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Abstract— A resource selection problem for asynchronous replicated systems in utility-based computing environment is addressed in 
this paper. The needs for a special attention on this problem lies on the fact that most of the existing replication scheme in this 
computing system whether implicitly support synchronous replication and/or only consider read-only job. The problem is 
undoubtedly complex to be solved as two main issues need to be concerned simultaneously, i.e. 1) the difficulty on predicting the 
performance of the resources in terms of job response time, and 2) an efficient mechanism must be employed in order to measure the 
trade-off between the performance and the monetary cost incurred on resources so that minimum cost is preserved while providing 
low job response time. Therefore, a simple yet efficient algorithm that deals with the complexity of resource selection problem in 
utility-based computing systems is proposed in this paper. The problem is formulated as a Multi Criteria Decision Making (MCDM) 
problem. The advantages of the algorithm are two-folds. On one fold, it hides the complexity of resource selection process without 
neglecting important components that affect job response time. The difficulty on estimating job response time is captured by 
representing them in terms of different QoS criteria levels at each resource. On the other fold, this representation further relaxed the 
complexity in measuring the trade-offs between the performance and the monetary cost incurred on resources. The experiments 
proved that our proposed resource selection scheme achieves an appealing result with good system performance and low monetary 
cost as compared to existing algorithms. 
 
Keywords— resource selection; resource management; utility-based computing; grid/cloud computing; multi criteria decision making 
(MCDM) method; asynchronous replication 
 
 

I. INTRODUCTION 

Undoubtedly, both Grid and Cloud computing share many 
characteristics as both emerged from the “computing as a 
utility” paradigm [1]. Enterprise Grid and Cloud computing 
are the two most touted utility-based computing 
environments in recent years [2]-[7]. Both systems share two 
common characteristics; 1) data is replicated and may reside 
in distributed resources in order to achieve high data 
availability and fault-tolerance and to enhance performance; 
2) they are both business-oriented and may run an update-
intensive applications (e.g. online shopping, e-ticketing, 
etc.). In such situations, the challenges faced by these 
computing systems are realized when both systems have to 
deal with the complexity of data management in the presence 

of jobs that update data. Therefore, the employment of an 
efficient data management and replication scheme is 
paramount in this kind of system. Generally, the two most 
common data replication schemes in distributed systems are 
the synchronous and asynchronous replications. The 
implementation of synchronous replication is very expensive 
since complex protocols are required to ensure serializability 
[8], [9]. Hence, this study employs an asynchronous 
replication, which is desirable for data with weaker 
consistency requirements to achieve better performance. 
More specifically, an asynchronous replication scheme 
called Update Ordering (UO) approach [10] is exploited in 
this research work.          

Both Enterprise Grid and Cloud computing systems can 
also be characterized in terms of the scale and characteristic 

723

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/325990664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of their resources. Cloud computing is well-known as a 
large-scale distributed computing environment that is driven 
by economies of scale, in which a pool of abstracted, 
virtualized, dynamically scalable, managed computing 
power, storage, platforms, and services are delivered on 
demand to external customers over the Internet [11]. 
Meanwhile, from the perspective of Enterprise Grid system, 
although the number of resources in this class of system is 
relatively small as compared to traditional Grid applications 
(e.g., scientific domain), during seasonal or unexpected 
spikes in demand for a product retailed by a very large 
corporation, a significant number of additional resources 
may become involved and need to be allocated to satisfy 
user requests. In such a scenario, resource selection for job 
processing becomes a major problem for both Enterprise 
Grid and Cloud computing systems. Further, the problem 
becomes harder when both performance and cost are the 
major concern in the resource selection process in order to 
find the best resources to run the job in low response time 
with minimum monetary cost.  

Therefore, by taking into consideration the above 
mentioned issues, the work done in this paper focuses on 
three key points: (1) how to implement an efficient 
asynchronous replication scheme in a utility-based 
computing environment, (2) how to design a system model 
which can intelligently represents the important, interrelated 
and interdependent components that comprise the utility-
based computing system so that applications that update data 
can be run efficiently in this system environment, which 
further supports the development of an effective and 
efficient resource selection scheme, and (3) How to select 
the best resources for jobs in an application that employs 
asynchronous replication in a utility-based computing 
environment so that the performance of the replicated system 
(in terms of job response time) is high while preserving 
minimum monetary cost incurred on distributed resources.  

With regard to the first point, this paper first presents its 
first contribution by providing a detailed discussion of the 
Update Ordering (UO) approach and shows how the 
exploitation of this approach is done in our study to support 
the development of effective solutions for the resource 
selection problem in a utility-based computing environment. 
Meanwhile, with regard to the second point which reflects 
the second contribution of this paper, a new high-level 
system framework for applications that update data in utility-
based computing environments is developed. More 
specifically, the functionalities of the important system 
components are discussed incorporation with the 
implementation of the UO approach. The framework is 
designed in such a way that it can be adopted and 
implemented in both Enterprise Grid and Cloud computing 
systems. Further, to respond to the third point, two different 
issues must be addressed simultaneously in order to solve the 
problem: (1) one should first deal with the difficulty of 
predicting the performance of resources in terms of job 
response time, and (2) an efficient mechanism must be 
employed in order to measure the trade-off between the 
performance and the monetary cost incurred on resources so 
that minimum cost is preserved while providing low job 
response time.         

To deal with the first issue, we first define job response 
time as the time elapsed between job arrivals at the resource 
until the execution result is returned to the user. When a job 
that updates data is present, resource is needed to propagate 
its update value to other resources in order to maintain data 
consistency. However, to avoid conflicts (data 
inconsistencies), the resource is only allowed to process the 
job when it gets the latest value of data. Indeed, the arrival of 
update propagation from other resources is unpredictable due 
to the dynamicity and heterogeneity of the distributed 
systems, which makes the estimation of job response time 
very difficult. Further, when the second issue is put into 
focus, the development of an efficient mechanism is indeed 
required so that it does not put an excessive burden on the 
complexity of the first issue but at the same time can ensure 
job requests can be processed in low job response time with 
minimum monetary cost.       

By considering both issues simultaneously, the paper 
further presents its third contributions by providing a new 
prediction technique on resource performance with respect to 
job response time. That is, several QoS criteria, namely, 
efficiency, freshness, and reliability are defined in such a 
way that each of these criteria will reflect important factors 
that affect job response time in an asynchronously replicated 
system. Finally, as a fourth contribution, we solved the 
problem of selecting the best resource which can process 
jobs in the shortest time by addressing the problem as a 
Multi Criteria Decision Making (MCDM) problem, which 
further evaluates the trade-offs between these criteria (i.e., 
performance criteria) at each resource. This problem solving 
method is then exploited to settle the performance and 
monetary cost issue simultaneously. That is, the performance 
QoS criteria set-efficiency, freshness and reliability-
previously considered is combined with the cost criterion in 
the evaluation process. This makes the overall criteria set 
efficiency, freshness, reliability and cost.     

Particularly, in addition to the exploitation of UO 
approach as previously discussed, work in this paper also 
exploits the TOPSIS (Technique for Order Preference by 
Similarity to Ideal Solution) method [12] where it is 
reconciled with an entropy method in a resource selection 
engine to allocate jobs to the best available resource to 
provide both low response time and low monetary cost. The 
TOPSIS method is one of the well-known MCDM 
techniques used in engineering fields. To the best of our 
knowledge, this study is the first attempt to consider an 
asynchronous replication in resource selection for a utility-
based computing system, especially in Enterprise Grid 
and/or Cloud environments.       

Compared to our previous work presented in [13], [14], 
this paper explore and take advantage of our proposed 
framework presented in [13] together with part of the 
resource selection algorithm presented in [14] in order to 
come out with the efficient resource selection scheme which 
consider both system performance and resource monetary 
cost in asynchronous replicated system. Specifically, we 
focus on how to solve the above-mentioned problems 
simultaneously. The performance of the proposed resource 
selection scheme is extensively studied, especially when all 
the above issues need to be addressed concurrently.      
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Related research can be viewed from three perspectives: 
(1) job scheduling, (2) replica/resource selection and (3) data 
replication and transaction management. However, most of 
the existing research on job scheduling either does not 
directly account for data replication, or it totally neglects the 
transaction management factor. Therefore, we focus our 
review of related works on replica/resource selection 
together with data replication and transaction management in 
Grid and/or Cloud environments. 

In Grid environments, replica selection is usually studied 
within the area of replication management in Data Grids, 
where most replications are at file-level granularity. 
Moreover, replicated data are not allowed to be updated, or 
they require manual placement of the files [15]-[20]. Most of 
them deal with read-only jobs, very rarely with write jobs. In 
read-only applications, replica selection is usually decoupled 
with replica placement by considering such factors as access 
pattern and network latency and bandwidth and focus on 
reducing data access time [21]-[23]. Recently, work in [24] 
exploits data mining technique in order to improve the 
performance of data replication and replica selection in Data 
Grid system while research in [25] provide a comprehensive 
survey on data replication in grid computing environment. 
All these works assume read-only jobs on replicated data.        

Indeed, replication management and updates have been 
put on the list of requirements in the area of Data Grids due 
to the emergence of Enterprise Grid applications [26]. To the 
best of our knowledge, none of the existing resource 
selection techniques in Grid environments provide a 
mechanism on how to select the best resource when jobs that 
update data are present. This lies on the fact that most of the 
recent surveys on data replication and replica selection in the 
area of Data Grids mostly focused on read-only jobs as in 
[17], [21], [27]. Further, a resource selection model based on 
Decision Theory is proposed in [28], [29]. These works are 
similar to our work in the sense that they apply a decision 
theory to select the best resource in Grid systems. However, 
none of them provide a detailed approach on how to predict 
the job response time for update-intensive applications.  

As compared to Grid environments, the existence of both 
read-only and update data are considered by a number of 
research works in resource/replica selection for Cloud 
environments. Research in [30] is one of the earliest research 
efforts that measure the potential benefits of effective 
resource selection in Cloud environments. The authors 
mentioned that the problem of workload analysis [45] and 
resource selection had not been seriously addressed yet 
while the research work was done. Further recently, work in 
[31] characterizes workloads of Cloud system based on 
several performance parameters such as job turnaround time 
and throughput in order to achieve an optimal resource 
allocation. Notwithstanding this, the experiments were done 
with no specific consideration of the existence of update job 
in Cloud applications.  

Further, work done in [32] presents a workload-aware 
approach to making the design decision of what data items to 
replicate and where to place the data items as well as replicas 
with the goal to minimize the resources consumed in 
executing the workload. The minimization of the resource 
usage is measured based on a parameter named Average 
Query Span, i.e. the average number of machines involved in 

the execution of a query or a transaction (OLTP). This 
parameter is an abstract performance metric, which is 
introduced to handle the difficulty of directly model the 
resource consumption of update jobs/tasks. In other words, 
the research specifically addressed two classes of workloads, 
i.e. analytical read-only workloads and OLTP workloads. 
This research is similar to our work as both research works 
put an effort in handling the complexity of resource/replica 
management when jobs that update data are considered. 
However, while the researchers in [32] focused on 
synchronous update, our work provides a solution for 
asynchronously replicated system.  

In [33], the proposed resource selection mechanism is 
based on two main algorithms, namely, Minimum Execution 
Time (MET) and Minimum Completion Time (MCT) 
heuristics. In these algorithms, the processing time for all 
jobs that are queued at resources is expressed as resource 
availability which is defined as the earliest time that the 
resource can complete the execution of all jobs that have 
previously been assigned to it (i.e., the execution time for all 
jobs in the queue at resource). In MET, each job is assigned 
to a resource based solely on resource processing speed and 
job size without considering resource availability. In 
contrast, MCT assigns each job to a resource that has 
minimum completion time for that job by taking into account 
the resource availability. There is little work on mechanisms 
for best resource selection especially in Enterprise Grid and 
Cloud systems. To the best of our knowledge, our work is 
the first attempt that specifically focuses on providing a 
mechanism on how to select the best resources for 
applications that update data especially when an 
asynchronous replication is considered in both computing 
systems.  

II. MATERIAL AND METHOD 

A. System Model 

A 3-tier architecture of utility-based computing platform 
is shown in Fig. 1. Users at Tier-1 (user level) send a job 
request to the Resource Broker (RB) which located at Tier-2 
(middleware level). Then, this RB works together with 
Transaction Service (TS) at the same tier to select and 
allocate a job to an appropriate resource for execution at 
Tier-3 (resource level). Each resource at Tier-3 is equipped 
with the Transaction Manager (TM). The communication 
between resources at this tier is established by TM at each 
resource.  

 

1R NR  
Fig. 1  3-tier architecture of utility-based computing platform [13] 
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By considering an Update Ordering (UO) [10] approach, 

we assume an n-replica system, },,{ 1 n
n RR L=ℜ . A job 

received by resource iR  directly from Resource Broker (RB) 

is said to have originated fromiR . When a request is 

received by a resource, it is stored in a buffer/log and waits 
to be checked on its ordering constraint (i.e. total, causal and 
commutative). Once its ordering constraint is satisfied, the 
job is executable or deliverable. In other words, that request 
is ready to be executed by the resources. The update-
ordering constraint is defined as follows:  

 
Definition 1:  (FIFO ordering constraint “→ ”). If two 
updates, 1u  and 2u  are originated and sent to the replica 

group from the same replicaiR  and if 1u  is delivered before 

2u  at the original replica, then 21 uu →  iff: 1u is delivered 

before 2u  at the rest of the replicas.  

 
Definition 2:  (causal ordering constraint “p ”). If iR

 
delivers an update 1u  originated from jR

 
before sending out 

an update 2u , then 21 uu p , iff: 1u  is delivered before 2u  at 

all replicas.   
 
Definition 3:  (total ordering constraint “↔ ”). For two 
updates 1u  and 2u sent from iR and jR , then 21 uu ↔ , iff:  

When one replica delivers 1u  before 2u , the rest of the 

replicas deliver 1u  before 2u  as well. Or the other way 

around when one replica delivers 2u  before 1u , the rest of 

the replicas deliver 2u  before 1u  as well.   

 
Definition 4:  (total + causal ordering constraint “⇒ ”). If 
two updates 1u  and 2u  are originated from iR and jR  

respectively, then 21 uu ⇒ , iff: 21 uu p  and 21 uu ↔ . 

 
To decide the ordering constraint for each update 

operation, the inter-operation semantics between update 
operations needs to be analysed. The semantics is based on 
whether two update operations are commutative or not. 
Suppose that a service provides a set of update operations 

},,{ ,21 nsrv uuuOP L=  and assume that 1u  and 2u  are any 

two update operations, 1u and 2u  can be the same operation. 

Their operation semantics is defined to have the following 
two relations: 
 
Definition 5:  (commutative relation “||”). 21 ||uu iff: the 

effect of executing (1u , 2u ) equals the effect of executing 

( 2u , 1u ). 

 
Definition 6:  (conflicting relation “>< ”). 21 uu >< iff: the 

effect of executing ( 1u , 2u ) is different from that of 

executing ( 2u , 1u ).   

 

Therefore, the commutative operation is defined as 
follows: 
 
Definition 7:  (commutative operation). An update operation 
u is a commutative operation iff: srvOPv∈∀ , uv || .  

 
This is to say if u is a commutative with every operation 

in srvOP , u is a commutative operation. A commutative 

operation implies that the order of its execution does not 
affect the state of replicas.  
 
Definition 8:  (total operation). An update operation u is a 
total operation iff: srvOPu∈ and srvOPv∈∃ , uv>< .   

 

Definition 9:  (caused-by relation “
r
p ”). If 21 uu

r
p , iff: 

21 uu p  and 2u  is the real effect of executing1u . 

 
Definition 10: (caused-by operation). An update operation u 

is a caused-by operation, iff: srvOPv∈∃ , uv
r
p . 

 
Therefore, the following three types of operation sets are 

defined: 
 
Definition 11: (total job operation set – opTotal ). opTotal  

contains all total job operation out of srvOP .   

 
Definition 12: (commutative job operation set- opComm ). 

opComm  contains all commutative job operations out of 

srvOP .   

 
Definition 13: (causal job operation set – opCausal ). 

opCausal
 
contains all caused-by operations out of srvOP .            

 
Further, assume that the system consists of a set of 

data },...,2,1{ mdddsysD = where m represents the total 

number of data in the system. For any particular data 

sysDkd ∈ , a set of its replica is denoted as  

 

},...,2,1{ k
Nsksksk =ℜ                           (1) 

 
That is, we assume that one resource holds one replica for 

any particular data kd . Also, we define 

     

}}},...{2{},1{{ md
J

d
J

d
Jsys=θ                  (2) 

 

where }{ kdJ  is a set of job operations (i.e., total, causal and 

commutative [10]) for kd  with k=1, 2,…, m and 
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},...,2,1{ kd
nukd

ukd
ukd

J = , n representing the total 

number of job operations on kd  such that kd
u1 and 

kd
u2 are job operations on the same datakd . 

For example, if job kd
u  is commutative with every job 

in kd
J , then kd

u  is said to be a commutative job. A 
commutative job implies that the order of its execution does 

not affect the state of replicas. If k
d

u  conflicts with one job 

in kd
J , kd

u  is said to be a total job. When a job is a total 
job, it needs to be executed sequentially at all its replicas to 
ensure data correctness. Meanwhile, the causal operation job 
is based on the happened-before semantics, which captures 
the potential cause-effect relation between two job events. 
Therefore, for any particular datakd , the following 

definitions apply: 
 

Definition 14: (total job operation set- kd
opTotal ). kd

opTotal
 

contains all total job operations out of k
d

J .   
 

Definition 15: (commutative job operation set- kd
opComm ). 

kd
opComm contains all commutative job operations out 

of kd
J .       

 

Definition 16: (causal job operation set- kd
opCausal ). 

kd
opCausal  contains all caused-by operations out of k

d
J .         

 

However, for two jobs kd
opTotalkd

iu ∈ and 

ld
opTotalld

iu ∈ , kd
iu and ld

iu
 
are not conflicting with each 

other although they are conflicting in their own dataset since 

each of them is working on different data. With sys
opTotal , 

kd
opCausal  and sys

opComm are the total number of total 

operation, causal operation and commutative operation in the 
system respectively. Therefore, we have the following 

 

∑ == N
i

id
opTotalsys

opTotal 1 , 

∑ == N
i

id
opCausalsys

opCausal 1 and 

∑ == N
i

id
opCommsys

opComm 1  with  

φ=∩ ld
opTotalkd

opTotal , φ=∩ ld
opCausalkd

opCausal and 

sys
opCommld

opCommkd
opComm =∩ .   

B. Job Response Time in Asynchronous Replication System 

This study considers the implementation of asynchronous 
replication, which employs asynchronous propagation 
strategy among resources that hold the replica data. In an 
asynchronous propagation, the update of job execution is 
propagated after the result is returned to the user. In contrast, 
synchronous propagation strategy sends an update of job 
execution to the peer replicas before the result is returned to 
the user. It is clear that asynchronous replication gives a 
better response time to the user. Therefore, in this study, job 
response time is defined as the time when a user submits a 
job request to the system until the user receives the result of 
job execution from the system. To give a clearer view of the 
definition of job response time considered in this study, we 
illustrate an example scenario for asynchronous update 
propagation strategy as shown in Error! Reference source 
not found.. 2. In this example, a job response time is defined 
as the time period between 1t  until 6t . The time when a 

user submits a job request to the system is designated 1t . 

Later, 2t indicates the time when the RB receives the job 

request directly from a user before submitting it to the best 
resource (i.e., the originated resource,xR ) for job processing 

and execution at time3t . Meanwhile, the time period 

between 3t and 4t  indicates the time period required to 

process the job request by originated resource xR  before the 

result is submitted and received by the RB at time 5t . 

Finally, this result is returned and received by the user at 
time 6t . Meanwhile, 7t  indicates the time when the update 

propagation process by originated resource xR  is started. It 

is the responsibility of xR  to propagate its update value to 

other peer resources that hold the same replicayR  where y = 

1,2,…, n, yRxR ≠ and N
yRxR ℜ∈, . The time when 

resource 1R  and nR  receive an update value from originated 

resource Rx is indicated with time 8t and 9t  respectively.     
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1t

2t 3t
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5t6t 7t

L

nR

8t

9t

 
Fig. 2  A scenario of asynchronous propagation strategy 

C. Multi-Criteria Decision Making (MCDM): Topsis 
Method 

Generally, decision making involves the balancing of 
multiple, potentially conflicting requirements. Classical 
optimization deals with these problems by taking the most 
important requirement as the objective function and the 
remainder as constraints, which still leaves the problem of 
potentially irreconcilable requirements. The common 
approach employed to deal with this problem is to relax the 
thresholds of the constraints until feasible solutions emerge 
[34]. However, the Multi Criteria Decision Making (MCDM) 
method provides an alternative view on solving this problem. 
MCDM is an interactive method that deals with multiple 
criteria problems by employing a range of processes that 
clarify the consequences of the underlying trade-offs 
between criteria in configuring alternative solutions. In other 
words, the MCDM problem deals with the evaluation of a set 
of alternatives in terms of a set of decision criteria.     

The MCDM method is widely adopted in engineering 
projects for optimal decision making [34], [35]. There is a 
wide range of MCDM methodologies for choosing between 
alternative solutions that are available for the decision maker, 
and one of the well-known methods is TOPSIS [12]. This 
method is based on the concept that the chosen alternative 
should have the shortest distance to the ideal point and the 
furthest distance from the negative ideal point. These ideal 
points can be considered as dummy alternatives where 
resources are compared. The method requires a decision 
matrix for input evaluation data but uses given relative 
weights as the representation of preference information. The 
advantage of the TOPSIS method is that it can produce a 
clear preference order of a set of competing alternatives. The 
exploitation of TOPSIS in our work provides an effective 
mechanism for finding the best resource, the best alternative 
solution, to run the job because it can efficiently evaluate the 
trade-offs between all the QoS criteria considered-efficiency, 
freshness, reliability, and cost-on each resource. The 
discussion of this exploitation process is provided in the 
following section.   

D. Development of Resource Selection Algorithm 

In this section, we will present the proposed resource 
selection algorithm. Our proposed model can be divided into 
two subsections. Detailed definition and evaluation of each 
QoS criterion considered are provided in the first subsection. 
The direct implication of both the heterogeneity of network 
latencies and computational speed of resources on the 

estimation of job response time are represented in terms of 
freshness, efficiency and reliability value (i.e., performance 
QoS criteria). Meanwhile, cost criterion is defined to reflect 
monetary cost which may be incurred when a job is executed 
at any particular resource. Further, the next subsection 
presents the exploitation of TOPSIS and the entropy method 
and shows how it serves as a selection engine for all QoS 
criteria considered. Before we present the proposed 
algorithm, we will define some concepts used in the 
algorithm. 

E. Defining QoS Criterion 

For any particular resource Rx, the execution time for job 

iu  on this resource is defined as follows 

 

xRcsiusize
xRiuET /)()( =                     (3) 

 
where )( iusize  is the size of the job sysiu θ∈  and 

xRcs  is 

the computing speed of resource Rx. In other words, it is the 
time taken by resource Rx with computing speed 

xRcs  to 

execute an individual jobiu , where )( iusize  is a size of the 

job sysiu θ∈ .  Further, the efficiency value for any resource 

Rx, called
xRefficiency , is defined as 

 

∑ == n
i xRiuET

xRefficiency 1 )(                  (4) 

 
where n is the job queue size in 

xRreadyQ . That is, it 

measures how long a job is expected to wait before being 
executed (i.e., all jobs queued in 

xRreadyQ need to be 

completed), which indicates how busy Rx is in executing 
jobs in 

xRreadyQ . 

However, in real applications of distributed systems, the 
value of 

xRefficiency is greatly affected by other delays 

which are very hard to measure accurately. The complex 
interaction between heterogeneous resources which may 
occur at different levels of distributed systems (e.g., physical 
resource level and network link level) becomes the main 
factor contributing to this difficulty. To overcome this 
problem and provide an efficient scheme for predicting the 
value of this delay, we introduce two other variables, 
freshness and reliability. At any particular time t, the 
freshness value for resource Rx namely

xRfreshness is 

defined as follows      
 

xRxRfreshness )( βα −=                         (5)     
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where α  is the ID (i.e., USN) of a job that is last originated 
in the system and β  is the largest ID of a job in 

xRreadyQ on resource Rx for any particular data kd , 

respectively. The freshness value on resource Rx indicates 
how likely it is that the new job will be put into 

xRwaitQ to 

avoid data inconsistencies. That is, it can be estimated by 
how many jobs are not yet being processed, which allows the 
prediction of how long the new job needs to wait before 
being processed in order to avoid conflicts. In this case, 
resource Rx is said to be the freshest resource in the system if 

βα = . In other words, the resource Rx is said to be the 

freshest resource if 0=
xRfreshness . Meanwhile, the 

reliability for resource Rx called
xRyreliabilit  is defined as      

 

xRERTART
xRyreliabilit )( −=                (6)   

                                        
where ART and ERT are the averages of actual and 

estimated response time at resource xR  respectively with 

ERTART≥ , 0≠ART  and 0≠ERT . This criterion 
captures other arbitrary delays which may occur in a 
distributed system not yet captured by 

xRefficiency and/or
xRfreshness . As previously mentioned, 

these delays may be caused by complex interactions between 
heterogeneous resource hardware, software, networking and 
security [36]. It can be understood that the reliability 
criterion is used to measure the performance robustness of a 
resource. Therefore, from all the above definitions, it is 
realized that the above parameters or criteria are sufficient to 
measure the performance of each resource in selecting the 
best resource for job execution.             

Further, the monetary cost criterion represents the service 
price specified by the resource owner based on a Service 
Level Agreement (SLA). The pricing mechanism decides 
how service requests processed by a resource are charged. 
Requests can be charged based on submission time (peak/off 
peak), pricing rates (fixed/changing) or availability of 
resources (supply/demand) [4]. Also, the pricing method 
may also depend on geographical locations [37] because 
pricing rates for resources at different geographical locations 
may vary significantly based on applicable taxes, fees or 
similar governmental changes of the resource location. 
Therefore, the price or servicing of a request by resources 
may vary over time and between different resources. Note 
that this criterion can also be considered as a monetary cost 
induced by energy cost on various resources [38]. Energy 
cost may significantly vary among resources based on 
current utilization or the geographical location of the 
resources, which may have different energy rates.  

Indeed, it is difficult to determine the range of monetary 
costs at different resources when different resource providers 
are considered. Different providers may charge different 
rates depending on such factors as geographical rate and 
supply/demand rate. Federated Cloud [39] architecture, for 

example, provides a number of resources from different 
providers; these are transparently integrated to serve job 
requests by users. To deal with the complexity of various 
pricing rates among Cloud providers, we thus make an 
assumption that the rate of monetary cost for resources is 
scaled from 1 to10, where smaller values indicate lower 
pricing of resources. In other words, the input monetary 
value in the system is normalized to the homogeneous 
pricing rates. For example, a resource with the price rate of 
$0.22/machine hour can be normalized to 10 while the 
resource with the price rate of $0.11/machine hour can be 
normalized to 5. 

The input monetary cost value is done by Pricing 
Analyser (PA) as shown in  

. This analyser measures the resource price to run the job. 
It can be considered to be part of the SLA resource allocator 
component in the Cloud architecture as proposed in [4]. It is 
responsible for finding the potential cost reduction of 
providers, which could lead to a more competitive market 
and thus lowering pricing cost.  

Based on the definition of each QoS criterion (efficiency, 
freshness, reliability and cost) presented previously, a lower 
value is more desirable as it can contribute to shorter job 
response time. Particularly, a lower freshness value indicates 
that the resource will be considered to hold fresher data in 
the system. A lower efficiency value shows faster job 
execution time by the resource. Lower reliability indicates 
that the resource is more resistant to the overhead caused by 
complex interactions among heterogeneous resources, while 
low cost value clearly shows the minimum monetary charges 
on resources for job execution. To further illustrate the 
complexity of the resource selection process with regard to 
these QoS criteria, we provide an example of possible 
scenarios where the user (or Resource Broker) needs to 
choose the best resource to process job requests with 
minimum response time and at low monetary cost, as shown 
in Error! Reference source not found.1. In this example, it 
is evident that resource 4 has the lowest reliability but has 
the worst efficiency value, which means that this resource 
should wait for processing a large number of jobs waiting in 
its queue. This is just a simple example that considers only 5 
resources. One can imagine what would happen when the 
number of resources gets larger in real applications. We can 
expect that the complexity grows significantly as the number 
of resources grows.      

TABLE I 
AN EXAMPLE OF CRITERIA SET VALUE FOR RESOURCES 

Resource ID Freshness Efficiency Reliability Cost 
1 10 3.4 0.70 3 
2 6 2.7 0.40 9 
3 10 5.6 0.37 2 
4 15 6.4 0.25 7 
5 9 4.3 0.79 5 

F. Resource Selection Algorithm  

Fig. 3   shows the proposed resource selection algorithm. 
The algorithm first determines different QoS (freshness, 
efficiency, reliability, and cost) values for each resource 
(step 2). It then constructs a decision matrix D (step 4) and 
assigns weights to freshness, efficiency, reliability and cost 
based on entropy (step 5).    
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In the context of resource selection, the effect of each 
criterion (attribute) cannot be considered alone and always 
should be viewed as a trade-off with respect to other criteria. 
Any changes in, for instance, freshness, efficiency, reliability 
and cost may change the resource priorities. With this in 
mind, the ideal-point-based approach such as TOPSIS [12] 
seems to be a suitable framework for method selection 
problems since it allows explicit trade-offs and interactions 
among different criteria. Therefore, we exploit the TOPSIS 
method in order to find the best resources to run the job in 
minimum response time with a low monetary cost. The basic 
idea of TOPSIS is based on the concept that the chosen 
alternative should have the shortest distance to the ideal 
point and the furthest distance from the negative ideal point. 
This method requires a decision matrix as input evaluation 
data but uses given relative weights as the representation of 
preference information.  
_______________________________________________ 
Algorithm ResourceSelection 
BEGIN 

1. FOR each resource 
N

iR ℜ∈  DO 

2. Evaluate 
iRfreshness ,

iRefficiency ,
iRyreliabilit and 

iRcost  

3. ENDFOR 
4. Construct a decision matrix D   
5. WeightAssignment 

(
iRfreshness ,

iRefficiency ,
iRyreliabilit ,

iRcost ) 

6. Normalize D and its weight whose elements are defined by 

∑ == m
i ijfijfijz 1

2/ , i=1,…, m; j=1,…,n.  

7. Formulate the weighted normalized decision matrix whose 

elements are ijzjwijx = , i=1,…, m; j=1,…,n.  

8. Determine the positive (+a ) and the negative (−a ) ideal 
solutions as follows: 

},...,2,1{},...,1|)|min{( +++==∈=+
nxxxmiJjijx

i
a   

},...,2,1{},...,1|)|max{( −−−==∈=−
nxxxmiJjijx

i
a  

9. Calculate the separation measures for ideal and negative ideal 
solutions of each resources as follows: 

∑ =
+−=+ n

j jxijxiR 1
2)( , i =1, …, m 

∑ =
−−=− n

j jxijxiR 1
2)( , i =1,…, m 

10. Calculate relative closeness of each resource to the ideal point 
as follows: 

)/( ++−−=+
iRiRiRicl , 10 ≤+≤ icl and i=1,…,m.  

11. Rank the resources based on the magnitude of closeness+
icl . 

12.  IF )( +>+
jclicl THEN  

      iR is preferred to jR . 

13.  ENDIF 
14.  END ResourceSelection 

Fig. 3  Resource selection algorithm 
 

Suppose an MCDM problem can be represented as the 
example provided in Error! Reference source not found.1. 
Based on the resource selection algorithm presented in  

Fig. 3  , the algorithm starts with the evaluation of each 
QoS criterion considered (i.e., freshness, efficiency, 
reliability, and cost). Then, in step 4, the decision matrix D is 
constructed as follows:         


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                                           (7) 

with ),...,2,1( nwwwW=  where jw
 
is the weight of the 

criterion jC satisfying 11 =∑ =
n
j jw . iR  denotes the 

alternative resources i, i=1, 2,…, m; jC
 
represents the thj  

criterion, j = 1, 2, … , n related to thi  resource, and ijf
 
is a 

crisp value indicating the performance value of for each 
resource iR with respect to each criterion jC . With respect 

to our research, the disadvantage of the TOPSIS method is 
that the weights are entered manually. Indeed, human 
interventions can lead to errors and also do not support the 
dynamic nature of autonomous Grid and Cloud systems. 
Therefore, we attempt to overcome this disadvantage by 
using the entropy method for weight assignment (step 5).  

The main advantage of the entropy method is that it 
eliminates the possibly biased judgment if the weights are 
assigned manually by the user. Based on the decision matrix 
D presented in Equation (7), its input data ijf  have different 

dimensions, and thus it needs to be normalized in order to 
transform the various criteria dimensions into the non-
dimensional data, which allows comparison across all the 
criteria. We refer to the weight assignment algorithm based 
on the entropy method as shown in Fig. 4  . In this algorithm, 
matrix D is normalized for each criterion jC

 
(step 2 in Fig. 

4  ). Further, the entropy E of the set of normalized 
outcomes of criterion j is determined based on the equation 
shown in step 3. Therefore, the best weight is given by the 
equation shown in step 4.      
 
Algorithm  WeightAssignment 
INPUT:

iRfreshness ,
iRefficiency ,

iRyreliabilit ,
iRcost   

BEGIN 
1. FOR each criterion DO  

2. Normalize D for each criterion as )1/(∑ == m
i ijfijfijp , 

with ],...,1[ mj∈ . 

3. Determine the entropy jE  of the set of normalized 

outcomes of criterion j based on the equation:  
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   ∑ =−= m
i ijpijpjE 1 lnϕ ,where )ln(/1 m=ϕ which 

guarantees 10 ≤≤ jE . 

4. Assign weight for criterion j with )1/(∑ == n
i idjdjw  

where jEjd −=1 .    

5. ENDFOR  
END WeightAssignment 

Fig. 4  Weight assignment algorithm 
 

Then, we refer back to the resource selection algorithm in  
Fig. 3  , where the normalized decision matrix is 

constructed whose elements are defined as in step 6. 
Consequently, each attribute has the same unit length of 
vector. Later, the weighted normalized decision matrix is 
formulated; its elements are given in step 7. The main idea 
of the TOPSIS approach is shown in steps 8-10. In step 8, 
the ideal point a+ and negative ideal point a- first need to be 
defined. Here, a+ and a- act as dummy alternatives (resources) 
used as a reference so that all alternatives (resources) can be 
properly evaluated as they represent the notional “best” and 
“worst” resource respectively. Referring to the example 
presented in Error! Reference source not found.1, the 
possible value of a+ and a- is shown in Error! Reference 
source not found.2. Later, the separation measures for ideal 
and negative ideal solutions for each resource are calculated 
in step 9. Then, the relative closeness of each resource to the 
ideal point is calculated using the equation shown in step 10. 
Finally, each resource is ranked based on the magnitude of 

closeness, +
icl

 
(steps 11 and 12). Indeed, the main 

advantage of the TOPSIS method is that it can produce a 
clear preference order or set of competing alternatives, in our 
case, the resources.        

TABLE III 
AN EXAMPLE OF CRITERIA SET VALUE FOR RESOURCES BY CONSIDERING 

DUMMY RESOURCES 

Resource 
ID 

Freshness Efficiency Reliability Cost 

1 10 3.4 0.70 3 
2 6 2.7 0.40 9 
3 10 5.6 0.37 2 
4 15 6.4 0.25 7 
5 9 4.3 0.79 5 
a+ 6 2.7 0.25 2 
a- 15 6.4 0.79 9 

G. Experimental Configuration and Evaluation Metrics 

In this section, we present the experimental configuration 
and the performance metrics used to evaluate the 
effectiveness and efficiency of the proposed algorithm. We 
first present the experimental configuration. Later, we 
present the evaluation metrics. 

H. Experimental Configuration 

In order to evaluate the effectiveness of the proposed 
resource selection algorithm, we undertook an extensive 
simulation experiment. We simulated up to 50 resource sites 
with different numbers of workload, 1000, 2000, 3000, 4000 
and 5000. The value range of resource storage capacity and 

its processing speed together with network bandwidth 
considered are based on research in [40], [41]. We assume 
that job arrival time is a Poisson process and job processing 
times follow an exponential distribution. The size of job is 
determined based on TPC-W benchmark database size [41], 
[42], which ranges from 10MB to 800MB while resource 
storage capacity is 10GB. Meanwhile, resource-processing 
speed is set to range from 20MB/s up to 1000MB/s. The 
parameter settings in the simulation are summed up as 
follows: 

• Resource processing speed: 20MB/s, 100MB/s, 
300MB/s, 500MB/s, 750MB/s, 1000MB/s. 

• Network bandwidth: 10MB/s, 45MB/s, 155MB/s, 
1GB/s, 2.5GB/s, 10GB/s. 

• Size of job: 10MB, 200MB, 400MB, 600MB, 800MB. 
• Reliability value: random value ranged between 0 and 

1 second. 
• Monetary cost value: normalized integer value ranged 

from 1 to 10.  
• Number of jobs: 1000, 2000, 3000, 4000 and 5000 

which are represented by N1, N2, N3, N4 and N5 
respectively in Error! Reference source not found.4-
Error! Reference source not found.6.     

 
In this study, we also consider the situation where resource 

cost is not a relevant factor in the resource selection process. 
This is the case when resource pricing rates are the same for 
all resources in the system (e.g., available resources are in the 
same geographical edge or are on the same energy rate). In 
such a situation, our proposed algorithm will function as a 
performance prediction engine only by considering 
performance criteria (freshness, efficiency, and reliability) in 
the decision-making process without taking into 
consideration the monetary cost criterion. We summarize all 
experiment scenarios as shown in Error! Reference source 
not found.3. These experiments are based on two types of 
workload characteristics: conflict rate and monetary cost 
consideration. Accordingly, the experiments of high, medium 
and low conflict rates are done together with monetary cost 
either taken into consideration or not.     

TABLE IIIII 
WORKLOAD TESTED (SIMULATION SCENARIOS) 

Scenari
o 

Conflic
t  
Rate 

Cos
t 

Job Probability  
sys
opTotal

 

sys
opCausal

 

sys
opComm

 
1 High No 0.45 0.45 0.10 
2 Mediu

m 
No 0.30 0.30 0.40 

3 Low No 0.10 0.10 0.80 
4 High Yes 0.45 0.45 0.10 
5 Mediu

m 
Yes 0.30 0.30 0.40 

6 Low Yes 0.10 0.10 0.80 

I. Evaluation Metrics 

In this study, we consider two evaluation metrics, 
Average Response Time (ART) and Average Monetary Cost 
(AMC). Both ART and AMC explicitly measure the 
performance of our proposed algorithm in terms of job 
response time and monetary cost respectively, which are 
defined as follows:  
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i iuRTART /)1(∑ ==                          (8) 

)/nn
i iuMC(AMC ∑ == 1                          (9)   

 
where

iuRT and 
iuMC are response time and monetary cost 

for job iu  respectively and n is the total number of 

originated jobs. Based on the above definitions, smaller 
values of ART and AMC are more desirable as they indicate 
a better system performance with lower monetary cost 
incurred on each job execution. 

III.  RESULTS AND DISCUSSION 

We compare our proposed algorithm against two other 
resource selection heuristics namely MCT and MCT_MTT 
algorithm. The MCT algorithm is initially discussed in [43] 
and later is used in [33]. This algorithm is the basic 
implementation of two well-known job scheduling heuristics: 
Min-min and Max-min [43]. In general, the fundamental 
concept of MCT is to assign jobs to a resource which can 
provide minimum completion time (MCT) defined as the 
earliest time that a resource can complete the execution of all 
jobs that have been previously assigned to it. Specifically, 
this algorithm tends to distribute the job to many available 
resources to reduce job queue length on each resource and to 
achieve the minimum completion time without any concern 
about conflicting jobs.    

Another algorithm, MCT_MTT is developed as a 
variation of the MCT algorithm. MCT_MTT inherits the 
concept of MCT but with an additional consideration of 
minimum transfer time (MTT). The idea is adopted from the 
MTT algorithm proposed in [22], where the resource which 
has the fastest aggregate network bandwidth to other 
resources will be selected as the best resource to run the job. 
Therefore, the MCT_MTT algorithm selects the best 
resource that can provide both minimum completion time 
and minimum transfer time. The development of this 
algorithm allows us to investigate if the combination of 
considerations on network bandwidth capacity and 
completion time can achieve better performance than the 
original MCT.  

In our simulation, MCT and MCT_MTT algorithms are 
implemented with monetary cost taken into account with the 
underlying asynchronous replication (based on UO approach) 
environment. That is the selected resource based on MCT 
and MCT_MTT algorithms will process a job request with a 
certain amount of monetary cost imposed on it, and at the 
same time comply with consistency constraint requirements 
during the job execution and job propagation phases.  

A. An Evaluation of ART without Monetary Cost 
Consideration 

Error! Reference source not found.(a)-5(c) show the 
ART for scenarios 1, 2 and 3 respectively. Meanwhile, 
Error! Reference source not found.4 summarizes the 
comparative results for all of these scenarios. In the absence 
of monetary cost consideration, the experiments show that 
our algorithm called ReS_Asynch algorithm outperforms the 

MCT and MCT_MTT algorithms with significant low 
response time for all types of workloads that is those with 
high, medium and low conflict rates.      
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Fig. 5  An ART with respect to different scenarios without monetary cost 
consideration. (a) Scenario 1-high conflict rate, (b) Scenario 2-medium 
conflict rate, (c) Scenario 3-low conflict rate 

TABLE IVV 
OVERALL COMPARATIVE RESULTS OF ART FOR SCENARIO 1, 2 AND 3 

Algorithm Scenario 1 
N1 N2 N3 N4 N5 

ReS_Asynch 6.57 9.26 5.58 12.30 11.88 
MCT 54.68 43.23 66.63 81.07 123.16 
MCT_MTT 26.26 47.55 73.51 72.17 82.02 
Algorithm Scenario 2 

N1 N2 N3 N4 N5 
ReS_Asynch 7.57 9.33 7.37 5.70 12.48 
MCT 42.69 59.83 66.13 100.23 117.91 
MCT_MTT 47.69 50.57 59.16 78.06 86.28 
Algorithm Scenario 3 

N1 N2 N3 N4 N5 
ReS_Asynch 3.20 6.00 8.68 8.30 16.66 
MCT 34.87 44.92 40.29 63.56 90.50 
MCT_MTT 37.66 40.25 42.62 54.54 60.20 
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In the above results, an average job response time 
achieved by our algorithm (i.e., ReS_Asynch) is less than 
17s for all workloads tested. In contrast, the MCT algorithm 
reached up to more than 123s. Meanwhile, an average job 
response time that achieved by the MCT_MTT algorithm 
ranges between 26.26s and more than 86s for all scenarios 
(scenarios 1-3). 

B. An Evaluation of ART with Monetary Cost Consideration 

Here, Error! Reference source not found.(a)-6(c) show 
the ART when experiments are done for scenarios 4, 5 and 6 
respectively. For more detail on the results obtained in these 
experiments, we summarize the entire comparative results 
for all of these scenarios in Error! Reference source not 
found.5.    
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Fig. 6  An ART with respect to different scenarios with monetary cost 
consideration. (a) Scenario 4-High conflict rate, (b) Scenario 5-Medium 
conflict rate, (c) Scenario 6-Low conflict rate 

 

TABLE V 
OVERALL COMPARATIVE RESULTS OF ART FOR SCENARIO 4, 5 AND 6 

Algorithm Scenario 4 
N1 N2 N3 N4 N5 

ReS_Asynch 6.12 5.56 14.45 16.20 18.61 
MCT 41.13 51.12 72.78 79.69 90.40 
MCT_MTT 30.34 33.20 57.54 72.74 84.44 
Algorithm Scenario 5 

N1 N2 N3 N4 N5 
ReS_Asynch 4.09 5.01 7.38 8.32 16.13 
MCT 31.90 41.41 73.74 74.88 98.42 
MCT_MTT 20.05 41.78 53.55 72.29 72.28 
Algorithm Scenario 6 

N1 N2 N3 N4 N5 
ReS_Asynch 4.07 5.75 4.14 5.40 8.75 
MCT 30.33 47.80 75.68 80.20 80.24 
MCT_MTT 26.55 45.56 66.22 65.07 77.38 
Considering the monetary cost factor, we can expect that 

an ART achieved by ReS_Asynch will be slightly longer 
than in the previous experiment. This is because our 
algorithm has to tolerate the trade-offs between high 
performance and low monetary charges incurred on each job 
execution by resources. Notwithstanding this, the 
ReS_Asynch algorithm achieves more than one magnitude 
of order shorter response time as compared to the MCT 
algorithm for all number of jobs tested in a low-conflict-rate 
scenario. This promising result is especially realized in 
scenarios 5 and 6, where our proposed algorithm achieved as 
low as 4.09s and 4.07s of ART when 1000 number of jobs is 
involved in medium and low conflict rate respectively. On 
the other hand, regardless of any simulated scenario, the 
MCT and MCT_MTT algorithms only managed to achieve 
at the lowest of 30.33s and 20.05s of ART respectively. 
However, these values are still significantly high if 
compared to the achievements of our proposed algorithm. 

C. An Evaluation of AMC 

The experiment results of AMC gained in scenarios 4, 5 
and 6 are visualized in Error! Reference source not 
found.(a)-7(c) respectively, while the value shown in Error! 
Reference source not found.6 summarizes the details of 
these results.      
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Fig. 7  An AMC with respect to different scenarios. (a) Scenario 4-High 
conflict rate, (b) Scenario 5-Medium conflict rate, (c) Scenario 6-Low 
conflict rate 

TABLE VI 
OVERALL COMPARATIVE RESULTS FOR AMC FOR SCENARIOS 4, 5 AND 6 

Algorithm Scenario 4 
N1 N2 N3 N4 N5 

ReS_Asynch 2.00 1.00 2.00 1.00 1.00 
MCT 3.70 7.18 4.87 6.54 6.46 
MCT_MTT 5.90 5.08 6.12 6.98 5.89 
Algorithm Scenario 5 

N1 N2 N3 N4 N5 
ReS_Asynch 1.00 2.00 1.00 1.00 1.00 
MCT 4.60 5.70 6.98 6.31 6.21 
MCT_MTT 2.70 8.80 7.78 3.50 9.61 
Algorithm Scenario 6 

N1 N2 N3 N4 N5 
ReS_Asynch 2.00 2.00 2.00 3.00 2.00 
MCT 8.70 7.78 7.22 5.73 8.99 
MCT_MTT 3.85 9.20 3.73 3.75 5.21 

 
As expected, ReS_Asynch outperforms other existing 

algorithms in terms of monetary charge incurred on each job 
execution at resources. This is proven in the results shown 
above, where our proposed algorithm is managed to achieve 
the normalized value as low as 1.00 in most number of jobs 
tested in high and medium conflict rate scenarios. In clear 
contrast, all other existing algorithms achieve a very high 
normalized monetary cost value which ranges from 3.70 up 
to 9.61.      

Obviously, the significance of our proposed algorithm is 
verified in all the results obtained from the experiments. 
From a performance point of view, although the MCT_MTT 
heuristic can provide a lower value of job response time as 
compared to the MCT algorithm in most scenarios tested, 
both heuristics neglect the factor of data freshness and 
resource reliability which makes them produce longer job 
response time as compared to our algorithm. Indeed, a 
significantly small value of ART achieved by our algorithm 

is due to the consideration of the two most important 
characteristics of distributed, asynchronous replicated 
environment: the degree of data freshness and the reliability 
value of resources. Furthermore, the ReS_Asynch algorithm 
is also able to provide minimum monetary cost incurred 
during job execution by resources as compared to other 
resource selection algorithms [44]. 

IV.  CONCLUSION 

This paper provides a new development of a simple yet 
efficient approach in dealing with the complexity of 
decision-making processes in update-intensive applications, 
particularly for an asynchronously replicated system in 
utility-based computing environments. To the best of our 
knowledge, the work in this paper is the first attempt. One 
part of this paper discusses the generalization of the design 
model that allows an easy adoption of this model in both 
Enterprise Grids and Cloud computing platforms. The 
development of this model provides an environment for an 
efficient implementation of an asynchronous replication 
scheme in a utility-based computing environment. Most 
importantly, this model includes and represents the 
important, interrelated and interdependent components that 
compose the utility-based computing systems so that 
applications that update data can be run efficiently in the 
targeted system environment, which further supports the 
development of effective and efficient resource selection 
schemes.   

Further, the other part of this paper addresses the resource 
selection problem as a Multi Criteria Decision Making 
(MCDM) problem. The proposed framework hides the 
complexity of the resource selection process without 
neglecting important components that affect job response 
time. The difficulty in estimating job response time and its 
associated monetary cost trade-off is captured by 
representing them in terms of different QoS criteria levels at 
each resource. The experiments proved that our proposed 
algorithm achieves an appealing result with good system 
performance and low monetary cost as compared to existing 
algorithms. Most importantly, our simple yet effective 
framework proposed in this paper resolved the complexity of 
the prediction on update-job response time by representing it 
in terms of QoS.  
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