

Vol.8 (2018) No. 5

ISSN: 2088-5334

Real Time Monocular Visual Odometry Using Hybrid Features
and Distance Ratio for Scale Estimation
Diky Septa Nugroho#, Igi Ardiyanto#*, Adha Imam Cahyadi#

Department of Electrical Engineering and Information Technology,
Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia

 E-mail: igi@ugm.ac.id

Abstract— Real-time dead reckoning navigation is important for supplying information on the current position of an autonomous
mobile robot to complete its task, especially in certain areas such as hazardous and GPS-denied areas. Monocular visual odometry is
a good choice as it is one of the dead reckoning navigation methods, which only uses a single camera. For real-time task, visual
odometry requires fast feature extraction without ignoring its accuracy. Therefore, we propose the usage of a hybrid feature, i.e.,
Censure feature detector and upright SURF feature descriptor, as feature extraction. The scale ambiguity for the monocular visual
odometry becomes a challenging problem. Without 85 Part 1 - 27 Paper additional information from other sensors, estimating the
scale is solely the only way. In our proposed work, distance ratio is employed to tackle such problems. Experimental results show the
performance of the designed algorithm. A real example of running the proposed algorithm under an embedded device is also
provided for demonstrating its real-time capability.

Keywords— visual odometry; distance ratio; scaling factor; Censure; upright SURF.

I. INTRODUCTION

Nowadays, the development of a mobile robot is very fast
due to its various deployment in a vast kind of applications,
ranging from surveillance to the high-risk missions.
Information of the current position is one of an important
thing for the mobile robot. In certain areas such as hazardous
and GPS-denied areas, mobile robots are required to be
aware of their current position. Dead reckoning navigation is
one of the most commonly used technique with massive kind
of sensors to solve the problem. Among these sensors, the
camera becomes an exciting option because it provides rich
information, yet it is very cheap.

Estimating the ego-motion, i.e., the position and orientate
ion, using frame series of one camera or more is called
visual odometry (VO) [1]. In general, the visual odometer
algorithm consists of three steps; extracting the features,
matching, and estimating the camera pose. Later, the feature
extraction incorporates feature detection and description.
Camera pose estimation can be done using feature
correspondence between two consecutive frames by solving
the epipolar constraint.

Different schemes of VO have been developed. These
different schemes include Kinect based VO [2], monocular
VO, and multicamera VO. However, most of works on VO
used monocular vision [3]-[6]) and stereo vision [7] -[9].

Stereo VO utilizes two cameras and has the capability to
estimate the absolute scale since it knows the relative pose.
In contrast to stereo VO, the monocular scheme needs the
prior information of the scale, which is known as scale
ambiguity [10]. The prior information regarding the scale
can be obtained by using external information like IMU, or
GPS. However, in this work, the only sensor used is the
camera. However, it is possible to compute relative scales
for the subsequent transformations. In the last few years, by
using only single camera, several approaches have been
developed to tackle this problem. Faundrofer et al. [11] used
the optimization method that minimized the re-projection
error to recover the scale. However, due to real-time
constraint, the optimization approach can consume more
computation time. Choi et al. [10], and Nishitani et al. [12]
used the information from camera height relative to the
ground and constructed 3D point on the ground plane by
using homographic. Similar approach then introduced by
Zhou et al. [13]. The difference from the previous approach
is they limited the 3D ground point in a specified area. In
practical situation, it has a high sensitivity to the noise [11].
Therefore, to fasten the computation time with reliable scale
estimation, only information of correspondence 3D points
from three consecutive frames can be used. The first two
consecutive frames become the scaled motion, and the scale
of the second consecutive frame is calculated using distance
ratio of the correspondence 3D points [1].

1934

In this work, we try to alleviate the limitations from the
previous mentioned approaches above. Our main
contribution lies in the usage of hybrid feature detectors and
its combination with distance ratio for solving the camera
scale problems. Here we employ Censure feature detector
and Upright SURF as feature descriptor. These algorithms
are employed due to their fast computation and stability to
detect the same feature across viewpoint change [14] [15].
Furthermore, the scale ambiguity for the monocular visual
odometry, which becomes a challenging problem in a
normal case is diminished using distance ratio method.

II. MATERIAL AND METHOD

A. Modeling the Camera

Here we assume a pinhole camera model, as shown in Fig.
1.

Fig. 1 Geometry of pinhole camera, where C describes the camera center
and p denotes the principal point.

X represents the world point denoted by the homogeneous

4-vector (X, Y, Z, 1)T, x is image point denoted by a
homogeneous 3-vector, and P is the homogeneous camera
projection matrix. Subsequently, the projected image point is

� = P� (1)

Projection matrix P consists of internal and external

camera parameters. The internal camera parameters consist
of focal length f, and principle point (pxpx,) in a matrix K.
While the external camera parameters consist of camera
orientation R and camera position t in world coordinate
system.

 (2)

Subsequently, equation (1) can be expressed as

 (3)

B. Censure Feature Detector

Fig. 2 Center surround filter for the proximation of Laplacian used in
Censure

The main reason for choosing this feature detector is it

has good stability, accuracy, and computation time. All of
them are the recipe to make a good real-time task like visual
odometry [14].

There are several steps to detect features from the image,
first is to calculate the extrema in a local neighborhood using
a simplified center-surround filter in all scales. Finally, the
extremes are filtered by taking out the weak corner
responses of the Harris measurement.

Approximation of laplacian employs bi-level
multiplication by either 1 or −1. Figure 2 shows the center-
surround filters used here that is a circle with two
overlapping squares: upright and 45 degrees rotated, where
every scale is denoted by different block size n.

Bi-level filter is the key for Censure because of its
efficiency. The box filter is calculated by integral images
[16]. Since the filter shape is a polygon, we employ an
extended version of integral images. Each trapezoidal area is
calculated using two different slanted of the integral images,
where the summation of pixels denotes an angled area.
Parameter α is used to control the degree of slant (skew)

 (4)

Where α = 0 represents the standard rectangular integral

image. When α < 0, the summed area skews to the left, and
reciprocally. (Fig. 3 left).

Fig. 3 Skewed integral images for building trapezoidal áreas.

Afterward, a response is subdued when optimal responses
appear in a local neighborhood since it will be repeatable.
Alternatively, unstable. Features on an edge or line are also
not stable. Thus, a threshold is applied to remove those
responses. The second-moment matrix of the response
function is employed to remove these responses.

 (5)

Lx and Ly represent the derivatives of the response
function L along x and y. After the Harris measure is

1935

obtained, its trace and determinant are employed to calculate
the ratio of principal curvatures.

C. Upright Surf Descriptor

Computing SURF descriptor requires two steps: obtaining
a consistent orientation using information from a circular
region of the interesting point and constructing a square
region aligned up to the chosen orientation. Here we utilize
the upright version of SURF descriptor (U-SURF) which is
variant to the image rotation and faster to calculate.

Extracting the descriptors requires building a square
region centered on the interesting point, with a window size
of 20x20. The region is separated into smaller 4×4 square
sub-regions for keeping important information. In each sub-
region, we calculate several simple features at 5×5 and its
Haar wavelet responses in horizontal direction dx and
vertical direction day. The robustness to geometric
deformations and localization errors is increased by giving
weight to dx and dy response with a Gaussian (σ = 3.3s) (see
Fig. 4).

Afterward, the summation of the wavelet responses dx
and dy in each sub region becomes the feature vector. For
considering the polarity information of the change in
intensity, the summation of |dx| and |dy| is extracted.
Subsequently, each sub region has a four-dimensional
descriptor vector v for its intensity structure v = (dx, dy, |dx|,
|dy|)T. It yields a descriptor vector of length 64 for each
interest point.

Fig. 4 The descriptor denotes the nature of the underlying intensity pattern.
Left: all values are low for the homogeneous region. Middle: when there are
frequencies in x-direction, the value of |dx| is high. Right: when the intensity
is increasing in x-direction, dx and |dx| are high.

D. Camera Pose Estimation

Monocular visual odometry uses the series of images
denoted by �0, …, �� where �k is the kth image taken by
camethe ra. For simplifying the problem, we assume the
camera coordinate frame similar to the agent’s coordinate
frame. Transformation of two consecutive camera positions
at time k - 1 and k is denoted by
�, �−1 ∈ ℝ4×4 of the
following form

 (6)

Where ��,�−1 ∈ ��(3) denotes the rotation matrix, and ��,�−1

∈ ℝ3×1 is the translation vector. Then, the camera poses �0,

… , �� contains the relative camera pose transformation to the
initial coordinate frame at �0. In this work, �0 is at the origin
of the camera coordinate frame.

The computation of transformation Tk between two images
�� and ��−1 can be done by using two sets of corresponding

features ��−1, �� from each image. In this work, both ��−1,
and �� are described in 2-D coordinates.

Two consecutive images �� and ��−1 of a calibrated camera
are geometrically related and the relationship is defined by
the essential matrix E. Essential matrix conceives the camera
rotation and translation parameters with unknown scale
translation factor in the following form

 (7)

where and

 (8)

Since the scale factor is unknown, the symbol ≅ is used.
The essential matrix is calculated using only 2-D feature
correspondences of two consecutive images. After all
element of E are in the rotation and translation matrix can be
obtained. Therefore, computation of essential matrix is the
most important step. As we stated before, geometry relation
in the form of essential matrix E is obtained from geometry
constraint called epipolar constraint, specifying the line on
which the corresponding feature point of resides in the
other image. This constraint can be defined by

 (9)

where denotes a feature location in an image (e.g., Ik) and

 represents the location of its corresponding feature in

another image, Ik-1). and are in the form .
By using eight-point algorithm [17], each matched feature
gives a constraint of the following form

 (10)
where = [�1 �2 �3 �4 �5 �6 �7 �8 �9]T

If there are eight points pair and each pair give a

constraint, by stacking the constraints we obtain a linear
equation system AE = 0, and the parameters of E can be
calculated by solving the system.

E. Algorithm Design

In this work, we design a scale estimation algorithm for
monocular visual odometry as shown in Fig. 5. The first step
is initialization, which is initialized by inputting the first
image from KITTI dataset. Since the distortion effect of the
image generated from the KITTI data has already been
removed, no preprocessing of the image is required.
Subsequently, the next step is the feature detection using
Censure. As mentioned in the previous section, there are
several parameters, which must be set. The filter response
threshold is set to 20, to produce the stable feature, local
neighborhood extrema selection at 3x3x3 to produce more
feature, and we use 30 as the size of n blocks. After that, the
feature detected is described by using the upright-SURF
descriptor.

Subsequently, the iteration step begins by inputting the
next image Ik , feature detection, and feature description. The
next step is to match the feature in the Ik and Ik-1 respectively.
Feature matching is done using brute force match. It picks

1936

up a feature in the first descriptor set. Subsequently, it is
fitted with all other features in the second set. Ratio test is
applied to remove the bad match. [18]. Later, we calculate
the essential matrix based on feature correspondences.

Fig. 5 Algorithm flowchart

As mentioned above, the main problem here is that the
monocular scheme is up to scale. Therefore, the distance of
the translation movement has to be known by using external
information like IMU, or GPS. However, in this work, the
only sensor used is the camera. However, it is possible to
calculate relative scales for the subsequent transformations.
A possible solution is by triangulating 3-D points Xk-1 and Xk
from two subsequent images, and computing combination of
two 3-D points to obtain the relative distances. The scale is
then calculated from the distance ratio r between a pair (Xk,
Yk) and a point pair (Xk-1, Yk-1) (see Fig. 6). Since the
computation produces a relative scale, the first scale of the
movement has to be known. Therefore, ground truth at C1
and C2 is used to get this information. These approaches are
borrowed from Scaramuzza et al. [1].

Fig. 6 Illustration of distance ratio

 (11)

However, there is a difference between the same 3D point

that reconstructed from a different image pair. The far object
like the sky or the dynamic objects like car or person can
cause this difference. Thus, we have to remove this outlier.
In this work, a simple Random Sampling Consensus [19]
method is employed. A set of feature correspondence is
triangulated so there are I correspondence 3-D points.
Subsequently, the distance between two correspondence 3-D
points di is computed. Two of them will be chosen randomly.
Linear line model is used by joining the chosen point. Then
the data that lies inside a certain threshold from the line is
called support. This step is repeated until n iteration. A pair
of data that produce the most support is chosen to remove
the outlier (see Fig. 7).

Fig. 7 RANSAC illustration. The black dot is supported, and the red one is

an outlier.

After we get the relative scale, the final camera poses in

term of rotation and translation matrix in k frame Rk, and task
can be obtained by concatenating the previous transformation

 and .

 (12)
 (13)

III. RESULTS AND DISCUSSION

The performance of the proposed visual odometry
algorithm with scale estimation is measured by comparing
with that algorithm without scale estimation and the ground
truth. First, images from sequence00 KITTI dataset are used
to test the algorithm. These datasets contain a set of images
taken by a rigidly attached camera on a car in an urban area.
The images are saved in 8-bit PNG. For diminishing the

Get next Image Ik

Feature detection and
description

Feature matching Ik
and Ik-1

Compute essential
matrix E for image pair

Ik and Ik-1

Decompose rotation R
and translation t from E

Estimate relative scale
and rescale t

Second
image?

Concacenate Rk,k-1 and
tk,k-1 to get Rk and tk

Get absolute distance
and rescale t

first
image?

No

Yes

Yes

No

1937

distortion effect, the images are cropped with the size
smaller than the original 1392 x 512 pixels. KITTI dataset
also provides both external and internal camera calibration
matrix. Test results include rotational and translational
comparisons.

As shown in Fig. 8a, the trajectory that constructed by our
algorithm is closer to the ground truth than the visual
odometry without scale estimation. However the
translational error generated by our algorithm is still quite
high. This can be caused by the scale estimation when there
is a slight translational movement with considerable rotation,
which is not too big. So, the algorithm at that time yields a
big drift. However, in translational movement, our algorithm
gives a good performance. Scale estimation using distance
ratio from 3D points obtained through the process of
triangulation is still the weakness of this method. It is
inevitable that the fact is the closer the two frames to
triangulation, the greater the uncertainty of the resulting 3D
point.

As shown in Fig. 8c we can see that the translational
movement only affects the scale. The orientation of the
camera is still the same because the sequences are a planar
motion on xz plane, and the only considered Euler angle is
the yaw angle. In this case, our algorithm gives auspicious
results.

a)

b)

c)

Fig. 8 Simulation result on a) camera trajectory. b) translational error. c)
yaw angle trajectory

TABLE I
AVERAGE COMPUTATION TIME

Number of iteration Computation time (ms)

10 308.14
20 318.38
30 329.08
40 344.18
50 359.8
60 369.24
70 390.06
80 403.18
90 407.86
100 438.28
110 513.08

Accuracy and computation time are the most important

for a real-time navigation algorithm like visual odometry.
Both of them cannot be optimized simultaneously. Therefore,
there must be compensation between them. RANSAC for
outlier removal is an iterative method, so we must test the
relationship between the number of iteration and the
accuracy represented by the translational error. Here, we
limit the computation time up to 500 ms due to the real-time
purpose. The iteration test is set from 0 to 100 with ten
additional iterations on each test.

The test is done by comparing the translational error from
two different iterations. We use a hypothesis that the bigger
the number of iteration the smaller the translational error
generated. We subsequently write the hypothesis in the
following form

 (14)
 (15)

Where HA is our hypothesis and H0 is the null hypothesis,
and is the mean of translational error taken in a thousand
frame from fewer iteration and more significant iteration
respectively. The statistical test is done by computing the
value of z by the following equation

1938

 (16)

Where and are the mean of absolute translational
errors, and are standard deviations, and is some
frames. Index 1 represents the fewer iteration, and 2
represent the bigger iteration. We can conclude that we
accept our hypothesis HA if z computed is bigger than zα

where α is significance level which means the probability of
the wrong conclusion.

TABLE II
HYPOTHESIS TESTS THE DIFFERENCE BETWEEN TWO TRANSLATIONAL ERROR

MEANS FROM TWO DIFFERENT ITERATION

Iteration 10 20 30 40 50 60 70 80 90 100

10 0 0 1 1 1 0 0 1 1

20 0 1 1 1 1 1 1 1

30 1 1 1 1 1 1 1

40 0 0 0 0 1 0

50 0 0 0 1 0

60 0 0 1 1

70 1 1 1

80 1 1

90 0

100

From Table II, to conclude that the hypothesis is correct,

all of the hypothesis tests should accept the formulated
hypothesis. This study found that there is no sufficient
evidence to say that the hypothesis is true. The results show
that few of points is sufficient to compute the distance ratio.
However, we can find that the best iteration, which
outperformed the others, is those who have a most accepted
hypothesis in the vertical and most rejected hypothesis in
horizontal, i.e., 40 and 90. This iteration can be used in
further applications.

Afterward, the designed algorithm is implemented on an
embedded system, i.e. Smartphone to check the performance
of the algorithm. The first test is a straight movement with 6
meters along the z-axis and the second test is movement
around the hexagonal park. Because the ground truth is
unknown, we use to start and end position in the same place.
The test results as shown in Fig. 9 show that the absolute
error of the last camera pose generated by the application in
the first test is 2.9 m, and the second test is 7.832 m.
Average computation time taken by the first test is 1564.08,
and 2609.28 ms for the second test. Computation time taken
by the application is slower than computation time taken in
the simulation test because CPU speed of Smartphone is
lower than PC. This result shows that the application is still
far away to be ready to use. So further development to
reduce the computation and reduce the absolute error of the
camera pose is needed.

Fig. 9 Visual odometry application interface for the first test (top) and the
second test (bottom).

IV. CONCLUSIONS

The scale estimated by our algorithm can reduce the error
significantly, although the error still appears. For future
work, another sensor like IMU or GPS to solve the problem
can fuse visual odometry. However, our algorithm has good
accuracy in the rotation since the Censure feature is proven
rotation invariant. Also, computation time taken by the
whole algorithm is still high because of brute force feature
matching. Therefore, the other feature matching methods
should be investigated to make the computation time faster.

ACKNOWLEDGMENT

We would like to thank Causal Productions for permits to
use and revise the template provided by Causal Productions.
Original version of this template was provided by courtesy
of Causal Productions (www.causalproductions.com).

REFERENCES
[1] D. Scaramuzza and F. Fraundorfer, ”Visual Odometry: Part I: The

First 30 Years and Fundamentals,” IEEE Robotics & Automation
Magazine, vol 18, no. 4, Dec.2011, pp. 80-92.

[2] H. Yu, H. Sun, Y. Wang, L. Kan and Q. Wan, "An improved visual
odometry optimization algorithm based on Kinect camera," 2013
Chinese Automation Congress, Changsha, 2013, pp. 691-696.

[3] T. Kanade, “Transforming camera geometry to a virtual downward
looking camera: robust ego-motion estimation and ground-layer
detection,” in 2003 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2003. Proceedings. IEEE Comput.
Soc, 2003, pp. I–390–I–397.

[4] S. Lovegrove, A. J. Davison, and J. Ibanez-Guzman, “Accurate
visual odometry from a rear parking camera,” in 2011 IEEE
Intelligent Vehicles Symposium (IV). IEEE, Jun. 2011, pp. 788–793.

[5] Y. Yu, C. Pradalier, and G. Zong, “Appearance-based monocular
visual odometry for ground vehicles,” 2011 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
(AIM), pp. 862–867, Jul. 2011.

1939

[6] A. Cumani, “Feature Localization Refinement for Improved Visual
Odometry Accuracy,” Int. Jour. Circuits, Systems and Signal
Processing, vol. 5, no. 2, pp. 151–158, 2011.

[7] D. Nist´er, O. Naroditsky, and J. Bergen, “Visual odometry,” in
Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2004. CVPR 2004., vol. 1.
Ieee, 2004, pp. 652–659.

[8] B. Kitt, A. Geiger, and H. Lategahn, “Visual odometry based on
stereo image sequences with RANSAC-based outlier rejection
scheme,” in 2010 IEEE Intelligent Vehicles Symposium. IEEE, Jun.
2010, pp. 486–492.

[9] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d
reconstruction in real-time,” in Intelligent Vehicles Symposium (IV),
2011 IEEE, pp. 963–968.

[10] S. Choi, J. Park, and W. Yu, "Resolving scale ambiguity for
monocular visual odometry," 2013 10th International Conference on
Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, 2013, pp.
604-608.

[11] F. Fraundorfer, D. Scaramuzza, and M. Pollefeys, "A constricted
bundle adjustment parameterization for relative scale estimation in
visual odometry," 2010 IEEE International Conference on Robotics
and Automation, Anchorage, AK, 2010, pp. 1899-1904.

[12] A. T. N. Nishitani and D. F. Wolf, "Solving the Monocular Visual
Odometry Scale Problem with the Efficient Second-Order
Minimization Method," 2015 12th Latin American Robotics
Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-
SBR), Uberlandia, 2015, pp. 126-131.

[13] D. Zhou, Y. Dai, and H. Li, "Reliable scale estimation and correction
for monocular Visual Odometry," 2016 IEEE Intelligent Vehicles
Symposium (IV), Gothenburg, 2016, pp. 490-495.

[14] M. Agrawal, K. Konolige, and M. Blas, “Censure: Center surround
extremes for realtime feature detection and matching,” in Proc.
European Conf. Computer Vision, 2008, pp. 102–115.

[15] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up
robust features,” Computer Vision and Image Understanding (CVIU),
vol. 110, no. 3, pp. 346–359, 2008.

[16] P. Viola and M. Jones, “Robust real-time face detection,” In: ICCV
2001.

[17] H. Longuet-Higgins, “A computer algorithm for reconstructing a
scene from two projections,” Nature, vol. 293, no. 10, pp. 133–135,
1981.

[18] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2):91-110,
2004.

[19] M.A. Fischler and R. C. Bolles,” Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communication of the ACM 24 (1981),
381-395.

1940

