

Vol.7 (2017) No. 2

ISSN: 2088-5334

Cost and Performance-Based Resource Selection Scheme for
Asynchronous Replicated System in Utility-Based Computing

Environment
Wan Nor Shuhadah Wan Nik*, Bing Bing Zhou#, Jemal H. Abawajy&, Albert Y. Zomaya#

*Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
 E-mail: wnshuhadah@unisza.edu.my

#School of Information Technologies, University of Sydney, Australia

E-mail: bing.zhou@sydney.edu.au, albert.zomaya@sydney.edu.au

&Faculty of Science, Engineering and Built Environment, Deakin University, Australia
E-mail: jemal.abawajy@deakin.edu.au

Abstract— A resource selection problem for asynchronous replicated systems in utility-based computing environment is addressed in
this paper. The needs for a special attention on this problem lies on the fact that most of the existing replication scheme in this
computing system whether implicitly support synchronous replication and/or only consider read-only job. The problem is
undoubtedly complex to be solved as two main issues need to be concerned simultaneously, i.e. 1) the difficulty on predicting the
performance of the resources in terms of job response time, and 2) an efficient mechanism must be employed in order to measure the
trade-off between the performance and the monetary cost incurred on resources so that minimum cost is preserved while providing
low job response time. Therefore, a simple yet efficient algorithm that deals with the complexity of resource selection problem in
utility-based computing systems is proposed in this paper. The problem is formulated as a Multi Criteria Decision Making (MCDM)
problem. The advantages of the algorithm are two-folds. On one fold, it hides the complexity of resource selection process without
neglecting important components that affect job response time. The difficulty on estimating job response time is captured by
representing them in terms of different QoS criteria levels at each resource. On the other fold, this representation further relaxed the
complexity in measuring the trade-offs between the performance and the monetary cost incurred on resources. The experiments
proved that our proposed resource selection scheme achieves an appealing result with good system performance and low monetary
cost as compared to existing algorithms.

Keywords— resource selection; resource management; utility-based computing; grid/cloud computing; multi criteria decision making
(MCDM) method; asynchronous replication

I. INTRODUCTION

Undoubtedly, both Grid and Cloud computing share many
characteristics as both emerged from the “computing as a
utility” paradigm [1]. Enterprise Grid and Cloud computing
are the two most touted utility-based computing
environments in recent years [2]-[7]. Both systems share two
common characteristics; 1) data is replicated and may reside
in distributed resources in order to achieve high data
availability and fault-tolerance and to enhance performance;
2) they are both business-oriented and may run an update-
intensive applications (e.g. online shopping, e-ticketing,
etc.). In such situations, the challenges faced by these
computing systems are realized when both systems have to
deal with the complexity of data management in the presence

of jobs that update data. Therefore, the employment of an
efficient data management and replication scheme is
paramount in this kind of system. Generally, the two most
common data replication schemes in distributed systems are
the synchronous and asynchronous replications. The
implementation of synchronous replication is very expensive
since complex protocols are required to ensure serializability
[8], [9]. Hence, this study employs an asynchronous
replication, which is desirable for data with weaker
consistency requirements to achieve better performance.
More specifically, an asynchronous replication scheme
called Update Ordering (UO) approach [10] is exploited in
this research work.

Both Enterprise Grid and Cloud computing systems can
also be characterized in terms of the scale and characteristic

723

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/325990664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of their resources. Cloud computing is well-known as a
large-scale distributed computing environment that is driven
by economies of scale, in which a pool of abstracted,
virtualized, dynamically scalable, managed computing
power, storage, platforms, and services are delivered on
demand to external customers over the Internet [11].
Meanwhile, from the perspective of Enterprise Grid system,
although the number of resources in this class of system is
relatively small as compared to traditional Grid applications
(e.g., scientific domain), during seasonal or unexpected
spikes in demand for a product retailed by a very large
corporation, a significant number of additional resources
may become involved and need to be allocated to satisfy
user requests. In such a scenario, resource selection for job
processing becomes a major problem for both Enterprise
Grid and Cloud computing systems. Further, the problem
becomes harder when both performance and cost are the
major concern in the resource selection process in order to
find the best resources to run the job in low response time
with minimum monetary cost.

Therefore, by taking into consideration the above
mentioned issues, the work done in this paper focuses on
three key points: (1) how to implement an efficient
asynchronous replication scheme in a utility-based
computing environment, (2) how to design a system model
which can intelligently represents the important, interrelated
and interdependent components that comprise the utility-
based computing system so that applications that update data
can be run efficiently in this system environment, which
further supports the development of an effective and
efficient resource selection scheme, and (3) How to select
the best resources for jobs in an application that employs
asynchronous replication in a utility-based computing
environment so that the performance of the replicated system
(in terms of job response time) is high while preserving
minimum monetary cost incurred on distributed resources.

With regard to the first point, this paper first presents its
first contribution by providing a detailed discussion of the
Update Ordering (UO) approach and shows how the
exploitation of this approach is done in our study to support
the development of effective solutions for the resource
selection problem in a utility-based computing environment.
Meanwhile, with regard to the second point which reflects
the second contribution of this paper, a new high-level
system framework for applications that update data in utility-
based computing environments is developed. More
specifically, the functionalities of the important system
components are discussed incorporation with the
implementation of the UO approach. The framework is
designed in such a way that it can be adopted and
implemented in both Enterprise Grid and Cloud computing
systems. Further, to respond to the third point, two different
issues must be addressed simultaneously in order to solve the
problem: (1) one should first deal with the difficulty of
predicting the performance of resources in terms of job
response time, and (2) an efficient mechanism must be
employed in order to measure the trade-off between the
performance and the monetary cost incurred on resources so
that minimum cost is preserved while providing low job
response time.

To deal with the first issue, we first define job response
time as the time elapsed between job arrivals at the resource
until the execution result is returned to the user. When a job
that updates data is present, resource is needed to propagate
its update value to other resources in order to maintain data
consistency. However, to avoid conflicts (data
inconsistencies), the resource is only allowed to process the
job when it gets the latest value of data. Indeed, the arrival of
update propagation from other resources is unpredictable due
to the dynamicity and heterogeneity of the distributed
systems, which makes the estimation of job response time
very difficult. Further, when the second issue is put into
focus, the development of an efficient mechanism is indeed
required so that it does not put an excessive burden on the
complexity of the first issue but at the same time can ensure
job requests can be processed in low job response time with
minimum monetary cost.

By considering both issues simultaneously, the paper
further presents its third contributions by providing a new
prediction technique on resource performance with respect to
job response time. That is, several QoS criteria, namely,
efficiency, freshness, and reliability are defined in such a
way that each of these criteria will reflect important factors
that affect job response time in an asynchronously replicated
system. Finally, as a fourth contribution, we solved the
problem of selecting the best resource which can process
jobs in the shortest time by addressing the problem as a
Multi Criteria Decision Making (MCDM) problem, which
further evaluates the trade-offs between these criteria (i.e.,
performance criteria) at each resource. This problem solving
method is then exploited to settle the performance and
monetary cost issue simultaneously. That is, the performance
QoS criteria set-efficiency, freshness and reliability-
previously considered is combined with the cost criterion in
the evaluation process. This makes the overall criteria set
efficiency, freshness, reliability and cost.

Particularly, in addition to the exploitation of UO
approach as previously discussed, work in this paper also
exploits the TOPSIS (Technique for Order Preference by
Similarity to Ideal Solution) method [12] where it is
reconciled with an entropy method in a resource selection
engine to allocate jobs to the best available resource to
provide both low response time and low monetary cost. The
TOPSIS method is one of the well-known MCDM
techniques used in engineering fields. To the best of our
knowledge, this study is the first attempt to consider an
asynchronous replication in resource selection for a utility-
based computing system, especially in Enterprise Grid
and/or Cloud environments.

Compared to our previous work presented in [13], [14],
this paper explore and take advantage of our proposed
framework presented in [13] together with part of the
resource selection algorithm presented in [14] in order to
come out with the efficient resource selection scheme which
consider both system performance and resource monetary
cost in asynchronous replicated system. Specifically, we
focus on how to solve the above-mentioned problems
simultaneously. The performance of the proposed resource
selection scheme is extensively studied, especially when all
the above issues need to be addressed concurrently.

724

Related research can be viewed from three perspectives:
(1) job scheduling, (2) replica/resource selection and (3) data
replication and transaction management. However, most of
the existing research on job scheduling either does not
directly account for data replication, or it totally neglects the
transaction management factor. Therefore, we focus our
review of related works on replica/resource selection
together with data replication and transaction management in
Grid and/or Cloud environments.

In Grid environments, replica selection is usually studied
within the area of replication management in Data Grids,
where most replications are at file-level granularity.
Moreover, replicated data are not allowed to be updated, or
they require manual placement of the files [15]-[20]. Most of
them deal with read-only jobs, very rarely with write jobs. In
read-only applications, replica selection is usually decoupled
with replica placement by considering such factors as access
pattern and network latency and bandwidth and focus on
reducing data access time [21]-[23]. Recently, work in [24]
exploits data mining technique in order to improve the
performance of data replication and replica selection in Data
Grid system while research in [25] provide a comprehensive
survey on data replication in grid computing environment.
All these works assume read-only jobs on replicated data.

Indeed, replication management and updates have been
put on the list of requirements in the area of Data Grids due
to the emergence of Enterprise Grid applications [26]. To the
best of our knowledge, none of the existing resource
selection techniques in Grid environments provide a
mechanism on how to select the best resource when jobs that
update data are present. This lies on the fact that most of the
recent surveys on data replication and replica selection in the
area of Data Grids mostly focused on read-only jobs as in
[17], [21], [27]. Further, a resource selection model based on
Decision Theory is proposed in [28], [29]. These works are
similar to our work in the sense that they apply a decision
theory to select the best resource in Grid systems. However,
none of them provide a detailed approach on how to predict
the job response time for update-intensive applications.

As compared to Grid environments, the existence of both
read-only and update data are considered by a number of
research works in resource/replica selection for Cloud
environments. Research in [30] is one of the earliest research
efforts that measure the potential benefits of effective
resource selection in Cloud environments. The authors
mentioned that the problem of workload analysis [45] and
resource selection had not been seriously addressed yet
while the research work was done. Further recently, work in
[31] characterizes workloads of Cloud system based on
several performance parameters such as job turnaround time
and throughput in order to achieve an optimal resource
allocation. Notwithstanding this, the experiments were done
with no specific consideration of the existence of update job
in Cloud applications.

Further, work done in [32] presents a workload-aware
approach to making the design decision of what data items to
replicate and where to place the data items as well as replicas
with the goal to minimize the resources consumed in
executing the workload. The minimization of the resource
usage is measured based on a parameter named Average
Query Span, i.e. the average number of machines involved in

the execution of a query or a transaction (OLTP). This
parameter is an abstract performance metric, which is
introduced to handle the difficulty of directly model the
resource consumption of update jobs/tasks. In other words,
the research specifically addressed two classes of workloads,
i.e. analytical read-only workloads and OLTP workloads.
This research is similar to our work as both research works
put an effort in handling the complexity of resource/replica
management when jobs that update data are considered.
However, while the researchers in [32] focused on
synchronous update, our work provides a solution for
asynchronously replicated system.

In [33], the proposed resource selection mechanism is
based on two main algorithms, namely, Minimum Execution
Time (MET) and Minimum Completion Time (MCT)
heuristics. In these algorithms, the processing time for all
jobs that are queued at resources is expressed as resource
availability which is defined as the earliest time that the
resource can complete the execution of all jobs that have
previously been assigned to it (i.e., the execution time for all
jobs in the queue at resource). In MET, each job is assigned
to a resource based solely on resource processing speed and
job size without considering resource availability. In
contrast, MCT assigns each job to a resource that has
minimum completion time for that job by taking into account
the resource availability. There is little work on mechanisms
for best resource selection especially in Enterprise Grid and
Cloud systems. To the best of our knowledge, our work is
the first attempt that specifically focuses on providing a
mechanism on how to select the best resources for
applications that update data especially when an
asynchronous replication is considered in both computing
systems.

II. MATERIAL AND METHOD

A. System Model

A 3-tier architecture of utility-based computing platform
is shown in Fig. 1. Users at Tier-1 (user level) send a job
request to the Resource Broker (RB) which located at Tier-2
(middleware level). Then, this RB works together with
Transaction Service (TS) at the same tier to select and
allocate a job to an appropriate resource for execution at
Tier-3 (resource level). Each resource at Tier-3 is equipped
with the Transaction Manager (TM). The communication
between resources at this tier is established by TM at each
resource.

1R NR
Fig. 1 3-tier architecture of utility-based computing platform [13]

725

By considering an Update Ordering (UO) [10] approach,

we assume an n-replica system, },,{ 1 n
n RR L=ℜ . A job

received by resource iR directly from Resource Broker (RB)

is said to have originated fromiR . When a request is

received by a resource, it is stored in a buffer/log and waits
to be checked on its ordering constraint (i.e. total, causal and
commutative). Once its ordering constraint is satisfied, the
job is executable or deliverable. In other words, that request
is ready to be executed by the resources. The update-
ordering constraint is defined as follows:

Definition 1: (FIFO ordering constraint “→ ”). If two
updates, 1u and 2u are originated and sent to the replica

group from the same replicaiR and if 1u is delivered before

2u at the original replica, then 21 uu → iff: 1u is delivered

before 2u at the rest of the replicas.

Definition 2: (causal ordering constraint “p ”). If iR

delivers an update 1u originated from jR

before sending out

an update 2u , then 21 uu p , iff: 1u is delivered before 2u at

all replicas.

Definition 3: (total ordering constraint “↔ ”). For two
updates 1u and 2u sent from iR and jR , then 21 uu ↔ , iff:

When one replica delivers 1u before 2u , the rest of the

replicas deliver 1u before 2u as well. Or the other way

around when one replica delivers 2u before 1u , the rest of

the replicas deliver 2u before 1u as well.

Definition 4: (total + causal ordering constraint “⇒ ”). If
two updates 1u and 2u are originated from iR and jR

respectively, then 21 uu ⇒ , iff: 21 uu p and 21 uu ↔ .

To decide the ordering constraint for each update

operation, the inter-operation semantics between update
operations needs to be analysed. The semantics is based on
whether two update operations are commutative or not.
Suppose that a service provides a set of update operations

},,{ ,21 nsrv uuuOP L= and assume that 1u and 2u are any

two update operations, 1u and 2u can be the same operation.

Their operation semantics is defined to have the following
two relations:

Definition 5: (commutative relation “||”). 21 ||uu iff: the

effect of executing (1u , 2u) equals the effect of executing

(2u , 1u).

Definition 6: (conflicting relation “>< ”). 21 uu >< iff: the

effect of executing (1u , 2u) is different from that of

executing (2u , 1u).

Therefore, the commutative operation is defined as
follows:

Definition 7: (commutative operation). An update operation
u is a commutative operation iff: srvOPv∈∀ , uv || .

This is to say if u is a commutative with every operation

in srvOP , u is a commutative operation. A commutative

operation implies that the order of its execution does not
affect the state of replicas.

Definition 8: (total operation). An update operation u is a
total operation iff: srvOPu∈ and srvOPv∈∃ , uv>< .

Definition 9: (caused-by relation “
r
p ”). If 21 uu

r
p , iff:

21 uu p and 2u is the real effect of executing1u .

Definition 10: (caused-by operation). An update operation u

is a caused-by operation, iff: srvOPv∈∃ , uv
r
p .

Therefore, the following three types of operation sets are

defined:

Definition 11: (total job operation set – opTotal). opTotal

contains all total job operation out of srvOP .

Definition 12: (commutative job operation set- opComm).

opComm contains all commutative job operations out of

srvOP .

Definition 13: (causal job operation set – opCausal).

opCausal

contains all caused-by operations out of srvOP .

Further, assume that the system consists of a set of

data },...,2,1{ mdddsysD = where m represents the total

number of data in the system. For any particular data

sysDkd ∈ , a set of its replica is denoted as

},...,2,1{ k
Nsksksk =ℜ (1)

That is, we assume that one resource holds one replica for

any particular data kd . Also, we define

}}},...{2{},1{{ md
J

d
J

d
Jsys=θ (2)

where }{ kdJ is a set of job operations (i.e., total, causal and

commutative [10]) for kd with k=1, 2,…, m and

726

},...,2,1{ kd
nukd

ukd
ukd

J = , n representing the total

number of job operations on kd such that kd
u1 and

kd
u2 are job operations on the same datakd .

For example, if job kd
u is commutative with every job

in kd
J , then kd

u is said to be a commutative job. A
commutative job implies that the order of its execution does

not affect the state of replicas. If k
d

u conflicts with one job

in kd
J , kd

u is said to be a total job. When a job is a total
job, it needs to be executed sequentially at all its replicas to
ensure data correctness. Meanwhile, the causal operation job
is based on the happened-before semantics, which captures
the potential cause-effect relation between two job events.
Therefore, for any particular datakd , the following

definitions apply:

Definition 14: (total job operation set- kd
opTotal). kd

opTotal

contains all total job operations out of k
d

J .

Definition 15: (commutative job operation set- kd
opComm).

kd
opComm contains all commutative job operations out

of kd
J .

Definition 16: (causal job operation set- kd
opCausal).

kd
opCausal contains all caused-by operations out of k

d
J .

However, for two jobs kd
opTotalkd

iu ∈ and

ld
opTotalld

iu ∈ , kd
iu and ld

iu

are not conflicting with each

other although they are conflicting in their own dataset since

each of them is working on different data. With sys
opTotal ,

kd
opCausal and sys

opComm are the total number of total

operation, causal operation and commutative operation in the
system respectively. Therefore, we have the following

∑ == N
i

id
opTotalsys

opTotal 1 ,

∑ == N
i

id
opCausalsys

opCausal 1 and

∑ == N
i

id
opCommsys

opComm 1 with

φ=∩ ld
opTotalkd

opTotal , φ=∩ ld
opCausalkd

opCausal and

sys
opCommld

opCommkd
opComm =∩ .

B. Job Response Time in Asynchronous Replication System

This study considers the implementation of asynchronous
replication, which employs asynchronous propagation
strategy among resources that hold the replica data. In an
asynchronous propagation, the update of job execution is
propagated after the result is returned to the user. In contrast,
synchronous propagation strategy sends an update of job
execution to the peer replicas before the result is returned to
the user. It is clear that asynchronous replication gives a
better response time to the user. Therefore, in this study, job
response time is defined as the time when a user submits a
job request to the system until the user receives the result of
job execution from the system. To give a clearer view of the
definition of job response time considered in this study, we
illustrate an example scenario for asynchronous update
propagation strategy as shown in Error! Reference source
not found.. 2. In this example, a job response time is defined
as the time period between 1t until 6t . The time when a

user submits a job request to the system is designated 1t .

Later, 2t indicates the time when the RB receives the job

request directly from a user before submitting it to the best
resource (i.e., the originated resource,xR) for job processing

and execution at time3t . Meanwhile, the time period

between 3t and 4t indicates the time period required to

process the job request by originated resource xR before the

result is submitted and received by the RB at time 5t .

Finally, this result is returned and received by the user at
time 6t . Meanwhile, 7t indicates the time when the update

propagation process by originated resource xR is started. It

is the responsibility of xR to propagate its update value to

other peer resources that hold the same replicayR where y =

1,2,…, n, yRxR ≠ and N
yRxR ℜ∈, . The time when

resource 1R and nR receive an update value from originated

resource Rx is indicated with time 8t and 9t respectively.

727

xR 1R

1t

2t 3t

4t

5t6t 7t

L

nR

8t

9t

Fig. 2 A scenario of asynchronous propagation strategy

C. Multi-Criteria Decision Making (MCDM): Topsis
Method

Generally, decision making involves the balancing of
multiple, potentially conflicting requirements. Classical
optimization deals with these problems by taking the most
important requirement as the objective function and the
remainder as constraints, which still leaves the problem of
potentially irreconcilable requirements. The common
approach employed to deal with this problem is to relax the
thresholds of the constraints until feasible solutions emerge
[34]. However, the Multi Criteria Decision Making (MCDM)
method provides an alternative view on solving this problem.
MCDM is an interactive method that deals with multiple
criteria problems by employing a range of processes that
clarify the consequences of the underlying trade-offs
between criteria in configuring alternative solutions. In other
words, the MCDM problem deals with the evaluation of a set
of alternatives in terms of a set of decision criteria.

The MCDM method is widely adopted in engineering
projects for optimal decision making [34], [35]. There is a
wide range of MCDM methodologies for choosing between
alternative solutions that are available for the decision maker,
and one of the well-known methods is TOPSIS [12]. This
method is based on the concept that the chosen alternative
should have the shortest distance to the ideal point and the
furthest distance from the negative ideal point. These ideal
points can be considered as dummy alternatives where
resources are compared. The method requires a decision
matrix for input evaluation data but uses given relative
weights as the representation of preference information. The
advantage of the TOPSIS method is that it can produce a
clear preference order of a set of competing alternatives. The
exploitation of TOPSIS in our work provides an effective
mechanism for finding the best resource, the best alternative
solution, to run the job because it can efficiently evaluate the
trade-offs between all the QoS criteria considered-efficiency,
freshness, reliability, and cost-on each resource. The
discussion of this exploitation process is provided in the
following section.

D. Development of Resource Selection Algorithm

In this section, we will present the proposed resource
selection algorithm. Our proposed model can be divided into
two subsections. Detailed definition and evaluation of each
QoS criterion considered are provided in the first subsection.
The direct implication of both the heterogeneity of network
latencies and computational speed of resources on the

estimation of job response time are represented in terms of
freshness, efficiency and reliability value (i.e., performance
QoS criteria). Meanwhile, cost criterion is defined to reflect
monetary cost which may be incurred when a job is executed
at any particular resource. Further, the next subsection
presents the exploitation of TOPSIS and the entropy method
and shows how it serves as a selection engine for all QoS
criteria considered. Before we present the proposed
algorithm, we will define some concepts used in the
algorithm.

E. Defining QoS Criterion

For any particular resource Rx, the execution time for job

iu on this resource is defined as follows

xRcsiusize
xRiuET /)()(= (3)

where)(iusize is the size of the job sysiu θ∈ and

xRcs is

the computing speed of resource Rx. In other words, it is the
time taken by resource Rx with computing speed

xRcs to

execute an individual jobiu , where)(iusize is a size of the

job sysiu θ∈ . Further, the efficiency value for any resource

Rx, called
xRefficiency , is defined as

∑ == n
i xRiuET

xRefficiency 1)((4)

where n is the job queue size in

xRreadyQ . That is, it

measures how long a job is expected to wait before being
executed (i.e., all jobs queued in

xRreadyQ need to be

completed), which indicates how busy Rx is in executing
jobs in

xRreadyQ .

However, in real applications of distributed systems, the
value of

xRefficiency is greatly affected by other delays

which are very hard to measure accurately. The complex
interaction between heterogeneous resources which may
occur at different levels of distributed systems (e.g., physical
resource level and network link level) becomes the main
factor contributing to this difficulty. To overcome this
problem and provide an efficient scheme for predicting the
value of this delay, we introduce two other variables,
freshness and reliability. At any particular time t, the
freshness value for resource Rx namely

xRfreshness is

defined as follows

xRxRfreshness)(βα −= (5)

728

where α is the ID (i.e., USN) of a job that is last originated
in the system and β is the largest ID of a job in

xRreadyQ on resource Rx for any particular data kd ,

respectively. The freshness value on resource Rx indicates
how likely it is that the new job will be put into

xRwaitQ to

avoid data inconsistencies. That is, it can be estimated by
how many jobs are not yet being processed, which allows the
prediction of how long the new job needs to wait before
being processed in order to avoid conflicts. In this case,
resource Rx is said to be the freshest resource in the system if

βα = . In other words, the resource Rx is said to be the

freshest resource if 0=
xRfreshness . Meanwhile, the

reliability for resource Rx called
xRyreliabilit is defined as

xRERTART
xRyreliabilit)(−= (6)

where ART and ERT are the averages of actual and

estimated response time at resource xR respectively with

ERTART≥ , 0≠ART and 0≠ERT . This criterion
captures other arbitrary delays which may occur in a
distributed system not yet captured by

xRefficiency and/or
xRfreshness . As previously mentioned,

these delays may be caused by complex interactions between
heterogeneous resource hardware, software, networking and
security [36]. It can be understood that the reliability
criterion is used to measure the performance robustness of a
resource. Therefore, from all the above definitions, it is
realized that the above parameters or criteria are sufficient to
measure the performance of each resource in selecting the
best resource for job execution.

Further, the monetary cost criterion represents the service
price specified by the resource owner based on a Service
Level Agreement (SLA). The pricing mechanism decides
how service requests processed by a resource are charged.
Requests can be charged based on submission time (peak/off
peak), pricing rates (fixed/changing) or availability of
resources (supply/demand) [4]. Also, the pricing method
may also depend on geographical locations [37] because
pricing rates for resources at different geographical locations
may vary significantly based on applicable taxes, fees or
similar governmental changes of the resource location.
Therefore, the price or servicing of a request by resources
may vary over time and between different resources. Note
that this criterion can also be considered as a monetary cost
induced by energy cost on various resources [38]. Energy
cost may significantly vary among resources based on
current utilization or the geographical location of the
resources, which may have different energy rates.

Indeed, it is difficult to determine the range of monetary
costs at different resources when different resource providers
are considered. Different providers may charge different
rates depending on such factors as geographical rate and
supply/demand rate. Federated Cloud [39] architecture, for

example, provides a number of resources from different
providers; these are transparently integrated to serve job
requests by users. To deal with the complexity of various
pricing rates among Cloud providers, we thus make an
assumption that the rate of monetary cost for resources is
scaled from 1 to10, where smaller values indicate lower
pricing of resources. In other words, the input monetary
value in the system is normalized to the homogeneous
pricing rates. For example, a resource with the price rate of
$0.22/machine hour can be normalized to 10 while the
resource with the price rate of $0.11/machine hour can be
normalized to 5.

The input monetary cost value is done by Pricing
Analyser (PA) as shown in

. This analyser measures the resource price to run the job.
It can be considered to be part of the SLA resource allocator
component in the Cloud architecture as proposed in [4]. It is
responsible for finding the potential cost reduction of
providers, which could lead to a more competitive market
and thus lowering pricing cost.

Based on the definition of each QoS criterion (efficiency,
freshness, reliability and cost) presented previously, a lower
value is more desirable as it can contribute to shorter job
response time. Particularly, a lower freshness value indicates
that the resource will be considered to hold fresher data in
the system. A lower efficiency value shows faster job
execution time by the resource. Lower reliability indicates
that the resource is more resistant to the overhead caused by
complex interactions among heterogeneous resources, while
low cost value clearly shows the minimum monetary charges
on resources for job execution. To further illustrate the
complexity of the resource selection process with regard to
these QoS criteria, we provide an example of possible
scenarios where the user (or Resource Broker) needs to
choose the best resource to process job requests with
minimum response time and at low monetary cost, as shown
in Error! Reference source not found.1. In this example, it
is evident that resource 4 has the lowest reliability but has
the worst efficiency value, which means that this resource
should wait for processing a large number of jobs waiting in
its queue. This is just a simple example that considers only 5
resources. One can imagine what would happen when the
number of resources gets larger in real applications. We can
expect that the complexity grows significantly as the number
of resources grows.

TABLE I
AN EXAMPLE OF CRITERIA SET VALUE FOR RESOURCES

Resource ID Freshness Efficiency Reliability Cost
1 10 3.4 0.70 3
2 6 2.7 0.40 9
3 10 5.6 0.37 2
4 15 6.4 0.25 7
5 9 4.3 0.79 5

F. Resource Selection Algorithm

Fig. 3 shows the proposed resource selection algorithm.
The algorithm first determines different QoS (freshness,
efficiency, reliability, and cost) values for each resource
(step 2). It then constructs a decision matrix D (step 4) and
assigns weights to freshness, efficiency, reliability and cost
based on entropy (step 5).

729

In the context of resource selection, the effect of each
criterion (attribute) cannot be considered alone and always
should be viewed as a trade-off with respect to other criteria.
Any changes in, for instance, freshness, efficiency, reliability
and cost may change the resource priorities. With this in
mind, the ideal-point-based approach such as TOPSIS [12]
seems to be a suitable framework for method selection
problems since it allows explicit trade-offs and interactions
among different criteria. Therefore, we exploit the TOPSIS
method in order to find the best resources to run the job in
minimum response time with a low monetary cost. The basic
idea of TOPSIS is based on the concept that the chosen
alternative should have the shortest distance to the ideal
point and the furthest distance from the negative ideal point.
This method requires a decision matrix as input evaluation
data but uses given relative weights as the representation of
preference information.

Algorithm ResourceSelection
BEGIN

1. FOR each resource
N

iR ℜ∈ DO

2. Evaluate
iRfreshness ,

iRefficiency ,
iRyreliabilit and

iRcost

3. ENDFOR
4. Construct a decision matrix D
5. WeightAssignment

(
iRfreshness ,

iRefficiency ,
iRyreliabilit ,

iRcost)

6. Normalize D and its weight whose elements are defined by

∑ == m
i ijfijfijz 1

2/ , i=1,…, m; j=1,…,n.

7. Formulate the weighted normalized decision matrix whose

elements are ijzjwijx = , i=1,…, m; j=1,…,n.

8. Determine the positive (+a) and the negative (−a) ideal
solutions as follows:

},...,2,1{},...,1|)|min{(+++==∈=+
nxxxmiJjijx

i
a

},...,2,1{},...,1|)|max{(−−−==∈=−
nxxxmiJjijx

i
a

9. Calculate the separation measures for ideal and negative ideal
solutions of each resources as follows:

∑ =
+−=+ n

j jxijxiR 1
2)(, i =1, …, m

∑ =
−−=− n

j jxijxiR 1
2)(, i =1,…, m

10. Calculate relative closeness of each resource to the ideal point
as follows:

)/(++−−=+
iRiRiRicl , 10 ≤+≤ icl and i=1,…,m.

11. Rank the resources based on the magnitude of closeness+
icl .

12. IF)(+>+
jclicl THEN

 iR is preferred to jR .

13. ENDIF
14. END ResourceSelection

Fig. 3 Resource selection algorithm

Suppose an MCDM problem can be represented as the
example provided in Error! Reference source not found.1.
Based on the resource selection algorithm presented in

Fig. 3 , the algorithm starts with the evaluation of each
QoS criterion considered (i.e., freshness, efficiency,
reliability, and cost). Then, in step 4, the decision matrix D is
constructed as follows:





















=

mnfmfmf

nfff
nfff

mR

R

R

D

nCCC

L

MOMM

L

L

M

L

21

22221

11211

2

1

21

 (7)

with),...,2,1(nwwwW= where jw

is the weight of the

criterion jC satisfying 11 =∑ =
n
j jw . iR denotes the

alternative resources i, i=1, 2,…, m; jC

represents the thj

criterion, j = 1, 2, … , n related to thi resource, and ijf

is a

crisp value indicating the performance value of for each
resource iR with respect to each criterion jC . With respect

to our research, the disadvantage of the TOPSIS method is
that the weights are entered manually. Indeed, human
interventions can lead to errors and also do not support the
dynamic nature of autonomous Grid and Cloud systems.
Therefore, we attempt to overcome this disadvantage by
using the entropy method for weight assignment (step 5).

The main advantage of the entropy method is that it
eliminates the possibly biased judgment if the weights are
assigned manually by the user. Based on the decision matrix
D presented in Equation (7), its input data ijf have different

dimensions, and thus it needs to be normalized in order to
transform the various criteria dimensions into the non-
dimensional data, which allows comparison across all the
criteria. We refer to the weight assignment algorithm based
on the entropy method as shown in Fig. 4 . In this algorithm,
matrix D is normalized for each criterion jC

(step 2 in Fig.

4). Further, the entropy E of the set of normalized
outcomes of criterion j is determined based on the equation
shown in step 3. Therefore, the best weight is given by the
equation shown in step 4.

Algorithm WeightAssignment
INPUT:

iRfreshness ,
iRefficiency ,

iRyreliabilit ,
iRcost

BEGIN
1. FOR each criterion DO

2. Normalize D for each criterion as)1/(∑ == m
i ijfijfijp ,

with],...,1[mj∈ .

3. Determine the entropy jE of the set of normalized

outcomes of criterion j based on the equation:

730

 ∑ =−= m
i ijpijpjE 1 lnϕ ,where)ln(/1 m=ϕ which

guarantees 10 ≤≤ jE .

4. Assign weight for criterion j with)1/(∑ == n
i idjdjw

where jEjd −=1 .

5. ENDFOR
END WeightAssignment

Fig. 4 Weight assignment algorithm

Then, we refer back to the resource selection algorithm in
Fig. 3 , where the normalized decision matrix is

constructed whose elements are defined as in step 6.
Consequently, each attribute has the same unit length of
vector. Later, the weighted normalized decision matrix is
formulated; its elements are given in step 7. The main idea
of the TOPSIS approach is shown in steps 8-10. In step 8,
the ideal point a+ and negative ideal point a- first need to be
defined. Here, a+ and a- act as dummy alternatives (resources)
used as a reference so that all alternatives (resources) can be
properly evaluated as they represent the notional “best” and
“worst” resource respectively. Referring to the example
presented in Error! Reference source not found.1, the
possible value of a+ and a- is shown in Error! Reference
source not found.2. Later, the separation measures for ideal
and negative ideal solutions for each resource are calculated
in step 9. Then, the relative closeness of each resource to the
ideal point is calculated using the equation shown in step 10.
Finally, each resource is ranked based on the magnitude of

closeness, +
icl

(steps 11 and 12). Indeed, the main

advantage of the TOPSIS method is that it can produce a
clear preference order or set of competing alternatives, in our
case, the resources.

TABLE III
AN EXAMPLE OF CRITERIA SET VALUE FOR RESOURCES BY CONSIDERING

DUMMY RESOURCES

Resource
ID

Freshness Efficiency Reliability Cost

1 10 3.4 0.70 3
2 6 2.7 0.40 9
3 10 5.6 0.37 2
4 15 6.4 0.25 7
5 9 4.3 0.79 5
a+ 6 2.7 0.25 2
a- 15 6.4 0.79 9

G. Experimental Configuration and Evaluation Metrics

In this section, we present the experimental configuration
and the performance metrics used to evaluate the
effectiveness and efficiency of the proposed algorithm. We
first present the experimental configuration. Later, we
present the evaluation metrics.

H. Experimental Configuration

In order to evaluate the effectiveness of the proposed
resource selection algorithm, we undertook an extensive
simulation experiment. We simulated up to 50 resource sites
with different numbers of workload, 1000, 2000, 3000, 4000
and 5000. The value range of resource storage capacity and

its processing speed together with network bandwidth
considered are based on research in [40], [41]. We assume
that job arrival time is a Poisson process and job processing
times follow an exponential distribution. The size of job is
determined based on TPC-W benchmark database size [41],
[42], which ranges from 10MB to 800MB while resource
storage capacity is 10GB. Meanwhile, resource-processing
speed is set to range from 20MB/s up to 1000MB/s. The
parameter settings in the simulation are summed up as
follows:

• Resource processing speed: 20MB/s, 100MB/s,
300MB/s, 500MB/s, 750MB/s, 1000MB/s.

• Network bandwidth: 10MB/s, 45MB/s, 155MB/s,
1GB/s, 2.5GB/s, 10GB/s.

• Size of job: 10MB, 200MB, 400MB, 600MB, 800MB.
• Reliability value: random value ranged between 0 and

1 second.
• Monetary cost value: normalized integer value ranged

from 1 to 10.
• Number of jobs: 1000, 2000, 3000, 4000 and 5000

which are represented by N1, N2, N3, N4 and N5
respectively in Error! Reference source not found.4-
Error! Reference source not found.6.

In this study, we also consider the situation where resource

cost is not a relevant factor in the resource selection process.
This is the case when resource pricing rates are the same for
all resources in the system (e.g., available resources are in the
same geographical edge or are on the same energy rate). In
such a situation, our proposed algorithm will function as a
performance prediction engine only by considering
performance criteria (freshness, efficiency, and reliability) in
the decision-making process without taking into
consideration the monetary cost criterion. We summarize all
experiment scenarios as shown in Error! Reference source
not found.3. These experiments are based on two types of
workload characteristics: conflict rate and monetary cost
consideration. Accordingly, the experiments of high, medium
and low conflict rates are done together with monetary cost
either taken into consideration or not.

TABLE IIIII
WORKLOAD TESTED (SIMULATION SCENARIOS)

Scenari
o

Conflic
t
Rate

Cos
t

Job Probability
sys
opTotal

sys
opCausal

sys
opComm

1 High No 0.45 0.45 0.10
2 Mediu

m
No 0.30 0.30 0.40

3 Low No 0.10 0.10 0.80
4 High Yes 0.45 0.45 0.10
5 Mediu

m
Yes 0.30 0.30 0.40

6 Low Yes 0.10 0.10 0.80

I. Evaluation Metrics

In this study, we consider two evaluation metrics,
Average Response Time (ART) and Average Monetary Cost
(AMC). Both ART and AMC explicitly measure the
performance of our proposed algorithm in terms of job
response time and monetary cost respectively, which are
defined as follows:

731

nn
i iuRTART /)1(∑ == (8)

)/nn
i iuMC(AMC ∑ == 1 (9)

where

iuRT and
iuMC are response time and monetary cost

for job iu respectively and n is the total number of

originated jobs. Based on the above definitions, smaller
values of ART and AMC are more desirable as they indicate
a better system performance with lower monetary cost
incurred on each job execution.

III. RESULTS AND DISCUSSION

We compare our proposed algorithm against two other
resource selection heuristics namely MCT and MCT_MTT
algorithm. The MCT algorithm is initially discussed in [43]
and later is used in [33]. This algorithm is the basic
implementation of two well-known job scheduling heuristics:
Min-min and Max-min [43]. In general, the fundamental
concept of MCT is to assign jobs to a resource which can
provide minimum completion time (MCT) defined as the
earliest time that a resource can complete the execution of all
jobs that have been previously assigned to it. Specifically,
this algorithm tends to distribute the job to many available
resources to reduce job queue length on each resource and to
achieve the minimum completion time without any concern
about conflicting jobs.

Another algorithm, MCT_MTT is developed as a
variation of the MCT algorithm. MCT_MTT inherits the
concept of MCT but with an additional consideration of
minimum transfer time (MTT). The idea is adopted from the
MTT algorithm proposed in [22], where the resource which
has the fastest aggregate network bandwidth to other
resources will be selected as the best resource to run the job.
Therefore, the MCT_MTT algorithm selects the best
resource that can provide both minimum completion time
and minimum transfer time. The development of this
algorithm allows us to investigate if the combination of
considerations on network bandwidth capacity and
completion time can achieve better performance than the
original MCT.

In our simulation, MCT and MCT_MTT algorithms are
implemented with monetary cost taken into account with the
underlying asynchronous replication (based on UO approach)
environment. That is the selected resource based on MCT
and MCT_MTT algorithms will process a job request with a
certain amount of monetary cost imposed on it, and at the
same time comply with consistency constraint requirements
during the job execution and job propagation phases.

A. An Evaluation of ART without Monetary Cost
Consideration

Error! Reference source not found.(a)-5(c) show the
ART for scenarios 1, 2 and 3 respectively. Meanwhile,
Error! Reference source not found.4 summarizes the
comparative results for all of these scenarios. In the absence
of monetary cost consideration, the experiments show that
our algorithm called ReS_Asynch algorithm outperforms the

MCT and MCT_MTT algorithms with significant low
response time for all types of workloads that is those with
high, medium and low conflict rates.

0

20

40

60

80

100

120

140

1000 2000 3000 4000 5000

ReS_Asynch

MCT

MCT_MTT

Number of Job

A
v

e
ra

g
e

Jo
b

 R
e

sp
o

n
se

 T
im

e
 (

s)

Scenario 1

Number of Job

A
v

e
ra

g
e

Jo
b

 R
e

sp
o

n
se

 T
im

e
 (

s)

Scenario 1

(a)

0

20

40

60

80

100

120

140

1000 2000 3000 4000 5000

ReS_Asynch

MCT

MCT_MTT

Number of Job

Scenario 2

A
ve

ra
g

e
 J

o
b

 R
e

sp
o

n
se

 T
im

e
 (

s)

(b)

0

10

20

30

40

50

60

70

80

90

100

1000 2000 3000 4000 5000

ReS_Asynch

MCT

MCT_MTT

A
v

e
ra

g
e

 J
o

b
 R

e
sp

o
n

se
 T

im
e

 (
s)

Scenario 3

Number of Job

(c)
Fig. 5 An ART with respect to different scenarios without monetary cost
consideration. (a) Scenario 1-high conflict rate, (b) Scenario 2-medium
conflict rate, (c) Scenario 3-low conflict rate

TABLE IVV
OVERALL COMPARATIVE RESULTS OF ART FOR SCENARIO 1, 2 AND 3

Algorithm Scenario 1
N1 N2 N3 N4 N5

ReS_Asynch 6.57 9.26 5.58 12.30 11.88
MCT 54.68 43.23 66.63 81.07 123.16
MCT_MTT 26.26 47.55 73.51 72.17 82.02
Algorithm Scenario 2

N1 N2 N3 N4 N5
ReS_Asynch 7.57 9.33 7.37 5.70 12.48
MCT 42.69 59.83 66.13 100.23 117.91
MCT_MTT 47.69 50.57 59.16 78.06 86.28
Algorithm Scenario 3

N1 N2 N3 N4 N5
ReS_Asynch 3.20 6.00 8.68 8.30 16.66
MCT 34.87 44.92 40.29 63.56 90.50
MCT_MTT 37.66 40.25 42.62 54.54 60.20

732

In the above results, an average job response time
achieved by our algorithm (i.e., ReS_Asynch) is less than
17s for all workloads tested. In contrast, the MCT algorithm
reached up to more than 123s. Meanwhile, an average job
response time that achieved by the MCT_MTT algorithm
ranges between 26.26s and more than 86s for all scenarios
(scenarios 1-3).

B. An Evaluation of ART with Monetary Cost Consideration

Here, Error! Reference source not found.(a)-6(c) show
the ART when experiments are done for scenarios 4, 5 and 6
respectively. For more detail on the results obtained in these
experiments, we summarize the entire comparative results
for all of these scenarios in Error! Reference source not
found.5.

0

10

20

30

40

50

60

70

80

90

100

1000 2000 3000 4000 5000

ReS_Asynch

MCT

MCT_MTT

A
v

e
ra

g
e

Jo

b
 R

e
sp

o
n

se
 T

im
e

 (
s)

Scenario 4

Number of Job

 (a)

0

20

40

60

80

100

120

1000 2000 3000 4000 5000

ReS_Asynch

MCT

MCT_MTT

A
v
e

ra
g

e
Jo

b
 R

e
sp

o
n

se
 T

im
e

 (
s)

Number of Job

Scenario 5

(b)

0

10

20

30

40

50

60

70

80

90

1000 2000 3000 4000 5000

ReS_Asynch

MCT

MCT_MTT

A
v

e
ra

g
e

 J
o

b
 R

e
sp

o
n

se
T

im
e

 (
s)

Scenario 6

Number of Job

(c)
Fig. 6 An ART with respect to different scenarios with monetary cost
consideration. (a) Scenario 4-High conflict rate, (b) Scenario 5-Medium
conflict rate, (c) Scenario 6-Low conflict rate

TABLE V
OVERALL COMPARATIVE RESULTS OF ART FOR SCENARIO 4, 5 AND 6

Algorithm Scenario 4
N1 N2 N3 N4 N5

ReS_Asynch 6.12 5.56 14.45 16.20 18.61
MCT 41.13 51.12 72.78 79.69 90.40
MCT_MTT 30.34 33.20 57.54 72.74 84.44
Algorithm Scenario 5

N1 N2 N3 N4 N5
ReS_Asynch 4.09 5.01 7.38 8.32 16.13
MCT 31.90 41.41 73.74 74.88 98.42
MCT_MTT 20.05 41.78 53.55 72.29 72.28
Algorithm Scenario 6

N1 N2 N3 N4 N5
ReS_Asynch 4.07 5.75 4.14 5.40 8.75
MCT 30.33 47.80 75.68 80.20 80.24
MCT_MTT 26.55 45.56 66.22 65.07 77.38
Considering the monetary cost factor, we can expect that

an ART achieved by ReS_Asynch will be slightly longer
than in the previous experiment. This is because our
algorithm has to tolerate the trade-offs between high
performance and low monetary charges incurred on each job
execution by resources. Notwithstanding this, the
ReS_Asynch algorithm achieves more than one magnitude
of order shorter response time as compared to the MCT
algorithm for all number of jobs tested in a low-conflict-rate
scenario. This promising result is especially realized in
scenarios 5 and 6, where our proposed algorithm achieved as
low as 4.09s and 4.07s of ART when 1000 number of jobs is
involved in medium and low conflict rate respectively. On
the other hand, regardless of any simulated scenario, the
MCT and MCT_MTT algorithms only managed to achieve
at the lowest of 30.33s and 20.05s of ART respectively.
However, these values are still significantly high if
compared to the achievements of our proposed algorithm.

C. An Evaluation of AMC

The experiment results of AMC gained in scenarios 4, 5
and 6 are visualized in Error! Reference source not
found.(a)-7(c) respectively, while the value shown in Error!
Reference source not found.6 summarizes the details of
these results.

0

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000

ReS_Asynch

MCT

MCT_MTT

A
ve

ra
ge

 M
on

et
ar

y
Co

st

(N
or

m
al

iz
ed

)

Scenario 4

Number of Job

(
a)

733

0

2

4

6

8

10

12

1000 2000 3000 4000 5000

ReS_Asynch

MCT

MCT_MTT

Scenario 5

Av
er

ag
e

M
on

et
ar

y
Co

st

(N
or

m
al

iz
ed

)

Number of Job

(b)

0

1

2

3

4

5

6

7

8

9

10

1000 2000 3000 4000 5000

ReS_Asynch

MCT

MCT_MTT

A
ve

ra
ge

M
o

n
et

ar
y

C
o

st

(N
o

rm
al

iz
ed

)

Scenario 6

Number of Job

(c)
Fig. 7 An AMC with respect to different scenarios. (a) Scenario 4-High
conflict rate, (b) Scenario 5-Medium conflict rate, (c) Scenario 6-Low
conflict rate

TABLE VI
OVERALL COMPARATIVE RESULTS FOR AMC FOR SCENARIOS 4, 5 AND 6

Algorithm Scenario 4
N1 N2 N3 N4 N5

ReS_Asynch 2.00 1.00 2.00 1.00 1.00
MCT 3.70 7.18 4.87 6.54 6.46
MCT_MTT 5.90 5.08 6.12 6.98 5.89
Algorithm Scenario 5

N1 N2 N3 N4 N5
ReS_Asynch 1.00 2.00 1.00 1.00 1.00
MCT 4.60 5.70 6.98 6.31 6.21
MCT_MTT 2.70 8.80 7.78 3.50 9.61
Algorithm Scenario 6

N1 N2 N3 N4 N5
ReS_Asynch 2.00 2.00 2.00 3.00 2.00
MCT 8.70 7.78 7.22 5.73 8.99
MCT_MTT 3.85 9.20 3.73 3.75 5.21

As expected, ReS_Asynch outperforms other existing

algorithms in terms of monetary charge incurred on each job
execution at resources. This is proven in the results shown
above, where our proposed algorithm is managed to achieve
the normalized value as low as 1.00 in most number of jobs
tested in high and medium conflict rate scenarios. In clear
contrast, all other existing algorithms achieve a very high
normalized monetary cost value which ranges from 3.70 up
to 9.61.

Obviously, the significance of our proposed algorithm is
verified in all the results obtained from the experiments.
From a performance point of view, although the MCT_MTT
heuristic can provide a lower value of job response time as
compared to the MCT algorithm in most scenarios tested,
both heuristics neglect the factor of data freshness and
resource reliability which makes them produce longer job
response time as compared to our algorithm. Indeed, a
significantly small value of ART achieved by our algorithm

is due to the consideration of the two most important
characteristics of distributed, asynchronous replicated
environment: the degree of data freshness and the reliability
value of resources. Furthermore, the ReS_Asynch algorithm
is also able to provide minimum monetary cost incurred
during job execution by resources as compared to other
resource selection algorithms [44].

IV. CONCLUSION

This paper provides a new development of a simple yet
efficient approach in dealing with the complexity of
decision-making processes in update-intensive applications,
particularly for an asynchronously replicated system in
utility-based computing environments. To the best of our
knowledge, the work in this paper is the first attempt. One
part of this paper discusses the generalization of the design
model that allows an easy adoption of this model in both
Enterprise Grids and Cloud computing platforms. The
development of this model provides an environment for an
efficient implementation of an asynchronous replication
scheme in a utility-based computing environment. Most
importantly, this model includes and represents the
important, interrelated and interdependent components that
compose the utility-based computing systems so that
applications that update data can be run efficiently in the
targeted system environment, which further supports the
development of effective and efficient resource selection
schemes.

Further, the other part of this paper addresses the resource
selection problem as a Multi Criteria Decision Making
(MCDM) problem. The proposed framework hides the
complexity of the resource selection process without
neglecting important components that affect job response
time. The difficulty in estimating job response time and its
associated monetary cost trade-off is captured by
representing them in terms of different QoS criteria levels at
each resource. The experiments proved that our proposed
algorithm achieves an appealing result with good system
performance and low monetary cost as compared to existing
algorithms. Most importantly, our simple yet effective
framework proposed in this paper resolved the complexity of
the prediction on update-job response time by representing it
in terms of QoS.

ACKNOWLEDGMENT

This work is partially supported by Fundamental Research
Grant Scheme (FRGS, Grant No: RR074) under the Ministry
of Education (MOE) and Universiti Sultan Zainal Abidin
(UniSZA), Malaysia. The authors are also grateful and wish
to acknowledge the support of all members of Centre for
Distributed and High Performance Computing at the
University of Sydney and all staff of the Faculty of
Informatics and Computing, Universiti Sultan Zainal Abidin
who have provided a vibrant and intellectually stimulating
environment for this research.

REFERENCES
[1] D. G. Gomes, R. N. Calheiros, and R. T. Calasanz, “Introduction to

the special issue on grid and cloud computing: Current advances and
new research trends,” Computers and Electrical Engineering, vol. 40,
pp. 1634-1635, Jul. 2014.

734

[2] A. Patel, A. Seyfi, Y. Tew, and A. Jaradat, “Comparative study and
review of grid, cloud, utility computing and software as a service for
use by libraries,” Library Hi Tech News, vol. 28. pp. 25-32, May
2011.

[3] M. G. Avram, “Advantages and challenges of adopting cloud
computing from an enterprise perspective,” Procedia Technology, vol.
12, pp. 529-534, Dec. 2014.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Future
Generation Computer Systems, vol. 25, pp. 599-616, Jun. 2009.

[5] M. Rahman, M. R. Hassan, and R. Buyya, “Jaccard index based
availability prediction in enterprise grids,” Procedia Computer
Science, vol. 1, pp. 2707-2716, May 2010.

[6] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N.
Sharma, “Towards autonomic workload provisioning for enterprise
grids and clouds,” in Proc. IEEE/ACM ICGC’09, 2009, p. 50.

[7] W. Leesakul, P. Townend, P. Garraghan, and J. Xu, “Fault-tolerant
dynamic deduplication for utility computing,” in Proc. IEEE
ISO/C/SORTDC’14, 2014, p. 397.

[8] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency
rationing in the cloud: Pay only when it matters,” Proceedings of the
VLDB Endowment, vol. 2, pp. 253-264, Aug. 2009.

[9] S. Abdi and S. Hashemi, “A hierarchical approach to improve job
scheduling and data replication in data grid,” International Arab
Journal of Information Technology, vol. 12, pp. 278-285, May 2015.

[10] W. Zhou, L. Wang, and W. Jia, “An analysis of update ordering in
distributed replication systems,” Future Generation Computer
Systems, vol. 20, pp. 565-590, May 2004.

[11] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Proc. GCEW’08, 2008, p. 1.

[12] L. N. Nassif, J. M. Nogueira, F. V. de Andrade, M. Ahmed, A.
Karmouch, and R. Impey, “Job completion prediction in grid using
distributed case-based reasoning,” in Proc. IEEE IWETICE’05, 2005,
p. 249.

[13] W. N. S. W. Nik, B. B. Zhou, A. Y. Zomaya, and J. H. Abawajy, “A
framework for implementing asynchronous replication scheme in
utility-based computing environment,” in Proc. ICCCBD’15, 2015, p.
183.

[14] W. N. S. W. Nik, B. B. Zhou, A. Y. Zomaya, and J. H. Abawajy,
“Efficient resource selection algorithm for enterprise grid systems,”
in Proc. IEEE ISPDPA’11, 2011, p. 57.

[15] M. Botón-Fernández, F. Prieto-Castrillo, and M. A. Vega-Rodríguez,
“A self-adaptive resources selection model through a small-world
based heuristic,” Journal of Supercomputing, vol. 68, pp. 1441-1461,
Jun. 2014.

[16] C. Li and L. Li, “A resource selection scheme for QoS satisfaction
and load balancing in ad hoc grid,” Journal of Supercomputing, vol.
59, pp. 499-525, Jan. 2012.

[17] T. Hamrouni, S. Slimani, and F. B. Charrada, “A survey of dynamic
replication and replica selection strategies based on data mining
techniques in data grids,” Engineering Applications of Artificial
Intelligence, vol. 48, pp. 140-158, Feb. 2016.

[18] S. Warhade, P. Dahiwale, and M. M. Raghuwanshi, “A dynamic data
replication in grid system,” Procedia Computer Science, vol. 78, pp.
537-543, Dec. 2016.

[19] R. J. Wilson, The European DataGrid Project, Institute de Fisica
d’Altes Energies and Colorado State University, Barcelona, Spain
and Fort Collins, Colorado, USA, 2001.

[20] M. Manohar, A. Chervenak, B. Clifford, and C. Kesselman,
“Implementation and evaluation of a replicaset grid service,” in Proc.
IEEE/ACM IWGC’04, 2004, p. 218.

[21] R. K. Grace and R. Manimegalai, “Dynamic replica placement and
selection strategies in data grids-A comprehensive survey,” Journal
of Parallel and Distributed Computing, vol. 74, pp. 2099-2108, Feb.
2014.

[22] R. M. Rahman, R. Alhajj, and K. Barker, “Replica selection
strategies in data grid,” Journal of Parallel and Distributed
Computing, vol. 68, pp. 1561-1574, Dec. 2008.

[23] R. S. Chang and P. H. Chen, “Complete and fragmented replica
selection and retrieval in data grids,” Future Generation Computer
Systems, vol. 23, pp. 536-546, May 2007.

[24] T. Hamrouni, S. Slimani, and F. B. Charrada, “A data mining
correlated patterns-based periodic decentralized replication strategy
for data grids,” Journal of Systems and Software, vol. 110, pp. 10-27,
Dec. 2015.

[25] U. Tos, R. Mokadem, A. Hameurlain, T. Ayav, and S. Bora,
“Dynamic replication strategies in data grid systems: A survey,”
Journal of Supercomputing, vol. 71, pp. 4116-4140, Nov. 2015.

[26] R. Nou, S. Kounev, F. Julia, and J. Torres, “Autonomic QoS control
in enterprise grid environments using online simulation,” Journal of
Systems and Software, vol. 82, pp. 486-502, Mar. 2009.

[27] R. Mokadem and A. Hameurlain, “Data replication strategies with
performance objective in data grid systems: A survey,” International
Journal of Grid and Utility Computing, vol. 6, pp. 30-46, Dec. 2014.

[28] L. N. Nassif and J. M. Nogueira, “Resource selection in grid: A
taxonomy and a new system based on decision theory, case-based
reasoning, and fine-grain policies,” Concurrency and Computation:
Practice and Experience, vol. 21, pp. 337-355, Mar. 2009.

[29] Z. J. Li, C. T. Cheng, and F. X. Huang, “Utility-driven solution for
optimal resource allocation in computational grid,” Computer
Languages, Systems and Structures, vol. 35, pp. 406-421, Dec. 2009.

[30] C. Curino, E. Jones, Y. Zhang, E. Wu, and S. Madden, “Relational
cloud: The case for a database service,” in Proc. NEDS’10, 2010, p. 1.

[31] S. Kunde and T. Mukherjee, “Workload characterization model for
optimal resource allocation in cloud middleware,” in Proc. ACM
SAC’15, 2015, p. 442.

[32] K. A. Kumar, A. Quamar, A. Deshpande, and S. Khuller, “SWORD:
Workload-aware data placement and replica selection for cloud data
management systems,” VLDB Journal, vol. 23, pp. 845-870, Dec.
2014.

[33] C. M. Wang, H. M. Chen, C. C. Hsu, and J. Lee, “Dynamic resource
selection heuristics for a non-reserved bidding-based grid
environment,” Future Generation Computer Systems, vol. 26, pp.
183-197, Feb. 2010.

[34] A. Jahan, K. L. Edwards, and M. Bahraminasab, Multi-Criteria
Decision Analysis: For Supporting the Selection of Engineering
Materials in Product Design, 2nd ed., Oxford, UK: Butterworth-
Heinemann, 2016.

[35] M. G. Rogers, M. Bruen, and L. Y. Maystre, Electre and Decision
Support: Methods and Applications in Engineering and
Infrastructure Investment, Heidelberg, Germany: Springer Science
and Business Media, 2013.

[36] U. T. Mattsson. (2005) Database encryption-How to balance security
with performance. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.8228&
rep=rep1&type=pdf.

[37] Amazon Web Services Inc. (2010) Amazon CloudFront Pricing.
[Online]. Available: http://aws.amazon.com/cloudfront/#pricing.

[38] N. Werstiuk. (2008) An enterprise perspective on energy efficiency
and grids. [Online]. Available:
http://www.ogf.org/OGF23/materials/1258/An+Enterprise+Perspecti
ve+on+Energy+Efficiency+and+Grids+OGF23.pdf

[39] T. Fan, J. Liu, and F. Gao, “Dynamic pricing strategy of shared
devices in IIU federated cloud,” International Journal of Control and
Automation, vol. 9, pp. 199-219, 2016.

[40] V. Vusirikala, B. Koley, T. Hofmeister, V. Dangui, V. Kamalov, and
X. Zhao, “Scalable and flexible transport networks for inter-
datacenter connectivity,” in Proc. OFCC’15, 2015, p. Tu3H-1.

[41] X. Zhang, A. Riska, and E. Riedel, “Characterization of the e-
commerce storage subsystem workload,” in Proc. ICQES’08, 2008, p.
297.

[42] K. Manassiev and C. Amza, “Scaling and continuous availability in
database server clusters through multiversion replication,” in Proc.
IEEE/IFIP ICDSN’07, 2007, p. 666.

[43] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A.
I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R.
F. Freund, “A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing
systems,” Journal of Parallel and Distributed Computing, vol. 61, pp.
810-837, Jun. 2001.

[44] I. M. Yassin, A. Zabidi, M. S. A. M. Ali, N. M. Tahir, H. A. Hassan,
H. Z. Abidin, and Z. I. Rizman, “Binary particle swarm
optimization structure selection of nonlinear autoregressive
moving average with exogenous inputs (NARMAX) model of a
flexible robot arm,” International Journal on Advanced Science,
Engineering and Information Technology, vol. 6, pp. 630-637, Oct.
2016.

[45] M. N. M. Nor, R. Jailani, N. M. Tahir, I. M. Yassin, Z. I. Rizman,
and R. Hidayat, “EMG signals analysis of BF and RF muscles in
autism spectrum disorder (ASD) during walking,” International
Journal on Advanced Science, Engineering and Information
Technology, vol. 6, pp. 793-798, Oct. 2016.

735

