

Vol.10 (2020) No. 3

ISSN: 2088-5334

The Development and Evaluation of Experience-Based Factory Model

for Software Development Process
Mastura Hanafiaha,1, Rusli Abdullaha,2, Masrah Azrifah Azmi Murada,3, Jamilah Dina,4

a Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 Malaysia
 E-mail: 1mastura.hanafiah@daimler.com; 2rusli@upm.edu.my; 3masrah@upm.edu.my; 4jamilahd@upm.edu.my

Abstract— Knowledge, and experiences in software development have been accumulated over time throughout the project lifecycle.
Previous studies have shown that the management of knowledge and experiences in software development has always been an issue.
Therefore, the knowledge transfer and information flow are inefficient, misinterpretation, and inconsistencies always occur between
individuals or teams, and the organization fails to learn from past projects. It is understood that efficient knowledge and experience
management for software development organizations is crucial for the purpose of sharing and future reuse. This paper discusses the
prototype development for a proposed model, which is based on the experience factory approach, to manage knowledge and
experiences for the software development process. Discussions include the system functionalities and design, infrastructure
requirements, and implementation approach. The efficiency and effectiveness of the prototype are evaluated as survey research based
on Jennex & Olfman knowledge management success model. Rasch analysis is used for data reliability and validity. Results show
positive feedback on the model’s efficiency and effectiveness. Additionally, as agreed by most respondents, the top three of the model
contributions are: to encourage learning organization, to prevent knowledge loss and to aid in decision making.

Keywords—experience factory; knowledge management; software development process; prototype evaluation.

I. INTRODUCTION

In software development (SD), there are many stages of
events and activities take place typically; some of them are
iterative in nature. Throughout the development lifecycle, a
lot of methods, techniques, and tools are used. The
knowledge and experiences gained during development have
become important assets in software organizations. In the
previous work, via a systematic literature review [1], it has
been identified that there are issues in knowledge
management for SD, and it is even more challenging for
distributed teams. The main challenges identified are
inefficient knowledge transfer and information flow [2], [3],
misinterpretation, and inconsistencies [4], [5], and
additionally, organizations fail to learn [6]. Due to the
importance of knowledge retention and reuse, it is therefore
essential to facilitate knowledge management for software
process improvements in software organization [2], [7].

Knowledge management (KM) for software development
has emerged since the late 1990s, and enormous studies have
emerged since then. The interactions between tacit and
explicit knowledge allow the conversion of data and
information to become useful knowledge and experiences
that can be used as a future reference [8].

In general, organizational KM has continuously strived
for process improvement. Experience Factory (EF) is a
software process improvement framework based on reuse of
products, processes, and experiences originating from the
system lifecycle [9]. EF focuses on two distinctive
organization (Fig. 1):

Fig. 1 The Experience Factory [9]

Project Organization provides the experience factory with

project data, processes, and models used in the development,
and uses packaged experience to deliver software products;

1016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/325990424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and Experience Factory: transforms those data and
information into reusable units and supplies them back to the
project organization.

EF employs the concept of Quality Improvement
Paradigm (QIP) to improve learning in software quality and
process; it includes some aspects as follows:

• Characterize and understand
• Set goals
• Choose process/methods
• Execute
• Analyze
• Package

With a successful implementation of QIP, a growing number
of packaged experiences can be created by storing, analyzing,
and transforming them into best practices [10].

II. MATERIALS AND METHOD

A. Conceptual Model

Prior to this study, an experience-based factory model for
the SD process (EBF-SD) has been proposed [3]. The model
consists of two main organizations: Project Organization
(PR_ORG) and EF Organization (EF_ORG). PR_ORG
consists of the necessary data, information, knowledge, and
experiences from the Community of Practice (CoP) and
Software Development Process (SDP). EF_ORG consists of
the technology and infrastructure needed (TECH)
components, along with the processes required within
Knowledge Management (KM). EF_ORG is responsible for
analyzing and processing data, information, knowledge, and
experiences. And transform them into reusable packages,
and later send them back to the project organization. Fig. 2
illustrates the proposed model.

PR_ORG EF_ORG

Software Development

Process

Activities, Lifecycles, Best

Practices, Tools, Methods,

Techniques

Knowledge Management Process

Acquisition

Storage/Mapping

Dissemination

Application/Use

Community of Practice

Knowledge Sharing/Transfer,

skills and expert,

communication/

collaboration, technological

support

CoP

SDP

KM

Knowledge Portal and

Repository

Communication/

Collaboration

Automation/Discovery

Cloud Computing

Environment
TI

Technology and Infrastructure

Fig. 2 The EBF-SD Model

Many collaborative KM solutions in SD have been

introduced thus far. Some examples include ontology-based
solution [3], [4], multi-agent-based [11], [12], and semantic
web [13], [14]. It is found that the number of EF based
approach for SD process are still insignificant [1]. One of the
studies that adopted EF concept was the study by Ivarsson
and Gorschek [2] who proposed Practice Selection
Framework (PSF) to support utilizing postmortems for
organizational improvements. There was a practice

repository which consisted of practices and experiences, and
a process manager. The practice repository evaluated the
state of the practices and decided if improvements were
needed. Those practices could then be used and reused in
projects. There was a clear separation between the project
organization and experience factory organization. During the
evaluation, the effort of using PSF was relatively high, and
the prescribed practices were not as usable; besides, there
were also challenges of using PSF, i.e., the need to
accommodate dedicated resources for documentation, trust,
legacy, and measurement.

Another study that utilized the EF framework was the
Experience Base Model (EBM) by Sharma et al. [15]. In this
study, experience about software engineering items or
objects (technique/tool/method) is captured and managed
up-to-date with identified representation schemas. While the
model could benefit software organization in terms of
software engineering terminology and concepts by storing
them in dedicated repositories, there was no tool proposed
on how these schemas can be shared, transferred or reused
within the software engineering community.

The study by Ardimento et al. [16] proposed the structure
of the Knowledge Experience Base (KEB). The structure of
the knowledge is derived from a centralized knowledge
content in which it consists of Tool, Evidence, Competence,
and Projects. Prometheus supported it, a tool to capture,
share, and retain content and ensure automation and
management of the content. Users may access any of the
component structure and navigate to all the components for
their needs. An empirical investigation was done with an
experiment to test the model against productivity, which is
calculated based on function points and effort. The study
showed that productivity for those using the tool was higher
compared to those without the tool. Therefore, the reuse
grew with the tool.

Generally, these studies do emphasize more on explicit
knowledge and storing them in dedicated repositories, but
they have less emphasis on tacit knowledge gained during
the software development activities. Additionally, they are
lack of automation feature for knowledge dissemination
appropriate audiences.

Some KM systems that are built as information systems
have been evaluated by using DeLone and McLean (D&M)
model [17]. D&M is composed of six distinct measures:
System Quality, Information Quality, Use, User Satisfaction,
Individual Impact, and Organizational Impact. Jennex and
Olfman (J&O) KM success model [18] is adapted from
D&M model but is tailored towards the KM context. The
measures in J&O model are similar to those of D&M, which
include System Quality (SQ), Knowledge Quality (KQ),
Service Quality (SVQ), Intent to Use/Perceived Benefit (IN),
User Satisfaction (US) and Net Benefit (NB).

Service Quality deals with how well KM assists the user
in capturing, finding, retrieving, manipulating, and using
knowledge. The Knowledge Quality measures on the
usefulness and accuracy of the content and the ability to
assist users in their activities The Service Quality evaluates
the organization’s ability to provide the KM system (KMS)
and ensure it provides the benefits expected from the
knowledge users The User Satisfaction measures user
satisfaction of using KMS and its knowledge The Intent To

1017

Use/Perceived Benefit assists in determining if the KMS is
sufficient to ensure that users will use KMS when
appropriate and the Net Benefit measures the actual benefits
derived from using knowledge/KMS, i.e., impacts to
business processes, KM strategy, knowledge content, and
leadership/management support.

However, J&O’s Net Benefit is more difficult to measure,
by using merely a prototype, without having hands-on
experience or the actual user experience in the real world.
Therefore, we consider Halawi’s KMS Success model [19]
as the Net Benefit and adopt the questions by Nattapol et al.
[20] as the key elements of this construct to reflect the
benefits that can be perceived and judged immediately. The
proposed perceived benefits items include acquiring new
knowledge and innovative ideas, effectively managing and
storing needed knowledge, accomplishing tasks more
efficiently, improving the decision making, and improving
the quality of work-life [19].

B. Development Methodology

The research has undergone several stages in which
qualitative and quantitative methods are involved. In the
initial stage, the conceptual model has been formulated
based on the review of the literature. The model is then
reviewed by the relevant experts and followed by survey
research to gauge the opinion model from the software
development community about components that constitute
the model. Publications on these studies can be referred to in
[21] and [22]. The research is further continued with
prototype development and prototype evaluation. This paper
discusses the results of a preliminary evaluation of the
prototype. Fig. 3 illustrates the prototyping approach, as
introduced in [23], used in model development.

Fig. 3 The Development Methodology

The prototype objective is to outline the main

functionalities and to visualize the user interface. The
prototyping functionalities are defined by using scenarios
and use cases. This will comprehend the whole workflow
and the interaction between the system and the users. Use
cases and scenarios are effective techniques in requirement
elicitation as they can identify the actors and its interaction
with the system [23]. Use cases are visualized by using use
case diagrams of Unified Modelling Language (UML), a de
facto standard for object-oriented modeling. The next stage
is to develop the prototype. During the developing prototype
stage, the identified software process models are formally
structured and defined as ontologies. The end product should
also be enhanced with multi-agent systems to assist the
necessary automation features.

For the prototype evaluation, the system was
demonstrated to software practitioners randomly selected
from identified software companies, and they were then
asked to answer the survey questions related to KM success
model discussed earlier. Survey questionnaires were
provided as a paper-based and online questionnaire
(surveymonkey.com and docs.google.com). Threats to
validity may occur throughout the research process and can
cause an error in measurement due to several factors such as
instability of measurement instrument or response bias. In
this research, we use the Rasch measurement model [24] as a
method to evaluate construct validity. Construct validation is
an evaluation of a measurement instrument for its validity
and reliability [25]. Validity refers to how well a construct
measures what it is supposed to measure. The reliability
refers to the consistency of the scores when similar tests is
performed with a more extensive set. Validity and reliability
of the collected data are further examined for summary
statistics, dimensionality, person, and item fit criteria with
Rasch fit indicators. Rasch fit statistics can be analyzed by
the acceptable range values as in Table I.

TABLE I
THE ACCEPTABLE RANGE OF RASCH MEASUREMENT MODEL

Person/Item Acceptable range

Point measure correlation (PTMEA CORR) 0.4 < x < 0.8 [26]

Infit/Outfit means square (MNSQ) 0.6 - 1.4 [27]

Infit/Outfit Z-Standardized value -2 < x < 2 [26]

The data is further analyzed for the KM success constructs

on KQ, SQ, SVQ, US, IN, and NB for their mean and
standard deviation values. The perceived contribution of the
model is also analyzed. At the end of the survey session,
participants were given five options on the possible model
contribution, i.e., encourage learning organization, reduce
development cost, improve software quality, prevent
knowledge loss, and aid in decision making. They were
asked to select three options that they thought the model
would contribute the most.

III. RESULT AND DISCUSSION

A. The Prototype Development

The development of the prototype begins with the
analysis of the functionalities, use case identification, and
workflow design. KM process includes knowledge
acquisition, knowledge storage, knowledge dissemination,
and knowledge application, and these are the main
functionalities of the prototype that will be implemented.

Fig. 4 below depicts the use case diagram of the system.
Identified actors are as follows:

• Project Owner
• Project Contributor
• Public User
• Notification Agent
• Recommendation Agent

1018

Public User

Project Owner

Create project

Reuse knowledge

Search

knowledge

Notification Agent

Disseminate

knowledge

Recommendation Agent

Project Contributor

Add knowledge

contentApprove

knowledge

Publish

knowledge

Send notification

include

include

View statistics

extend

Manage profile

Add feature or epic

Fig. 4 The Use Case Diagram

The project owner is responsible for creating the project,
approve the knowledge entries, and publish the knowledge.
The Project Contributor can add project features or epic, add
knowledge entries, search and reuse knowledge; and the
Public user may also search and reuse knowledge where
applicable. All the reused knowledge would be cloned to the
users’ project, and this reused knowledge require approvals
from the project owner. Notification Agent is responsible for
sending relevant notifications whenever there are new
knowledge entries or when a project has adequate

knowledge entries for publishing. Meanwhile,
Recommendation agent functions to find proper knowledge
and disseminate the knowledge according to user profiles.
Scrum, an agile approach, and the waterfall model, a
traditional approach, are used in the prototype to
demonstrate the software process model classification and
structure. Such a structure is defined and classified by using
an ontology, based on the ontology for software engineering
[28].

Fig. 5 Part of Scrum Ontology

1019

Fig. 5 shows part of the ontology definition for Scrum.
Scrum is planned by sprints, which is a time-boxed
(normally 2 to 4 weeks) for one iteration [29]. A sprint
contains several stages, i.e., Sprint Planning 1 and 2, Sprint
Review, and Retrospective. Several other topics relevant in
agile development are also included, such as technical
practices, agile analysis and design, and such. The ontology
design serves as a well-defined structure for the Scrum
process model and is represented as a tree-like structure in

the user interface. In each leaf of the tree-view structure, the
user may enter the relevant knowledge entries whereby the
approval from the project owner is required before it can be
published to the community.

For the implementation of multi-agent systems, we
simulate them as time-based event programs running in the
background (cronjobs) at a fixed time. Fig. 6 shows the
system overview diagram of the multi-agent systems.

Fig. 6 MAS System Overview Diagram

The Recommendation Agent reads from the database

about the available knowledge and the matched profiles, and
then it sends notification requests to the notification agent.
Notification Agent receives the request and sends alerts to
the respective users. Notifications for this prototype will be
shown in the user interface with the notification icon at the
top right bar of the user interface. In future enhancement,
email notifications will be used as well to increase
awareness of the requests and available knowledge.

To implement the system, we have defined the necessary
infrastructure requirements, which include the technical
requirements on availability and reliability, storage
requirement, automation of KM processes, security, and
network and performance [30]. Cloud security features
proposed by [31] could be a value-added feature as it offers
data confidentiality, correctness, availability, and integrity of
cloud data storage. For the prototype, we have chosen
Amazon Web Services (AWS) Cloud [32] as the provider of
the computing needs. Amazon Elastic Compute Cloud (EC2)
provides the computing needs and allows the flexibility for
server configuration and has the auto-scaling features to
ensure high availability.

For the storage requirement, the model requires storage
that should be flexible where the structure can be changed
from time to time and able to support a massive amount of
data. In this case, we choose MongoDB [33] as our ‘nosql’
data storage. Automation of the KM process is supported
with customized workflow and agent-based programs.
Security would be supported with authentication and
authorization mechanisms, as well as leveraging the security
features offered from AWS. In regards to network and
performance, we can also rely on AWS elastic network

adaptor in which it can run across multiple EC2 instances
and ensure that all available network bandwidth are fully
utilized. Table II summarized the framework and
technologies used in the prototype.

Note that for the front-end and back-end implementation,
Javascript-based programming languages are used in which
codes are executed at the users’ processors, thus saving
bandwidth and strain at the webserver.

TABLE II
PROTOTYPE IMPLEMENTATION APPROACHES

Component Framework Reference

Front-end Materialize http://materializecss.com/

Back-end Meteor
https://www.meteor.com/ Agent

classes
Meteor

Database Mongo-DB https://www.mongodb.com/

Application
hosting

Amazon
Elastic
Compute
Cloud

https://aws.amazon.com/ec2/
?nc2=h_m1

Materialize components are used for a more customizable

and responsive user interface, and they are more adaptable
for mobile interface. Fig. 7 shows a sample screen for the
user interface. The design is kept simple and consistent.
Menu navigation is on the left, project lifecycle model
structure, and the knowledge entries area are on the main
page.

1020

Fig. 7 Sample Screen

The prototype is called DevEx, a short form of the words

Development and Experiences. The user interface should be
designed in such a way that it can be easily adapted in
mobile applications in the future. This prototype
development, however, focuses more on web applications.

B. Prototype Evaluation

The evaluation of the model was conducted via a 20
minutes prototype demonstration followed by a survey with
36 questionnaire items. Likert-scale items were used with 1
representing ‘strongly disagree’ and 4 represented ‘strongly
agree.’ The purpose of the survey was to evaluate the model
prototype based on J&O model discussed earlier. The
following constructs were evaluated: Knowledge Quality
(KQ), System Quality (SQ), Service Quality (SVQ), User
Satisfaction (US), Intent to Use/Perceived Benefit (IN), and
Net Benefit (NB). The questionnaire items for SQ, SVQ,
KQ, US, and IN were self-developed based on J&O model
description, while for NB, the questionnaire items were
adopted from Nattapol at el. [19]. The survey had collected
48 respondents from three different software companies in
which the participants came with various roles, i.e., software
engineers (21), project managers (6), system analysts (6),
consultants (4), testers (2), architect (1), IT managers (3),
others (5). The working experience of the respondents in
software development ranges from 2 to 20 years.

For Rasch analysis, the Analysis tool WINSTEPS Version
3.68.2 is used. Rasch analysis can be carried out several
times until a satisfactory result is achieved. In this case, we
had run the Rasch analysis twice before a satisfactory result
could be obtained. Table III shows the Rasch analysis on
summary statistics, dimensionality and misfit items and
persons for both runs.

During the 1st run, the raw data was used: 48 persons and
36 items. Results show that Cronbach’s alpha, item
reliability, and person, respectively. For unidimensionality
testing, a measured variance of over 40%, the eigenvalue of
less than 2.0, and the variance for the first contrast less than
5%. These are the criteria for unidimensionality [34].
Reliability is excellent with values 0.95, 0.85 and 0.95 In the
1st run, the measured variance is 43.6%, and the first contrast
of unexplained variance is 9.6%, which is fair, but
eigenvalue shows the strength of 6 items. A value higher
than 2 could indicate the existence of a secondary
dimension.

TABLE III
SUMMARY STATISTICS

 1st run 2nd run

Summary
statistics

Cronbach's α 0.95 0.95

Item reliability 0.85 0.87

Item separation 2.34 2.56

Person reliability 0.95 0.95

Person separation 4.26 4.21

Item measure 0.00 0.00

Person measure 0.77 0.66

Standard error item 0.14 0.17

Standard error person 0.24 0.27
Dimensionality

Measured
variance, %

43.60 45.40

1st contrast
unexplained
variance, %

9.60 7.10

Eigenvalue 6.10 4.30
Misfit

Items Yes No

Person Yes No

Further investigation of misfitting persons and items

reveals that some persons and items are outside the fit
indicators. Negative or ‘nearly zero’ point measure
correlations could indicate problematic items or persons
[26]. For misfitting persons, it is found that seven persons
have negative correlations, i.e., P13, P6, P33, P35, P40, P44
and P21 (Fig. 8), while misfitting items indicate three items
with out-of-range Z-standardized, i.e., SQ4, KQ7, and KQ3
(Fig. 9). These misfitting persons and items are removed,
and we are left with 41 persons and 33 items.

Rasch unidimensionality test is run again with this
reduced dataset, and the summary statistics and
dimensionality testing are as shown in Table III, at the
column 2nd run. Person and items reliability remain
excellent, while the measured variance, eigenvalue and
unexplained variance of first contrast have improved with
values 45.4%, 4.3 and 7.1% respectively. The plot of the
standardized residual contrast however shows that the plots
for items A-E are quite random vertically and are close with
other items (Fig. 10); therefore, it can be concluded that
there is no potentially secondary dimension.

Fig. 8 Person Misfit

1021

Fig. 9 Item Misfit

The analysis continues with the respondents’ feedback on

the KM success constructs. Cronbach’s alpha is re-analyzed
with IBM SPSS 22 to re-confirm the internal consistency.
Cronbach’s alpha indicates consistent value with that of the
Rasch reliability test, with a value of 0.95, as shown in Table
IV.

Fig. 10 Standardized residual contrast 1 plot

TABLE IV
CRONBACH'S ALPHA BASED ON STANDARDIZED ITEMS

Cronbach's alpha N of Items
0.95 33

The categorized mean values and standard deviation for

each construct are shown in Table V. Overall, the mean is
between 2.9 and 3.3, indicating positive feedback on all
items. Standard deviation is also very small between the
values of 0.4 and 0.8 indicating that the data points tend to
be close to the mean. Except for SVQ and NB, other
constructs are mostly agreeable by most respondents.

TABLE V
DESCRIPTIVE STATISTICS FOR KM SUCCESS CONSTRUCTS

 N Mean Std. Deviation
SQ 41 3.2964 .43448

KQ 41 3.1626 .41803

SVQ 41 2.9878 .44353

US 41 3.2520 .42019

IN 41 3.1789 .42881

NB 41 3.0780 .46450

Valid N (listwise) 41

Table 6 shows the mean and standard deviation values for
each item. Overall, most of the respondents agree with the
constructs for SQ, KQ, US, and IN (mean scores > 3). For
NB, the scores are somewhat lower (< 3) for the items NB2,
NB3, and NB4. Perhaps, for NB2 (Accomplish tasks more
efficiently), NB3 (Improve the quality of my work life), and
NB4 (Improve in decision making) are somehow difficult to
endorse because the system needs longer time of usage
before the perception on these items can be evaluated as
compared to item NB1 (Effectively manage and store
required knowledge.) which is easier to agree with as it can
be measured promptly for agreeableness.

It is also observed that the items for Service Quality
(SVQ) focus more on management support, KM strategy,
and KM governance. These items are somehow hard to
measure by employees as they might not able to predict what
the management can do in terms of service quality.
Therefore, these items result in reliably low scores.

TABLE VI
DESCRIPTIVE STATISTICS FOR ITEMS

 Items N Mean Std.
Dev.

SQ1 Easy to use 41 3.317 .6496

SQ2 Acceptable response time 41 3.341 .4801

SQ3
Accessible anytime,
anywhere

41 3.415 .5466

SQ5 Appropriate interface 41 3.341 .5296

SQ6
Adequate structure
organization

41 3.293 .6420

SQ7 Integrated KM process 41 3.171 .7383

SQ8 Search function 41 3.293 .5120

SQ9 Navigation tree 40 3.275 .4522

SQ10 Sorting feature 41 3.220 .6129

KQ1
Knowledge classification
understandable

41 3.073 .6477

KQ2
Capture and store knowledge
adequate/reliable

41 3.098 .6247

KQ4
Appropriate knowledge
content

41 3.195 .6008

KQ5 Useful knowledge content 41 3.171 .5875

KQ6 Accurate knowledge content 41 3.244 .6237

KQ8
Comprehensive knowledge
content

41 3.122 .5998

KQ9
Easy to find knowledge
sources

41 3.146 .6543

KQ1
0

Easy to find knowledge
expertise

41 3.098 .5387

KQ1
1

Relevant knowledge
structure

41 3.317 .5215

US1
Satisfy with KM process
features (effectiveness)

41 3.268 .5012

US2
Satisfy with system
performance (efficiency)

41 3.390 .5421

US3
Satisfy with knowledge or
information processing needs

41 3.098 .5387

IN1
Support for knowledge
/experience recording

41 3.098 .5387

IN2
Support for knowledge
/experience sharing

41 3.268 .5012

IN3
Support for knowledge
/experience reuse

41 3.171 .6286

1022

 Items N Mean Std.
Dev.

NB1
Effectively manage and store
the required knowledge.

41 3.268 .4486

NB2
Accomplish tasks more
efficiently

41 2.976 .7241

NB3
Improve the quality of my
work life

41 2.902 .7002

NB4 Improve in decision making 41 2.951 .6305

NB5
Acquire new knowledge and
innovative ideas

41 3.293 .5120

SVQ
1

Management able to provide
KM direction

41 2.927 .6079

SVQ
2

Management able to
encourage / develop
knowledge sharing culture

41 3.122 .5097

SVQ
3

Management able to ensure
KM strategies are realized

41 2.951 .5455

SVQ
4

Management able to ensure
risk is monitored and
controlled

41 2.951 .5455

Valid N (listwise) 40

At the end of the survey, we also asked the respondents

about their perception of the model’s contribution to
software development. Five choices were given, and they
were encouraged to select three contributions that the model
could offer. Fig. 11 illustrates the result.

Fig. 11 Perception of EBF-SD contribution

The result shows that the three main contributions of the

model are: encouraging learning organization (32%),
preventing knowledge loss (30%), and aid in decision
making (20%) (Fig. 10). This indicates that the participants
do agree that the model could bring benefits to the
organizations.

IV. CONCLUSION

This research has presented the stages of how the model
of EBF-SD is developed and implemented as a prototype.
And, how it is used as the instrument to evaluate the model
together with a survey questionnaire. The prototype has
demonstrated the provisioning of a cloud environment for its
computing needs, the usage of ‘nosql’ database for flexible
data storage, the addition of ontology to define the software
lifecycles, and the implementation of software agents to
assist automation on knowledge dissemination. The
prototype has gone through the necessary evaluation for its

efficiency and effectiveness based on defined KM success
factors. Results show positive feedback on system quality,
knowledge quality, user satisfaction, and intent to
use/perceived benefits. Some improvements, however, are
needed for net benefits and service quality measures.
Perhaps, the questionnaire should be tailored to reflect more
towards the respondents and towards the aspects that can be
measured immediately.

The perceptions on the model’s contribution are also
assessed in which the result shows that the model can
contribute more towards encouraging learning organization,
preventing knowledge loss, and providing aid in decision
making. In the future, the overall structural J&O model will
be analyzed using structured equation modeling (SEM) to
assess the measurement and structural model individually.
To further benefit software development industries, this
model can be deployed in a real-world application, and
further rigorous evaluations can be assessed. This, however,
will require a bigger sample size and a longer period of
evaluation time.

ACKNOWLEDGMENT

This study is part of doctorate research, which is
supported by GERAN PUTRA GP-IPS/2017/9518400.

REFERENCES
[1] M. Hanafiah, R. Abdullah, M. Azrifah, A. Murad, and J. Din,

“Towards Developing Collaborative Experience-Based Factory Model
for Software Development Process in Cloud Computing
Environment,” Int. Review of Computers and Software, vol. 10, pp.
340–350, 2015.

[2] M. Ivarsson, and T. Gorschek, “Tool Support for Disseminating and
Improving Development Practices,” Software Quality Journal, vol. 20
no. 1, pp. 173-199, 2011.

[3] R. G. C. Rocha, R. Azevedo, and S. Meira, “A Proposal of an
Ontology-Based System for Distributed Teams,” in 40th
EUROMICRO Conf. Softw. Eng. Adv. Appl., pp. 398–401, 2014.

[4] F. Salger and G. Engels, “Knowledge transfer in global software
development: leveraging acceptance test case specifications,” in
ACM/IEEE 32nd Int. Conf. Softw. Eng., vol. 2, pp. 211–214, 2010.

[5] P. Wongthongtham, N. and Kasisopha, N., “An Ontology-Based
Method for Measurement of Transferability and Complexity of
Knowledge in Multi-site Software Development Environment,”
Lecture Notes in Computer Science, vol. 6746, pp. 238-252, 2011.

[6] M. H. Bazerman, and M. D. Watkins, M. D., Predictable surprises:
The disasters you should have seen coming and how to prevent them.
Boston: Harvard Business School Press, 2004.

[7] R. Abdullah, and A. Talib, “Knowledge management system model in
enhancing knowledge facilitation of software process improvement for
software house organization,” in Information Retrieval Knowledge
Management (CAMP), pp. 60–63, 2012.

[8] I. Nonaka, and H. Takeouchi, The Knowledge-Creating Company.
NY: Oxford University Press, 1995.

[9] V. R. Basili, G. Caldiera, and H. D. Rombach, “The experience
factory,” Encylopedia of Software Engineering, pp. 470-476, 1994.

[10] K. Schneider, Experience and Knowledge Management in Software
Engineering, Berlin: Springer-Verlag, 2009.

[11] H. H. L. C. Monte-Alto, A. B. Biasão, L. O. Teixeira, and E. H. M.
Huzita, “Multi-agent applications in a context-aware global software
development environment,” in Adv. Intell. Soft Comput., vol. 151, pp.
265–272, 2012.

[12] M. Z M. Nor, R. Abdullah, M. H. Selamat, and M.A.A Murad, “An
Agent-Based Knowledge Management System for Collaborative
Software Maintenance Environment,” in Int. Conf. on Design and
Eval. Information Retrieval and Knowledge Management, pp. 115–
120, 2012.

[13] D. T. Tuan, and D. C. Tuan, “Enhance Java Software Development
with Knowledge Acquisition and Management Tools,” in 3rd

1023

International Conference on Knowledge and Systems Engineering, pp.
70, 2010.

[14] Y. F. Li, and H. Zhang, “Integrating software engineering data using
semantic web technologies,” in Proceedings of the 8th Working
Conference on Mining Software Repositories, pp. 211, 2011.

[15] N. Sharma, K. Singh, D.P. Goyal, “Experience Base Approach to
Software Process Improvement: Comparative Analysis and Design of
Improved Model Advanced,” in 2nd International Conference on
Computing and Communication Technologies (ACCT), pp. 30, 2012.

[16] P. Ardimento, M. Cimitile, and G. Visaggio, “Distributed Software
Development with Knowledge Experience Packages,” in Packages,
Lect. Notes in Computer Science, vol. 8186, pp. 263–273, 2013.

[17] W. H. DeLone, and E. R McLean, “Information Systems Success
Measurement. Foundations and Trends,” in Information Systems, vol.
2, no. 1, pp. 1–116, 2016.

[18] M. E. Jennex, “Re-examining the Jennex Olfman Knowledge Success
model.” in Proceedings of the 50th Hawaii International Conference
on System Sciences, pp. 4375-4384, 2017.

[19] A. L. Halawi, R.V. McCarthy, J. E. Aronson, “An empirical
investigation of knowledge management systems success,” The
Journal of Computer Information Systems, vol. 48, no. 2, 121, 2008.

[20] N. Nattapol, R. Peter, R., and K. Laddawan, “An Investigation of the
Determinants of Knowledge Management Systems Success in
Banking Industry,” International Journal of Social, Behavioral,
Educational, Economic, Business and Industrial Engineering, vol. 4,
no. 11, 2010.

[21] M. Hanafiah, R. Abdullah, M. Azrifah, A. Murad, J. Din, M. Z. M.
Nor, “Experience Based Factory Model for Software Development
Process: Item Construct Validation on Questionnaire Design”, Journal
of Theoretical and Applied Information Technology, vol. 95, no. 1, pp.
177-195, 2017.

[22] M. Hanafiah, R. Abdullah, M. Azrifah, A. Murad, and J. Din,
“Regression Analysis on Experience Based Factory Model for
Software Development Process”, Journal of Telecommunication,
Electronic and Computer Engineering, vol. 9, no. 3, pp. 19-26, 2017.

[23] I. Sommerville, Software Engineering, 9th Edition. Pearson, 2011.
[24] G. Rasch, Probabilitics models for some intelligence and attainment

tests, Copenhagen: DanmarksPpaedagogoske Institut, 1960.
[25] M. Tavakol, R. Dennick, “Making sense of Cronbach’s alpha,” Int J

Med Edu, vol. 2, pp. 53-5, 2011
[26] W. P. Fisher, “Rating Scale Instrument Quality Criteria,"Rasch

Measurement Transactions, vol. 21, no. 1, pp.1095, 2007.
[27] Wright B. D. and Linacre J. M., “Reasonable mean-square fit values,”

Rasch Measurement Transactions, vol. 8, no. 3, pp.370, 1994.
[28] R. Abdullah, Z. D. Eri, and A. M. Talib, “A model of knowledge

management system for facilitating knowledge as a service (KaaS) in
cloud computing environment,” in Proc. International Conference on
Research and Innovation in Information Systems, pp. 1-4, 2011

[29] K. S. Rubin, Essential Scrum. Addison-Wesley, 2013.
[30] M. Hanafiah, R. Abdullah, M. Azrifah, A. Murad, and J. Din,

“Infrastructure Requirements For Experience Based Factory Model in
Software Development Process in a Collaborative Environment”,
Journal of Acta Informatica Malaysia (AIM), vol. 1, no. 2, pp. 9-10,
2017.

[31] A. M. Talib, R. Atan, R. Abdullah, and M. A. A. Murad, “ Multi
Agent System Architecture Oriented Prometheus Methodology Design
to Facilitate Security of Cloud Data Storage,” Journal of Software
Engineering, vol. 5, no. 3, pp. 78-90, 2011.

[32] AWS, https://aws.amazon.com/, retrieved on 2nd April, 2018.
[33] MongoDB, https://www.mongodb.com/ retrieved on May 2nd, 2018.
[34] J. M. Linacre, “A User's Guide to Winsteps: Rasch-Model Computer

Programs,“ retrieved at http://www.winsteps.com/winman/index.htm,
2016.

1024

