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Abstract — Back Propagation (BP) is commonly used algorithm that optimize the performance of network for training multilayer 
feed-forward artificial neural networks. However, BP is inherently slow in learning and it sometimes gets trapped at local minima. 
These problems occur mailnly due to a constant and non-optimum learning rate (a fixed step size) in which the fixed value of learning 
rate is set to an initial starting value before training patterns for an input layer and an output layer. This fixed learning rate often 
leads the BP network towrds failure during steepest descent. Therefore to overcome the limitations of BP, this paper introduces an 
improvement to back propagation gradient descent with adapative learning rate (BPGD-AL) by changing the values of learning rate 
locally during the learning process. The simulation results on selected benchmark datasets show that the adaptive learning rate 
significantly improves the learning efficiency of the Back Propagation Algorithm. 
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I. INTRODUCTION 

 
The research on artificial neural networks (ANN) is very 

popular nowadays and has made considerable progress in 
recent years. Among the most popular tasks using ANN, we 
can mention pattern recognition, forecasting, and regression 
problems [1-2]. ANNs is known as diagnostic techniques 
that sculpted on the neurological functions of the human 
brain. Basically, ANNs works by processing information 
like biological neurons in the brain which consists of small 
processing units known as Artificial Neurons. Moreover, 
artificial neurons can be trained to perform complex 
calculations. In addition, an artificial neuron also can be 
trained to store, recognize, estimate and adapt to new 
patterns without having the prior information of the function 
it receives. Thus, this ability of learning and adaptation of 
ANNs has made it superior to the conventional methods 
used in the past [3,4,5].  

The basic structure of ANN consists of an input layer, one 
or more hidden layers and an output layer of neurons where 
every node in a layer is connected to every other node in the 
adjacent layer.  The popular algorithm that uses in ANN is 
Back Propagation (BP) algorithm [6]. The BP algorithm 
learns by calculating the errors of the output layer to find the 

errors in the hidden layers. This is the main reason in   
qualitative ability that makes BP is highly suitable to be 
applied on problems in which no relationship is found 
between the output and the input. Despite the popularity and 
provide successful solutions, BP also known for some 
drawbacks. The main drawback of BP occur because it uses 
gradient descent (GD) learning which requires careful 
selection of parameters such as network topology, initial 
weights and biases, learning rate, activation function and 
value for the gain in the activation function [7]. Despite of 
all those drawbacks, the popularity and the ability of back 
propagating learning is still increasing. Essentially, because 
it is robust and suitable for problems in which no 
relationship is found between the output and inputs. 
Moreover, until today many researches are still focusing on 
improving BP algorithm. This includes optimizing some 
parameters such as momentum, activation and learning rate 
[7].  

In standard BP learning process, when the algorithm 
successfully computes the correct value of the weight, it can 
converge faster to the solution; otherwise, the convergence 
might be slower or it might cause divergence. In order to 
prevent this problem from occurring, the step of gradient 
descent (GD) is controlled by a parameter called the learning 
rate. Where the learning rate will determine the length of 
step taken by the gradient to move along the error surface [8]. 

1693

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/325990594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Moreover, to avoid the oscillation problem that might 
happen around the steep valley, the fraction of last weight 
update is added to the current weight update and the 
magnitude is adjusted by a parameter called momentum.  

In this paper, instead of using a fix learning rate for the 
whole learning process, the learning rate is changed 
adaptively in order to speed up the learning process of the 
neural network.The paper is organized as follows: Section II 
discusses the standard back propagation (BP) algorithm and 
some of the improvements that been introduced by 
researchers on back propagation algorithm. In addition this 
section also introduces the proposed method for improving 
BP’s training efficiency. In Section III, the robustness of the 
proposed algorithm is evaluated by comparing convergence 
rates for Back Propagation Gradient Descent (BPGD) and 
Back Propagation Gradient Descent with Adaptive Learning 
Rate (BPGD-LR) on several benchmark datasets.  The paper 
is concluded in the Section IV. 

II. MATERIAL  AND METHOD 

One of the most popular learning algorithms for ANN is 
back propagation algorithm. A back-propagation algorithm 
belongs to the error connection learning type, whose 
learning process can be broken into two parts which is input 
feed-forward propagation and error feed-back propagation. 
The error is propagated backward when it appears between 
the input and the expected output during the feed-forward 
process. The best part of BP algorithm is that during the 
back-propagation, the connection weights values between 
each layer of neurons are corrected and gradually adjusted 
until the minimum output error is reached. 

Gradient descent (GD) technique is expected to bring the 
network closer to the minimum error without taking for 
granted the convergence rate of the network. Most of 
gradient based optimization methods use the following 
gradient descent rule: 
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The learning rate parameter is introduced to generate the 
slope that moves downwards along the error surface to 
search for the minimum point. The slow rates of 
convergence are due to the existence of local minima. 
Furthermore, the convergence rate is relatively slow for a 
network with more than one hidden layer. Apart from the 
gradient and learning rate there are some other factors that 
play an important role in the assignment of proper change to 
the weight specifically in term of its sign. These factors are 
momentum, activation function and gain in activation 
function. Moreover, the momentum is used to overcome the 
oscillation problem. An outline of the standard back 
propagation training algorithm is given by Qin [9] as follows: 

Step 1: Randomly initialize weights 
and offsets. Set all weights 
and node offsets to small 
random values. 

Step 2: Load input and desired output 
and set the desired output to 
1. The input could be new on 
each trial or samples from a 
training set. 

Step 3: Calculate actual outputs by 
using the sigmoid nonlinearity 
formulas to calculate outputs. 

Step 4: Adjust and Adapt weights. 

Step 5: Repeat the process by going to 
Step 2 
 

Despite its popularity, back-propagation neural networks 
(BPNN) have several limitations such as the slow rate of 
convergence. Other than that, the use of BPNN will consume 
computation time. Moreover, there are local minimum points 
in the goal function of BPNN. Since the convergence rate of 
BPNN is very low, the network easily becomes unstable and 
not suitable for large problems data sets. Furthermore, the 
convergence behaviour of BPNN also depends on the choice 
of initial values of connection weights and other parameters 
used in the algorithm such as the learning rate and the 
momentum term [10]. Thus, BPNN needs improvement to 
perform well and overcome those drawbacks. 

One of the most effective parameter that means to 
accelerate the convergence of back propagation learning is 
the learning rate which values lies between [0,1]. Controlling 
learning rate value has become a crucial factor for neural 
network learning algorithm beside the neuron weight 
adjustments for each iteration during the training process 
because it affects the convergence rate. The learning rate 
parameter is used to determine how fast the BP method 
converges to the minimum solution [11]. The larger the 
learning rate, the bigger the step and the faster the 
convergence. However, if the learning rate is made too large 
the algorithm will become unstable. On the other hand, if the 
learning rate is set to too small, the algorithm will take a 
long time to converge [12]. Many researches [13,14,15,16] 
used different strategies to speed up the convergence time by 
varying the learning rate. The best strategies in gradient 
descent BP is that it utilizes larger learning rate when the 
neural network model is far from the solution and smaller 
learning rate when the neural net is near the solution [17]. 

Some researchers also demonstrated that using an adaptive 
learning rate will attempt to keep the learning step size as 
large as possible while keeping learning stable. It is done by 
making the learning rate responsive to the complexity of the 
local error surface.  
 Another possible way to improve the convergence rate is 
by adding another parameter called momentum to the 
adjustment expression. This can be accomplished by adding 
a fraction of the previous weight change to the current 
weight change. Some researchers [18] demonstrated that low 
momentum can causes weight oscillations and instability and 
thus preventing the network from learning and sometimes 
get stuck in local minima, whereas, the high value of 
momentum can cripple the network adaptability. Therefore, 
for stable BP training, the momentum factor should be kept 
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less than one since momentum factors close to unity is 
needed to smooth error oscillation. In addition, during the 
middle of training, when steep slope occurs, a small 
momentum factor is recommended [19].  

There are various approaches that had been introduced by 
researchers to improve BP learning algorithm in term of 
adjusting learning parameters such as learning rate, 
momentum and gain tuning of the activation function.  
Those approaches showed that they significantly speed-up 
the network convergence and avoid getting stuck in local 
minima. Moreover, researchers also proposed another 
techniques by substituting BP training with more efficient 
algorithms such as Levenberg-Marquardt algorithm, 
Resilient back propagation algorithm and many others as 
presented in [14]. Other approach modified the existing back 
propagation learning algorithm with adaptive gain by 
adaptively change the momentum coefficient together with 
learning rate. The results indicated that the proposed 
algorithm can hasten up the convergence behavior as well as 
slide the network through shallow local minima compare to 
conventional BP algorithm [15].  
 The same author then proposed an algorithm that use of 
local activation functions of neurons where in each hidden 
nodes has its own activation function for each training 
pattern. The author proposed a technique that adjusted the 
weights by the adaptation of gain parameters together with 
adaptive momentum and learning rate value during the 
learning process. The experiments results as presented in [16] 
demonstrated that the proposed method improved 
significantly the performance of the learning process. 
 Later, another research proposed the Global Quick-prop 
strategy that behaves faster, predictably and reliably. The 
Global Quick-prop outperforms the classical method in the 
number of successful runs. However, the delta-bar-delta 
method or the Quick-prop method introduces additional 
problem–dependent heuristic learning parameters to alleviate 
the stability problem. The advantage of using this technique 
was shown in [20] and it indicated that it can find the proper 
learning rate that compensates for the small magnitude of the 
gradient in the flat regions and dampens the large weight 
changes in highly deep regions. 

There is also a research that used globally convergent 
first-order batch training algorithms which employ local 
learning rates [21]. These algorithms employed heuristic 
strategies to adapt the learning rates at each iteration and 
require fine tuning additional problem-dependent learning 
parameters that help to ensure sub-minimization of the error 
function along each weight direction. The advantages of this 
technique were it provided a condition under which global 
convergence was guaranteed and introduced a strategy for 
adapting the search direction and tuning the length of the 
minimization step. Besides that, the approach was able to 
decrease the error by searching a local minimum with small 
weight steps. As a result it managed to avoid oscillations and 
ensure sub-minimization of the error function along each 
weight direction. 

Therefore, for the research contribution of this paper we 
suggest a simple modification to the gradient based search 
direction. Instead of global learning rate which used fix 
learning rate for the whole learning process, we introduce a 

new way to change adaptively the learning rate locally in 
order to speed up the learning process of the neural network.   

We proposed the following iterative algorithm that 
changed the gradient based search direction by using 
adaptive learning rate value. Whereas, the gradient based 
search direction is a function of the vector gradient of error 
with respect to weights. 

 
Randomly initialize the initial weight 
vector and set the learning rate values with 
unit values. Repeat the following Steps 1 
and Step 2 on an epoch-by-epoch basis until 
the targeted error minimization criteria are 
satisfied.  
Step 1.Set a unit values for learning 

rate value into the activation 
function, calculate the gradient 
of error with respect to weights 
by using Equation (5), and 
gradient of error with respect 
to the learning rate parameter 
by using Equation (7) 

Step 2. Use the gradient weight vector 
and gradient of learning rate 
vector calculated in Step 1 to 
calculate the new weight vector 
and vector of new leaning rate 
values for use in the next epoch. 

 
A simple multilayer feed-forward network can be consider 

as used in a standard back propagation algorithm [12]. For a 

particular input pattern0o , the desired output is the teacher 

pattern T
nttt ]...[ 1= , and the actual output isLko , where L  

denotes the output layer. The error function on that pattern is 
defined as, 
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Where, f  is any function with bounded derivative.  
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This information in Equation (4) is now used to derive an 
expression for modifying gain values for the next epoch. As 
for common for BP training, most of gradient based 
optimization methods used the following gradient descent 
rule:  
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Thus, in this paper we proposed a new method where the 
value of learning rate )(nη at stepn  and the gradient based 

search direction at step n is adaptively changed as the 
standard equation for search direction is as follows:
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The proposed method change the gradient based 
search direction by modifying and varying the 
learning rate value to yield  
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The derivation of the proposed procedure for calculating the 
learning rate together with gain value is based on the 
gradient descent algorithm.  The error function as defined in 
Equation (1) is differentiated with respect to the weight 

value s
ijw . The chain rule yields,  
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E
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∂−=δ . In particular, the first three factors 

of Equation (7) indicate that the following equation 
holds:  
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It should be noted that, the iterative formula as 
described in Equation (8) to calculate s1δ  is as the 

same as used in the standard back propagation 
algorithms [10] except for the appearance of the gain 
value in the expression. The learning rule for 
calculating weight values as given in Equation (5) is 
derived by combining (7) and (8).  

In this approach, the gradient of error with respect to the 
learning rate value together with gain parameter can also be 
calculated by using the chain rule as previously described; it 
is easy to compute as  
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Then the gradient descent rule for the learning rate 

and gain value becomes, 
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The new learning rate and gain value is updated at 

the end of every epoch by using a simple gradient 
based method as given by the following formula, 
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As been mentioned earlier that in gradient descent method, 

the search direction at each step is given by the local 
negative gradient of the error function, and the step size is 
determined by a learning rate parameter. Suppose at step n  
in gradient descent algorithm, the current weight 

vector is nw , and a particular gradient based search 

direction is nd . The weight vector at step n+1 is 
computed by the following expression:  

 nnnn dww η+=+ )1(    (13) 

where, nη  is the learning rate value at step n .   

By using the proposed method, the gradient based search 
direction is calculated at each step by using Equation (6).  

III.  RESUTS AND DISCUSSION 

The performance of the proposed algorithm is evaluated 
using five benchmark datasets: Australian credit card 
approval dataset, diabetes dataset, glass dataset, heart dataset 
and horse colic dataset. All benchmark datasets were taken 
from UCI learning repository [22]. There are 30 trials in a 
set of simulation and each set were simulated by two 
algorithms which are (a) Back Propagation Gradient Descent 
(BPGD) and (b) Back Propagation Gradient Descent with 
Adaptive Learning Rate (BPGD-AL). Further analysis will 
be done to summarize the best algorithm for each set in 
terms of epochs or speed of convergence, computation time 
or CPU time and classification accuracy. The simulation 
results were programmed by using the Matlab R2010b. 
Meanwhile, in Table 1 shows some values that been used in 
this simulation. 

TABLE I 
THE VALUE OF VARIABLE THAT USED IN THE SIMULATION 

Variables Value 
Hidden nodes 5 
Target error 0.01 

Maximum epoch 5000 
Trials total 30 

A. Australian credit card dataset  

For the first dataset, it is about Australian credit card 
approval dataset consisted of data for credit card applications. 
In order to protect privacy of customers and confidentiality 
of data, all attribute information is changed to meaningless 
symbols. Furthermore, dataset is consisted of attributes that 
are continuous, nominal with small number of values, and 
nominal with large number of values. Dataset has fourteen 
attributes with six continuous and eight categorical data. For 
BPGD algorithm, the best coefficient momentum is 0.5 and 
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the best of learning rate is 0.3. Whereas, for the proposed 
BPGD-AL algorithm, the best coefficient momentum is 0.5 
and the best of range learning rate is within [0.2, 0.3]. Table 
2 shows the comparison performance between BPGD and 
BPGD-AL algorithm for Australian credit card approval 
dataset. 

TABLE II 
THE COMPARISON PERFORMANCE BETWEEN BPGD AND BPGD-AL 

ALGORITHM FOR AUSTRALIAN CREDIT CARD APPROVAL DATASET. 

 BPGD BPGD-AL 
Epochs 1133 850 
CPU Time (s) 39.19 3.96 
Accuracy (%) 92.52 88.46 
SD 604 400 
Success  30 30 
Failure  0 0 

 
From Table 2, clearly demonstrate that the proposed 

BPGD-AL algorithm performs well on Card dataset. The 
proposed BPGD-AL converges to global minima in 3.96 
seconds for the CPU Time with the average accuracy of 
88.46%. In addition, in term of epochs, BPGD-AL performs 
very well with 850 epochs as compared to BPGD with 1133 
epochs. Figure 1 shows the bar graph of comparison 
performance between BPGD and the proposed BPGD-AL 
algorithm for Australian credit card approval dataset. 
 

 
Fig 1: The comparison performance between BPGD and BPGD-AL 

algorithm for Australian credit card approval dataset 
 

From the Figure 1, we can see in term of epoch the 
proposed BPGD-AL algorithm performed the best with 850 
epochs as compared to the BPGD algorithm with 1133 
epochs. Furthermore, in term of CPU time, the proposed 
BPGD-AL algorithm also shows the best performance with 
3.96 seconds as compared to BPGD algorithm with 39.19 
seconds. However, in term of accuracy, BPGD algorithm 
manages to classify better with the average accuracy of 
92.52% as compared to the proposed BPGD-AL algorithm 
which is 88.46%. 

B. Diabetes dataset 

The Diabetes dataset is taken from UCI Machine Learning 
website. The dataset describes that diabetes patient records 
were obtained from two sources: an automatic electronic 
recording device and paper records. Therefore, this dataset 
consists of 384 instances where 193 instances were used for 
testing. As for the attributes, there are 10 attributes where 
eight attributes are for input and two attributes are for 
output. For BPGD algorithm, the best of coefficient 
momentum is 0.3 and the best of learning rate is 0.3. 
Whereas for the proposed BPGD-AL algorithm, the best 

coefficient momentum is 0.3 and the best of range learning 
rate is [0.3, 0.4]. Table 3 shows the comparison performance 
between BPGD and the proposed BPGD-AL algorithm for 
Diabetes dataset. 

TABLE III 
THE COMPARISON PERFORMANCE BETWEEN BPGD AND BPGD-AL 

ALGORITHM FOR DIABETES DATASET. 

 BPGD BPGD-AL 
Epochs 2664 2595 
CPU Time (s) 48.08 26.94 
Accuracy (%) 77.91 77.90 
SD 2664 2595 
Success  30 30 
Failure  0 0 

 
In this dataset, BPGD algorithm performs slightly better 

than the proposed BPGD-AL algorithm in term of the 
average of accuracy with 77.91%. In term of CPU time, the 
proposed BPGD-AL outperforms with the average of 26.94 
seconds. As for the number of epoch, the proposed BPGD-
AL converges to global minima within 2595 epoch rather 
than BPGD with 2664 epochs. Hence, in this dataset, the 
proposed BPGD-AL has outperformed BPGD in terms of 
epochs and CPU time. Figure 2 shows the bar graph of 
comparison performance between BPGD and the proposed 
BPGD-AL algorithm for Diabetes dataset. 
  

 
Fig 2: The comparison performance between BPGD and BPGD-AL 

algorithm for Diabetes dataset 
 
Figure 2 clearly demonstrate that the proposed BPGD-AL 

algorithm outperformed BPGD with the best performance in 
term of epoch and CPU time with 2595 epochs and 26.94 
seconds of CPU time as compared to BPGD algorithm with 
2664 epoch and 48.08 seconds for CPU time. But, in term of 
accuracy, BPGD algorithm performs slightly better with the 
average of 77.91% as compared to the proposed BPGD-AL 
with average accuracy of 77.90%.   

C. Glass dataset 

The next benchmark problem dataset is glass dataset. This 
dataset was collected by B. German on fragments of glass 
encountered in forensic work. The glass dataset is used for 
separating glass splinters into six classes, namely float 
processed building windows, non-float processed building 
windows, vehicle windows, containers, tableware, or head 
lamps. The glass dataset were consist of 13 inputs and two 
outputs which contained 214 instances and 10 attributes. For 
BPGD algorithm, the best of coefficient momentum is 0.2 
and the best of learning rate is 0.4. Whereas, for the 
proposed BPGD-AL algorithm, the best coefficient 
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momentum is 0.2 and the best of range learning rate is [0.3, 
0.4]. Table 4 shows the comparison performance between 
BPGD and the proposed BPGD-AL algorithm for Glass 
dataset. 

TABLE IV 
THE COMPARISON PERFORMANCE BETWEEN BPGD AND BPGD-AL 

ALGORITHM FOR GLASS DATASET. 

 BPGD BPGD-AL 
Epochs 2083 2365 
CPU Time (s) 44.94 22.31 
Accuracy (%) 79.68 77.03 
SD 2083 2365 
Success  30 30 
Failure  0 0 

 
From Table 4, clearly we can see that the proposed 

BPGD-AL algorithm show a very good performance in term 
of CPU time with 22.31 seconds as compared to BPGD 
algorithm which took 44.94 seconds. But in term of epoch 
and accuracy the BPGD algorithm show the best 
performance with 2083 epochs and average accuracy is 
79.68% as compared with to the proposed BPGD-AL 
algorithm which took are 2365 epochs and average accuracy 
is 77.03%. Figure 3 shows the bar graph of comparison 
performance between BPGD and the proposed BPGD-AL 
algorithm for Glass dataset. 
 

 
Fig. 3: The comparison performance between BPGD and BPGD-AL 

algorithm for Glass dataset 
 

Figure 3 shows the results of simulation for glass dataset 
on BPGD and the proposed BPGD-AL algorithm. In term of 
epoch the BPGD algorithm outperforms the proposed 
BPGD-AL algorithm with 2083 epochs. In term of CPU 
time, the proposed BPGD-AL algorithm performs the best of 
average of CPU time with 22.31 seconds as compared to 
BPGD algorithm which took 44.94 seconds. Hence, in term 
of accuracy the BPGD algorithm shows the best of average 
with 79.68% as compared to the proposed BPGD-AL 
algorithm which took 77.03%. This is probably because the 
dataset that been used not suit for this simulation and that is 
why it did not performed very well. 

D. Heart dataset 

The fourth benchmark problem dataset is heart dataset. 
The dataset were collected from UCI Machine learning 
repository which consist of 303 instances, 13 inputs, one 
output and 75 attributes. This dataset deals with all the 
symptoms of a heart disease present in a patient on the basis 
of information given as input. For BPGD algorithm, the best 

of coefficient momentum is 0.7 and the best of learning rate 
is 0.3. Whereas, for the proposed BPGD-AL algorithm, the 
best coefficient momentum is 0.7 and the best of range 
learning rate is [0.2, 0.3]. Table 5 shows the comparison 
performance between BPGD and the proposed BPGD-AL 
algorithm for Heart dataset. 

TABLE V 
THE COMPARISON PERFORMANCE BETWEEN BPGD AND BPGD-AL 

ALGORITHM FOR HEART DATASET. 

 BPGD BPGD-AL 
Epochs 1783 1329 
CPU Time (s) 63.58 6.38 
Accuracy (%) 90.30 88.46 
SD 1783 1329 
Success  30 30 
Failure  0 0 

 
As demonstrated in the Table 5, the proposed BPGD-AL 

has it best average CPU time with 6.38 seconds. Moreover, 
for epochs, BPGD-AL also outperformed where it converges 
to global minima just within 1329 epochs. In term of 
accuracy, BPGD is the highest average accuracy with 
90.30% as compared to the proposed BPGD-AL. Figure 4 
shows that the bar graphs of comparison performance 
between BPGD and BPGD-AL algorithm for Heart dataset.  

 

 
Fig 4: The comparison performance between BPGD and BPGD-AL 

algorithm for Heart dataset 
 

Figure 4 shows that the proposed BPGD-AL performed it 
best in terms of epoch and CPU time but not very well in 
term of accuracy. In term epoch, the proposed BPGD-AL 
algorithm achieved 1329 while BPGD algorithm took 1783. 
On the other hand, in term of CPU time the proposed BPGD-
AL algorithm took only 6.38 seconds while BPGD algorithm 
need 63.58 seconds to converge. Hence, in term of accuracy, 
BPGD algorithm shows the best average accuracy with 
90.30% and the proposed BPGD-AL algorithm with 88.46%. 

E. Horse Colic dataset 

The fifth benchmark problem dataset is Horse Colic dataset 
and was collected from UCI Machine learning repository. 
Horse Colic dataset consist of 182 instances, 58 inputs, three 
outputs and 27 attributes. For BPGD algorithm, the best of 
coefficient momentum is 0.5 and the best of learning rate is 
0.4. Whereas, for the proposed BPGD-AL algorithm, the 
best coefficient momentum is 0.5 and the best of range 
learning rate is [0.3, 0.4]. Table 6 shows the comparison 
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performance between BPGD and the proposed BPGD-AL 
algorithm for Horse Colic dataset. 

TABLE VI 
THE COMPARISON PERFORMANCE BETWEEN BPGD AND BPGD-AL 

ALGORITHM FOR HORSE COLIC DATASET. 

 BPGD BPGD-AL 
Epochs 2729 2385 
CPU Time (s) 97.90 25.14 
Accuracy (%) 80.08 79.09 
SD 2729 2385 
Success  27 30 
Failure  3 0 

 
Based on Table 6, it shows that the proposed BPGD-AL 

algorithm achieved the best in term of epoch as compared to 
BPGD algorithm with 2385 epochs and CPU time is 25.14 
seconds while BPGD took 2729 epochs and 97.90 seconds. 
But in term of accuracy, the BPGD algorithm still perform 
better with 80.08% as compared to the proposed BPGD-AL 
algorithm which took 79.09%.  Figure 5 shows that the bar 
graphs of comparison performance between BPGD and 
BPGD-AL algorithm for Horse Colic dataset.  
 

 
Fig 5: The comparison performance between BPGD and BPGD-AL 

algorithm for Horse Colic dataset 
 

Figure 5 clearly shows that the proposed BPGD-AL 
algorithm out performed BPGD in term of epoch and CPU 
time as compared to BPGD algorithm. In term of epoch, the 
proposed BPGD-AL algorithms need 2385 epochs while 
BPGD took 2729 epochs. Hence, in term of CPU time, the 
proposed BPGD-AL algorithms need only 25.14 seconds to 
converge while BPGD is 97.90. But in term of accuracy, 
BPGD still performed the best with average accuracy of 
80.08% while the proposed BPGD-AL is 79.09%.   

IV.  CONCLUSION 

In this paper, an improved back propagation with adaptive 
learning rate (BPGD-AL) was proposed to overcome the 
slow learning of the original BPGD algorithm. The 
efficiency of the proposed BPGD-AL was investigated by 
comparing the performance with BPGD algorithm on several 
classification benchmark datasets taken from the UCI 
Machinery Learning Repository. The simulation results on 
Australian credit card approval demonstrated the 
performance of the proposed BPGD-AL algorithm 
outperforms in terms of number of epochs i.e. 850 and 
convergence time of 3.96 seconds as compared to BPGD 
algorithm. For diabetes dataset, the proposed BPGD-AL 

algorithm also outperforms in terms of number of epochs i.e. 
2595 and a convergence time of 26.94 seconds. Moreover, in 
glass dataset, the performance of the proposed BPGD-AL 
algorithm outperforms in terms of convergence with 22.31 
seconds when compared with BPGD algorithm. For heart 
disease dataset, the proposed BPGD-AL algorithm 
outperforms in terms of 1329 epochs and 6.38 seconds. The 
above results clearly show that the proposed BPGD-AL 
algorithm significantly improved the computational 
efficiency of the training process. In the future, this 
algorithm will be tested against other BP methods especially 
the hybrid ones and sensitivity analysis on the results will 
also be performed to find the concreteness in the results. 
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