press# to second level

PreSS and PreSS# have programming self-efficacy at their core. As coding and com-

puter science subjects in Primary and Second level are currently in their phased (pilot)

roll out, this study could be revisited using primary and/or second level students.

This could be very valuable in the coming years once the subjects are in mainstream

education.

Primary and Second Level - Perceptions and Interventions

Student uptake of computer science in third level has declined in previous years

(where it fell by ∼ 8% alone last year [44]), this is compounded by an alarmingly

low female uptake [103]. It is unclear in the research and in particular in Ireland,

where the cause of these phenomena are rooted. Thus using the factors and insights

found in this thesis future work could include two bodies of work. First, a study exam-

ining possible root causes and where in the educational pipeline a student is deterred

from pursuing an education in computer science (in particular for female students).

Second, an intervention aimed at addressing the possible root causes for the declining

engagement in computer science. These would be very timely as the introduction of

the Leaving Certificate computer science subject is rolled out as phase one (initial pilot

year). On a positive note, this work is already begun as outlined in recent research

[104].

Primary and Second Level - Teachers

An important factor for developing student perceptions, may be the educators them-

selves. A possible research question could examine whether teachers having low com-

puting self-efficacy has a knock-on effect on the students to whom they teach. Or could

a teacher who has had a negative experience of coding be deterred from teaching it

themselves? Cohorts of computing teachers are not attending professional develop-

ment training sessions with titles that suggest a specific level of difficulty [104]. This
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perhaps relates to their self-efficacy (which will be investigated in future work). If

teachers are exhibiting low self-efficacy for a topic such as coding, can this have an

effect on students and student uptake?

9.4 final thoughts

On reflection of this body of work, several notable facets stand out, personally and

from feedback from colleagues and at conferences. Perhaps one of the most notable

contributions was the revalidation study. This was to the authors knowledge the first

of its kind, in predicting programming success. The work’s value, was compounded

by the ITiCSE working group report [62] which highlighted the lack of revalidation

studies in CSEd. The revalidation study, which spanned several studies from 2004

to present, was also of personal value. The author was a student during the original

PreSS study, and participated in the one of the original PreSS study’s pilot surveys.

Thus while the author was not involved academically in the original PreSS study, they

have been (at some level) part of the development of PreSS for over a decade.

Another facet that stood out during this body of work was the insights on gender

differences in CS1. This investigation was able to (using quantitative data), examine

multiple factors over CS1, which was novel work (as many studies typically examined

one or two factors). The insights that were presented, proved very positive for female

students in CS1 (in some cases challenging stereotypes, such as CS1 performance),

and were noticed by national newspapers [43]. It is work and outcomes like this, that

on a personal level, makes research such a valuable pursuit.

One of the final pieces of work, the development of the two interventions, was

also a notable body of work. It is also a piece of work that perhaps, if more time

was available, would have benefited with deeper investigations. Both interventions

were developed to target increasing programming self-efficacy to improve student

outcomes. As these interventions were novel, no prior foundations were available to

build on. For example with promoting a growth mindset, the findings suggest more

complex relationships exist between mindset and student sub-cohorts (such as age),
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that the current limited literature presents. Future work has begun to investigate the

data gathered further. The work on the two interventions is very valuable to the CSEd

community as the ITiCSE working group report [62] also mentioned: "The fourth

Grand Challenge is to adopt results and practices into classroom use to continuously

monitor and improve offered education".

The work outlined in this study, satisfied several of the ITiCSE working groups grand

challenges [62]. This is very positive for the research outlined in this thesis, as much of

the work was identified and started prior to the working group report. The working

group consisted of 16 of the most influential CSEd researchers (and role models to the

author), thus substantiating the value of this work. In addition, several institutions

(US, Germany, England and China), have contacted the team to trial run PreSS# in

their CS1 courses. The fact that there is interest in the work presented in this thesis, is

very positive as the institutions perhaps see value in the research. This could lead to

further work and collaboration on the PreSS model.
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A P P E N D I X A

a.1 data processing techniques

The pre-processed programming self-esteem data consisted of ten questions and was

based on the Rosenberg self-esteem questionnaire. The original questionnaire was

modified to reflect a student’s perception of their programming ability [107].

a.1.1 internal consistency

Cronbach alpha values can be used to estimate the internal consistency of psycho-

metric questionnaires. The values were calculated here and compared it to the origi-

nal Rosenberg questionnaire to ensure internal consistency had not been jeopardized

through the modifications. The Cronbach alpha values for the original Rosenberg

self-esteem questionnaire were in the range of 0.82 to 0.88 and for the modified ques-

tionnaire, the alpha value was 0.91 [16].

a.1.2 principal component analysis

Principal Component Analysis (PCA) plots all data points in a multi-dimensional

space. PCA was the data reduction algorithm used to reduce the programming self-

efficacy questionnaire (consisting of ten questions) to one value to be used in the

prediction model.

PCA essentially performs an orthogonal transformation (rotation of data in multi-

dimensions) to find the covariance eigenvectors with the largest eigenvalues which

represented the largest distribution or effect of the data set, hence selecting the princi-
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pal component. This was implemented in PreSS, selecting eigenvalues > 1, to reduce

the 10 questions of the programming self-efficacy attribute to one principal component

[16][125]. This can be repeated for subsequent components to find the second princi-

pal component etc. The original PreSS model used the first principal component. A

graphical illustration of this rotation of data in multi dimensions (one dimension per

attribute used) can be seen in Figure A.1, where it can be seen that the data is rotated

until the largest eigenvalue is found, which is illustrated by the additional arrows on

the figure.

Figure A.1: Principal Component Analysis showing an example of co-

variance eigenvectors with the largest eigenvalues illus-

trated by the additional arrows.

a.2 cross validation

Ten-fold cross validation (10FCV) was implemented, to determine the performance

of models. This is a best practice method to avoid over fitting [148] with machine

learning algorithms. This method is far superior to a hold-out method (this is where

the data set is split into two groups with one group used for training and the other

group used for testing) as it uses every sample in a data set for both testing and
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training. This reduces the chances of over fitting by removing any bias that the holdout

method may have introduced. 10FCV starts by first randomising the data set and then

the data is split into 10 folds of approximate equal size, this is the most commonly

used fold size [148]. If the data set size does not allow for equally divided folds, the

sets are created as per Table A.1 on 102 data samples. The data did not divide equally

into ten folds so the remaining data is evenly dispersed into the folds starting at fold

one, then fold two as needed [148].

Table A.1: Example of 10 folds, how the data is split before training /

testing begins with the PreSS study containing 102 samples.

Data Set Size = 102, Folds = 10

11 11 10 10 10 10 10 10 10 10

A B C D E F G H I J

(Fold)

Once the data is split into the 10 folds, 10FCV holds one fold out for testing and

trains on the remaining folds. For example, using the data in Table A.1, fold A is used

for testing and the naïve Bayes model is trained on folds B – J. This process is then

repeated using the next fold (fold B) for testing and trains on the remaining folds. This

is repeated for all ten folds. This allows every fold to be tested on an independent

training set, without the same entry being used for both training and testing. The

results are then averaged and used as the final predictions as if it was only one test.

a.3 performance measures

Three measurement techniques were employed in this study, specifically, overall clas-

sifier accuracy, sensitivity and specificity. The simplest form of evaluation is classifica-

tion accuracy: the proportion of instances correctly predicted. Sensitivity is a measure

of the proportion of actual positive instances (in the case of all studies in this thesis

this infers students whom are at risk of failing or dropping out ) that are correctly
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classified and Specificity is the proportion of actual negative instances correctly classi-

fied (in the case of all studies in this thesis this infers students whom are likely to be

successful in the introductory programming module).

The equations for accuracy, sensitivity and specificity are presented in equations

A.1, A.2 and A.3.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(A.1)

Sensitivity =
TP

TP + FN
(A.2)

Specificity =
TN

TN + FP
(A.3)

Figure A.2: A screen shot of an application developed running on the

PreSS study, showing the confusion matrix.
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A confusion matrix is a table representing the breakdown of the predictions into four

categories (As presented in Figure A.2)that include, the number of strong students

that the system predicted to be strong, the number of strong students that the system

predicted to be weak, the number of weak students that the system predicted to be

weak and finally the number of weak students that the system predicted to be strong.

Thus providing true positive, true negative, false positive and false negative values.

This output is then used to calculate the accuracy, sensitivity and specificity.
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The selection process to label programming performance as weak or strong, was de-

veloped using the following criteria: (i) each institution’s marks and standards (ii)

progression rates (after CS1 into CS2 or Semester 3) considering student grades from

each institution such as Grade Point Average (GPA) requirements for progression (iii)

discussion with instructors at each level/institution determining a minimum grade

for progression or success and finally (iv) in the case of the community college, the

minimum requirements to enter an institute of technology or a university. Boundary

value testing (±10%) was implemented to investigate the confidence of these values,

where the differences found in the accuracy were statistically insignificant, with min-

imal changes in sensitivity and specificity. Thus providing confidence in the selected

border values.

Table B.1: Weak and Strong Performance Measures

Institution Boundary Value

University Strong > 59% >= Weak

Institute of Technology Strong > 69% >= Weak

Community College Strong > 79% >= Weak
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A P P E N D I X C

c.1 mathematical normalization table

As identified in the future work of the original PreSS study, students entering third

level had completed varying levels of mathematical education. In Ireland, the high-

est level of mathematical attainment prior to entry to third level, could have ranged

from Junior Certificate, to Post Leaving Certificate courses and even other third level

courses. As the original PreSS model assumed only the Leaving Certificate mathe-

matics grade, a method was developed to normalize these differing levels of prior

mathematical achievement into a single range of values. This section presents this

normalization table, in Table C.2 and Table C.3, with the table keys presented in Table

C.1.

Table C.1: Mathematical Normalization Keys

Key Value

LCHL Leaving Certificate Higher Level

LCOL Leaving Certificate Ordinary Level

LCFL Leaving Certificate Foundation Level

LCAE Leaving Certificate Applied

JCHL Junior Certificate Higher Level

JCOL Junior Certificate Ordinary Level

CUEX College / University Mathematics Exam

FETA Further Education Mathematics Exam
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c.1.1 normalization

Table C.2: Mathematics Grade Normalization Table - Part 1

Exam
Min

Grade

Max

Grade
Normalization Value

LCHL 85 100 12

LCHL 70 84 11

LCHL 55 69 10

LCHL 40 54 9

LCOL 85 100 8

LCOL 70 84 7

LCOL 55 69 6

LCOL 40 54 5

LCFL 85 100 4

LCFL 70 84 3

LCFL 55 69 2

LCFL 40 54 1

LCAE 85 100 8

LCAE 70 84 7

LCAE 55 69 6

LCAE 40 54 5
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Table C.3: Mathematics Grade Normalization Table - Part 2

Exam
Min

Grade

Max

Grade
Normalization Value

JCHL 85 100 8

JCHL 70 84 7

JCHL 55 69 6

JCHL 40 54 5

JCOL 85 100 4

JCOL 70 84 3

JCOL 55 69 2

JCOL 40 54 1

CUEX 85 100 12

CUEX 70 84 11

CUEX 55 69 10

CUEX 40 54 9

FETA 85 100 8

FETA 70 84 7

FETA 55 69 6

FETA 40 54 5
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d.1 pre justification study survey

This survey was developed prior to the justification study, and used in the justification

study to identify new factors that may improve the performance of PreSS. These fac-

tors were then collected as part of the main study (Chapter 3.2) and examined further

in Section 5.3.

1. Age Bracket?

2. Gender?

3. How many hours per day would you play computer games on a mobile device?

4. If you play games on a mobile device, what genre of games do you play the most?

5. How many hours per day would you play computer games on a Console, PC or

laptop?

6. If you play games on a console, PC or laptop, what genre of games do you play the

most?

7. How many hours per day would you use the internet (not including social media

or messaging services)?

8. What would your primary use of the internet consist of (not including social media

or messaging services)?

9. How many hours per day would you use a social networking service?

10. If you do use social networking, what particular service do you use the most?

11. How many hours per day would you use a messaging service?

12. If you do use messaging service, what particular service do you use the most?
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e.1 programming self-efficacy questionnaire

Each question had four possible answers:

1. Strongly agree

2. Agree

3. Disagree

4. Strongly disagree

Q1) On a whole I am satisfied with my programming progress?

Q2) At times I think that I am no good at all at programming?

Q3) I feel that I have a number of good programming qualities?

Q4) I am able to complete programming items as well as most other students in my

class?

Q5) I feel that I do not have much programming ability to be proud of?

Q6) I certainly feel useless at programming at times?

Q7) I feel that I am a person of worth, at least on a plane with other programmers in

my class?

Q8) I wish I could have more respect for my programming ability?

Q9) All in all, I am inclined to feel that I am a failure at programming?

Q10) I take a positive attitude towards my programming ability?
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f.1 mindset survey

The adopted Mindset survey, from the work of Dweck [46], by D’Anca [37]. Each

question had four possible answers:

1. Strongly agree

2. Agree

3. Disagree

4. Strongly disagree

Q1 ) Intelligence is something people are born with that can’t be changed.

Q2 ) No matter how intelligent you are, you can always be more intelligent.

Q3 ) You can always substantially change how intelligent you are.

Q4 ) You are a certain kind of person, and there is not much that can be done to really

change that.

Q5 ) You can always change basic things about the kind of person you are.

Q6 ) Musical talent can be learned by anyone.

Q7 ) Only a few people will be truly good at sports – you have to be “born with it.”

Q8 ) Math is much easier to learn if you are male or maybe come from a culture who

values math.

Q9 ) The harder you work at something, the better you will be at it.

Q10) No matter what kind of person you are, you can always change substantially.

Q11) Trying new things is stressful for me and I avoid it.

Q12) Some people are good and kind, and some are not – it’s not often that people
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change.

Q13) I appreciate when people, parents, coaches, teachers give me feedback about my

performance.

Q14) I often get angry when I get negative feedback about my performance.

Q15) All human beings are capable of learning.

Q16) You can learn new things, but you can’t really change how intelligent you are.

Q17) You can do things differently, but the important parts of who you are can’t really

be changed.

Q18) Human beings are basically good, but sometimes make terrible decisions.

Q19) An important reason why I do my school work is that I like to learn new things.

Q20) Truly smart people do not need to try hard.
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