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Abstract— Human eyes can recognize an object just by looking at the environment; this capability is very useful for designing the 
reference of a humanoid robot with the ability for adapting to its environment. By knowing the field conditions that exist in such 
environments, the robot can understand the obstacles or anything that can be passed. To do that, robot’s vision needs to has the 
knowledge to understand an obstacle that exists around it. Because of these problems, this paper shows a method for reducing the 
error rate of vacant space in the data depth by combining a stereo camera and structure sensor. Merging the stereo camera and 
structure sensor can extract depth information becomes dense. The proposed method has been successfully running the whole 
algorithm that already built and has a density of depth with an average error rate of vacant space is 18.10%. 
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I. INTRODUCTION 

The development of humanoid robots has been growing. 
In building humanoid robots required a wide variety of 
sensors that resemble the human senses. Some sensors are a 
stereo camera or structure sensor. Stereo camera and sensor 
are a kind of structure sensor that mimics the model of the 
human visual sense to recognize the surrounding 
environment. The basis of the built environment on each of 
these sensors is the depth image. Despite that, the stereo 
camera and structure sensor have models of different 
mechanisms and processes in obtaining the depth image. The 
stereo camera consists two cameras (left camera and right 
camera) and has some kind of process before that to build 
depth image. One of the processes is matching pixels that 
have the same color characteristics between the left camera 
image and right camera image. Whereas the structure sensor 
consists of a kind of distance sensors. On the sensor, there 
are two devices, namely a device for firing, a kind of laser 
that can not be seen by the human eye and devices to receive 
results from the reflection of the laser has been fired before. 
The laser is not only one point, but a lot of points that were 
fired simultaneously to form the same pixels as the output of 
a standard camera. Every point has a different time of the 
reception frequency laser that has been fired before. 
Acceptance of difference frequency of the laser, the structure 
of the sensor can get depth images. The stereo camera and 

the structure sensor have a distinct weakness. The stereo 
vision has a weakness in getting the depth data when a 
source image in which there is an object that looks great 
with the same color on the object. This causes the density of 
the results of the depth image looks tenuous. While the 
structure sensor has a weakness at some point that does not 
get a shot laser or may not reflect lasers have been fired, so 
the data at that point depth data could not be obtained. 
Because of that problem, by combining the stereo camera 
and structure sensor can compensate the weakness to get a 
better depth image. So our main contribution is a method of 
a system that we built that must be run on the detailed depth 
image. 

Many algorithms for matching stereo had been published 
[1]. Although the algorithm just focused on the accuracy or 
computation time. Depth data obtained from their process 
that already proposed but it is still unsatisfied.  

The defocus cue is the most exciting one. By using it, 
Pentland initiated depth from defocus (DfD) [2], which then 
becomes a popular passive depth estimation method. In DfD, 
depth’s estimation can be done with identify the degree of 
blur, which is characterized by the extent of point spread 
function (PSF), throughout the image. In order to overcome 
the ill-posed of the problem, usually two or more defocused 
images are captured from the same view with but different 
known camera settings, so the same object is blurred to 
different degrees. The resulting different measurements, 
together with known camera parameters, are sufficient to 
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determine the amount of blur throughout the image and the 
corresponding depth [3].  

In computer vision, it also has been utilized for different 
purposes such as light field capture [4] and blurring [5]. 
Here, we emphasize its application in depth estimation. 
Depth perception from a variety of depth cues. This is 
typically classified into binocular cues, that are based on 
receipt of sensory information in three dimensions from both 
eyes and the monocular cues that can be represented in just 
two dimensions and observed with just one eye [6], [7], to 
improve depth estimation. Research about computer vision 
developments in the field of humanoid robot insufficiently 
developed in building a system that can approach human 
capabilities. From building a mechanical humanoid robot 
and intelligence systems, one huge problem is how to build 
the system that can recognize environment quickly. The 
system is able to determine whether the environment can 
have full information on what it sees because the robot can 
move autonomously. The ability to simultaneously localize a 
robot and accurately map its environment are considered by 
many to be a key prerequisite of truly autonomous robots [8], 
[9].  

 

 
Fig. 1  Mechanics of the robot head 

 
Fig. 1 shows a mechanical model of the head and the 

location of the stereo camera and structure sensor that used 
in the proposed method. Stereo cameras used two cameras 
Microsoft LifeCam HD Cinema. The object of research in 
the proposed method is to build a system on a robot for 
mapping the surrounding environment. The proposed system 
is using a stereo camera, structure sensor, and mechanical 
robot head as his gaze orientation and can be run in real time.  

The stereo camera is used for a robot that can generate a 
depth map and used to estimate the distance of the object in 
the robot. The calculation of the distance used is the distance 
of the camera to the object, not the object distance of the 
robot as a whole. This research conducted by EEPIS Robotic 
Research Center (ER2C), previous build mechanical head 
with the corners of the degrees of freedom humanoid [10].  

The problems in this proposed method are the quality of 
data depth formed. Increasing the depth of data is exactly the 
reason this method used is merging depth of stereo camera 
and structure sensor.  

The method will produce a process that can be run in real 
time because it has an efficient algorithm. Besides being able 
to run in the real time, the algorithm of this method has an 
average error rate of small pixels. 

II. MATERIALS AND METHOD 

The depth image is an image that contains information 
relating to the distance of the surfaces of scene objects from 
a viewpoint. Therefore, to get the depth image it requires 
stereo correspondence process and depth estimation. 

 

 
(a) 
 

 
(b) 

Fig. 2  Stereo image dataset from middlebury dataset:(a) left image, (b) 
right image 

 
Stereo correspondence has been traditionally and 

continues to be, one of the most heavily investigated topics 
in computer vision. However, sometimes it is hard to gauge 
progress in the field, as most researchers only report 
qualitative results on the performance of their algorithms [1]. 
Additionally, according to a survey on the stereo method 
was long overdue, based on the last full survey on dating 
back about a decade. [11], [12], [13]. 

Depth estimation is one of the most fundamental and 
challenging problems in computer vision. For decades, it is 
important for many advanced applications, such as 3D 
reconstruction [14], robotic navigation [15], object 
recognition [16] and free viewpoint television [17]. 
Approaches for obtaining 3D depth estimation can be 
distinguished into two categories: passive and active. The 
goal of passive methods like stereo matching is to estimate a 
high-resolution dense disparity map by finding 
corresponding pixels in image sequences [18]. 
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Fig. 2 shows one of stereo test image on the Middlebury 
dataset. The name of (e.g. Fig. 2) is newkuba image. 

 

 
Fig. 3  Mechanics of the robot head 

 
Fig. 3 shows an example of depth image generated from 

the image dataset (e.g. Fig. 2) using stereo matching 
modeling. (e.g. Fig. 3) is the image model of the basic hue 
color. The hue color started with red and blue ended. Red is 
the largest depth value, while blue is the smallest depth 
value. If depth value is the largest, then the distance of the 
object is nearby, whereas if the smaller of the depth value 
then the object is the farthest. 

 
A. Related Works 

 

Based on the motivation merger Stereo Camera and 
Structure Sensor to improve the performance of depth 
estimation, here in this paper discuss three different camera 
settings that employ masks Levin, as in Fig. 4 (a), and a pair 
Zhou complementary mask, as in Fig. 4 (b) and Fig. 4 (c). 
Please note that we chose to utilize the mask Levin and Zhou 
couples mask for discrimination ability of their extraordinary 
depth. Two questions led us to come up with the first two 
setups shown in Fig. 4 (a) and  Fig. 4 (b).  

 

 
(a)  

(b) 

 
(c) 

Fig. 4  Three camera setups. (a) two cameras with masks, e.g. the Levin’s 
mask, in stereo setup; (b) two cameras with one of Zhou’s mask pair 
(denoted as Zhou 1) in stereo setup, one more camera with other mask of 
Zhou’s pair (denoted as Zhou 2) is used to capture one more image on the 
right view; (c) two cameras with Zhou’s mask pair in stereo setup 

 
One is whether to use a mask aperture in stereo camera 

seriously affect the performance of ordinary stereo matching; 
the other is whether the structure sensor can provide useful 
information on where the matching stereo fail. Experiment 
results, presented in Section III, shows that if the stereo 
images taken captured by the camera is equipped with the 
same mask, ordinary stereo matching performance is not 

affected. In addition, more important, coded aperture can 
provide complementary information to the stereo in some 
cases. This observation makes the proposed setup attractive 
for depth estimation problem. 
 
B. System Design 

 
Fig. 5  Diagrams of the FloW head vision 

 
Mechanical arrangement formed by the flow of the head 

of vision stereo camera and structure sensor combines both 
the sensor could be a sensor depth to obtain an enhanced 
depth image. Fig. 5 is the system block in our approach to 
problem-solving. There is a data merging process RGB-
Depth received input from two other blocks processes. Two 
blocks of this process are derived from the stereo camera and 
structure sensor. Two blocks of this process have the same 
depth of the resulting data. Stereo camera in depth of data 
obtained through the process of calibrating the camera left 
and right. The results of the calibration are to make the y-
axis on the left, and the right camera becomes misaligned. 
The manufacturing process becomes parallel to the y-axis is 
the remapping. Then do the process to get the depth of data 
by looking for the points that have the same characteristics 
on the x-axis. While the structure of the sensor block to get, 
depth data is simpler without a lengthy process because the 
output is already in the form of depth. Only need to calibrate 
for a merger between the sensor and the structure of the 
stereo camera. 

 
1) Stereo Calibration  

The stereo camera needs to be calibration first before we 
get the depth image. Calibration using chessboard pattern is 
recommended a method to get correspondence image pairs. 
At first, it needs to define the size of chessboard pattern so it 
can find correspondence points in the each corner of 
chessboard pattern at both image pairs. 
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Fig. 6  Defined size of chessboard pattern 

 
Each corner is defined rotation and translation variables in 

order to match the correspondence points at both image 
pairs. 

 

 
Fig. 7  Find correspondence points at image pairs 

After finding the correspondence points shown in (e.g. 
Fig. 7), we can find the match point between both images. 
Finding correspondence points is related to the condition 
when we rotate the lens of a camera. Focus on an object, 
then take the position of this object at the same time using 
both cameras. 

 
Fig. 8  Rotation chessboard pattern in frame plane 

Both images where contains chessboard pattern needs to 
be rotated in order to reach the matching state. This state 
required the correspondence points that we have done before. 

 

 
Fig. 9  Rotated frame following another frame 

 
At least of stereo matching, we can acquire tilt data of 

rotation object (chessboard pattern) and stored it into 
calibration data of stereo camera. 

 
 

2) Disparity  

We should get the disparity (d), the disparity is a 
difference between left (xl) and right (xr) camera. 

 � =  �� − ��         (1) 
 
Before we get depth image, we should know focal length, 

baseline (B) (distance between cameras), and disparity. 
Focal length (f) is obtained from real distance (Zreal) per 1 + 
� , where � =  
��� �����
��� ������ 

 � = �����
� �     (2) 

 
3) Depth 

Depth value (Z) contains distance between cameras into 
an object in frame plane. There are using focal length, 
baseline and disparity for the depth value parameters. 

 ! = "#$    (3) 

 
4) Depth Data 

This section is combination depth from each sensor, in 
this paper using Stereo camera and Structure Sensor. When 
depth image from Structure Sensor (SS) contains ≤0 value, 
then attempt it into condition at temporary matrix (T). 

 %(',)) = +1;  -.(�, /) ≤ 0  0;           (4) 

 

 
In order to depth image from Stereo Camera (Sc) knows 

the condition of Structure Sensor described in T, it needs to 
make a multiply into a condition matrix C. 

 
 2 =  -� . %     

2 =  4-� . %

-� . %5
⋮-� . %)

  -� . %5
-� . %55⋮-� . %)5

  ⋯⋯⋱…  -� . %
'-� . %5'⋮-� . %')
: (5) 

 

After depth image from both sensors knows the condition 
between each other, we stored it into new matrix 
combination from both sensor (SSC) 

 --2 = 2 + --    (6) 
 

Our method is an attempt to merging depth data from both 
sensors to get an enhancement of depth image into a new 
depth data (SSC). 
 

5) Coordinate Extraction 

Extracting coordinates from frame to real is a phase for 
combining depth image and orientation of the camera. This 
combination has a result of 3D Vector that will be used for 
building 3D Mapping. For extracting, we have to find 
maximum camera angle by frame orientation (Kh,Kv). 

5  x  4 
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 ;ℎ,= =  >?@A>B CDE,ℎF�?>�G/2! J  (7) 
 

Actual distance (ZS) of each object can be known from 
real measurement compared to equation (3). To get the 
actual distance, the system needs to find the distance for 
calibrating. The data needs to be compared to range scaled 
distance (ZCn) which has a constant value in each distance 
measurement, and then reduce it with real distance (zr). 
 

!
 = K(��LM�N ��L)∗(�N��L)(��LN ��L)  +  !PQ; !@Q�
 >! > !@Q,0;        (8) 

 
After that finds real width (Sh) and height (Sv) maximum 

in actual distance (ZS). 
 -ℎ,= =  A>B D;ℎ,=F!S     (9) 
 

Then transform depth image into 3D model, 
 �, /.Q =  2-T,U(',)VLN',)WX,T )          (10) 

where : 
x, ydn  = pixel in the depth image 
x, yc = pixel center in the depth image 
w  = width frame 
h  = height frame 

III.  RESULTS AND DISCUSSION 

This section discusses the percentage error rate of vacant 
space of data pixel depth of Stereo Camera, Structure Sensor, 
methods of merging both camera and the performance of a 
system built to verify the efficiency of detail and accuracy of 
real-time.  

 
A. The Percentage Error Rate of Vacant Space of Data Pixel 

Methods used to determine the error rate of vacant space 
by calculating total pixels that do not contain the depth value 
(0) divided by the size of the frame on each sequential 
rotation in yaw orientation. The viewpoint of image rotation 
used in 0 degrees to 126 degrees defines in Fig. 10 below.  

 
Fig. 10  Range of image object in panorama view 

 
In Fig. 10, we describe the range of viewpoints that can be 

reached by both sensors. We got the depth data from few 
things in front of each sensor, so we put in this Table 1 
below, 

Fig. 11-17 contain some depth images  taken by all 
sensors. These images captured from 0 degrees to 126 
degrees orientation with static lighting environment 

condition. The scope of our research must be done in the 
closed room, at least in an indoor environment. In this 
environment, there are few things to determine the distance 
of the object to sensors.  

Fig. 11-17 are the result of an image taken from the 
camera. Then, from the image is converted into a data form 
depth. In this experiment, the point of the robot was taken by 
turning from left to right. The data were taken sequentially. 
Then, the data depth of the stereo camera and structure 
sensor combined. The results of data depth from the stereo 
camera are not perfect because the process of the stereo 
camera should be able to achieve real-time. It is because the 
algorithm used to use the primitive stereo matching. So 
although simple, but still has the result that can achieve real-
time. 

 
(a) 

 
(b) 
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(c) 
 

 
(d) 

Fig. 11  (a) Images captured from 0 degrees ; (b) Stereo camera; (c) 
Structure sensor; (d) Combination image from stereo camera and structure 
sensor 

 
Fig. 11 (b) shows the result of a stereo camera. The results 

of the process on the stereo camera have an error rate of 
vacant space is 68.91%. Fig. 11 (c) is the result of structure 
sensor. The results of the process of the structure sensor 
have an error rate of vacant space 22.05%. While Fig. 11 (d) 
is the result of the merging of stereo cameras and structure 
sensors. The result of the merger of the stereo camera and 
structure sensor is to have an error rate of vacant space 
15.80%. 
 

 
(a) 

 

 

(b) 

 

 
(c) 

 

 
(d) 

Fig. 12  (a) Images captured from 21 degrees; (b) Stereo camera; (c) 
Structure sensor; (d) Combination image from stereo camera and structure 
sensor 
 
 

Fig. 12 (b) is the result of a stereo camera. The results of 
the process on the stereo camera have an error rate of vacant 
space is 66.10%. Fig. 12 (c) is the result of structure sensor. 
The results of the process of the structure sensor have an 
error rate of vacant space 20.02%. While Fig. 12 (d) is the 
result of the merging of stereo cameras and structure sensors. 
The result of the merger of the stereo camera and structure 
sensor has an error rate of vacant space 14.67%. 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig. 13  (a) Images captured from 42 degrees; (b) Stereo camera; (c) 
Structure sensor; (d) Combination image from stereo camera and 
structure sensor 

 

Fig. 13 (b) is the result of a stereo camera. The results of 
the process on the stereo camera have error rate of vacant 
space is 59.80%. Fig. 13 (c) is the result of structure sensor. 
The results of the process of the structure sensor have error 
rate of vacant space 27.33%. While Fig. 13 (d) is the result 
of the merging of stereo cameras and structure sensors. The 
result of the merger of the stereo camera and structure sensor 
has an error rate of vacant space 17.98%. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14  (a) images captured from 63 degrees; (b) Stereo Camera; (c) 
Structure Sensor; (d) Combination Image both cameras 
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Fig. 14 (b) is the result of a stereo camera. The results of 
the process on the stereo camera have an error rate of vacant 
space is 63.55%. Fig. 14 (c) is the result of structure sensor. 
The results of the process of the structure sensor have an 
error rate of vacant space 31.97%. While Fig. 14 (d) is the 
result of the merging of stereo cameras and structure sensors. 
The result of the merger of the stereo camera and structure 
sensor has an error rate of vacant space 19.19%. 

 
(a) 
 

 
(b) 

 

 
(c) 

 
(d) 

Fig. 15  (a) Images captured from 84 degrees; (b) Stereo camera; (c) 
Structure Sensor; (d) Combination Image from Stereo Camera and 
Structure Sensor 

 

Fig. 15(b) is the result of a stereo camera. The results of 
the process on the stereo camera have an error rate of vacant 
space is 75.40%. Fig. 15 (c) is the result of structure sensor. 
The results of the process of the structure sensor have an 
error rate of vacant space 28.17%. While Fig. 15 (d) is the 
result of the merging of stereo cameras and structure sensors. 
The result of the merger of the stereo camera and structure 
sensor has an error rate of vacant space 21.66%. 

 

 
(a) 
 

 
(b) 

1021



 
(c) 

 

 
(d) 

Fig. 16. (a) Images captured from 105 degrees; (b) Stereo camera; (c) 
Structure sensor; (d) Combination image from stereo camera and structure 
sensor 

 
Fig. 16 (b) is the result of a stereo camera. The results of 

the process on the stereo camera have an error rate of vacant 
space is 63.10%. Fig. 16 (c) is the result of structure sensor. 
The results of the process of the structure sensor have an 
error rate of vacant space 30.06%. While Fig. 16 (d) is the 
result of the merging of stereo cameras and structure sensors. 
The result of the merger of the stereo camera and structure 
sensor has an error rate of vacant space 16.85%. 

 

 
(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig. 17  (a) Images captured from126 degrees; (b) Stereo camera; (c) 
Structure sensor; (d) Combination image from stereo camera and structure 
sensor 

 
Fig. 17 (b) is the result of a stereo camera. The results of 

the process on the stereo camera have an error rate of vacant 
space is 54.39%. Fig. 17 (c) is the result of structure sensor. 
The results of the process of the structure sensor have error 
rate of vacant space 19.64%. While Fig. 17 (d) is the result 
of the merging of stereo cameras and structure sensors. The 
result of the merger of the stereo camera and structure sensor 
has an error rate of vacant space 10.47%. 
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Pixel error rate of vacant space measurement defined in the 
equation below: Y??Z? =  [���� \�'��
 �� $�\�T ] ^[���� \�'��
   (11) 

 
We defined error rate of vacant space measurement based 

on pixels in each depth images. The correctness of 
observation depth shown as an image, it also can be seen by 
raw depth data measurement in each sensor. We approach 
depth value of Stereo Camera with equation (3) and 
Structure Sensor with OpenNI library. But, we observe the 
depth data by the error rate of vacant space pixel 
measurement, so we put in Table 1 below. 

In the Table 1, prove that error rate of vacant space of 
pixel data depth in method of system merge between Stereo 
Camera and Structure Sensor that are built has an average 
error rate of vacant space is smaller at 18.10%, compared 
with a stereo camera that has an average error rate of vacant 
space 64.50% and structure sensor has average error rate of 
vacant space 26.72%. These data can be shown as chart view 
in Fig. 18. 

TABLE I 
PERCENTAGE ERROR RATE OF VACANT SPACE PIXELS OF EACH PHASE 

 

Orientation 
(yaw) 

Stereo 
Camera 

Structure 
Sensor 

Methods 
of Merging 

0 68.91 22.05 15.80 
9 66.10 20.02 14.67 
18 62.85 24.47 18.42 
27 62.12 24.46 17.86 
36 59.80 27.33 17.98 
45 59.08 32.30 21.35 
54 61.77 32.15 19.41 
63 63.55 31.97 19.19 
72 67.13 28.73 17.58 
81 75.40 28.17 21.66 
90 73.84 22.61 20.55 
99 69.13 31.22 24.26 
108 63.10 30.06 16.85 
117 60.40 25.74 15.55 
126 54.39 19.64 10.47 
Average: 64.50 26.72 18.10 

 

 
Fig. 18  Error rate of vacant space pixels of each phase 

 

In Fig. 18, we can see that our approach to merging the 
depth data from Stereo RGB Camera combine with Structure 
Sensor has a little error rate of vacant space than each sensor.  

In this paper, we make an addition to building 3D map 
into our experiment to represent the RGB-Depth image. 

 
B. The Performance of a System 

In this experiment is to calculate the percentage of pixels 
of depth error rate of vacant space method that we developed 
and compared with another merger method. The methods are 
Jaesik et al. [19,20] and Jing et al. [21]. On their paper 
described of the used stereo cameras and Kinect. Because of 
the distance sensor are used differently and the data they use 
for  their own experiments. So in this experiment, the 
proposed of the method still uses structure sensor and stereo 
cameras. while for their method, using a system of their 
method to establish the depth image with the Kinect and 
stereo cameras. Methods used to determine the error rate of 
vacant space is to calculate the total pixel that does not have 
the depth value divided by the size of the frame on each 
sequential real time that has been specified. Sequential time 
used is for 15 seconds, and at that time the head of the robot 
rotates the Y axis of 0 degrees to 126 degrees. 

In Table 2, there is an error rate of vacant space that has 
a value of error rate of vacant space 100%. This was due to 
at the time sequence of the method could not complete 
algorithm to built the depth on the whole pixels so it could 
not convert it into 3D Transformation Map. This can be seen 
in Fig. 19. 

 

 

 

 

 
                          (a)                             (b)                              (c) 

Fig. 19  (a) Our method; (b) Jaesik et al [19], [20] 
method; (c) Jing et al [21] method 
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10 
20 
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40 
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60 
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80 
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Error Rate of Vacant Space Pixels of Each 
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Stereo Camera Structure Sensor 

Merge of both sensor 
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Fig. 19 is a form of transformation 3D mapping from the 
top view. Fig. 19 in each row is oriented views sequentially 
from 0 degrees to 126 degrees which run for 15 seconds. Fig. 
10 shows the differences in detail or information density of 
each data obtained. Information obtained from our method 
which has an average error rate of vacant space of 29.02%. It 
shows that more detailed information than the methods used 
by jaesik et al. [19], [20] with an average error rate of vacant 
space of 67.012% and Jing et al. [21] with an average error 
rate of vacant space of 83.55%. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 20  (a) First person view from our method; (b) First person view from 
Jaesik et al. [19], [20] method; (c) First person view from  Jing et al. [18] 
method 

 
The results of two other methods were more tenuous than 

the proposed method from how experimental has conducted. 
This is because their methods wake up just focus on the 
result of the small error rate of vacant space without regard 
to runtime. While the system on humanoid robot must 
approach the human speed in processing what is seen. 
Therefore, when the system is running for 15 seconds, their 
method cannot produce depth images every second. Whereas 
in every corner has a different image. So their methods will 

renew the map when their methods are finished running. So 
when it’s at a certain angle of the methods, they have not 
updated the map. It is considered failed and rated error rate 
of vacant space 100%. 

 
TABLE II 

PERCENTAGE ERROR RATE OF VACANT SPACE PIXELS OF EACH METHOD 
 

Time 
(second) 

Orientation 
(Yaw) 

Our 
Method 

Jaesik et 
al. 
[19,20] 

Jing et 
al. [21] 

1 0 15.57 100 100 
2 9 14.41 100 100 
3 18 15.93 100 100 
4 27 16.27 16.11 100 
5 36 19.31 100 19.21 
6 45 21.77 100 100 
7 54 19.21 18.79 100 
8 63 100 100 100 
9 72 100 100 20.04 
10 81 21.52 19.05 100 
11 90 24.23 100 14.08 
12 99 21.21 25.65 100 
13 108 15.26 100 100 
14 117 16.26 14.03 100 
15 126 14.35 11.55 100 
Average: 29.02 67.012 83.55533 

IV.  CONCLUSION 

The system we proposed with the incorporation of models 
combination Stereo camera and Structure Sensor at the 
'FLoW' Humanoid Robot has been able to demonstrate 
detailed depth information and depth data density. The 
novelty of getting depth data by combining RGB-depth 
sensor, we approach to get depth data shown in equation 
Section III-D. We put the condition of each sensor into a 
new matrix. Besides the system can obtain detailed 
information, our main contribution is a method of a system 
that we built must be running in the detailed depth image. 
The system also should be running in real time, because to 
build a system of intelligence in the humanoid robotic 
system should at least approach the human ability to think 
quickly to find out the mapping environment. This was 
proven with an average error rate of vacant space of 18.10% 
were obtained by sequential orientation has been determined. 
In the future, we will develop this research to add orientation 
to the movement of 'Flow' Head Humanoid more dynamic, 
in order to identify the overall environment system more 
detail and faster. We also transform at the system CPU usage 
models that system is not very high at the run time. 
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