

Vol.8 (2018) No. 4-2

ISSN: 2088-5334

A Program Optimization Method for Embedded Software Developed
Using Open Sources

Sang-Young Cho#
Division of Computer & Electronic Systems Engineering, Hankuk University of Foreign Studies, Yongin, Gyeonggi, 17035, Korea

 E-mail: sycho@hufs.ac.kr

Abstract— Program optimization or software optimization is the process of modifying a software system to make some aspect of it
work more efficiently or use fewer resources. When developing software for embedded systems, open source libraries are usually
used. An Embedded software built using a variety of open software and libraries is apt to have too many unused codes because open
source libraries contain many functions and features to be used in various applications. In this paper, we describe the process of a
library optimization method to reduce memory consumption for the user interface software of a set-top box product. The overall
optimization process uses freeware tools developed for the Linux operating system. We devised an optimization technique to
compensate for operation imperfections in the target system. The original Qt library of 19.57 MB was optimized to be 7.26 MB in
program image size. In the case of the DirectFB library, 3.2 MB was reduced to 2.4 MB. The optimization process can be applied to
any embedded software that are developed with open source libraries or sources.

Keywords— software optimization; open source library; static and dynamic analysis; freeware tool.

I. INTRODUCTION

Program optimization or software optimization is the
process of modifying a software system to make some aspect
of it work more efficiently or use fewer resources. In general,
software engineers have been trying to optimize computer
programs so that a program executes more rapidly, is
capable of operating with less memory storage or other
resources, or consumes less power. Usually, the performance
optimization has been the most focused target for program
optimization and there are many researches in various
optimization layers: design, algorithm and data structures,
source code, build, compile, assembly, and run-time [1].

Due to the proliferation of personal mobile devices and
sensor-based embedded systems [2], minimizing power
consumption is one of the primary challenges that today’s
developers face. Some research investigated the methods to
reduce power consumption using software optimization
because software plays an important role in device energy
efficiency [3].

In the perspective of memory usage, dead code
elimination has attracted a great attention in compiler theory
for removing codes that do not affect the program results.
Removing such code has several benefits: it shrinks program
size and it allows the running program to avoid executing
irrelevant operations, which reduces its running time. It can

also enable further optimizations by simplifying program
structure [4].

When developing software for embedded systems, open
source project libraries are usually used. For example, Qt is a
cross-platform development framework consisting of a
tremendous size of libraries [5]. ffmpeg provides many
codecs and application tools for multimedia processing and
is used in various multimedia applications [6]. These well-
known open source libraries are well-modularized and have
a lot of functions. However, the associations between
modules and the usage scopes of modules for an actual
application software development are not precisely defined.
This incurs that embedded software developers use the
whole set of libraries for developing application softwares.

Embedded software built using a variety of open software
and libraries may have many unused code since open source
libraries are aiming to be used in various applications. They
usually contains too many unused functions for a specific
application. This leads to many code units (e.g. packages,
classes, methods, functions) that the running application
never uses when the embedded software contains the whole
library. Therefore, memories for storing and executing the
program are wasted due to the unnecessary codes.

After developing a prototype of an embedded system
product, the prototype needs software optimization even
thogth the desired functions of the prototype operate well
because memory cost is very sensitive to the unit price of a
commercial product. Also, unused codes deployed in a

1692

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/325990386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

product units have an undesired impact on software
operations when targeting a constrained infrastructure. Some
devices may constrain applications due to restrictive
hardware resources such as small primary or secondary
memories [7]. To minimize memory usage, we should
remove unused modules, files, functions, and variables.
However, this is not a simple task for large libraries.

A common method for library optimization of a prototype
software is to identify and remove dead codes through static
and dynamic analysis [8]. Static analysis approaches for
dead code elimination make use of the static information of a
program to select the minimal subset of used program
elements. Static analysis obtains information about the class
hierarchy or function call graph at the source level by
analyzing the library structure and the usage of the library in
the application. Static analysis cannot obtain the call graph
information of dynamically linked functions [9-10]. Static
analysis is not applicable efficiently on dynamic languages
with no static type declarations i.e., some code units whose
usage cannot be anticipated by these techniques will stay
even if they are really not used during the application
execution. Dynamic analysis gathers program execution
information while the program is executing on a target
system. It provides information (i.e., execution flow, alive
objects, execution statistics) about the program codes
actually used. By using code analysis information, it is
possible to remove dead codes of unused modules, files,
functions, and sentences [7]. Curretnly, there is no integrated
tool to optimize libraries in an overall view of both static and
dynamic analysis information. There is a tool to facilitate
algorithm development optimization in a specific area [11].
Recently, [12] proposed a practical library optimization
method for open source libraries using freeware tools and
this paper is an extension of the work of [12].

In this paper, we describe a software optimization strategy
for resource-constrained embedded systems built using open
source libraries. Especially we focus on minimization of
program footprints of graphic user interface (GUI) software
of Set-top Box (STB) products on primary and secondary
memories. In our method, the overall optimization uses
freeware tools running on Linux and includes optimization
techniques to compensate for imperfections of the target
system and instabilities of freeware tools.

The rest of this paper is organized as follows: Section II
describes the target system for optimization and explains the
freeware tools used during optimization process. Section III
describes the opmization objectives and the details of the
optimization process. Finally, we conclude in Section IV.

II. MATERIAL AND METHOD

In this paper, we propose a method to minimize the
primary and secondary memory usages by optimizing open
source libraries used in the GUI part of STB that is limited in
memory resources.

A. Software Optimization Environment

Fig. 1 shows the target STB hardware board. The
motherboard is equipped with an application processor of
MIPS core and has 256 MB of DRAM and 128 MB of
NAND Flash. In addition to the motherboard, a TV
receiving module, a conditional access system (CAS)

module, and a serial conversion module are provided. The
target board is connected with a development computer with
the serial module. The TV receiving and CAS modules are
not used during software optimization.

Fig. 1 The target hardware board of Set-Top Box

Fig. 2 shows the software layer structure of the target STB

system. There is a STB platform consisting of the Qt library
and a proprietary SDK on the Chipset platform provided by
the vender that provides the STB reference board, and based
on this, there is the STB GUI program at the application
level including the MythTV library. The Qt and DirectFB
[13] libraries are targets to be optimized.

Fig. 2 The software layer structure of the target STB system

Software or library optimization strategy and steps depend

on whether the structure and internal details of the software
system is informed in advance or not. If a software
developer of the prototype product is optimizing by
himself/herself, since he/she has knowledge about the
development environment, the application program, and the
libraries used, the developer can go straight ahead after
learning how to use optimization tools. Otherwise, a
development and optimization environment should be
established and the target application program and libraries
should be investigated in detail. In this paper, we describe
the strategy of software optimization by assuming we have
no prior knowledge of the prototype system and software.

In order to optimize the libraries used, it is necessary to
understand the structure of the library and to analyze the
used and unused parts of the libraries when the application is
executed on the system. Also, the optimization direction
should be set by confirming the constrains of resources.
Based on this, the redundant source should be removed and

1693

simplified. In addition, the correct operation of the modified
program should be verified and confirmed.

The optimization steps are divided by three steps. The
whole structure of target software and related libraries are
studied at the first step. In this step, we use several static and
dynamic analysis tools and become familiar to the
optimization environment. Based on the static and dynamic
analysis information of the target software, we perform
optimization at the second step. The optimization starts from
library modules and go into detailed function levels. Finally,
we refine the optimization with the status analysis tools.
During optimization process, some techniques are devised to
overcome obstacles that occur without a priori knowledge.

B. Related Optimization Tools

The target system was built on the Linux operating system
running on a MIPS core. The GUI software of target system
has been developed using open libraries that companies can
freely use. To optimize the software, we should select
appropriate tools among the freeware tools available in the
Linux operating system. The tools used for optimization are
largely divided into static analysis tools, dynamic analysis
tools, and status inspection tools. Table 1 summarizes the
open source tools and commands used for library
optimization.

TABLE I
TOOLS USED FOR SOFTWARE ANALYSIS AND OPTIMIZATION

Tool type Name usage

Static
Source
Navigator

source structure

Doxygen class diagram, call graph

Dynamic
Gprof function usage, call graph
gcov, lcov line, branch, function coverage

Status pmap memory usage

Command
ldd dependency of shared library
nm Symbols of object files
readelf ELF file information

Analyzing the source itself without running the program

is called static analysis. Static analysis tools allow you to
understand the structure of the program and provide unused
code information through dependency analysis. Doxygen is
the de facto standard tool for generating documentation from
annotated C++ sources [14]. In particular, Doxygen
automatically generates class dependency graphs,
inheritance diagrams, and inclusion relationship graphs. In
this paper, we use Doxygen and Source Navigator to
understand the class hierarchy of application programs and
libraries.

Dynamic analysis tools extract run-time information such
as the execution times or execution numbers of functions,
lines, branches, and function call graph. The tools usually
gather run-time information by inserting analysis codes into
the application program or by extracting system data
maintained by operating system [15]. gprof collects
information such as execution time, time occupancy, and
calling relation of functions executed in the program. This
tool provides profiling information just about functions and
we cannot use the tool to get run-time information of line or
branch of program code. This tool can be effectively used to
optimize the program because it can obtain the information

of the functions that need to be optimized for improving the
performance of the whole program. gcov and lcov are tools
that can measure the coverage of a program, and can
measure the coverage of lines, branches, and functions. That
is, one can get information about which lines in the program
are being executed, which functions are called, and where to
branch from statements such as if-else or switch-case.
Unlike gprof, we can get line and branch execution
information and, by adding option, coverage information of
dynamic library. However, we cannot get information such
as function call relation and execution times of functions.
gcov and lcov are useful tools for removing unused code.

The Linux kernel continuously updates and stores various
status information for each running process under the
/proc/${pid}/ directory. From these information stored in the
directory, the Linux pmap command properly outputs
information about the memory map in a human-readable
form [16]. With pmap, we can figure out what dynamic
libraries are mapped to the primary memory that is used by a
particular process and the size of each mapped library. We
can also observe changes in the program's behavior by
observing the changing memory usage while the target
software is running.

In case of binary files, there is no program source, so we
cannot use static tools to investigate program dependencies.
However, because the binary file contains information about
the program or library involved, we can use the Linux
system commands to obtain program dependency
information. ldd shows information about all shared libraries
that depend on the binary file [17]. nm is used to examine
binary files (including libraries, compiled object modules,
shared-object files, and standalone executables) and to
display the contents of those files or meta information stored
in them, specifically the symbol table [17]. The readelf
command allows us to view information stored in the ELF
header of an ELF file [18]. This information is usually a list
of classes or functions that an ELF binary file has or is using.
By analyzing the function dependency of a program by using
the static tools and the Linux system commands, we can
have information about unnecessary modules, classes, and
functions in the upper level.

III. RESULTS AND DISCUSSION

In this section, we will describe the details of the
optimization progress and discuss the results at each
optimization step.

A. Initial Software Status

Table 2 shows the initial software size of STB application.
The program size of each module is measured as static, i.e.,
NAND flash storage consumption.

TABLE II
SOFTWARE SIZE OF EACH MODULE OF TARGET SYSTEM

Storage Module Size Explanation

NAND
Flash
(128MB)

Kernel 2.5 MB Linux
Rootfs, Lib 15 MB Busybox and library
DirectFB 3.2 MB DirectFB, Fusion, Font
QT 19.6 MB QT library

APP 23 MB
Application, library
Font, Images, XML

1694

We are targeting the QT and DirectFB libraries for

optimization because Kernel and Rootfs are given as binary
files by a vendor and the GUI application may be developed
model by model. Among the two optimization target
libraries, Qt is frequently used in the GUI application and its
size is dominant among the used libraries. We need to focus
on Qt during optimization process. Table 3 shows the initial
size of each important class category of Qt library of the
version 4.8.2. We can see the GUI component classes and
Core classes are dominant in size and they are the main
targets for optimization.

TABLE III
THE SIZE OF EACH CATEGORY OF THE QT LIBRARY

Module Size Explanation

libQtCore.so 3.6 MB Core non-graphical classes

libQtGui.so 12 MB GUI components

libQtNetwork.so 1.2 MB Network programming

libQtSql.so 254 KB DB integration using SQL

libQtTest.so 151KB Unit testing tool

libQtXml.so 288 KB XML handling class

B. Optimization Process

For the first step of the optimization process, we surveyed
the Qt and DirectFB libraries and explored the optimization
tools to be used. We also constructed the development
environment. We referred to the homepage of each library
and the documents on the Internet to understand the overall
structures of the libraries. We searched and studied the tools
to be used for optimization. Fig. 3 shows the detailed
optimization steps that we performed.

Fig. 3 The optimization steps for STB UI libraries

We analyzed the source codes of the libraries using

Source Navigator to understand the internal flows of
important operations. We also obtained the static analysis
data of the Qt and DirectFB libraries using Doxygen We
used the Easing sample application of Qt library as an initial

study target for static and dynamic analyses. These steps
clarified the internal structures and the class usages of the
libraries.

We found that the dynamic analysis tools, gprof and gcov,
did not work on the target system because the development
environment of the system had some bugs. To get the
dynamic analysis information of the Qt library, we have also
run the Qt example program, Easing, on a normal Linux
machine with the gprof and gcov tools to obtain indirect
dynamic analysis data of the library. Through this process,
we became familiar with the development environment and
tools, understood the structure of the Qt and DirectFB
libraries, and prepared for actual code optimization.

In order to optimize the Qt library used in a real STB
application, it is necessary to analyze the GUI program at the
application level. Through a static analysis of the GUI
program, the program is implemented based on a class called
MythScreenType, and this class has been found to inherit
QObject. Qt’s utility classes are used directly at the
application level. Based on this result, we need to analyze
how the GUI program is using Qt. Static analysis tools and
system commands were used to analyze the application steps.

Through the static analysis of the STB application, the 70
classes of the Qt library are identified to be used and the
modules including the unused classes are removed by
applying the Qt configuration tool, qconfig. qconfig provides
the ability to avoid compiling unnecessary sources to reduce
the size of the Qt library for embedded systems. Based on
the static analysis results, we constructed the optimized V1.0
Qt library using the qconfig tool.

The optimized library V1.0 using qconfig has the overall
original files and the unnecessary parts of library sources are
controlled by conditional macro statements to exclude the
sources from compiling. Therefore, even if the Qt library has
been optimized using qconfig, it will take a long time to
build the executable file because all the original files should
be compiled and the compiled files are included in the build
image. From optimized library V1.0, we made the new
optimized version V1.1 by physically removing the files that
are not used in V1.0. Therefore, the unused files are not
included in the build process.

For optimized version V2.0, we removed the unused
folders and modified the corresponding build-related files.
The folder removal process started with the top level folder
src and removed the folders of unused sources using the
results of static and dynamic analysis. The Qt build process
first refers to the *.pro file. The *.pro file contains
information about subfolders to refer to * .pri files in the
build process. Therefore, all deleted folders should be
deleted from the * .pro file.

For the version V3.0 or more, we have optimized the Qt
library source by modifying at the source code level. In this
process, the coverage data of source code was referenced. In
some cases, we used the coverage data to disable unused
features at the configuration panel of qconfig and found the
unused files. The found files were removed manually. After
the file is removed, additional work is required. This is
because another file can contain the removed file using
#include. If a file includes the removed file using #include,
an error will occur during pre-processing of the build. For
this reason, when you delete a file in the optimization

1695

process, we must modify the #include statement in the file
that contains the deleted file. The optimized versions of V3.0,
V3.1, V3.2, and V3.3 were acquired by performing folder-
specific optimization for the entire folders of the optimized
library version V2.0.

To optimize the DirectFB library, we used pmap to list the
libraries used in the GUI application. The number of
libraries used was 15 among the 31 libraries of DirectFB.
The unused 16 libraries were removed and the 3.2 MB
library image was reduced to 2.4 MB.

Table 4 shows the changes of the image sizes of
optimized versions as optimization process is performed step
by step. The original Qt library of 19.57 MB was optimized
to be 7.26 MB in program image size. In the case of
DirectFB, 3.2 MB was reduced to 2.4 MB by removing the
library modules that did not be loaded in memory. In detail,
libQtCore and libQtGui, which were the main optimization
targets in the optimization process, were initially 15.6 MB
and finally reduced to about 5.5 MB in V3.3.

TABLE IV
SOFTWARE SIZES OF EACH OPTIMIZATION VERSIONS (MB)

 Qt DirectFB Total
Initial 19,57 3.2 22.77
V1.0 10.26 3.2 13.46
V2.0 9.48 3.2 12.68
V3.0 9.25 3.2 12.45
V3.3 7.26 2.4 9.66

Table 5 shows the measured memory usage for each

optimization version. This data is obtained by processing the
results of the pmap command that is supported by the target
system. VM (virtual memory) is the size allocated on the
virtual memory and PM (physical memory) is the actual
memory usage loaded into main memory when the program
is executing. The optimal image size of the STB application
is related to the PM size. The PM size represents the size of
the memory actually needed when the application program is
running. The PM size can be used to determine whether
software can be further optimized or not. The sizes of PM
and image of the optimized version V3.3 is 4.66 MB and
7.26 MB, respectively. This means the image size of V3.3
can be reduced more than 2 MB.

TABLE V
RUN-TIME MEMORY OF EACH OPTIMIZATION VERSION (MB)

 Qt DirectFB
VM PM VM PM

Initial 17.83 7.19 2.36 1.60
V1.0 10.00 5.17 2.36 1.60
V2.0 9.26 5.17 2.36 1.60
V3.0 9.00 5.06 2.36 1.60
V3.3 7.03 4.66 2.36 1.60

The library optimization proceeds in a top-down fashion.

We first optimized the library at the module level, then
removed unused class files and source folders that had
become empty by file removal. Finally, we removed the
unused files and folders through modifications of the source
code. For further optimization, we should go into the intra-

class level so that we optimize the methods of classes. This
implies that we have to remove unused methods or variables
of classes. However, the intra-class level optimization will
consume too much time and be prone to incur errors in
source code level because the difficulty of the intra-class
level optimization may be similar to the source level
programming. When the original library is updated by
version up, the optimized version of the intra-class level is
difficult to be updated accordance to the update of the
original version due to its source level modification. That
was why we avoided the intra-class optimization.

As mentioned previously, the target board did not support
the gprof and gcov tools and we could not have the dynamic
analysis data for STB application execution. To solve this
problem, the GUI part of the STB application was ported to
a Linux machine, and the dynamic analysis data of the
limited STB application and the libraries were acquired and
used for the optimization process.

We optimized the size of the Qt library from 19.57 MB to
7.26. In case of the DirectFB library, 3.2 MB was reduced to
2.4 MB by removing the library modules that did not be
loaded in memory. Although the size of the library image
has been greatly reduced through optimization, the size of
run-time memory is reduced from 8.79 MB to 6.26 MB. This
means that the library optimization has more impacts on
memory for storing program image than on memory for
program run.

IV. CONCLUSIONS

In this paper, we optimized the Qt and DirectFB library
for an STB GUI application using a systematic top-down
software optimization approach. Since the development
environment of embedded systems are often error-prone and
unstable, various obstacles may occur during optimization
process. We cannot obtain the exact run-time information of
library code if dynamic analysis tools does not work on a
target system. To overcome this situation, we ported a
shrunk version of the application program on a Linux PC
and extracted partial dynamic analysis data. The partial data
enables us to figure out the unused library parts and it is very
useful for accelerating optimization.

Although the size of the library image has been greatly
reduced through optimization, the size of run-time memory
of the whole UI software is reduced by 12% from 61.1 MB
to 53.9 MB while the size of run-time memory of Qt is
reduced from 7.2 MB to 4.7 MB. This means that
optimization of software beyond the Qt and DirectFB
libraries is required for overall software optimization.

Software optimization is one of many desirable goals in
software engineering and is often antagonistic to other
important goals such as stability, maintainability, and
portability. When an open source library is optimized for a
product, it may not be easy to maintain the optimized library
according to the update of the original library. However, if a
developer is planning a line-up of embedded products, it
may be advantageous to maintain an optimized library like a
private code rather than continually optimizing large original
library code for each product.

Almost all compilers support software optimization at the
statement level, but few integrated tools are available to
optimize at the module, file, and function levels. Future

1696

research on integrated library optimization tools that use
static and dynamic analysis information is very important.

ACKNOWLEDGMENT

This work was supported by Hankuk University of
Foreign Studies Research Fund of 2018.

REFERENCES
[1] S. Memeti, S. Pllana, A. Binotto, J. Kołodziej, and I. Brandic, “Using

meta-heuristics and machine learning for software optimization of
parallel computing systems: a systematic literature review,”
Computing(2018), https://doi.org/10.1007/s00607-018-0614-9,
Springer Vienna.

[2] Andrizal, R. Chadry, and A. I. Suryani, “Embedded system using
field programming gate array (FPGA) myRIO and LabVIEW
programming to obtain data patern emission of car engine
combustion categories,” International Journal of Informatics
Visualization, vol. 2, no. 2, pp. 56-62, 2018.

[3] S. Sushko and A. Chemeris, “The dependence of microprocessor
system energy consumption on software optimization,” in
Proceedings of 2017 IEEE 37th International Conference on
Electronics and Nanotechnology, pp. 451–454, Kiev, Ukraine, Apr.
2017.

[4] A. K. Sarma, “New trends and challenges in source code
optimization,” International Journal of Computer Applications, vol.
131, no. 16, pp. 27–32, Dec. 2015.

[5] M. C. M. Neto, S. S. Andrade, and R. L. Novais, “Cross-platform
multimedia application development: for mobile, web, embedded and
IoT with Qt/QML,” in Proceedings of the 23rd Brazillian Symposium
on Multimedia and the Web, pp. 23–26, Gramado, RS, Brazil, Oct.
2017.

[6] H. Zeng, Z. Zhang, and L. Shi, “Research and implementation of
video codec based on FFmpeg,” in Proceedings of the 2016
International Conference on Network and Information Systems for
Computers, pp. 5-17, Wuhan, China, Apr. 2016.

[7] M. P. Mariano, “Application-level virtual memory for object-
oriented systems,” PhD Eng. thesis, Lille University of Science and
Technology, France 2012.

[8] G. Polito, “Virtualization support for application runtime
specialization and extension,” PhD Eng. thesis, Lille University of
Science and Technology, France 2015.

[9] K. A. Marianna, R. O. Lhoták, J. Dolby, and F. Tip, “Type-based call
graph construction algorithms for Scala,” ACM Transactions on
Software Engineering and Methodology, vol. 25, no. 1, pp. 1–43, Dec.
2015.

[10] G.-H. Kang, Y. C. Kim, G. S. Yi, Y. S. Kim, Y. B. Park, and H. S.
Son, “A practical study on code static analysis through open source
based tool chains,” KIISE Transactions on Computing Practices, vol.
21, no. 2, pp. 148–153, Feb. 2015.

[11] I. Giagkiozis, R. J. Lygoe, and P. J. Fleming, “Liger: an open source
integrated optimization environment,” in Proceedings of the 15th
Genetic and Evolutionary Computation Conference, Amsterdam, The
Netherlands, pp. 1089–1096, July 2013.

[12] S.-Y. Cho, “Library Optimization for Embedded Systems Using
Open Tools,” in Proceedings of the 2018 International Conference
on Electronics, Information and Communication, pp. 674–675,
Hawaii, USA, Jan. 2018.

[13] D. Grbić, M. Vranješ, B. Kovačević, and M. Milošević, “Hybrid
electronic program guide application for digital TV receiver,” in
Proceedings of 2017 IEEE 7th International Conference on
Consumer Electronics – Berlin, pp. 177–180, Berlin, Germany, Dec.
2017.
https://web.archive.org/web/20170603093935/http://directfb.net/

[14] T. Cséri, “Examining structural correctness of documentation
comments in C++ programs,” in Proceedings of 2015 IEEE 13th
International Scientific Conference on Informatics, pp. 79–84,
Poprad, Slovakia, Nov. 2015.

[15] Y. Zheng , S. Kell , L. Bulej, H. Sun, and W. Binder,
“Comprehensive multiplatform dynamic program analysis for Java
and Android,” IEEE Software , vol. 33, Issue 4, pp. 55–63, Jul. 2016.

[16] pmap, [Online]. Available: https://linux.die.net/man/1/pmap
[17] M. Stevanovic, Chap. 12 Linux Toolbox, in Advanced C and C++

Compiling 1st Ed., Berkeley, CA: Apress, 2014.
[18] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. A.

Yuksel, S. A. Camtepe, and S. Albayrak, “Static analysis of
executables for collaborative malware detection on Android,” in
Proceedings on IEEE International Conference on Communications,
Dresden, Germany, Jun. 2009,
https://doi.org/10.1109/ICC.2009.5199486, IEEE

1697

