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Abstract- In practice, most hospitals use light microscope to examine the smeared blood for blood quantification. This visual 
quantification is subjective, laborious and time-consuming. Although automating the process is a good solution, the available 
techniques are unable to count or ignore the clumpy red blood cells (RBC). Moreover, clumping cell can affect the whole counting 
process of RBC as well as their accuracy. This paper proposes a new quantization process called concavity point and skeleton analysis 
(CP-SA) for heavily clump RBC. The proposed methodology is based on induction approach, enhanced lime blood cell by using 
gamma correction to get the appropriate edges. Then, splitting the clump and single cells by calculating each object area in pixel. 
Later, the quantification of clumpy cells with the proposed CP-SA method is done. This algorithm has been tested on 556 clump RBC 
taken from thin blood smear images under light microscope. All dataset images are captured from Hematology Unit, UKM Medical 
Centre in Kuala Lumpur. On all tested images, the cells of interest are successfully detected and counted from those clump cells. A 
comparative study and analysis to evaluate the performance of the proposed algorithm in three levels of clump have been conducted. 
The first level was with two clumps, second level with three clumps and third level with four clumps. The counting number of clump 
cells has been analyzed using quantitative analysis, resulting in much better results compared to other recent algorithms. The 
comparison shows that the proposed method gives better precision result at all levels with respect to ground truth: two clump cells 
(92%), three clump cells (96%) and four clump cells (90%). The results prove that this study has successfully developed a new 
method to count heavily clump RBC more accurately in microscopic images. In addition, this can be considered as a low-cost solution 
for quantification in massive examination. 
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I. INTRODUCTION 

Human red blood cells (RBC) possess a typical form of a 
biconcave disk, with a diameter of 8 microns and reddish in 
color (Fig. 1(a)). In clinical practice, experts are required to 
perform the blood smears in response to a clinical feature or 
to a previously abnormal complete blood count in patients. 
They also have to manually classify the clump cells which is 
tedious, time-consuming and involves qualitative process 
[1], [2]. In addition, the existing methods contribute to 
inaccuracy, inconsistency and poor reliability diagnosis that 
may lead to false diagnosis situation. 

Many computer-aided systems have successfully been 
developed for counting single or individual cells. However, a 
disease could better be diagnosed by counting both single 
and clump cells. Therefore, it is vital to guarantee an 
achievement of overall vision task and overcome mistaken 
diagnosis. Moreover, limited number of experts to examined 

the growth number of blood samples each year, make it 
crucial to automate this routine through image processing 
methods. Here, our motivation of research comes to assist 
hematologist to count the clump of RBC automatically and 
then to further identify the morphology of the clumped red 
cells. 

Heavily clumped cells such as ‘Rouleaux’ and 
Agglutination (Fig. 1(b),(c)) in blood images could be due to 
underlying medical illness such as Plasma cell myeloma of 
Chronic lymphocytic leukemia but it could also be due to 
many other factors such as variety of blood smearing skill of 
the laboratory technician, blood storage and temperature. In 
a worse scenario, a repeated blood sample is impossible to 
be obtained from the patients (e.g. premature babies and 
death). It is a big challenge to the hematologist, in order to 
identify morphology of clump RBC accurately.  
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(a) 

 
(b) 

 
(c) 

Fig. 1(a) Normal, (b)Rouleaux, (c) Agglutination. Source: UKM Medical 
Centre 

 
Several methods have been proposed to predict the 

clumped cells regions. Some of them are based on 
Watershed and Distance transform [3], morphological [4]–
[6], Appearance model [7], distance information [8] and 
Hough transform [9]. One recently common method for 
segmenting clumped cells is concavity analysis. The 
concavity point algorithm (CP) [10] is one of the techniques 
to segment and separate clump cells. Zafari used this method 
for the segmentation of partially overlapping nanoparticles 
with a convex shape in silhouette images. This method 
comprises of two main stages: contour evidence extraction 
and contour estimation. Contour evidence extraction starts 
with contour segmentation which recovered from a binarized 
image by detecting concave points. Then, contour segments 
are sought and grouped by utilizing the properties of fitted 
ellipses. Finally, the contour estimation is implemented 
through a non-linear ellipse fitting. This method relies only 
on edge information and can be applied to any segmentation 
problems where the objects are partially overlapped. 
However, some of the gradient values in the clump regions 
do not show a significant difference to other areas of the 
cells. Therefore, segmenting them according to the concavity 
and convexity of heavily clump cells are impossible because 
of the very narrow angles. 

The Iterative Randomized Irregular Circular algorithm 
(IRIC) [11] is considered as a geometrical feature approach 

as it was inspired by searching possible circle using non-
collinear equation and distance criteria. At first, the image is 
divided into several partitions and IRIC algorithm is 
activated by randomly selecting four edge pixels prior to 
determine the potential circle. However, IRIC has some 
limitations; IRIC is less efficient when dealing with huge 
image size consisting of a high number of clump cells. 

Our objective is to propose an algorithm to analyses 
heavily clump hematology images to automate detection and 
counting clump cells. Two experts perform gold standard 
analysis of the images. Then, evaluation and quantitative 
analysis are conducted from the proposed algorithm and its 
performance is being compared with several selected 
methods. The rest of this paper is arranged as follows: the 
proposed CP-SA algorithm for clump cells in blood smear 
images in Section II, experimental results and analyses in 
Section III, and the conclusion of this work in Section IV. 

II. MATERIAL AND METHOD 

We proposed a counting method for heavily clump cells 
to overcome the limitation of concavity-point methods. Two 
or more RBC clumps in various forms resulting in one or 
more concavities. In some of the clump cells, the gradient 
values in the clump regions do not show a remarkable 
difference compared to the other areas of the cells. Therefore, 
splitting them according to the concavity and convexity of 
heavy clump cells is impossible because of the very narrow 
angles. In the case of clumping area, more than fifty percent 
of concavity points cannot be established. As an alternative, 
this paper will introduce the framework to detect and count 
the multiple clumping cells based on the combination of 
concavity-point algorithm and skeleton analysis. Fig. 2 
shows the general methodology of the proposed CP-SA 
algorithm. 

 

 
Fig. 2 General methodology for the proposed method  

 
In this stage, gamma correction was used to make sure the 

cell edges to emerge clearly. This step was critical and 
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imposed an accurate counting cell at the end. Next, we 
applied Otsu’s threshold method [12] for extracting the 
foreground from the background followed by morphological 
dilation and erosion methods in order to form a solid 
foreground pixel map and free from noise. This pre-
processing step is widely used in computer vision involving 
other applications such as textiles[13] and agriculture [14]. 
Later, the connected regions of the foreground map were 
grouped together to identify the clump and non-clump 
regions based on the area. For the clump regions, further 
analysis was performed to predict the number of connected 
cells. Next, the white blood cells (WBC) images were 
extracted from RBC images by using thresholding; we 
studied the histogram of 20 sample grayscale images, and 
the best thresholding value to extract RBC was found at 0.7. 
This proposed method for cell segmentation worked with 
smooth edge images. Fig. 3 shows the overall pre-processing 
steps for the RBC. First, the gamma correction image was 
converted into a grayscale image by eliminating the Hue and 
saturation information while retaining its luminance. 

 

 
Fig. 3 Pre-processing step for RBC  

 
Then, the image was converted into binary using the 

thresholding value of 0.7, to visualize all the RBC and WBC, 
as shown in Fig. 4(a). To remove the WBC from the image, 
the complementary white cells image was taken as in Fig. 
4(b) and subtracted from the first image to obtain only the 
RBC, as shown in Fig. 4(c). When the image was converted 
to binary and the WBC were removed, some undesired 
pixels appeared after edge detection. These pixels 
represented either platelets or noise, and it subsequently 
affected the segmentation process. Therefore, these pixels 
were removed using a morphology operator on the binary 
image. An area was calculated for each cell to separate the 
overlapped and single RBC as shown in Fig. 6(d). From 100 
images of normal single RBC, the average area obtained was 
at 2000 pixels. After these pre-processing steps, the image 
was prepared for input to our proposed Concavity Point with 
Skeleton Algorithm. 
 

 
(a) After thresholding 

 
(b) WBC only 

 
(c) RBC only 

 
(d) Clump cells 

Fig. 4 (a) –(d): Step in pre-processing RBC’s. 
 

Here, a part of algorithm in [10] was used to get the 
concave point along with skeleton algorithm [15]. As proven 
in previous research, the skeleton algorithm are best 
performed in binary images [16], [17] to get the backbone of 
the object. Our proposed method is shown below to 
outperform earlier methods in the task of heavily clump 
RBC based on detection rate and quantization accuracy. 
Here, we used rad=22. 

 
Algorithm 1 : Pseudo code to determine the distance of each 
concavity point 

Input : Binary image of concavity point 
Output : Array of distance for each concavity point 

1. Check for concavity point denoted as C (xci, yci) and 
total number of concavity point is denoted as N. 

*Note: i=1,2 …,N 
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2. Determine distance of each concavity point using 
Equation (1). 
 
Distance= ����� − �����	
 + ���� − �����	
    (1) 

3. Determine median of the distance as median. 
4. Determine maximum distance as maxDistance and 

minimum distance as minDistance. 
 

Algorithm 2 : Pseudocode for detection and quantization of 
red blood cell 

Input: Binary image of skeleton and concavity point 
Output: Detected red blood cell 

5. Obtain pixels located at the skeleton. These pixels 
referred as skeleton pixel, SkelPix(i) and the total 
number of skeleton pixel is denoted as M. 

6. Check for concavity point denoted as C (xci, yci) 
and a total number of concavity point is denoted as 
N. 

*Note: i=1,2 …,N 
7. For Each Object do 
8.         if N =0 AND M <=10 then 
9.             for each circle do 

  Estimate circle =1 
  Increment = radian-1 
  Draw circle 
End for 
 

10.          if N < 2 AND M <=10 then 
11.               for each circle do 

           Estimate circle =1 
           Increment = radian-1 
           Draw circle 

End for 
 

12.          if N == 2 AND (M <44 AND M >10) then 
   Rad2 = M /2 

13.               for each circle do 
           Estimate circle =2 
           Increment = rad2 
           Draw circle 

End for 
 

14.          else 
15.              if median < rad+5 then 

i. D=rad+4 
16.              if rad+7 > median >= rad+5 then 

i. D=rad+7 
17.              if rad+10 > median >= rad+7 then  

i. D=rad+9 
18.              if rad+40 > median >= rad+10 then 

i. D=rad+15 
19.              if median >= rad+40 OR  

                            (maxDistance – minDistance >=15) then 
i. D=rad 
for  each circle do 
    Increment = D 
    estimate circle =estimate circle+1 
     Draw circle 
End for 

End for 
 

Based on the model in Fig. 5(a), with the assumption of 
the normal radius of RBC is at 22 pixels and clump between 
cells is more than 50% to resemble heavily clump RBC 
(i.e. Roulaeux), Fig. 5(b) shows our proposed method output. 
This model resembles the real cases of heavily clump cell in 
blood smear images. The first and second row (as simple 
model) show that the proposed method has successfully 
detected all the clump even without a complete number of 
concavity points. This situation normally happens in blood 
smear images. The third and fourth row represents a 
complex clump that often occurred. 

 

   
 

   
 

   
 

   
(a) (b) 

 
Fig. 5 (a) Simulation model, (b) Output of proposed method 

 
These situations happen in a bad blood smear process or 

in some special diseases. As depicted, they are stacked in 
many angles and branches imposing a greater challenge to 
be detected and counted. Here, our proposed algorithm can 
successfully detect almost all the cases. This will give better 
accuracy in the counting of the whole number of cells in an 
image. 

III.  RESULTS AND DISCUSSION 

The main objective of the CP-SA algorithm is to detect 
and count the RBC precisely in microscopic images of 
heavily clump cells. 

 

1903



A. Experimental Setup 

In this study, 556 clump RBC were cropped from three 
microscopic images of ‘Rouleaux’ patient’s in RGB color. 
All patient’s dataset was collected from the Hematology 
Unit, UKM Medical Centre. This process has been done 
under the supervision of the experts. This image was 
acquired under the light microscope with effective 
magnification at 40 times objective or equal to 400 
magnifications. 

 
In this study, we introduced three levels of clump namely 

simple, moderate and complex. The first level contained two 
clump cells as shown in Fig. 6(a). The second level 
contained three clump cells as in Fig. 6(b). While the third 
level with four clump cells as in Fig. 6(c). The images were 
tested based on the levels of clump using our proposed 
method, IRIC, and concavity point method.  

 

   
(a)                       (b)                          (c) 

Fig. 6 Zoomed image samples of three levels of clumping cells. (a) simple 
(b) moderate and (c) complex. Source: UKM Medical Centre 

 
As a comparison, we conducted the experimentation 

based on the same dataset and pre-processing step with the 
chosen parameters as below:  

 
As mentioned previously, one of the most important 

criteria to diagnose a blood-based disease is the capability to 
correctly recognize and count the number of red blood cells 
including the clump cells accurately. Here, the average of 
true positive (TP), false negative (FN) and false positive (FP) 
values were determined. It is a condition when either there is 
an agreement between the expert and the method to detect 
the clump RBC, when the method is unable to detect the 
clump RBC but the expert is able to detect the clump, or 
when the method is able to detect the clump RBC but the 
expert is not. All the related formulas are: 

 

Precision, � = ��

�����
;                      (2) 

 

 Recall, �� =  ��

�����
;                                                   (3) 

 

 F-measure, �� = 


� �
��� �

��	
                       (4) 

 

B. Quantitative Result 

Table 1 summarizes the results of the RBC detection and 
count at each level of clump cell using three different 
methods. The best results obtained are in bold. Almost all 
levels of RBC segmented by IRIC gave the results below 77% 
for both accuracy and recall. The worst results were obtained 
for the four clumps with 42% and 37% for accuracy and 
recall. The overall clump mean for this method is under 65%. 
This finding supported that IRIC has an issue in segmenting 
and detecting cells in more than 3 clumps. 

The concavity point algorithm (CP) [10] produced better 
results compared to the IRIC. It produced a higher mean 
percentage of accuracy and recall at 89% and 85% 
respectively. This finding supported the results as in [11] 
that IRIC is best segmenting and detecting cells under 3 
clump. The proposed CP-SA algorithm produced the highest 
accuracy of mean at 91% and 96% for accuracy and recall 
respectively. Based on this result, there was a significant 
increment at 7% to 12% for accuracy and 11% to 18% for 
recall as compared to CP in each level of the clump. This 
finding proved that the proposed CP-SA algorithm has a 
high capability in overcoming the very narrow-angle in the 
concavity point algorithm, as mentioned before.  

TABLE I 
 RESULTS FOR RBC DETECTION WITH THREE LEVELS OF CLUMP 

METHOD CLUMP PR 
(%) 

RC 
(%) 

FM (%) 

CP_SA 
(Proposed) 

2 92.0 98.0 95.0 
3 96.0 94.0 95.0 
4 90.0 94.0 92.0 

MEAN 91.0 96.0 94.0 
IRIC 2 75.0 77.0 76.0 

3 56.0 53.0 54.0 
4 42.0 37.0 39.0 

MEAN 65.0 62.0 63.0 

CP 2 85.0 87.0 86.0 
3 89.0 90.0 89.0 
4 78.0 76.0 77.0 

MEAN 89.0 85.0 87.0 

 
Based on Fig. 7, the number of undetected cells for the 

concavity point algorithm (CP) is around 70 cells and half of 
them is at 2 clump. It tends to detect this case as 1 cell. This 
finding is parallel with the earlier result showing that CP is 
less effective to detect almost fully overlapped cells. The 
IRIC has the biggest number of undetected cells with more 
than 100. This is due to IRIC suffers from under-
segmentation and over-segmentation problems in heavily 
clumping cells. Based on [1], this algorithm is best suited for 
detecting RBC in blood smear images of a normal person. 
The proposed algorithm has successfully overcome this 
problem with the minimal number of undetected cells at less 
than 20. This finding is important to make sure that the 
whole quantization cell process is accurate and reliable. 
Therefore, this leads to a more accurate diagnosis of a 
disease by the experts and helps the patients in getting the 
right medication.   

 

CP_SA 
(proposed): 

IRIC parameters: CP 

radian = 22 
 

Ta = 20  
Td = 5   
Tr =0.4 
rmin =10 

 rmax = 50 

k = 10 
t1 = 23 
t2 = 45 
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Fig. 7 Number of undetected cell (FN) by each algorithm. (1-CPSA, 2-CP, 
3-IRIC) 

C. Qualitative Result 

The results of the segmentation and detection of the 
clump cells are shown in Fig. 8. Each column represents 
each level of clump. The first column shows level of 
detection for 2 clump, second column for 3 clump, and a 
third column for 4 clump. The detected cells are highlighted 
inside the boxes. 
 

      2 clump                                3 clump                        4 clump 
 

Fig. 8 RBC segmentation by CP-SA (first row), IRIC (second row) and CP 
(last row). Source: UKM Medical Centre 

 
As clearly observable in Fig. 8, the second row produced 

by IRIC, the over-segmented and under-segmented 
occurrences were noted in 4 clump and 3 clump levels. This 
condition supports the earlier findings stating that IRIC has a 
limitation in detecting beyond 1 clump and 2 clump of RBC. 
On the other hand, CP algorithm produced a better detection 
as Fig. 8 (third row) compared to IRIC. However, it can be 
observed that CP has a poor detection of 2 clump RBC 
where it wrongly detected the clump as a single cell. The 
same problem occurred in 3 clump and 4 clump of almost 
totally overlapped cells. This result proved that CP has a 
problem in detecting a very narrow-angle that leads to non-
concavity point detection. The proposed CP-SA algorithm 
overcomes this problem by combining the concavity point 
and skeleton analysis algorithms. It can assume and detect 
RBC correctly even at clump that almost fully overlapped as 
in Fig. 8 (first row). Thus, from these findings, the proposed 

CP-SA algorithm produced the best results as compared to 
the IRIC and CP algorithm. 

IV.  CONCLUSION 

As a sum up, we have examined the achievement of CP-
SA, IRIC and CP algorithms on three levels of clump cell in 
blood smear images. The capability of the proposed method 
to segment and detect in heavily clumped cells had been 
analyzed on 556 clump RBC from thin blood smear images. 
Here, the qualitative outcomes of the detected circles in each 
case have been shown. We also presented a comparison of 
the quantitative table to show the result variations-SA used 
skeleton algorithm in getting the backbone of each clump 
RBC and analyzed it with the concavity point pixel to detect 
and count the RBC. Here, we found that CP-SA successfully 
caught the clumping RBC precisely, especially in cases of 
heavily clumpy blood smear images. However, IRIC tended 
to over-count the cells and CP suffered from an 
unrecognized concavity point. As a future reference, it is 
suggested for the proposed CP-SA algorithm to be modified 
for all medical and non-medical images to improve its 
robustness.  
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