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Abstract— Different software Quality Assurance (SQA) audit techniques are applied in the literature to determine whether the 
required standards and procedures within the Software Requirements Specification (SRS) phase are adhered to. The inspection of the 
Software Requirements Specification (iSRS) system is an analytical assurance tool which is proposed to strengthen the ability to 
scrutinize how to optimally create high-quality SRSs. The iSRS utilizes a Case-Based Reasoning (CBR) model in carrying out the SRS 
quality analysis based on the experience of the previously analyzed cases. This paper presents the contribution of integrating fuzzy 
Logic technique in the CBR steps to form a Fuzzy Case-Based Reasoning (FCBR) model for improving the reasoning and accuracy of 
the iSRS system. Additionally, for efficient cases retrieval in the CBR, relevant cases selection and nearest cases selection heuristic 
search algorithms are used in the system. Basically, the input to the relevant cases algorithm is the available cases in the system case 
base and the output is the relevant cases. The input to the nearest cases algorithm is the relevant cases and the output is the nearest 
cases. The fuzzy Logic technique works on the selected nearest cases and it utilizes similarity measurement methods to classify the 
cases into no-match, partial-match and complete-match cases. The features matching results assist the revised step of the CBR to 
generate a new solution. The implementation of the new FCBR model shows that converting numerical representation to qualitative 
terms simplifies the matching process and improves the decision-making of the system. 
 
Keywords—software requirements specifications; heuristic search; fuzzy logic; case-based reasoning; classification; similarity 
measurement. 
 
 

I. INTRODUCTION 

Software Requirements Specifications (SRS) is an 
understanding of a customer’s system requirements and 
dependencies in an organized way at a given point in time. 
[1], [2]. The SRS is an itinerary in software development 
processes. It is a collection of specified, standardized, and 
organized requirements (e.g. functional and non-functional 
requirements) surrounding a software development project 
and demonstrating future system complete behaviour [3], [4]. 

The inspection of the Software Requirements 
Specification (iSRS) system uses a Case-Based Reasoning 
(CBR) model in carrying out the SRS quality analysis based 
on the experience of the previous cases. The main reasoning 
steps of any CBR systems are; retrieve, reuse, revise and 

retain [3], [5]. However, the CBR is exposed to uncertainty 
when there are limited resources in the case base or due to 
the continues run. This uncertainty affects both the indexing 
and retrieving operations and spares the coverage of the 
problem space by the existing cases [6], [7]. It further affects 
the determination of solution cases, the modification of the 
rules used in the case adaptation phase and the revision of 
the cases to produce new cases [8], [9]. All these issues 
reduce the performance accuracy of the CBR systems. 

The fuzzy logic is a logical disambiguation method that is 
used to deal with approximate reasoning with the capability 
of providing correct decisions in uncertain circumstances 
[10], [11]. It is designed to operate with fuzzy linguistic 
expressions [12]. The theory of a fuzzy logic-based system 
could remain fuzzy until it is applied to a particular problem 
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to remove the fuzziness that the problem might have [13]. 
Fuzzy logic has been used in a broad spectrum of 
applications ranging from domestic appliances like washing 
machines and cameras to more sophisticated ones that 
include turbine control, tracking and data classifiers [12], 
[14]. Similarly, the CBR is fundamentally an analogical 
reasoning technique that can operate with linguistic 
expression [9], [10]. Additionally, both CBR and fuzzy logic 
have the capability of easily integrating with other 
techniques [6], [14], [15]. According to Elaine et al. [16], 
“fuzzy logic by itself does not exhibit intelligence. 
Invariably, systems that use fuzzy logic are augmented with 
techniques that facilitate learning and adaptation to the 
environment in question”. As a result, the environment that 
the fuzzy logic is situated in has an effective impact on its 
performance level. Consequently, the combination of CBR 
and fuzzy logic is capable of providing methods for applying 
real-world data and at the same time, helpful for acquiring 
new knowledge [7], [8], [14]. Fuzzy case identification and 
retrieval mechanism can provide dynamic solutions and 
improve knowledge creation. Some advantages of applying 
fuzzy logic in the CBR systems are as follows [9]:  

• Allow numerical features to be converted into fuzzy 
terms, 

• Allow multiple indexing of a case on a single feature, 
which makes it easier to transfer knowledge across 
domains, 

• Allow term modifiers to be used to increase the 
flexibility in case retrieval. 

In summary, the previous studies found that the 
integration of fuzzy logic with CBR is useful in memory 
organization, selection or retrieval, matching, similarity 
measures, adaptation, evaluation and forgetting [7], [8], [10]. 
It is proven to provide solutions to some of the addressed 
problems in this work.  

Subsequently, this paper proposes the integrating of fuzzy 
logic technique in the CBR to form a Fuzzy Case-Based 
Reasoning (FCBR) model. In the iSRS, CBR technique is 
used to inspect the SRS quality. The main steps of the CBR 
are retrieve, reuse, revise and retain reasoning steps. The 
fuzzy logic technique is used in this work to improve the 
performance of the CBR and the inspection accuracy of the 
iSRS system. Within the FCBR implementation in the iSRS 
system, some key facts are considered such as case features 
identification, cases similarity measurement, cases retrieval, 
and solution adaptation from the most similar cases.  

II. MATERIAL AND METHODS 

The Inspection of Software Requirements Specification 
(iSRS) system is based on the SRSQAS system that is 
proposed by [3]. It is an analytical assurance technique 
which strengthens the ability to scrutinize the SRS to create 
a high-quality SRS. Its cycle starts when a user enters the 
information required to analyse the quality of the SRS which 
is represented by both SRS Quality Inspection Metrics (QIM) 
and Quality Inspection Checklist (QIC). It aims to enhance 
the effectiveness of the SRS success on software 
development and implementation by inspecting the SRS and 
evaluating its quality.  

The SRS inspection process entails measurements of 
eleven SRS QIM including complete, consistent, correct and 

unambiguous. Each of the QIM is defined by a subset of 
nine interrelated Quality Inspection Indicators (QII) 
including continuances, directives, imperatives, and options. 
The QII closely looks and takes in to account structure, 
syntax and semantics of the SRS. This QIM is originally 
proposed by Wilson et al. [2] and it is widely adopted by 
many researchers such as [3], [4] and [5]. Moreover, the 
iSRS applies an SRS QIC that consists of ten categories of 
50 checklist questions. The QIC is collected from different 
sources including the work of [1], [17], and [18]. Within the 
QIC, the questions are separated into several main categories 
that represent different aspects and perspectives of the SRS 
inspection process. Examples of these categories include 
“the alignment level to the business objectives”, “the 
compliance level to the standards”, “the coverage level to the 
needs of the stakeholders” and “the depth level to the details 
of the specification”. Different types of techniques like the 
defect-based and scenario-based are applied in constructing 
the questions of the QIC. 

The iSRS use a CBR model to manage and operates the 
SRS inspection process. It is because the CBR literature 
highlights that the best use of CBR is as advisory and 
consultancy system that rely on users’ inputs in its 
performance and solutions estimation and adaptation. In 
order to learn the adaptation knowledge, there are various 
methods such as other domain knowledge, expert user, and 
the case base under consideration.  

The CBR cycle is started with the matching of the new 
case with the cases that are stored in the case base. Heuristic 
search is performed to find the relevant cases. Here, the 
system classifies search result cases into three situations: (1) 
the new case has a complete match in the case base, (2) there 
are some cases that partially match the new case and (3) 
there is no case match with the new case as shown in Fig. 1. 

Diagnosing the available cases to find a complete or a part 
of the desired solution in the case base requires a searching 
process. In the first situation, if there is a complete-match, 
the solution that the retrieved case has is to be used by the 
system. This solution leads to confirm the satisfaction of the 
new case elements and highlights the parts that need 
improvements. All of this is in the building of an arbitrator 
SRS quality analysis report.  

In the second situation, if there is a partial-match then the 
cases that partially match the new case will be revised to fit 
the new case situation. Here, the system implements two 
levels of matching; cases matching level and features 
matching level. The matching process is done by fuzzy logic 
in order to further explore the data of the cases and to find 
the pattern that they have. The outcome of the revision 
process is considered as a solution and it is used as a 
minimum successful solution. Furthermore, in the system 
learning the part, the new solution is retained in the case 
base as a possible solution or part of the solution(s) to the 
new coming problems. In the retain step, the system makes 
the matching process between the solution case and the other 
cases in the case base to prevent case overlap. In addition, 
the retain step contains unlearning operation applied to 
system cases to eliminate less needed cases and to prevent 
overflow status in the case base. 
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Fig. 1 The proposed iSRS model 

 
Lastly, in the third situation, if there is no-match, the 

system notifies the user that the new case does not match 
any case that the system has. From the new case information 
and the cases in the case base, the system implicitly finds a 
solution. It gives the generated solution as a proposed 
solution (in report form), which can help the user on what 
the problems are with the SRS and what areas in the SRS 
that need to be improved. 

A. Cases Representation 

In the iSRS, the case base is divided into indexed 
partitions to allocate each case location. After the user has 
gone through both QIM and QIC analytics, the obtained data 
is represented in a case form to be manipulated by the CBR. 
The QIM is represented by 11 features of criteria and QIC is 
represented by 10 features of checklist categories that 
describe the quality of a SRS. The QIM 11 features are 
represented by 61 elements of the QII and the QIC 10 
categories are represented by 50 elements of questions. Each 
element has a value that is ranging from 1 to 5, where 5 is 
the highest value. As a result, each case in the case base is 
represented by 21 features and each feature takes several 
elements and the overall elements in the case are 111 
elements. The description of the case used in the system is 
shown in Fig. 2. 

 

 
Fig. 2 The representation of a case 

 
 
 

In the case representation process, the features of the case 
are indexed by , where;  is the element cell,  refers to 
the feature number and  is the element number of the feature 
. During the quality measurements, the elements of each 

case are weighted with the variable . However,  is 
assigned based on each element importance ( value is; 0 ≤ 

 ≤ 1) and it also depends on the number of the elements 
that correspond to a particular type of features. 

B. Cases Selection and Retrieval 

As mentioned earlier, the CBR has all the potentials and 
features of a complete intelligent system by integrating it 
with other techniques. Most of the AI techniques 
implementation requires search processes to find a solution 
or parts of a solution from the search space pool. Cases 
retrieval is a very important step in the CBR cycle. The 
system works on finding the most fitting case(s) among a 
number of cases that exist in the case base. In the complex 
CBR systems, cases are numerous and each case contents is 
complex and very detailed. The solution that is generated 
through CBR reasoning steps is extremely dependent on the 
quality of the retrieved cases. Hence, cases retrieval 
efficiency has a huge impact on the other steps and the 
overall system performance. 

1) Relevant Cases Selection Algorithm: In a CBR 
system, cases selectivity depends on the ability of a selection 
algorithm to identify attributes that enable the system to 
measure the similarity level of each case. Only those cases 
that have the potential to give solutions must be checked and 
promoted by the algorithm. However, cases design and 
retrieval mechanisms depend on the application type; 
therefore, there is no specific way that can fit all CBR 
systems. The selection algorithms might comprise a heuristic 
search to reduce or limit the search space of solutions in case 
bases with complicated application domains. heuristic search 
is a type of search that uses the rule of thumb strategies for 
an educated guess. It uses domain knowledge in heuristic 
rules or procedures that are related to a usually speculative 
formulation to direct the progress of a selection algorithm as 
a guide in the investigation on the goal. In the cases retrieval 
of the iSRS system, the Relevant Cases Selection (RCS) 
algorithm of Fig. 3 and the Nearest Cases Selection (NCS) 
algorithm of Fig. 4 are proposed. 

The RCS algorithm uses mathematical calculations to find 
the relevant cases from the cases that are retained in the base 
of the case. The main parameter for the relevant cases 
membership determination is the case evaluation result 
which is stored separately from the other case components. 
Fig. 3 illustrates the flow chart of the RCS algorithm where 
Index[R] Relevant Cases is a one-dimensional array that 
contains the relevant cases, and R is the index that represents 
relevant cases number. 
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Fig. 3 The RCS algorithm 

2) Nearest Cases Selection Algorithm: After all the 
relevant cases are obtained, the Nearest Cases Selection 
(NCS) algorithm is used to find the nearest cases to the 
problem case. Mathematical calculations are also used in this 
algorithm to find the nearest cases from the gathered 
relevant cases as shown in Fig. 4. The relevant cases that 
Index[R] Relevant Cases array contains are being matched 
with the new case and the matching result is saved in Index[r] 
Relevant Cases matching result array. After that, the system 
finds the maximum match (Max) value and the minimum 
match (Min) value from the Index[r] Relevant Cases 
matching result array. The mean score of Max and Min is 
calculated, and then only those cases whose matching result 
are greater or equal to the mean score, and smaller or equal 
to the Max are saved in Index [N] Nearest Cases array. 
These are to be used by the fuzzy logic as nearest cases. 

C. Fuzzy Case-based Reasoning 

In the FCBR model, fuzzy logic is resident in the CBR 
cycle (as shown in Fig. 5). Subsequently, by applying fuzzy 
set logic to the ideal type, system cases can be more 
understandable and they become as configurations of 
attributes that appear to a different extent. Thus, the 
differences in cases kind and degree can also be easily 
studied and understood.  

In the FCBR retrieve step, the system starts its cycle by 
checking the attributes that each case has to measure the 
similarity level between system cases and the problem case. 

In the proposed framework, fuzzy logic starts matching the 
selected nearest cases using the obtained attributes in 
determining how much each case is close to the problem 
case. The cases are then classified into three groups; no-
match, partial-match and complete-match cases. 
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Fig. 4 The NCS algorithm 

 
Adjusting the fuzziness of the matched cases depends on 

some attributes that are obtained from the CBR case base 
during heuristic retrieve step. However, if there is a partial-
match situation with the new case or problem case, the 
approach does another level of the matching process. 
Moreover, within the CBR cycle, matching processes to the 
retain step are also required (as shown in Fig. 5). In short, 
fuzzy logic in iSRS works on the following issues: 

• Solving the fuzziness of cases matching in the retrieve 
step (no-match, partial-match and complete-match). 

• Solving the fuzziness of case features matching in the 
retrieve step (i.e. no-match, partial-match and perfect-
match). 

• Enhancing the input parameters of the revise step by 
finding features similarity levels. 

• In the retain step, matching system cases again (if 
necessary) to assist the unlearning process by deciding 
which case needs to be eliminated. 
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Fig. 5 The FCBR modelling flowchart diagram. 

 

1) The Fuzzy Cases Matching: After retrieving the 
nearest cases, the fuzzy logic approach starts matching the 
nearest cases. In the retrieve step, the cases are classified 
into three groups; no-match, partial-match and complete-
match cases. Table I shows a sample of fuzzy sets of FCBR 
cases matching result. The approach classifies all the nearest 
cases into the three matching categories. 

TABLE I  
FUZZY LOGIC CASES CLASSIFICATION 

No-Match Partial-Match Perfect-Match 

FN1 
FN2 
FNi 

FP1 
FP2 
FPj 

FC1 
FC2 
FCk 

 
where CN represents no-match cases, i is no-match cases 
number, CP represents partial-match cases, j represents 
partial-match cases number, CC represents complete-match 
cases, k represents complete-match cases number. The 
addition of i, j, k is equal to the nearest cases number. 

The fuzzy logic approach determines cases classifications 
according to dynamic thresholds (i.e., thresholds values are 
changing according to exploring processes that are held in 
retrieving the nearest cases and mainly depending on their 
number). The actual range of the no-match state starts from 
0% until 10% matching level as shown in Fig. 6. It then falls 
under a fuzzy area shared with the partial-match state until 
30% matching level. The actual partial-match range starts 
from 30% until 90% and it shares a fuzzy area with the 
complete-match state that starts from 90% and ends at 99%. 
Complete-match actual value is 100% case matching and it 
shares another 9.9% fuzzy area with partial-match case state. 

 

 

 
Fig. 6 The fuzzy cases matching 

 
The cases matching classifier is used to find the matching 

level of each case in order to find the belonging area of each 
nearest case. If there is a complete-match state, the solution 
is directly used by the system and if the system did not find a 
complete-match case then, the highest level matching case(s) 
is to be used to find a solution. Fig. 7 is an example of how 
the system does the similarity measurement to determine the 
nearest cases matching level, where each green scale areas 
in the figure show the matched elements in the nearest cases 
as compared with the new case. 

 

 
Fig. 7 The fuzzy cases matching result example 

 
Then, in the features matching process, if the system 

detected partial-match state, each partial-match nearest case 
features are to be matched with the new case features 
independently to classify the features of each case to; no-
match, partial-match and perfect-match features as shown in 
Fig. 5 and illustrated in IV.B.  

2) Fuzzy Features Matching: As mentioned earlier, 
each case contains 21 features and each feature has from 2 to 
9 elements (i.e. what the feature represents in the QM and 
QC methods) which mean each feature elements number 
depends on the feature itself. fuzzy logic matches cases 
features by matching the elements of the cases features with 
problem case features elements. Table II shows a sample of 
fuzzy sets of CBR case features a matching result. 

 
 
 

2138



TABLE II 
FUZZY LOGIC CASE FEATURES CLASSIFICATION 

No-Match Partial-Match Perfect-Match 

FN1 
FN2 
FNi 

FP1 
FP2 
FPj 

FC1 
FC2 
FCk 

 
where FN represents features of the no-match state, i 
represents features of no-match number, FP represents 
features partial-match state, j represents features partial-
match number, FC represents features perfect-match state, k 
represents features perfect-match number and the addition of 
i, j, k is equal 21 which is the case features number. 

The formulas that are used by the system in the 
Fuzzification processes to set cases feature boundaries to 
find the belonging to each of the no-match, the partial-match 
and the perfect-match features states are as follows: 

Let f(x) be the partial-match function. To determine 
features partial-match state, the following formula is used: 

 f(x) = n * r + x (1) 

where n is the number of elements in the feature (features 
elements numbers ranged (2-9)), x goes from 0 until 1 and r 
is a random number (r: 0.299 <= r >= 0.499). The  values 
range is selected to fit features matching boundaries. 

Let g(x) be the no-match function. To determine features 
no-match state, the following formula is used: 

 g(x) = j + 1 (2) 

where j goes from -1 to [f(0) – 1].  
Similarly, let h(x) be the perfect-match function. To 

determine features perfect-match state, the following 
formula is used: 

 h(x) = n (3) 

where x and n are the same variables that are used in 
formulas (1) & (2). 

Based on formulas (1), (2) and (3), the possible fuzzy 
matching boundaries to the case features elements are shown 
in Fig. 8. Each coloured boundary shows one probability, 
that one of the case features might fall under. Different 
features type take a different number of elements. That is 
why the boundaries of the features matching level need to be 
shifted according to the feature type or property. 

 

 
Fig. 8 The eight probabilities of features matching 

 
The main advantage of the feature matching process is to 

simplify the revise step. Fig. 9 shows an example of features 
matching result where each nearest case features are 
classified into 1.0 which is a perfect-match feature, 0.5 

which is a partial-match feature and 0.0 which is a no-match 
feature. 

 

 
Fig. 9 The feature matching result example 

3) Unlearning: The notion of CBR does not only 
denote a particular reasoning method, regardless of how the 
cases are acquired, it also denotes a machine learning 
paradigm that enables sustained learning through case base 
modification in cases retaining process. In the CBR retain 
step of the iSRS system, the learning process is made by 
storing the information of the SRS analysis process in the 
case base after converting it into a case form (as shown in 
Fig. 2). Using fuzzy logic helps in the unlearning process in 
the prevention of cases redundancy and avoiding overflow 
situation to ensure case base efficiency. Similar to the 
retrieve step, fuzzy logic will eventually perform matching 
at the case level before retaining the new solution in the case 
base (as explained in II.B). 

The unlearning process includes eliminating the cases that 
are considered not useful by using usability parameters to 
each case. Usability parameters contain information about 
each case state (i.e., number of time used, time of usage and 
similarity level). From these parameters, the system can 
determine the cases that are less useful and need to be 
eliminated. As a result, the non-useful case is replaced with 
the chosen solution (i.e., revised case). 

III.  RESULTS AND DISCUSSION 

A. The RCS and NCS Algorithms 

Experimental examples show that the two algorithms 
select only several cases among 64 cases available in the 
system case base. The performance analysis of the relevant 
cases and nearest cases algorithms are shown in Fig. 10. 
Where the black curve represents the new case indication 
level, and the coloured curves represent the most similar 
cases (i.e. the relevant cases and the nearest cases).  

Fig. 10 shows how closely the nearest cases are to the 
new case. This reflexes the importance of applying the RCS 
and the NCS algorithms to the cases in the retrieve step and 
before the revise step is initialized. Both algorithms have 
succeeded in reducing the cases of the case base to less than 
6% with acceptable similarity level. However, fuzzy logic 
results and the two algorithms’ results depend on the new 
case and case base contents. 

The two algorithms are mainly useful in determining the 
absolute state of the no-match and complete-match cases. 
They also can suggest the cases that have partial-match (i.e. 
the nearest cases) to the system with the absolute limit. 
Moreover, to determine the absolute limit of the no-match, 
partial-match and complete-match to the system cases in 
which each case has 21 features and 111 elements is a very 
challenging task. Thus, the system has to adopt other 
technique like fuzzy logic to handle this issue. 
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Fig. 10 The RCS algorithm versus NCS algorithms 

 

B. Analysis and Discussion 

This is to evaluate the performance of the cases selection, 
retrieval and similarity measurement handled by the 
illustrated approaches (the RCS and NCS algorithms and 
fuzzy logic). The system runs over 64 cases with the 
possibility of resulting the three matching states (no-match, 
partial-match and complete-match). 

In the first state (blue graph), most of the 64 cases initially 
do not have a high similarity level with the new case as 
shown in Fig. 11. Even after the RCS algorithm removal of 
the irrelevant cases (90.6% of the entire cases), the similarity 
level did not improve. Subsequently, the NCS algorithm 
works on the relevant cases and is able to eliminate 40% of 
the relevant cases but the cases similarity level remains 
within the no-match range. As a result, the fuzzy logic 
decision is no-match state as shown in Fig. 11. 

 
Fig. 11 The similarity measurement of the cases. 

 

Similarly, for the second state (red curve), the two 
algorithms are able to reduce the 64 cases to 3 nearest cases 
and hence, the fuzzy logic decision resulting in a partial-
match scenario (the similarity level is within the partial-
match region). Finally, in the third state (green curve), the 
algorithms perform well by tuning down the 64 cases into 1 
case as a result of a high similarity level with the new 
(problem) case. This similarity level is within the complete-
match region as such, the fuzzy logic’s decision is a 
complete-match. These three testing states illustrate the 
ability of the fuzzy logic to improve the CBR reasoning cycle 
by providing suitable example cases to be used in generating 
solutions which leads to improving the overall performance 
of the system. 

IV.  CONCLUSION 

Inspection of Software Requirements Specification (iSRS) 
is a successfully devised analysis tool that can measure the 
extracted discriminating features of the SRS document and 
then, guides the user to do the recommended improvements. 
This system uses Quality Inspection Metrics (QIM) and 
Quality Inspection Checklist (QIC) as SRS quality 
measurement methods. In this work, the iSRS is supported 
by a powerful decision-making mechanism that relies on 
Fuzzy Case-Based Reasoning (FCBR) model in inspecting 
the SRSs. The FCBR model has the benefit of using fuzzy 
logic for cases matching process in case retrieve and retain 
steps and it also simplifies the revise step by performing 
cases features matching. With fuzzy logic implementation, 
the cases that the system has are becoming more usable and 
useful. Moreover, the model introduces the Relevant Cases 
Selection (RCS) algorithm and the Nearest Cases Selection 
(NCS) algorithm. The two algorithms successfully narrow 
the search space of the cases selectivity options in order to 
fetch the goal cases by employing certain match criteria. 
With this in hand, the iSRS analysis results attain higher 
accuracy. To our knowledge, there exists no methods or 
standard that can lead us in obtaining QIM and QIC weights, 
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hence the weights of the FCBR are user-defined. As a part of 
future prospects, utilizing a genetic algorithm to set up and 
adjust the QIM and QIC weights according to a database of 
past experiences is to be proposed. 
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