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ABSTRACT: 
Accurate extraction and reconstruction of route corridor features from geospatial data is a pre-
requisite to effective management of road networks for engineering, safety and environmental 
applications. High quality road geometry and road side features can now be extracted from 
dense point cloud LiDAR data, recorded by modern day Mobile Mapping Systems. This valuable 
route network information is gaining the attention of road safety and maintenance engineers. 
Road points are needed to be correctly identified, classified and extracted from LiDAR data 
before reconstructing intrinsic road geometry and road-side infrastructure.  In this paper, we 
present a method to automatically extract the road from terrestrial based mobile laser scanning 
system using the GVF (Gradient Vector Flow) snake model. A snake is an energy minimizing 
spline that moves towards the desired feature or object boundary under the influence of internal 
forces within the curve itself and external GVF forces derived typically from 2D imaging data by 
minimizing certain energy such as edges or high frequency information. In our novel method, we 
initialise the snake contours over point cloud data based on the trajectory information produced 
by the MMS navigation sub-system. The internal energy term provided to the snake contour is 
based on adjusting the intrinsic properties of the curve, such as elasticity and bending, whilst 
the GVF energy and constraint energy terms are derived from the LiDAR point cloud attributes. 
Our method primarily differs from the traditional snake models in initialisation and in deriving the 
energy terms from the 3D LiDAR data. 
 

1. INTRODUCTION 

 
Road transportation has a central role to play in the progress and socio-economical growth of 
European society by providing efficient mobility, in particular by minimizing time and effort in 
connecting human demand with the existing supply of products and services in society. The 
transport of goods between European member states is set to increase by 50 % between 2000 
and 2020. The road transport sector itself already contributes hugely to the European economy 
as it provides about 4.5 million jobs and generates a turnover worth about 1.6 % of European 
Union (EU) Gross Domestic Product (GDP) with almost 293 million vehicles travelling over 5 
million kilometres of road network (European Commission 2006). However, road accidents have 
become one of the main concerns for policy makers and road infrastructure developers due to 
the thousands of death and huge economic loss caused by them. In 2006, around 40,000 
people lost their lives while 1.8 million people were injured in road accidents across EU (ERSO 
2008). Road accidents are the leading cause of death and hospital admission for people 
younger than 50 years in EU. The socio-economic cost has been estimated at around 2% of EU 
countries GDP – around 180 billion Euro and twice the EU’s annual budget (SafetyNet 2009). 

The main cause of road accidents can be attributed to vehicle, driver-behaviour and 
road infrastructure or environment. A number of vehicle safety initiatives, such as the European 
New Car Assessment (Euro NCAP), deal with the safety aspects of road vehicles. Euro NCAP 
makes available to consumers independent information about a vehicle’s comparative safety 
and acts as an incentive for manufacturers to improve the safety of their vehicles. Improvements 
in driver behaviour are covered by a number of initiatives including training and driver licensing. 
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Road infrastructure design has an effect on accident risk because it can determine how road 
users perceive their environment. Recent investigations have shown a strong relationship 
between road infrastructure and driver speed, acceleration and lateral position. These driver 
behaviour characteristics are known to be amongst the most important values in accident 
analysis (Gatti et al. 2007). Significant changes in geometric design standard elements and 
physical road factors tend to increase accident frequency and severity. Road infrastructure 
related safety measures offer the potential for reducing road accidents and their consequences. 
Several EU road safety audits and inspections exist which qualitatively estimate and report on 
potential road safety issues and identify opportunities for improvements in road infrastructure 
and design schemes. Current road inspection surveys are manual and involve an engineer 
annotating a digital map or using spatially referenced video to manually classify various features 
along the route (Eenink et al. 2008). The information collected through these surveys is 
sometimes incomplete and insufficient to support accurate diagnosis and intervention. It can 
also be time consuming and expensive to conduct these inspections on a large scale. A recent 
research call highlighted the requirement for common evaluation tools and implementation 
strategies in carrying out these inspections and assessing risks along route corridors (ERA-NET 
2009). 

Terrestrial based mobile mapping systems (MMSs) present a reliable, automated 
and cost effective alternative for road safety inspection. LiDAR point cloud data recorded by 
modern day MMSs can be employed to extract road features and reconstruct the route corridor 
in 3D. Laser scanning provide highly accurate and dense point cloud data from which detailed 
3D models can be generated. Several attempts have been made to segment the road and its 
features from airborne as well as terrestrial based LiDAR data. (Clode et al. 2004) made use of 
a hierarchical classification technique to classify the airborne LiDAR intensity and range data 
into road and non-road objects. (Saeedi et al. 2009) described the potential of artificial swarm 
bee colony clustering algorithm for object extraction from LiDAR data. Some of the road 
segmentation approaches are based on fitting lines to the LiDAR data to search for a horizontal 
straight line (Yuan et al. 2008), using a Hough transformation to extract the road stripes from 
integrated LiDAR and high resolution imagery (Hu et al. 2004)  and detecting curbstones from 
airborne laser scanning data (Vosselman & Liang 2009).  

Active contour models, known as snakes (Kass et al. 1988), have also been utilized 
for segmenting road and urban features from airborne image and LiDAR datasets. (Kerschner 
2001) developed a twin snake concept for detecting two parallel contours simultaneously from 
high resolution imagery. They extended the snake’s energy function by an additional term 
formulating the attraction force to a curve parallel to its twin partner. (Kabolizade et al. 2010) 
proposed an improved snake model that focuses on building extraction from colour aerial 
images and LiDAR data. The model was modified in the external energy function and in a 
selection of initial seed contour from the NDSM (Normalized digital surface model) data set. 
(Goepfert & Rottensteiner 2009) applied an active contour approach to the airborne laser 
scanning data for extracting the 2D road networks. In their approach, the contour was initialized 
with the vector data while the image energy was derived from the laser data to extract the road 
features which were later used to match two datasets. 

However, the majority of the road segmentation algorithms only intend to find the 
location of the road but does not make any attempt to extract the edges, border or surface of the 
road. In order to obtain accurate information about the road geometry and its features, we first 
need to extract road edges from the LiDAR data and subsequently the road points in between 
them. In this paper, we present a method to automatically extract the road edges from terrestrial 
based MMS using the GVF (Gradient Vector Flow) snake model. In section 2, we give a general 
overview of MMSs and describe our own Experimental Platform (XP-1) system. In section 3, the 
traditional and the GVF snake model are discussed. The implementation of the GVF snake 
model on LiDAR data is described in section 4. In section 5, the experimental results from 
implementing the snake model are presented and finally, we have drawn conclusions in section 
6. 
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2. MOBILE MAPPING SYSTEM (XP-1) 

 
With the potential of Geographical Information System (GIS) technologies in applications such 
as route corridor surveying, road signs inventory, cadastral surveys, traffic and urban planning, 
there has been a corresponding development in terrestrial based Mobile Mapping technologies. 
Mobile Mapping refers to a means of collecting geospatial data using mapping and navigation 
sensors that are rigidly mounted together on a mobile platform (Tao & Li 2007). The 
effectiveness of Mobile Mapping lies in its ability to directly georeference the mapping sensors 
relative to the navigation sensor. The spatially-referenced data obtained from Mobile Mapping is 
more dense, rapid and less expensive when compared to the more conventional methods. 

The first terrestrial based MMS was developed in the 1980s by the Ohio State 
University for highway inventories (Novak 1993). Their system integrated GPS and gyro based 
inertial system alongside digital stereo vision and colour video cameras. Due to the wide range 
of MMS applications, it has now developed from a topic of academic interest to a commercially 
viable industry. There are number of companies which provide Mobile Mapping services to the 
user community for fast and automated data acquisition (Kingston et al. 2007) (Hunter et al. 
2006). We have recently completed design and development of a terrestrial based MMS, 
experimental platform (XP-1), at NUI Maynooth as shown in Fig.1.  

 
Figure 1: XP 1 Mobile Mapping System. 

 
Our MMS comprises of an IXSEA LandINS GPS/INS, a Riegl VQ-250 300 KHz laser 

scanner and imaging system consisting of 6 progressive scanner cameras (1280*1024), FLIR 
thermal (un-cooled) SC-660 camera and an innovative 5-CCD multispectral camera capable of 
sensing across visible and infrared bandwidths. At the heart of the LandINS is a high grade, solid-
state fibre optic gyroscope (FOG) technology with a drift rate of better than 0.05/hr. A distance 
measuring instrument (DMI), which is fitted to the wheel of the vehicle captures movement over 
the ground and is used in computing the final navigation solution during post-processing. The 
specifications for the Riegl VQ-250 LiDAR are shown in Table 1. The LiDAR system is mounted on 
the back of the van at a 450 angle from both the horizontal and vertical axis of the vehicle. It 
captures up to 1 million points every 3.5 seconds using a 300 kHz sensor which leads to 
approximately 20 GB of data per hour. 
 

Measurement Rate 300kHz 

Minimum Range (m) 1.5 

Accuracy (m) 0.01 

Precision (m) 0.01 

Intensity 16 bit 

Field of view (deg) 360 

 Angular Resolution (deg) 0.001 

Table 1: Riegl VQ-250 specifications. 
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3. ACTIVE CONTOUR (SNAKE) MODEL 

 
The concept of snakes or active contours was first introduced by (Kass et al. 1988) and since 
then, it has been widely accepted in computer vision and pattern recognition systems. Active 
contours are used in many applications including edge detection, image segmentation, object 
boundary localisation, shape modelling, motion tracking, medical image analysis, stereo 
matching and 3D reconstruction. Active contours are controlled splines defined within an image 
domain that moves towards the desired feature or object boundary under the influence of 
internal forces within the curve itself and external forces derived from the image data. The 

contour is defined in the ),( yx plane of an image as a parametric curve ))(),(()( sysxsv , where 

s  is the normalized arc length. The contour )(sv is represented by a set of control points 

110 ..........., nvvv  and the curve is linearly obtained by joining each control point. In the traditional 

snake model, the behaviours of the snake are governed by the energy function which is defined 
as 

dssvEsvEE extsnake )))(())(((

1

0

int     (1) 

where intE  and extE  are the internal energy and external energy term. The internal energy 

function intE  depends on the intrinsic properties of the curve and can be written as 

))()()()(((
2

1 2
"

2
'

int svssvsE     (2) 

where  and  are weight parameters, )(' sv  is first derivative of )(sv  with respect to s  and 

)(" sv  is second derivative of )(sv with respect to s . The internal energy equation (2) is 

composed of a first-order term designed to hold the curve together (discourage stretching) and 
a second-order term designed to keep the curve from bending too much (discourage bending). 
The weighting parameter  is a measure of the elasticity in the snake and controls the tension 

while  is a measure of stiffness in snake and controls the rigidity. 

The external energy function extE is derived from the edge function that attracts the 

snake towards the desired image edges with high gradient value. It can be described as 
2

))(( svIEext       (3) 

where  is external energy weight parameter,  is gradient operator and ))(( svI is greyscale 

image. In order to make the snake model converge to the desired image object, the snake 

energy function snakeE should be minimized with 

0)()( '''"

extEsvsv .     (4) 

However, the traditional snake or active contour model is associated with two limitations in 
contour detection (Xu & Prince 1998). First, the initial contour must be close to the true 
boundary or else it will converge to the wrong result i.e. small capture range. Secondly, active 
contour fails to detect concave boundaries. Various methods have been proposed to overcome 
the initialization and concavity issue of the snake active contours. (Cohen 1991) introduced 
balloon forces to the active contour model. (Amini et al. 1990) used dynamic programming to 
minimize the energy of active contours. (Leroy et al. 1996) used a multi-resolution concept in 
active contour model. However, most of the proposed methods solved only one problem but 
creating new complexities. (Xu & Prince 1998) suggested a new external force field for active 
contour models called GVF (gradient vector flow). The GVF snake model can achieve better 
results due to its insensitivity to initialization and its ability to converge to concave boundaries. 
GVF fields are dense vector fields which are computed as a diffusion of the gradient vectors of a 
gray level or binary edge map derived from the image. 
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In the GVF model, the vector field is defined as )),(),,((),( yxvyxuyxV , which 

minimizes the energy function 

   dxdyfVfvvuu yxyx

222222 )(    (5) 

where u  and v  are the vector components of GVF field V , is the regularization parameter 

that is set according to the amount of noise present in the image and f  represents an edge 

map. The GVF field can be found by treating u  and v  as functions of time t  and solving the 

following Euler equations 

)),(),()).(,(),,((),,(),,( 222 yxfyxfyxftyxutyxutyxu yxxt  (6a) 

)),(),()).(,(),,((),,(),,( 222 yxfyxfyxftyxvtyxvtyxv yxyt  (6b) 

where 2  is Laplacian operator. After computing ),( yxV , the external force extE  in equation 

(4) is replaced by 

Vtsvtsvtsvt ),(),(),( '''"
.    (7) 

Thus the parametric curve that solves the above dynamic equation is called a GVF snake and is 
solved with an iterative solution (Xu & Prince 1998). In the next section, we demonstrate the 
implementation of GVF snake model on LiDAR data. 

4. GVF SNAKE MODEL IMPLEMENTATION 

 
The GVF snake model is implemented by deriving its energy terms from the LiDAR point data 
and then initialising the snake contour based on the navigation information. The behaviour of 
the snake is governed by three energy terms i.e. internal, GVF and external constraint energy. 
The internal energy input is based on adjusting the intrinsic properties i.e. elasticity and bending 
of the curve. The GVF energy is computed by diffusing the gradient vectors of edge function 
derived from the surface slope of LiDAR data while the external constraint energy is derived 
from the edge function gradient of LiDAR intensity values which contain the reflectance 

properties of the objects. The values for internal energy, intE , are qualitatively determined by 

modifying the elasticity and rigidity terms. 
In order to calculate the GVF energy from the surface slope, we first need the digital 

terrain model (DTM) of the LiDAR point data. However, a general problem associated with 
LiDAR point cloud is the high frequency noise present due to low vertical accuracy relative to 
horizontal sample distance which can lead to a poor quality DTM. This noise can be reduced via 
a point thinning and smoothing process by building the DTM pyramid. A DTM pyramid is 
composed of a list of pyramid layers, with the first layer corresponds to the full resolution DTM 
and the last layer corresponds to the DTM of lowest resolution. Point thinning over LiDAR points 
is achieved using the z-mean window filter method which thins points for each pyramid level by 
partitioning the data into equal areas (windows) and then one or two points closest to the mean 
z-value are selected from each area. The window size is kept equal to the average point 
spacing in the LiDAR point cloud data. After building the DTM surface, the slope is calculated as 
the rate of change of the surface in the horizontal (dz/dx) and vertical (dz/dy) directions from its 
centre point to its neighbours by the natural neighbourhood interpolation method. Finally, the 

GVF energy, GVFE , is determined by diffusing the gradient vectors of the edge function from the 

slope surface. The external constraint energy, constE , of the snake contour is estimated from the 

edge function gradient of the intensity values of the LiDAR echoes. Thus, the properties of both 
the LiDAR attributes are exploited to generate the energy terms for the snake contour. 

constGVFsnake EEEE int     (8) 

where ,  are the weight parameters that can be adjusted by the user’s emphasis. 

We initialise the snake contour over LiDAR point cloud data based on the trajectory 
information produced by the MMS navigation system along the road sections. The dimensions 
of the LiDAR data are provided as an input to the algorithm which allows us to choose an ellipse 
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contour for initialising the snake. The snake points are initialised in the form of a parametric 
ellipse (as shown in Fig. 2) which can be expressed as 

)sin()sin()cos()cos()( tbtaXtX C    (9a) 

)cos()sin()sin()cos()( tbtaYtY C    (9b) 

where t  varies from 0 to 2 ,  is the angle between the X-axis and major axis of the ellipse 

and CX , CY are the centre of the ellipse. 

      
Figure 2: Snake Contour Initialization in Parametric Ellipse Form. 

 
The major axis of the initial snake ellipse was computed from the middle and first navigation 
point while the difference between middle navigation point and the estimated centre of the road 
point was taken as minor axis. The average heading information of the vehicle was used for 

providing the direction to the snake contour i.e.  value. The experimental results from 

implementing the GVF snake model over LiDAR point cloud datasets are presented in next 
section. 

5. EXPERIMENTAL ANALYSIS 

 
The snake algorithm was tested over LiDAR points from two different road sections with each 
covering an area of width 30 m and length 10 m as shown in Fig. 3 and 4. In our first road 
section, the snake contour was initialised based on the navigation points with an average 
heading information of 63.640 (with respect to north direction) as shown in Fig.5 (a) (with first 
and middle navigation points represented as yellow dots over the 2D road surface). After 

examining several combinations of weight parameters, we provided =4.6, =0.001, =4, 

=4.5, =1.5 and no. of iterations = 30 to the snake contour (Fig.5 (b)). After reaching the 

minimum energy state, the snake contour converged to the road edges as shown in Fig.5 (c). 
 
 

  
 

(a)       (b) 
Figure 3: (a) Planar view of LiDAR point data of first road section (b) Bird’s eye view of LiDAR 

point along with Navigational point data (blue dots) of first road section. 
 
 

b 
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(a)       (b) 

 
Figure 4: (a) Planar view of LiDAR point data of second road section (b) Bird’s eye view of LiDAR 

point along with Navigational point data (blue dots) of second road section. 

 
 

 
 

            
(a)      (b)          (c) 

 
Figure 5: (a) Snake contour initialization based on navigation information over first test section of 

2D road surface (b) Snake Contour during iterative process (c) Output snake contour. 

 
 
 
In the second road section, the navigation points had an average heading of 110.820 

(with respect to north direction) which was utilised to initialise the snake contour as shown in 

Fig.6 (a). The parameters provided to the snake contour were =0.7, =0.001, =3, =5.8, 

=0.5 and no. of iterations = 30 (Fig.6 (b)). The final snake contour is shown in Fig.6 (c). 
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(a)      (b)     (c) 

 
Figure 6: (a) Snake contour initialization based on navigation information over second test section 

of 2D road surface (b) Snake Contour during iterative process (c) Output snake contour. 

 
The results of the road edge detection from the snake model for the two road sections has been 
represented over the 3D LiDAR point cloud data in Fig. 7 and 8.  
 

           
(a) (b) 

 
Figure 7: (a) Planar view of estimated road edges over first road section highlighted in red colour 

(b) zoomed-in estimated road edges over first road section. 

 

   
(a)        (b) 

 
Figure 8: (a) Planar view of estimated road edges over second road section highlighted in red 

colour (b) zoomed-in estimated road edges over second road section. 

 
As seen from the results, the GVF snake model has performed qualitatively well. The 

snake contour converged along the edges of the road sections by utilizing the derived energy 
functions from LiDAR point cloud data. Results along the right edge were less accurate due to 
lower density of points on the right edge of the road than the left edge because of the use of a 
single laser scanner in our MMS. The initialisation of the snake contour using the navigation 
data has shown good results and was performed completely automatically. The weight 
parameters provided to the snake contour were manually adjusted. We intend to investigate 
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whether a correlation exists between the weight parameters and the input data in order to 
automate the process. We have tested the snake algorithm over small road but we intend to 
expand our tests to larger sections through batch-processing of LiDAR point cloud datasets. 

6. CONCLUSION 

 
We presented a method for extracting the road edges from the LiDAR and navigation data using 
the GVF snake model. The edge extraction results have been quite promising in terms of 
initialisation and in deriving the external energy terms by utilizing the capabilities of navigation 
and LiDAR data. The snake contour was initialized based on the heading and trajectory 
information provided by the navigation subsystem of the mobile van while the GVF and external 
energies were derived from the LiDAR point cloud attributes. The slope values and intensity 
pulse information can be utilized to differentiate the road surfaces from other features, thus 
deriving the energy functions from this information provided the snake contour to converge 
along the road edges. The presented method has been tested over the curb-side road sections 
where the difference between the slope values of curbs and planar road surface is significant. 
Future work would be focused over the non curb-side road sections and over investigating the 
best approach to qualitatively test the accuracy of our algorithm. 
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