

Vol.10 (2020) No. 1

ISSN: 2088-5334

Case Study on Non-Functional Requirement Change Impact
Traceability for Agile Software Development

Adila Firdaus Arbain#, Dayang Norhayati Abang Jawawi*, Wan Mohd Nasir bin Wan Kadir*,
Imran Ghani+

#Faculty of Science Computer and Information Technology, Universiti Tun Hussein Onn Malaysia,86400 Parit Raja, Johor, Malaysia
 E-mail: adila@uthm.edu.my

*Faculty of Computing, Universiti Teknologi Malaysia, Jalan Iman, 81310 Skudai, Johor, Malaysia

E-mail: dayang@utm.my, wnasir@utm.my

+Indiana University of Pennsylvania, 1011 South Drive, Indiana, PA 15705, USA

Abstract— Currently, it is crucial to develop a complex software on time. Agile software development methodologies provide methods
to develop a system in term of time and cost-saving but it has been criticized for software quality management. In this paper, a case
study is used to find out the need of NFR change impact traceability approach in most of Agile software methodology. This case study
was conducted in an undergraduate course that trained the students on how to develop software using Agile process model. This case
study has been conducted for 4 months in an undergraduate-level course, Application Development. The samples of this case study
are among Year 3 undergraduate students. The case study shows the lack of traceability techniques in the existing Agile process
model (SFDD- Secured Feature Driven Development) that result to non-awareness of NFR change impact during development. Based
on the case study mentioned the main objective of the case study conducted in survey is to empirically test the theoretical constructs
and the hypothesized relationships of the research issues that concern on the lack of change impact management towards NFR in
Agile Software Methodology. TANC (Traceability for Agile Non-Functional Requirement Change Impact) model offered techniques
in tracing change impact during the agile development process. Therefore, the result of the case study, a traceability process model
needs to design in order to tackle the NFR change impact issues in Agile software development.

Keywords— agile methodologies; scrum; feature driven development; traceability; non-functional requirement.

I. INTRODUCTION

Traceability approaches and methods have been applied in
traditional software development process such waterfall [1],
[2] model-driven [3] and started to be introduce in Agile
software development projects [4]–[6]. As a matter of fact,
many researchers have done their research on agile and
traceability [7]. There are some researches that have started
to create traceability models and techniques in various Agile
software development model such as Scrum [8], FDD [9],
AUP [10] and other Agile software development model.
However, these established traceability techniques in Agile
only support the functional requirements, not the NFRs [11].
There are even some researches state that traceability does
not compatible with XP processes [12] due to the heavy
documentation and architectural solutions, and that do not go
well with XP lightweight processes. Therefore, a case study
conducted in an undergraduate class where they were using
Agile software development method and asked to check the

change impact after some requirement changes. By using
survey techniques which most of researchers use in order to
justify any type of issues that related to Agile methodology
[13]–[15] this case study was to testify whether the existing
Agile software development method not only equipped with
the Agile software development change management [16],
[17] but also covers the NFR change impact management.
The rest of the paper is organized as follows: Sections 2
presents a case study that experimented on NFR Change
Impact Management in the existing Agile Software
Development Process Models. Lastly, Section 3 presents the
conclusion of this study.

II. MATERIALS AND METHOD

The course begins by introducing a variety of Agile
software development models to the students. Then, one of
the best students’ group project which used SFDD were
chosen to be documented in this case study. In the middle of
their software development project, they were asked to

34

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/325990511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

implement one of the NFR features that is security. They
must document the security features using the SAgile tool.
Then, they were asked to check any affected functional
features or NFR features by asking them to check for the
performance of the functional features already embedded
with security codes and compare them with the ones without
security codes. Then, they were asked if the affected
performance is too much for the clients to handle or is barely
acceptable. The flow and results of this case study are
explained in the next sections. The process details for the
case study will be explained based on SFDD phases and
generic traceability process model phases order. Lastly, the
study continues by collecting and discussing the students’

survey feedbacks on the NFR change impact management in
the existing Agile process model.

A. Rafi Food Ordering System (RFOS) in Plan by Feature
concerning Strategic Trace Phase

Since this team has chosen to use the FDD development
process, they are recommended to use SAgile during the
Plan by Feature phase. Here are the results of this
experiment. First, the students fill out the details about the
features. For example, in this case, study, one of the features
in the developed system, Manage Payment feature is shown
in Fig 1.

Fig. 1 A sample line graph using colors which contrast well both on screen and on a black-and-white hardcopy

The figure above demonstrates that all details regarding the
Manage Payment feature are present including start and end
dates, which developer of this feature is assigned to, who is
the tester, etc. This part completes the phase of creating the
functional requirements phase in FDD. Next, NFR features
are assigned to this feature.

In the first part of assigning NFR, the security elements
need to be assigned first (this is based on the Strategic phase

plan when the team decided on how they were going to
prioritize the rank of the NFR. For example, if the system is
security-based, they must check for security elements first or
make the security itself as the main feature, then assign other
NFR that seems relevant towards the system). The team has
assigned a few security elements for this feature.

Fig. 2 Security elements

35

Based on Fig 2, this team has assigned two types of security
threats that are Cross-Site Scripting (XSS) and SQL
injection. This indicates that this feature must have these two
types of mitigation codes embedded in the feature codes for
handling the types of security threats stated. After assigning
security NFR to the feature, the team assigned performance
features to the main feature. However, assigning

performance features is a little bit different than the normal
assigning process because the performance feature is
assigned to detect any impact of the performance feature
after the security features have been added. In this case, the
team has added loading time, response time, and the
buffering time as in Fig 3.

Fig 3: Performance elements

Fig 4: Colored marking in feature list

Due to security and performance features have been

assigned simultaneously, SAgile marked these two features
in yellow. If the feature is marked in red, then it means that
the feature is only assigned to security features and if it is
blue, it means that the feature has not been assigned to any
NFR feature. Fig 4 shows these colored markings. This
marking is a very important feature of SAgile tool in order to
notify the development team in making sure that they have
assigned adequate NFR features to each feature. Without this
marking, it is difficult for the team members to be aware of
which features that have not been assigned with which NFR
feature.

B. RFOS in Test by Feature concerning Use Trace Phase

This section will report the results of the Test by the
Feature phase. First, they performed stress testing on Make
Payment feature, where they have around 50 users
simultaneously making payment to the Make Payment
feature and recorded the response time (based on time
latency) and loading time (duration taken by the page to go
to the next page). Fig 5 shows the result of the time latency.
Fig 5 shows that it took 41 ms to respond to 50 simultaneous
user queries and took around 5 seconds to load the next
page. Next, the security codes were added on the same

feature (Make Payment) and the same stress testing was
conducted. Fig 6 shows the results of the experiment. Based
on Fig 6, the time latency with the security feature is
increased to 690 ms and the loading time increased by 45
seconds. In these two cases, the number of users
simultaneously using the system is the same. This shows that
security features do impact the performance of the system. If
TANC was not used during the development phases, they
will not be aware of this issue and might cause vulnerability
to their system. They are unable to check whether the time
difference is too significant for the system to operate
smoothly or is it acceptable by the users’ standards. The next
step is for the tester to report to the developer either the bugs
that have been found can be ignored or should be dealt with.
Fig 7 shows the test report of the bugs that were found
during the tests depicted in Fig 5 and Fig 6. The bug that
causes a little delay on the response and loading time of the
feature with the addition of SQL and XSS is then reported to
the developer team. However, the bugs are considered as
acceptable because the delay is tolerable and not too long.
This step is critical to make sure that the feature is
thoroughly tested and does not need to be fixed and retested.
Besides, this shows a change impact on the system NFR has
been traced.

36

Fig 5: Time latency without security feature

Fig 6: Time latency with security feature

Fig 7: Test report

III. RESULTS AND DISCUSSION

This section reports the survey feedback which was
collected during the case study. The case study is conducted
as a cross-sectional survey where the unit of analysis is the

individual sample that is involved in the practice of Agile
methods [18], [19]. Our survey questionnaire asks for the
students’ opinions [20] and they agree with us. When asked
about, in the whole issue in Agile modeling in managing
change impact on system NFR (Question 1 & 2), and what

37

they consider to be the most suitable solution in handling the
issues (Question 3).

This feedback was collected from 24 samples (four of
them performed the Rafi’s Food Ordering system) that have
just finished their project using FDD, Scrum, and XP. The

survey contains four questions and some samples offer
multiples answers based on their understandings. Fig 8
provides a sample of answered survey questionnaires. The
rest of the feedbacks is presented on tables below based on
the respective questions.

Fig 8: Example of Survey feedbacks

Question 1: In your opinion, explain briefly at least 3 weaknesses of Agile modeling

TABLE I
FEEDBACKS FOR QUESTION 1

Based on the survey done, the problems or issues

regarding the existing Agile methodology are listed above.
As can be seen in Table 1, 75% of the samples’ result shows
that Agile does not emphasize on managing and updating the
documentation of the project progress. The next major issue
is that the requirement of the final product keeps changing. It
means that as the project starts to progress, requirements
provided by the clients are always changing and a slight
change can impact the whole system. Due to this, the

program cannot be finished according to the expected
completion date.

To sum it up, Agile software is not good at managing
changes. However, this does not mean that this method
cannot accept changes, but it is weak in managing changes
and the impact brought by changes toward the developed
system. Out of the 24 samples’ results that were collected
during the case study, 6 students gave only 2 suggestions
(25% of the total samples) and the rest gave 3 suggestions

Suggestions No. of
Subjects

Suitable to use for a small team. Need tool support if the number of a team member is increasing 4
Product delivery is too frequent before the system finalized making the system need much modifying before the final
product delivery.

13

Each iteration delays the project’s completion time and extends the date for the new iteration phase 8
The final product is always delayed because the feature keeps on changing 13
Do not emphasis on documentation and management especially in the early stage 14
Needs to simultaneously develop the system as well as update the system’s documentation 2
Every member needs to complete their tasks in order to complete the whole system 4
Do not employ any traceability technique 8

38

(75% of the total samples). In total there are 66 responds
were recorded.

Question 2: When the lecturer asked you to add security
features/elements inside your system, do you think that it will
slow down your system development progress.

TABLE II
FEEDBACKS FOR QUESTION 2
Suggestions

No. of
Subjects

Yes 23
The number of codes needs to be increased too 17
Must check the system security and performance
after security enhancements were made

16

The code becomes more complicated 13
More technical problems occur after changes, for
example, database error

11

The process of development becomes more
complicated

6

No 1
It is part of the iteration 1

Next, in the second question, the students were asked on

the instruction to insert security features inside their projects
which lead to delay or to increase the project cost. If this
instruction is not given, they will most likely ignore this
feature or did not give their best effort in implementing it.
The results of this question are given in Table 2. Majority of
them (96 percent) said that the addition of security elements
in the middle of their project do interrupt the project
progress. The top reason given to this issue is due to the
increase in the number of codes needed in the system. Extra
codes mean increased effort and time needed to develop the
system and this, in turn, drags the development process.
Moreover, they also need to check the overall system
performance after the security features have been added,
resulting in the need for extra time and effort.

However, one of the students viewed this matter in a
different light. He stated that this process does not affect the
completion duration because security features should be
considered as part of the iteration from the beginning.
Finally, based on the feedbacks, general issues in the Agile
development process and problems that arise in handling
NFR changes during the development phase will be
investigated. Several suggestions were given on solving the
problems of the Agile development process. Out of 24
samples’ results, 20 of them show that Agile needs a proper
traceability technique and its system progress should be
rechecked so that if any change happens, the change can be
traced and parts impacted can be determined. By doing this,
the students do not need to check that everything is in order
and the whole system is not affected by the changes made. In
tackling this, 11 of them proposed to implement security
features provided in the HTML tag. In other words, they
recommended that the development tools should be able to
build, check, and trace NFR automatically. Fig 9 shows the
number of samples that provide one, two, or three
suggestions. This bar chart analyses the majority numbers of
respondents that give feedback. Referring to the chart, for
Question 3, all samples provided three different suggestions,
and for Question 2, only one sample provided one

suggestion which that sample provided reason why sudden
changes during the development phase do not affect the
duration of the project.

Question 3: Based on your experience throughout the
course, suggest at least 3 ways to improve the whole Agile
development process if security and performance testing
need to be added during the development process.

TABLE III
FEEDBACKS FOR QUESTION 3

Suggestions
No. of

Subjects
Use Built-in Security Features Provided in The
Html Tag

11

Use Simple Security Features 8
Use A Built-in System in Input Form 3
Allocate More Flexible Duration for Each
Iteration

6

Have Clear Requirements in The Earlier Stage 8
Have A Proper Traceability Technique and
Recheck the System Progress

20

Have A Complete Design During the Early
Development Stage

2

Use Commercial Tool for Independent Testers 3
Perform Static Analysis 2
Provide an in-depth explanation on Agile
Methodology

1

Use proper software development management
lifecycle

3

Specific Roles for Tester 5

Fig 9: Total number of suggestions provided for each question

TABLE IV

PERCENTAGE OF FEEDBACKS AND TOP SUGGESTIONS

Questions Q1 Q2 Q3
Total number of
respondents

24 24 24

Percentage of samples
that respond with three
suggestions

75% 70.7% 100%

Percentage of samples
that respond with two
suggestions

25% 25% 0%

Percentage of samples
that respond with one
suggestion

0% 4.3% 0%

Table 4 shows the percentage of feedbacks based on the

number of suggestions that they provided. This table is
directly related to the bar chart before. Out of the 24 samples,

39

58% of them said the main problem with Agile software
development in handling change impact is that it does not
emphasize documentation and management aspects,
especially in the early stages. Next, 95.8% of them stated
that a sudden change during Agile development does affect
the project duration. Out of that 95.8 %, 70.8% said that
adding security features increases the number of codes in the
system, and simultaneously increases the testing and
development time for the entire process. Lastly, 83.3% of the
samples shows that Agile software development needs a
proper traceability approach in handling this issue.

Based on the discussion above, the majority of the
students understand the goals and objectives of the project.
They can grasp the purpose and problem presented in the
case study given to them. This results in their understanding
of the purpose of the case study and the problem related to
the issues that this case study is trying to investigate. Besides
that, feedbacks obtained from the survey found that there is a
consensus between the issues presented by the case studies
and feedback obtained from the students (Table 4 and Fig 9).
Therefore, it is safe to say that Agile software development
method needs traceability techniques to manage change
impact on NFR of the system. Therefore, the reason behind
the execution of this case study has been well justified that is
to improve Agile software development, specifically in the
area of change impact analysis.

IV. CONCLUSIONS

Based on this case study, the need for the Traceability
approach for tracing change impact in Agile software
development methodology, which offers better techniques in
tracing change impact during the agile development process.
The first main issue is the challenges of tracing the NFR
change impact in the existing Agile Development. Then, this
case study has investigated whether the Agile software
development model, FDD could handle the NFR change
impact management. This case study has proven that there
are issues in tracing change impact especially in the term of
NFR in the existing agile software development model. FDD
was applied and they could not identify the impact of the
system performance when they added security features in
certain functional features in their system. Based on Fig 5
and 6, there are some changes that they did not expect to
happen where the time latency was affected when they inject
XSS mitigation code on the manage payment feature. Each
case study strengthens the justification for the change impact
issues in Agile software development methodology.

ACKNOWLEDGMENT

This research is supported by Grant Tier 1, Vot no: H130,
Universiti Tun Hussein Onn Malaysia (UTHM).

REFERENCES
[1] M. Martínez Pérez, C. Dafonte, and Á. Gómez, “Traceability in

Patient Healthcare through the Integration of RFID Technology in an
ICU in a Hospital.,” Sensors Basel Sensors, vol. 18, no. 5, May 2018.

[2] S. Kim, H. Kim, J. A. Kim, and Y. Cho, “A study on traceability
between documents of a software R&D project,” in Advanced
multimedia and ubiquitous engineering, vol. 354, J. J. Park, H.-C.
Chao, H. Arabnia, and N. Y. Yen, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 203–210.

[3] Q. Lu and X. Xu, “Adaptable Blockchain-Based Systems: A Case
Study for Product Traceability,” IEEE Softw., vol. 34, no. 6, pp. 21–
27, Nov. 2017.

[4] F. Furtado and A. Zisman, “Trace++: A traceability approach to
support transitioning to agile software engineering,” in 2016 IEEE
24th International Requirements Engineering Conference (RE), 2016,
pp. 66–75.

[5] T. Vale, E. S. de Almeida, V. Alves, U. Kulesza, N. Niu, and R. de
Lima, “Software product lines traceability: A systematic mapping
study,” Inf. Softw. Technol., vol. 84, pp. 1–18, Apr. 2017.

[6] R. Elamin and R. Osman, “Towards requirements reuse by
implementing traceability in agile development,” in 2017 IEEE 41st
Annual Computer Software and Applications Conference
(COMPSAC), 2017, pp. 431–436.

[7] R. Vallon, B. J. da Silva Estácio, R. Prikladnicki, and T. Grechenig,
“Systematic literature review on agile practices in global software
development,” Inf. Softw. Technol., vol. 96, pp. 161–180, Apr. 2018.

[8] B. Fitzgerald, K. Stol, R.O. Sullivan, and D.O Brien, Scaling Agile
Methods to Regulated Environments: An Industry Case Study, In:
35th International Conference on Software Engineering (ICSE), pp.
863-872.2013.

[9] L. Passos, C. Krzysztof, A. Sven, W. Andrzej, K. Christian, and G.
Jianmei, Feature-oriented software evolution, In: Proceedings of the
Seventh International Workshop on Variability Modelling of
Software-intensive Systems.2013,

[10] J. Zhang. "The software development process methodology of
resource-based access control." In Computer and Automation
Engineering (ICCAE), 2010 The 2nd International Conference on,
vol. 4, pp. 111-117. IEEE, 2010.

[11] L. K. Roses, A. Windmöller, and E. A. do Carmo. "Favorability
conditions in the adoption of agile method practices for Software
development in a public banking." JISTEM-Journal of Information
Systems and Technology Management 13, no. 3, pp. 439-458, 2016.

[12] N. Spasibenko, and A. Besiana. "Project Suitability for Agile
methodologies." 2009.

[13] J. Holvitie, S.A. Licorish, R.O. Spínola, S. Hyrynsalmi, S.G.
MacDonell, T.S. Mendes, J. Buchan, and V. Leppänen. “Technical
debt and agile software development practices and processes: An
industry practitioner survey”. Information and Software
Technology, 96, pp.141-160, 2018.

[14] Al-Zewairi, Malek, Mariam Biltawi, Wael Etaiwi, and Adnan Shaout.
"Agile software development methodologies: survey of
surveys." Journal of Computer and Communications 5, no. 05 pp.
74-97.2017.

[15] Rigby, Darrell K., Jeff Sutherland, and Hirotaka Takeuchi.
"Embracing agile." Harvard Business Review 94, no. 5, pp. 40-
50.2016.

[16] Anwer, Faiza, Shabib Aftab, Usman Waheed, and Syed Shah
Muhammad. "Agile Software Development Models TDD, FDD,
DSDM, and Crystal Methods: A Survey." International journal of
multidisciplinary sciences and engineering 8, no. 2 pp. 1-10. 2017.

[17] S. Gayer, A. Herrmann, T. Keuler, M. Riebisch, and P. O. Antonino,
“Lightweight traceability for the agile architect,” Computer, vol. 49,
no. 5, pp. 64–71, May 2016.

[18] P. Gregory, L. Barroca, H. Sharp, A. Deshpande, and K. Taylor,
“The challenges that challenge: Engaging with agile practitioners’
concerns,” Inf. Softw. Technol., vol. 77, pp. 92–104, Sep. 2016. M.
Senapathi and A. Srinivasan, “An empirical investigation of the
factors affecting agile usage,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering - EASE ’14, New York, New York, USA, 2014, pp. 1–
10.

[19] M. A. Brito and F. de Sá-Soares, “Assessment frequency in
introductory computer programming disciplines,” Comput. Human
Behav., vol. 30, pp. 623–628, Jan. 2014.

40

