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Abstract— Real-time dead reckoning navigation is important for supplying information on the current position of an autonomous 
mobile robot to complete its task, especially in certain areas such as hazardous and GPS-denied areas. Monocular visual odometry is 
a good choice as it is one of the dead reckoning navigation methods, which only uses a single camera. For real-time task, visual 
odometry requires fast feature extraction without ignoring its accuracy. Therefore, we propose the usage of a hybrid feature, i.e., 
Censure feature detector and upright SURF feature descriptor, as feature extraction. The scale ambiguity for the monocular visual 
odometry becomes a challenging problem. Without 85 Part 1 - 27 Paper additional information from other sensors, estimating the 
scale is solely the only way. In our proposed work, distance ratio is employed to tackle such problems. Experimental results show the 
performance of the designed algorithm. A real example of running the proposed algorithm under an embedded device is also 
provided for demonstrating its real-time capability. 
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I. INTRODUCTION 

Nowadays, the development of a mobile robot is very fast 
due to its various deployment in a vast kind of applications, 
ranging from surveillance to the high-risk missions. 
Information of the current position is one of an important 
thing for the mobile robot. In certain areas such as hazardous 
and GPS-denied areas, mobile robots are required to be 
aware of their current position. Dead reckoning navigation is 
one of the most commonly used technique with massive kind 
of sensors to solve the problem. Among these sensors, the 
camera becomes an exciting option because it provides rich 
information, yet it is very cheap. 

Estimating the ego-motion, i.e., the position and orientate 
ion, using frame series of one camera or more is called 
visual odometry (VO) [1]. In general, the visual odometer 
algorithm consists of three steps; extracting the features, 
matching, and estimating the camera pose. Later, the feature 
extraction incorporates feature detection and description. 
Camera pose estimation can be done using feature 
correspondence between two consecutive frames by solving 
the epipolar constraint. 

Different schemes of VO have been developed. These 
different schemes include Kinect based VO [2], monocular 
VO, and multicamera VO. However, most of works on VO 
used monocular vision [3]-[6]) and stereo vision [7] -[9]. 

Stereo VO utilizes two cameras and has the capability to 
estimate the absolute scale since it knows the relative pose. 
In contrast to stereo VO, the monocular scheme needs the 
prior information of the scale, which is known as scale 
ambiguity [10]. The prior information regarding the scale 
can be obtained by using external information like IMU, or 
GPS. However, in this work, the only sensor used is the 
camera. However, it is possible to compute relative scales 
for the subsequent transformations. In the last few years, by 
using only single camera, several approaches have been 
developed to tackle this problem. Faundrofer et al. [11] used 
the optimization method that minimized the re-projection 
error to recover the scale. However, due to real-time 
constraint, the optimization approach can consume more 
computation time. Choi et al. [10], and Nishitani et al. [12] 
used the information from camera height relative to the 
ground and constructed 3D point on the ground plane by 
using homographic. Similar approach then introduced by 
Zhou et al. [13]. The difference from the previous approach 
is they limited the 3D ground point in a specified area.  In 
practical situation, it has a high sensitivity to the noise [11]. 
Therefore, to fasten the computation time with reliable scale 
estimation, only information of correspondence 3D points 
from three consecutive frames can be used. The first two 
consecutive frames become the scaled motion, and the scale 
of the second consecutive frame is calculated using distance 
ratio of the correspondence 3D points [1]. 
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In this work, we try to alleviate the limitations from the 
previous mentioned approaches above. Our main 
contribution lies in the usage of hybrid feature detectors and 
its combination with distance ratio for solving the camera 
scale problems. Here we employ Censure feature detector 
and Upright SURF as feature descriptor. These algorithms 
are employed due to their fast computation and stability to 
detect the same feature across viewpoint change [14] [15]. 
Furthermore, the scale ambiguity for the monocular visual 
odometry, which becomes a challenging problem in a 
normal case is diminished using distance ratio method. 

II. MATERIAL AND METHOD 

A. Modeling the Camera 

Here we assume a pinhole camera model, as shown in Fig. 
1. 

 

 
Fig. 1 Geometry of pinhole camera, where C describes the camera center 
and p denotes the principal point. 

 
X represents the world point denoted by the homogeneous 

4-vector (X, Y, Z, 1)T, x is image point denoted by a 
homogeneous 3-vector, and P is the homogeneous camera 
projection matrix. Subsequently, the projected image point is 

� =  P�  (1) 
 
Projection matrix P consists of internal and external 

camera parameters. The internal camera parameters consist 
of focal length f, and principle point (pxpx, ) in a matrix K. 
While the external camera parameters consist of camera 
orientation R and camera position t in world coordinate 
system. 

  (2) 

 
Subsequently, equation (1) can be expressed as 

  (3) 
 

B. Censure Feature Detector 

 
Fig. 2 Center surround filter for the proximation of Laplacian used in 
Censure 

 
The main reason for choosing this feature detector is it 

has good stability, accuracy, and computation time. All of 
them are the recipe to make a good real-time task like visual 
odometry [14]. 

There are several steps to detect features from the image, 
first is to calculate the extrema in a local neighborhood using 
a simplified center-surround filter in all scales. Finally, the 
extremes are filtered by taking out the weak corner 
responses of the Harris measurement. 

Approximation of laplacian employs bi-level 
multiplication by either 1 or −1. Figure 2 shows the center-
surround filters used here that is a circle with two 
overlapping squares: upright and 45 degrees rotated, where 
every scale is denoted by different block size n.  

Bi-level filter is the key for Censure because of its 
efficiency. The box filter is calculated by integral images 
[16]. Since the filter shape is a polygon, we employ an 
extended version of integral images. Each trapezoidal area is 
calculated using two different slanted of the integral images, 
where the summation of pixels denotes an angled area. 
Parameter α is used to control the degree of slant (skew) 

 

   (4) 

 
Where α = 0 represents the standard rectangular integral 

image. When α < 0, the summed area skews to the left, and 
reciprocally. (Fig. 3 left). 

 

 
Fig. 3 Skewed integral images for building trapezoidal áreas. 

Afterward, a response is subdued when optimal responses 
appear in a local neighborhood since it will be repeatable. 
Alternatively, unstable. Features on an edge or line are also 
not stable. Thus, a threshold is applied to remove those 
responses. The second-moment matrix of the response 
function is employed to remove these responses. 

 

  (5) 

Lx and Ly represent the derivatives of the response 
function L along x and y. After the Harris measure is 
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obtained, its trace and determinant are employed to calculate 
the ratio of principal curvatures. 

C. Upright Surf Descriptor 

Computing SURF descriptor requires two steps: obtaining 
a consistent orientation using information from a circular 
region of the interesting point and constructing a square 
region aligned up to the chosen orientation. Here we utilize 
the upright version of SURF descriptor (U-SURF) which is 
variant to the image rotation and faster to calculate. 

Extracting the descriptors requires building a square 
region centered on the interesting point, with a window size 
of 20x20. The region is separated into smaller 4×4 square 
sub-regions for keeping important information. In each sub-
region, we calculate several simple features at 5×5 and its 
Haar wavelet responses in horizontal direction dx and 
vertical direction day. The robustness to geometric 
deformations and localization errors is increased by giving 
weight to dx and dy response with a Gaussian (σ = 3.3s) (see 
Fig. 4). 

Afterward, the summation of the wavelet responses dx 
and dy in each sub region becomes the feature vector. For 
considering the polarity information of the change in 
intensity, the summation of |dx| and |dy| is extracted. 
Subsequently, each sub region has a four-dimensional 
descriptor vector v for its intensity structure v = (dx, dy, |dx|, 
|dy|)T. It yields a descriptor vector of length 64 for each 
interest point.  

 
Fig. 4 The descriptor denotes the nature of the underlying intensity pattern. 
Left: all values are low for the homogeneous region. Middle: when there are 
frequencies in x-direction, the value of |dx| is high. Right: when the intensity 
is increasing in x-direction, dx and |dx| are high. 

D. Camera Pose Estimation 

Monocular visual odometry uses the series of images 
denoted by �0, …, �� where �k is the kth image taken by 
camethe ra.  For simplifying the problem, we assume the 
camera coordinate frame similar to the agent’s coordinate 
frame. Transformation of two consecutive camera positions 
at time k - 1 and k is denoted by 
�, �−1 ∈ ℝ4×4 of the 
following form 

  (6) 

Where ��,�−1 ∈ ��(3) denotes the rotation matrix, and ��,�−1 

∈ ℝ3×1 is the translation vector. Then, the camera poses �0, 

… , �� contains the relative camera pose transformation to the 
initial coordinate frame at �0. In this work, �0 is at the origin 
of the camera coordinate frame.  

The computation of transformation Tk between two images 
�� and ��−1 can be done by using two sets of corresponding 

features ��−1, �� from each image. In this work, both ��−1, 
and ��    are described in 2-D coordinates. 

Two consecutive images �� and ��−1 of a calibrated camera 
are geometrically related and the relationship is defined by 
the essential matrix E. Essential matrix conceives the camera 
rotation and translation parameters with unknown scale 
translation factor in the following form 

 

  (7) 

where  and  

  (8) 

Since the scale factor is unknown, the symbol ≅ is used. 
The essential matrix is calculated using only 2-D feature 
correspondences of two consecutive images. After all 
element of E are in the rotation and translation matrix can be 
obtained. Therefore, computation of essential matrix is the 
most important step. As we stated before, geometry relation 
in the form of essential matrix E is obtained from geometry 
constraint called epipolar constraint, specifying the line on 
which the corresponding feature point  of  resides in the 
other image. This constraint can be defined by 

 
  (9) 

 
where  denotes a feature location in an image (e.g., Ik) and 

 represents the location of its corresponding feature in 

another image, Ik-1).  and  are in the form . 
By using eight-point algorithm [17], each matched feature 
gives a constraint of the following form 
 

  (10) 
where = [�1    �2    �3    �4   �5    �6    �7    �8    �9]T

 

 
If there are eight points pair and each pair give a 

constraint, by stacking the constraints we obtain a linear 
equation system AE = 0, and the parameters of E can be 
calculated by solving the system. 

 
E. Algorithm Design 

In this work, we design a scale estimation algorithm for 
monocular visual odometry as shown in Fig. 5. The first step 
is initialization, which is initialized by inputting the first 
image from KITTI dataset. Since the distortion effect of the 
image generated from the KITTI data has already been 
removed, no preprocessing of the image is required. 
Subsequently, the next step is the feature detection using 
Censure. As mentioned in the previous section, there are 
several parameters, which must be set. The filter response 
threshold is set to 20, to produce the stable feature, local 
neighborhood extrema selection at 3x3x3 to produce more 
feature, and we use 30 as the size of n blocks. After that, the 
feature detected is described by using the upright-SURF 
descriptor. 

Subsequently, the iteration step begins by inputting the 
next image Ik , feature detection, and feature description. The 
next step is to match the feature in the Ik and Ik-1 respectively. 
Feature matching is done using brute force match. It picks 
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up a feature in the first descriptor set. Subsequently, it is 
fitted with all other features in the second set. Ratio test is 
applied to remove the bad match. [18]. Later, we calculate 
the essential matrix based on feature correspondences. 

 

 
 

Fig. 5 Algorithm flowchart 

As mentioned above, the main problem here is that the 
monocular scheme is up to scale. Therefore, the distance of 
the translation movement has to be known by using external 
information like IMU, or GPS. However, in this work, the 
only sensor used is the camera. However, it is possible to 
calculate relative scales for the subsequent transformations. 
A possible solution is by triangulating 3-D points Xk-1 and Xk 
from two subsequent images, and computing combination of 
two 3-D points to obtain the relative distances. The scale is 
then calculated from the distance ratio r between a pair (Xk, 
Yk)  and a point pair  (Xk-1, Yk-1) (see Fig. 6). Since the 
computation produces a relative scale, the first scale of the 
movement has to be known. Therefore, ground truth at C1 
and C2 is used to get this information. These approaches are 
borrowed from Scaramuzza et al. [1]. 

 
 

 
Fig. 6 Illustration of distance ratio 

  (11) 

 
However, there is a difference between the same 3D point 

that reconstructed from a different image pair. The far object 
like the sky or the dynamic objects like car or person can 
cause this difference. Thus, we have to remove this outlier. 
In this work, a simple Random Sampling Consensus [19] 
method is employed. A set of feature correspondence is 
triangulated so there are I correspondence 3-D points. 
Subsequently, the distance between two correspondence 3-D 
points di is computed. Two of them will be chosen randomly. 
Linear line model is used by joining the chosen point. Then 
the data that lies inside a certain threshold from the line is 
called support. This step is repeated until n iteration. A pair 
of data that produce the most support is chosen to remove 
the outlier (see Fig. 7).  

 

 
Fig. 7 RANSAC illustration. The black dot is supported, and the red one is 

an outlier. 

 
After we get the relative scale, the final camera poses in 

term of rotation and translation matrix in k frame Rk, and task 
can be obtained by concatenating the previous transformation 

 and . 
 

  (12) 
  (13) 

 

III.  RESULTS AND DISCUSSION 

The performance of the proposed visual odometry 
algorithm with scale estimation is measured by comparing 
with that algorithm without scale estimation and the ground 
truth. First, images from sequence00 KITTI dataset are used 
to test the algorithm. These datasets contain a set of images 
taken by a rigidly attached camera on a car in an urban area. 
The images are saved in 8-bit PNG. For diminishing the 
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distortion effect, the images are cropped with the size 
smaller than the original 1392 x 512 pixels. KITTI dataset 
also provides both external and internal camera calibration 
matrix. Test results include rotational and translational 
comparisons.  

As shown in Fig. 8a, the trajectory that constructed by our 
algorithm is closer to the ground truth than the visual 
odometry without scale estimation. However the 
translational error generated by our algorithm is still quite 
high. This can be caused by the scale estimation when there 
is a slight translational movement with considerable rotation, 
which is not too big. So, the algorithm at that time yields a 
big drift. However, in translational movement, our algorithm 
gives a good performance. Scale estimation using distance 
ratio from 3D points obtained through the process of 
triangulation is still the weakness of this method. It is 
inevitable that the fact is the closer the two frames to 
triangulation, the greater the uncertainty of the resulting 3D 
point. 

As shown in Fig. 8c we can see that the translational 
movement only affects the scale. The orientation of the 
camera is still the same because the sequences are a planar 
motion on xz plane, and the only considered Euler angle is 
the yaw angle. In this case, our algorithm gives auspicious 
results. 

 

 
a)  

  
b)  

 
c)  

Fig. 8 Simulation result on a) camera trajectory. b) translational error. c) 
yaw angle trajectory  

TABLE I 
AVERAGE COMPUTATION TIME 

Number of iteration Computation time (ms) 

10 308.14 
20 318.38 
30 329.08 
40 344.18 
50 359.8 
60 369.24 
70 390.06 
80 403.18 
90 407.86 
100 438.28 
110 513.08 

 
Accuracy and computation time are the most important 

for a real-time navigation algorithm like visual odometry. 
Both of them cannot be optimized simultaneously. Therefore, 
there must be compensation between them. RANSAC for 
outlier removal is an iterative method, so we must test the 
relationship between the number of iteration and the 
accuracy represented by the translational error. Here, we 
limit the computation time up to 500 ms due to the real-time 
purpose. The iteration test is set from 0 to 100 with ten 
additional iterations on each test.   

The test is done by comparing the translational error from 
two different iterations. We use a hypothesis that the bigger 
the number of iteration the smaller the translational error 
generated. We subsequently write the hypothesis in the 
following form 

 
 (14) 
 (15) 

 
Where HA is our hypothesis and H0 is the null hypothesis,  
and  is the mean of translational error taken in a thousand 
frame from fewer iteration and more significant iteration 
respectively. The statistical test is done by computing the 
value of z by the following equation 
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  (16) 

 
Where  and  are the mean of absolute translational 
errors,  and  are standard deviations,  and  is some 
frames. Index 1 represents the fewer iteration, and 2 
represent the bigger iteration. We can conclude that we 
accept our hypothesis HA if z computed is bigger than zα 

where α is significance level which means the probability of 
the wrong conclusion. 

TABLE II 
HYPOTHESIS TESTS THE DIFFERENCE BETWEEN TWO TRANSLATIONAL ERROR 

MEANS FROM TWO DIFFERENT ITERATION 

Iteration 10 20 30  40 50 60 70 80 90 100 

10 0 0  1 1 1 0 0 1 1 

20 0  1 1 1 1 1 1 1 

30  1 1 1 1 1 1 1 

40  0 0 0 0 1 0 

50  0 0 0 1 0 

60  0 0 1 1 

70  1 1 1 

80  1 1 

90  0 

100  

 
From Table II, to conclude that the hypothesis is correct, 

all of the hypothesis tests should accept the formulated 
hypothesis. This study found that there is no sufficient 
evidence to say that the hypothesis is true. The results show 
that few of points is sufficient to compute the distance ratio. 
However, we can find that the best iteration, which 
outperformed the others, is those who have a most accepted 
hypothesis in the vertical and most rejected hypothesis in 
horizontal, i.e., 40 and 90. This iteration can be used in 
further applications. 

Afterward, the designed algorithm is implemented on an 
embedded system, i.e. Smartphone to check the performance 
of the algorithm. The first test is a straight movement with 6 
meters along the z-axis and the second test is movement 
around the hexagonal park. Because the ground truth is 
unknown, we use to start and end position in the same place. 
The test results as shown in Fig. 9 show that the absolute 
error of the last camera pose generated by the application in 
the first test is 2.9 m, and the second test is 7.832 m. 
Average computation time taken by the first test is 1564.08, 
and 2609.28 ms for the second test. Computation time taken 
by the application is slower than computation time taken in 
the simulation test because CPU speed of Smartphone is 
lower than PC. This result shows that the application is still 
far away to be ready to use. So further development to 
reduce the computation and reduce the absolute error of the 
camera pose is needed. 

 
Fig. 9 Visual odometry application interface for the first test (top) and the 
second test (bottom). 

IV.  CONCLUSIONS 

The scale estimated by our algorithm can reduce the error 
significantly, although the error still appears. For future 
work, another sensor like IMU or GPS to solve the problem 
can fuse visual odometry. However, our algorithm has good 
accuracy in the rotation since the Censure feature is proven 
rotation invariant. Also, computation time taken by the 
whole algorithm is still high because of brute force feature 
matching. Therefore, the other feature matching methods 
should be investigated to make the computation time faster.  
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