

Vol.9 (2019) No. 6

ISSN: 2088-5334

A Fuzzy Case-Based Reasoning Model for Software Requirements
Specifications Quality Assessment

Salama A. Mostafa#, Saraswathy Shamini Gunasekaran*, Shihab Hamad Khaleefah+, Aida Mustapha#,
Mohammed Ahmed Jubair#, Mustafa Hamid Hassan#

#Faculty of Computer Science and Information Technology,Universiti Tun Hussein Onn Malaysia, Johor, 86400, Malaysia
E-mail: salama@uthm.edu.my, aidam@uthm.edu.my, mohamed.a.jubair@gmail.com, mustafa.hamid.alani@gmail.com

*College of Computing and Informatics, Universiti Tenaga Nasional, Selangor, 43000, Malaysia

E-mail: sshamini@uniten.edu.my

+Faculty of Computer Science, Al Maarif University College, 31001, Anbar, Iraq

E-mail: shi90hab@gmail.com

Abstract— Different software Quality Assurance (SQA) audit techniques are applied in the literature to determine whether the
required standards and procedures within the Software Requirements Specification (SRS) phase are adhered to. The inspection of the
Software Requirements Specification (iSRS) system is an analytical assurance tool which is proposed to strengthen the ability to
scrutinize how to optimally create high-quality SRSs. The iSRS utilizes a Case-Based Reasoning (CBR) model in carrying out the SRS
quality analysis based on the experience of the previously analyzed cases. This paper presents the contribution of integrating fuzzy
Logic technique in the CBR steps to form a Fuzzy Case-Based Reasoning (FCBR) model for improving the reasoning and accuracy of
the iSRS system. Additionally, for efficient cases retrieval in the CBR, relevant cases selection and nearest cases selection heuristic
search algorithms are used in the system. Basically, the input to the relevant cases algorithm is the available cases in the system case
base and the output is the relevant cases. The input to the nearest cases algorithm is the relevant cases and the output is the nearest
cases. The fuzzy Logic technique works on the selected nearest cases and it utilizes similarity measurement methods to classify the
cases into no-match, partial-match and complete-match cases. The features matching results assist the revised step of the CBR to
generate a new solution. The implementation of the new FCBR model shows that converting numerical representation to qualitative
terms simplifies the matching process and improves the decision-making of the system.

Keywords—software requirements specifications; heuristic search; fuzzy logic; case-based reasoning; classification; similarity
measurement.

I. INTRODUCTION

Software Requirements Specifications (SRS) is an
understanding of a customer’s system requirements and
dependencies in an organized way at a given point in time.
[1], [2]. The SRS is an itinerary in software development
processes. It is a collection of specified, standardized, and
organized requirements (e.g. functional and non-functional
requirements) surrounding a software development project
and demonstrating future system complete behaviour [3], [4].

The inspection of the Software Requirements
Specification (iSRS) system uses a Case-Based Reasoning
(CBR) model in carrying out the SRS quality analysis based
on the experience of the previous cases. The main reasoning
steps of any CBR systems are; retrieve, reuse, revise and

retain [3], [5]. However, the CBR is exposed to uncertainty
when there are limited resources in the case base or due to
the continues run. This uncertainty affects both the indexing
and retrieving operations and spares the coverage of the
problem space by the existing cases [6], [7]. It further affects
the determination of solution cases, the modification of the
rules used in the case adaptation phase and the revision of
the cases to produce new cases [8], [9]. All these issues
reduce the performance accuracy of the CBR systems.

The fuzzy logic is a logical disambiguation method that is
used to deal with approximate reasoning with the capability
of providing correct decisions in uncertain circumstances
[10], [11]. It is designed to operate with fuzzy linguistic
expressions [12]. The theory of a fuzzy logic-based system
could remain fuzzy until it is applied to a particular problem

2134

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/325990612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to remove the fuzziness that the problem might have [13].
Fuzzy logic has been used in a broad spectrum of
applications ranging from domestic appliances like washing
machines and cameras to more sophisticated ones that
include turbine control, tracking and data classifiers [12],
[14]. Similarly, the CBR is fundamentally an analogical
reasoning technique that can operate with linguistic
expression [9], [10]. Additionally, both CBR and fuzzy logic
have the capability of easily integrating with other
techniques [6], [14], [15]. According to Elaine et al. [16],
“fuzzy logic by itself does not exhibit intelligence.
Invariably, systems that use fuzzy logic are augmented with
techniques that facilitate learning and adaptation to the
environment in question”. As a result, the environment that
the fuzzy logic is situated in has an effective impact on its
performance level. Consequently, the combination of CBR
and fuzzy logic is capable of providing methods for applying
real-world data and at the same time, helpful for acquiring
new knowledge [7], [8], [14]. Fuzzy case identification and
retrieval mechanism can provide dynamic solutions and
improve knowledge creation. Some advantages of applying
fuzzy logic in the CBR systems are as follows [9]:

• Allow numerical features to be converted into fuzzy
terms,

• Allow multiple indexing of a case on a single feature,
which makes it easier to transfer knowledge across
domains,

• Allow term modifiers to be used to increase the
flexibility in case retrieval.

In summary, the previous studies found that the
integration of fuzzy logic with CBR is useful in memory
organization, selection or retrieval, matching, similarity
measures, adaptation, evaluation and forgetting [7], [8], [10].
It is proven to provide solutions to some of the addressed
problems in this work.

Subsequently, this paper proposes the integrating of fuzzy
logic technique in the CBR to form a Fuzzy Case-Based
Reasoning (FCBR) model. In the iSRS, CBR technique is
used to inspect the SRS quality. The main steps of the CBR
are retrieve, reuse, revise and retain reasoning steps. The
fuzzy logic technique is used in this work to improve the
performance of the CBR and the inspection accuracy of the
iSRS system. Within the FCBR implementation in the iSRS
system, some key facts are considered such as case features
identification, cases similarity measurement, cases retrieval,
and solution adaptation from the most similar cases.

II. MATERIAL AND METHODS

The Inspection of Software Requirements Specification
(iSRS) system is based on the SRSQAS system that is
proposed by [3]. It is an analytical assurance technique
which strengthens the ability to scrutinize the SRS to create
a high-quality SRS. Its cycle starts when a user enters the
information required to analyse the quality of the SRS which
is represented by both SRS Quality Inspection Metrics (QIM)
and Quality Inspection Checklist (QIC). It aims to enhance
the effectiveness of the SRS success on software
development and implementation by inspecting the SRS and
evaluating its quality.

The SRS inspection process entails measurements of
eleven SRS QIM including complete, consistent, correct and

unambiguous. Each of the QIM is defined by a subset of
nine interrelated Quality Inspection Indicators (QII)
including continuances, directives, imperatives, and options.
The QII closely looks and takes in to account structure,
syntax and semantics of the SRS. This QIM is originally
proposed by Wilson et al. [2] and it is widely adopted by
many researchers such as [3], [4] and [5]. Moreover, the
iSRS applies an SRS QIC that consists of ten categories of
50 checklist questions. The QIC is collected from different
sources including the work of [1], [17], and [18]. Within the
QIC, the questions are separated into several main categories
that represent different aspects and perspectives of the SRS
inspection process. Examples of these categories include
“the alignment level to the business objectives”, “the
compliance level to the standards”, “the coverage level to the
needs of the stakeholders” and “the depth level to the details
of the specification”. Different types of techniques like the
defect-based and scenario-based are applied in constructing
the questions of the QIC.

The iSRS use a CBR model to manage and operates the
SRS inspection process. It is because the CBR literature
highlights that the best use of CBR is as advisory and
consultancy system that rely on users’ inputs in its
performance and solutions estimation and adaptation. In
order to learn the adaptation knowledge, there are various
methods such as other domain knowledge, expert user, and
the case base under consideration.

The CBR cycle is started with the matching of the new
case with the cases that are stored in the case base. Heuristic
search is performed to find the relevant cases. Here, the
system classifies search result cases into three situations: (1)
the new case has a complete match in the case base, (2) there
are some cases that partially match the new case and (3)
there is no case match with the new case as shown in Fig. 1.

Diagnosing the available cases to find a complete or a part
of the desired solution in the case base requires a searching
process. In the first situation, if there is a complete-match,
the solution that the retrieved case has is to be used by the
system. This solution leads to confirm the satisfaction of the
new case elements and highlights the parts that need
improvements. All of this is in the building of an arbitrator
SRS quality analysis report.

In the second situation, if there is a partial-match then the
cases that partially match the new case will be revised to fit
the new case situation. Here, the system implements two
levels of matching; cases matching level and features
matching level. The matching process is done by fuzzy logic
in order to further explore the data of the cases and to find
the pattern that they have. The outcome of the revision
process is considered as a solution and it is used as a
minimum successful solution. Furthermore, in the system
learning the part, the new solution is retained in the case
base as a possible solution or part of the solution(s) to the
new coming problems. In the retain step, the system makes
the matching process between the solution case and the other
cases in the case base to prevent case overlap. In addition,
the retain step contains unlearning operation applied to
system cases to eliminate less needed cases and to prevent
overflow status in the case base.

2135

Fig. 1 The proposed iSRS model

Lastly, in the third situation, if there is no-match, the

system notifies the user that the new case does not match
any case that the system has. From the new case information
and the cases in the case base, the system implicitly finds a
solution. It gives the generated solution as a proposed
solution (in report form), which can help the user on what
the problems are with the SRS and what areas in the SRS
that need to be improved.

A. Cases Representation

In the iSRS, the case base is divided into indexed
partitions to allocate each case location. After the user has
gone through both QIM and QIC analytics, the obtained data
is represented in a case form to be manipulated by the CBR.
The QIM is represented by 11 features of criteria and QIC is
represented by 10 features of checklist categories that
describe the quality of a SRS. The QIM 11 features are
represented by 61 elements of the QII and the QIC 10
categories are represented by 50 elements of questions. Each
element has a value that is ranging from 1 to 5, where 5 is
the highest value. As a result, each case in the case base is
represented by 21 features and each feature takes several
elements and the overall elements in the case are 111
elements. The description of the case used in the system is
shown in Fig. 2.

Fig. 2 The representation of a case

In the case representation process, the features of the case
are indexed by , where; is the element cell, refers to
the feature number and is the element number of the feature
. During the quality measurements, the elements of each

case are weighted with the variable . However, is
assigned based on each element importance (value is; 0 ≤

 ≤ 1) and it also depends on the number of the elements
that correspond to a particular type of features.

B. Cases Selection and Retrieval

As mentioned earlier, the CBR has all the potentials and
features of a complete intelligent system by integrating it
with other techniques. Most of the AI techniques
implementation requires search processes to find a solution
or parts of a solution from the search space pool. Cases
retrieval is a very important step in the CBR cycle. The
system works on finding the most fitting case(s) among a
number of cases that exist in the case base. In the complex
CBR systems, cases are numerous and each case contents is
complex and very detailed. The solution that is generated
through CBR reasoning steps is extremely dependent on the
quality of the retrieved cases. Hence, cases retrieval
efficiency has a huge impact on the other steps and the
overall system performance.

1) Relevant Cases Selection Algorithm: In a CBR
system, cases selectivity depends on the ability of a selection
algorithm to identify attributes that enable the system to
measure the similarity level of each case. Only those cases
that have the potential to give solutions must be checked and
promoted by the algorithm. However, cases design and
retrieval mechanisms depend on the application type;
therefore, there is no specific way that can fit all CBR
systems. The selection algorithms might comprise a heuristic
search to reduce or limit the search space of solutions in case
bases with complicated application domains. heuristic search
is a type of search that uses the rule of thumb strategies for
an educated guess. It uses domain knowledge in heuristic
rules or procedures that are related to a usually speculative
formulation to direct the progress of a selection algorithm as
a guide in the investigation on the goal. In the cases retrieval
of the iSRS system, the Relevant Cases Selection (RCS)
algorithm of Fig. 3 and the Nearest Cases Selection (NCS)
algorithm of Fig. 4 are proposed.

The RCS algorithm uses mathematical calculations to find
the relevant cases from the cases that are retained in the base
of the case. The main parameter for the relevant cases
membership determination is the case evaluation result
which is stored separately from the other case components.
Fig. 3 illustrates the flow chart of the RCS algorithm where
Index[R] Relevant Cases is a one-dimensional array that
contains the relevant cases, and R is the index that represents
relevant cases number.

2136

No

Yes

Yes Empty
case base?

No

R=R+1

Retrieve case from
case base

CASE BASE

 Start

Case elements
values

Calculate evaluation
result of the case

Entering new
case values

Yes

No
New case?

New case evaluation
result

Retrieved case
evaluation result

 End

(Retrieved case evaluation result<= New
case evaluation result+ fitness value)

&
(Retrieved case evaluation result> =New

case evaluation result- fitness value)

Index[R] Relevant
Cases= Case elements

Fig. 3 The RCS algorithm

2) Nearest Cases Selection Algorithm: After all the
relevant cases are obtained, the Nearest Cases Selection
(NCS) algorithm is used to find the nearest cases to the
problem case. Mathematical calculations are also used in this
algorithm to find the nearest cases from the gathered
relevant cases as shown in Fig. 4. The relevant cases that
Index[R] Relevant Cases array contains are being matched
with the new case and the matching result is saved in Index[r]
Relevant Cases matching result array. After that, the system
finds the maximum match (Max) value and the minimum
match (Min) value from the Index[r] Relevant Cases
matching result array. The mean score of Max and Min is
calculated, and then only those cases whose matching result
are greater or equal to the mean score, and smaller or equal
to the Max are saved in Index [N] Nearest Cases array.
These are to be used by the fuzzy logic as nearest cases.

C. Fuzzy Case-based Reasoning

In the FCBR model, fuzzy logic is resident in the CBR
cycle (as shown in Fig. 5). Subsequently, by applying fuzzy
set logic to the ideal type, system cases can be more
understandable and they become as configurations of
attributes that appear to a different extent. Thus, the
differences in cases kind and degree can also be easily
studied and understood.

In the FCBR retrieve step, the system starts its cycle by
checking the attributes that each case has to measure the
similarity level between system cases and the problem case.

In the proposed framework, fuzzy logic starts matching the
selected nearest cases using the obtained attributes in
determining how much each case is close to the problem
case. The cases are then classified into three groups; no-
match, partial-match and complete-match cases.

Yes No

Yes
 End

No

Index[N] Nearest Cases=
Index[r] Relevant Cases

(Index[r] Relevant Cases
matching result<=Max)

&
(Index[r] Relevant Cases
matching result>=Mean)

r>R N=N+1 r=r+1

r=r+1

Finding the minimum match (Min)

Mean

Max

Min

Finding the maximum match (Max)

Mean=(Max+Min)/2

Index[r]
Relevant Cases
matching result

Yes

No

r>R

 Start

Index[R]
Relevant

Matching the relevant
cases with the new case

Index[r]
Relevant Cases
matching result

r=r+1

r=0

Fig. 4 The NCS algorithm

Adjusting the fuzziness of the matched cases depends on

some attributes that are obtained from the CBR case base
during heuristic retrieve step. However, if there is a partial-
match situation with the new case or problem case, the
approach does another level of the matching process.
Moreover, within the CBR cycle, matching processes to the
retain step are also required (as shown in Fig. 5). In short,
fuzzy logic in iSRS works on the following issues:

• Solving the fuzziness of cases matching in the retrieve
step (no-match, partial-match and complete-match).

• Solving the fuzziness of case features matching in the
retrieve step (i.e. no-match, partial-match and perfect-
match).

• Enhancing the input parameters of the revise step by
finding features similarity levels.

• In the retain step, matching system cases again (if
necessary) to assist the unlearning process by deciding
which case needs to be eliminated.

2137

R
e
vi

se
d
 c

a
se

Yes

No

New case

Yes

No

No

Yes

Yes

No

Last feature? 0.0 0.5 1.0

Features similarity level

Features Matching

Perfect-match?

Partial-match?

End

Reuse

No-match process

Revise

Partial-match?

Complete-match?

Complete-match?

Case base

Start

Cases Matching

Retrieve

Retain

New case?

Cases Matching

Yes

No

Yes

No

No

Yes

Fig. 5 The FCBR modelling flowchart diagram.

1) The Fuzzy Cases Matching: After retrieving the
nearest cases, the fuzzy logic approach starts matching the
nearest cases. In the retrieve step, the cases are classified
into three groups; no-match, partial-match and complete-
match cases. Table I shows a sample of fuzzy sets of FCBR
cases matching result. The approach classifies all the nearest
cases into the three matching categories.

TABLE I
FUZZY LOGIC CASES CLASSIFICATION

No-Match Partial-Match Perfect-Match

FN1
FN2
FNi

FP1
FP2
FPj

FC1
FC2
FCk

where CN represents no-match cases, i is no-match cases
number, CP represents partial-match cases, j represents
partial-match cases number, CC represents complete-match
cases, k represents complete-match cases number. The
addition of i, j, k is equal to the nearest cases number.

The fuzzy logic approach determines cases classifications
according to dynamic thresholds (i.e., thresholds values are
changing according to exploring processes that are held in
retrieving the nearest cases and mainly depending on their
number). The actual range of the no-match state starts from
0% until 10% matching level as shown in Fig. 6. It then falls
under a fuzzy area shared with the partial-match state until
30% matching level. The actual partial-match range starts
from 30% until 90% and it shares a fuzzy area with the
complete-match state that starts from 90% and ends at 99%.
Complete-match actual value is 100% case matching and it
shares another 9.9% fuzzy area with partial-match case state.

Fig. 6 The fuzzy cases matching

The cases matching classifier is used to find the matching

level of each case in order to find the belonging area of each
nearest case. If there is a complete-match state, the solution
is directly used by the system and if the system did not find a
complete-match case then, the highest level matching case(s)
is to be used to find a solution. Fig. 7 is an example of how
the system does the similarity measurement to determine the
nearest cases matching level, where each green scale areas
in the figure show the matched elements in the nearest cases
as compared with the new case.

Fig. 7 The fuzzy cases matching result example

Then, in the features matching process, if the system

detected partial-match state, each partial-match nearest case
features are to be matched with the new case features
independently to classify the features of each case to; no-
match, partial-match and perfect-match features as shown in
Fig. 5 and illustrated in IV.B.

2) Fuzzy Features Matching: As mentioned earlier,
each case contains 21 features and each feature has from 2 to
9 elements (i.e. what the feature represents in the QM and
QC methods) which mean each feature elements number
depends on the feature itself. fuzzy logic matches cases
features by matching the elements of the cases features with
problem case features elements. Table II shows a sample of
fuzzy sets of CBR case features a matching result.

2138

TABLE II
FUZZY LOGIC CASE FEATURES CLASSIFICATION

No-Match Partial-Match Perfect-Match

FN1
FN2
FNi

FP1
FP2
FPj

FC1
FC2
FCk

where FN represents features of the no-match state, i
represents features of no-match number, FP represents
features partial-match state, j represents features partial-
match number, FC represents features perfect-match state, k
represents features perfect-match number and the addition of
i, j, k is equal 21 which is the case features number.

The formulas that are used by the system in the
Fuzzification processes to set cases feature boundaries to
find the belonging to each of the no-match, the partial-match
and the perfect-match features states are as follows:

Let f(x) be the partial-match function. To determine
features partial-match state, the following formula is used:

 f(x) = n * r + x (1)

where n is the number of elements in the feature (features
elements numbers ranged (2-9)), x goes from 0 until 1 and r
is a random number (r: 0.299 <= r >= 0.499). The values
range is selected to fit features matching boundaries.

Let g(x) be the no-match function. To determine features
no-match state, the following formula is used:

 g(x) = j + 1 (2)

where j goes from -1 to [f(0) – 1].
Similarly, let h(x) be the perfect-match function. To

determine features perfect-match state, the following
formula is used:

 h(x) = n (3)

where x and n are the same variables that are used in
formulas (1) & (2).

Based on formulas (1), (2) and (3), the possible fuzzy
matching boundaries to the case features elements are shown
in Fig. 8. Each coloured boundary shows one probability,
that one of the case features might fall under. Different
features type take a different number of elements. That is
why the boundaries of the features matching level need to be
shifted according to the feature type or property.

Fig. 8 The eight probabilities of features matching

The main advantage of the feature matching process is to

simplify the revise step. Fig. 9 shows an example of features
matching result where each nearest case features are
classified into 1.0 which is a perfect-match feature, 0.5

which is a partial-match feature and 0.0 which is a no-match
feature.

Fig. 9 The feature matching result example

3) Unlearning: The notion of CBR does not only
denote a particular reasoning method, regardless of how the
cases are acquired, it also denotes a machine learning
paradigm that enables sustained learning through case base
modification in cases retaining process. In the CBR retain
step of the iSRS system, the learning process is made by
storing the information of the SRS analysis process in the
case base after converting it into a case form (as shown in
Fig. 2). Using fuzzy logic helps in the unlearning process in
the prevention of cases redundancy and avoiding overflow
situation to ensure case base efficiency. Similar to the
retrieve step, fuzzy logic will eventually perform matching
at the case level before retaining the new solution in the case
base (as explained in II.B).

The unlearning process includes eliminating the cases that
are considered not useful by using usability parameters to
each case. Usability parameters contain information about
each case state (i.e., number of time used, time of usage and
similarity level). From these parameters, the system can
determine the cases that are less useful and need to be
eliminated. As a result, the non-useful case is replaced with
the chosen solution (i.e., revised case).

III. RESULTS AND DISCUSSION

A. The RCS and NCS Algorithms

Experimental examples show that the two algorithms
select only several cases among 64 cases available in the
system case base. The performance analysis of the relevant
cases and nearest cases algorithms are shown in Fig. 10.
Where the black curve represents the new case indication
level, and the coloured curves represent the most similar
cases (i.e. the relevant cases and the nearest cases).

Fig. 10 shows how closely the nearest cases are to the
new case. This reflexes the importance of applying the RCS
and the NCS algorithms to the cases in the retrieve step and
before the revise step is initialized. Both algorithms have
succeeded in reducing the cases of the case base to less than
6% with acceptable similarity level. However, fuzzy logic
results and the two algorithms’ results depend on the new
case and case base contents.

The two algorithms are mainly useful in determining the
absolute state of the no-match and complete-match cases.
They also can suggest the cases that have partial-match (i.e.
the nearest cases) to the system with the absolute limit.
Moreover, to determine the absolute limit of the no-match,
partial-match and complete-match to the system cases in
which each case has 21 features and 111 elements is a very
challenging task. Thus, the system has to adopt other
technique like fuzzy logic to handle this issue.

2139

Fig. 10 The RCS algorithm versus NCS algorithms

B. Analysis and Discussion

This is to evaluate the performance of the cases selection,
retrieval and similarity measurement handled by the
illustrated approaches (the RCS and NCS algorithms and
fuzzy logic). The system runs over 64 cases with the
possibility of resulting the three matching states (no-match,
partial-match and complete-match).

In the first state (blue graph), most of the 64 cases initially
do not have a high similarity level with the new case as
shown in Fig. 11. Even after the RCS algorithm removal of
the irrelevant cases (90.6% of the entire cases), the similarity
level did not improve. Subsequently, the NCS algorithm
works on the relevant cases and is able to eliminate 40% of
the relevant cases but the cases similarity level remains
within the no-match range. As a result, the fuzzy logic
decision is no-match state as shown in Fig. 11.

Fig. 11 The similarity measurement of the cases.

Similarly, for the second state (red curve), the two
algorithms are able to reduce the 64 cases to 3 nearest cases
and hence, the fuzzy logic decision resulting in a partial-
match scenario (the similarity level is within the partial-
match region). Finally, in the third state (green curve), the
algorithms perform well by tuning down the 64 cases into 1
case as a result of a high similarity level with the new
(problem) case. This similarity level is within the complete-
match region as such, the fuzzy logic’s decision is a
complete-match. These three testing states illustrate the
ability of the fuzzy logic to improve the CBR reasoning cycle
by providing suitable example cases to be used in generating
solutions which leads to improving the overall performance
of the system.

IV. CONCLUSION

Inspection of Software Requirements Specification (iSRS)
is a successfully devised analysis tool that can measure the
extracted discriminating features of the SRS document and
then, guides the user to do the recommended improvements.
This system uses Quality Inspection Metrics (QIM) and
Quality Inspection Checklist (QIC) as SRS quality
measurement methods. In this work, the iSRS is supported
by a powerful decision-making mechanism that relies on
Fuzzy Case-Based Reasoning (FCBR) model in inspecting
the SRSs. The FCBR model has the benefit of using fuzzy
logic for cases matching process in case retrieve and retain
steps and it also simplifies the revise step by performing
cases features matching. With fuzzy logic implementation,
the cases that the system has are becoming more usable and
useful. Moreover, the model introduces the Relevant Cases
Selection (RCS) algorithm and the Nearest Cases Selection
(NCS) algorithm. The two algorithms successfully narrow
the search space of the cases selectivity options in order to
fetch the goal cases by employing certain match criteria.
With this in hand, the iSRS analysis results attain higher
accuracy. To our knowledge, there exists no methods or
standard that can lead us in obtaining QIM and QIC weights,

2140

hence the weights of the FCBR are user-defined. As a part of
future prospects, utilizing a genetic algorithm to set up and
adjust the QIM and QIC weights according to a database of
past experiences is to be proposed.

ACKNOWLEDGMENT

This project is partially sponsored by University Tenaga
Nasional (UNITEN) under the UNIIG Grant Scheme No.
J510050772. It is also partially supported by the Universiti
Tun Hussein Onn Malaysia (UTHM) under RMC Research
Fund Vot E15501.

REFERENCES
[1] D. Galin, Software Quality Assurance: From Theory to

Implementation: Pearson Education Limited, 2004.
[2] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt,

“Automated analysis of requirement specifications,” In Proc.
of the 19th international conference on Software engineering,
ACM, 1997, pp. 161-171.

[3] H. Mat Jani, and S. A. Mostafa, “Implementing Case-Based
Reasoning Technique to Software Requirements Specifications
Quality Analysis”, The International Journal of Advancements in
Computing Technology, (IJACT), Vol. 3, No. 1, 2011, pp. 23-31.

[4] A. A. Alshazly, A. M. Elfatatry and M. S. Abougabal, Detecting
defects in software requirements specification. Alexandria
Engineering Journal, 53(3), 513-527, 2014.

[5] H. Mat Jani, “Applying Case-Based Reasoning to Software
Requirements Specifications Quality Analysis System”, in The
Proceeding of The 2nd International Conference of Software
Engineering and Data Mining (SEDM 2010): IEEE/AICIT, Chengdu,
China, pp 140-144, 2010.

[6] M. A. Jubair, S. A. Mostafa, A. Mustapha and H. Hafit, “A Survey of
Multi-agent Systems and Case-Based Reasoning Integration,”
In 2018 International Symposium on Agent, Multi-Agent Systems and
Robotics (ISAMSR), IEEE, pp. 1-6, Aug., 2018.

[7] S. Nikolaidis, and C. Lazos, Fuzzy Case Identification in Case-Based
Reasoning Systems, Computational Intelligence, Volume 15,
Number 3, 2000.

[8] P. P. Bonissone, and L. M. Ramon, F4.3 Fuzzy Case-Based
Reasoning Systems: Citeseer, 2008 [online]. Available:
http://www.mendeley.com/research/f4-3-fuzzy-casebased-reasoning-
systems/.

[9] K. P. Sankar, and C. K. Simon, Foundation of Soft Case-
Based Reasoning: John Wiley & Sons, Inc., Hoboken. New
Jersey, 2004.

[10] S. A. Mostafa, M. S. Ahmad and M. Firdaus, A soft
computing modeling to case-based reasoning
implementation, International Journal of Computer
Applications, 47(7), 14-21, 2012.

[11] S. A. Mostafa, A. Mustapha, M. A. Mohammed, M. S.
Ahmad and M. A. Mahmoud, A fuzzy logic control in
adjustable autonomy of a multi-agent system for an
automated elderly movement monitoring application.
International journal of medical informatics, 112, 173-184,
2018.

[12] H. T. Nguyen, C. L. Walker and E. A. Walker, A first course in fuzzy
logic. CRC Press, 2018.

[13] S. A. Mostafa, R. Darman, S. H. Khaleefah, A. Mustapha, N.
Abdullah and H. Hafit, A general framework for formulating
adjustable autonomy of multi-agent systems by fuzzy logic.
In KES International Symposium on Agent and Multi-Agent
Systems: Technologies and Applications, Springer, Cham, pp.
23-33, Jun. 2018.

[14] M. K. A. Ghani, M. A. Mohammed, M. S. Ibrahim, S. A. Mostafa
and D. A. Ibrahim, Implementing an Efficient Expert System for
Services Center Management by Fuzzy Logic Controller. Journal of
Theoretical & Applied Information Technology, vol 95,13, 2017.

[15] M. A. Mohammed, M. K. A. Ghani, N. A. Arunkumar, O. I. Obaid, S.
A. Mostafa, M. M. Jaber and D. A. Ibrahim, Genetic case-based
reasoning for improved mobile phone faults diagnosis. Computers &
Electrical Engineering, 71, 212-222, 2018.

[16] R. Elaine, K. Kevin, and B. Shivshankar, Artificial Intelligence (3nd
Edition): McGraw-Hill Education, India, 2009.

[17] Firesmith, D. (2003). Specifying good requirements. Journal of
Object Technology, 2(4), 77-87.

[18] J. D. Blaine and J. Huang, Software quality requirements: how to
balance competing priorities. IEEE Software, 25(2):22–24, 2008.

2141

