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Abstract— This paper evaluates the performance of the Neural Architecture Search Network (NASNet) in the automatic detection of 
COVID-19 (Coronavirus Disease 2019) from chest x-ray images. COVID-19 is a disease caused by Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2) that produces in patients fever, cough, shortness of breath, muscle pain, sputum production, 
diarrhea, and even sore throat. The virus spreads through the air, and to date, is expanding as a global pandemic. There is no vaccine, 
and it is fatal to approximately 2-7% of the infected population. Among the clinical and paraclinical characteristics of infected 
patients, nodules have been identified in images of chest x-rays that can be visually identified, producing a simple, rapid, and 
generally available method of identification. However, the rapid spread of the disease means that there is a lack of specialized medical 
personnel capable of identifying it, which is why automated schemes are being developed. We propose the tuning of a NASNet-type 
convolutional model to automatically determine the initial state of a patient in the triage process or intervention protocol of health 
care centers. The neural network is trained with public images of cases positively identified as patients infected with the virus and 
patients in normal conditions without infection. Performance evaluation is also done with real images unknown to the neuronal 
model. As for performance metrics, we use the function of loss of cross-entropy (categorical cross-entropy), the accuracy (or success 
rate), and the MSE (Mean Squared Error). The tuned model was able to correctly classify the test images with an accuracy of 97%. 
 
Keywords— convolutional neural network; COVID-19; data mining; diagnostic radiography; diseases; feature extraction; image 
classification; medical image processing; radiographs data mining; ROC chart. 
 
 

I. INTRODUCTION 

Coronaviruses are RNA viruses that cause respiratory 
diseases of varying severity, from the common cold to 
deadly pneumonia [1], [2]. Traditionally, chest x-rays have 
become a fast, inexpensive, widely available, and highly 
reliable tool for identifying cases of pneumonia in patients. 
In these radiological images, it is possible to identify the 
pulmonary nodules characteristic of pneumonia and 
therefore have allowed the effective diagnosis of other 
coronaviruses such as Severe Acute Respiratory Syndrome 
(SARS) [3], Middle East Respiratory Syndrome (MERS) 
[4], [5] and Respiratory Distress Syndrome (ARDS) [6]. 
From published literature related to current research on 
COVID-19, it has been determined that this disease damages 
the lung parenchyma in a similar way to other coronavirus 
infections [7]. 

The World Health Organization (WHO) declared the 
COVID-19 outbreak a Public Health Emergency of 
International Concern (PHEIC) on 30 January 2020 and a 
pandemic on 11 March 2020 [8], [9]. Due to the airborne 
capacity of the virus to spread, its novelty and lack of 
knowledge, and the ability of people to move from one 

country to another, there is now evidence of the disease in 
much of the planet (more than 60 countries as of March 1, 
2020) [10]. 

The diagnosis of COVID-19 is made by Real-Time 
Polymerase Chain Reaction (RT-PCR) which detects the 
nucleotides of the virus [11]. This test in cases of low viral 
load produces false negatives, which is why it is necessary to 
perform the test in protocols over several days [12]-[14]. 
Besides, it requires the taking of samples, their handling, 
processing, and transport. Due to the economic conditions in 
many countries, access to this test is very limited, and each 
test has response times of up to 24 hours or more [15]. The 
equipment needed to take a chest X-ray is available in most 
medical centers worldwide, so it is often considered a 
routine test [16]. An x-ray image beside the equipment only 
needs access to electrical power and a radiology specialist 
for interpretation [17]. 

The clinical and paraclinical features of COVID-19 
infection have been documented in research publications 
since early 2020 [11]. Among the indicators of the infection 
is the fact that patients present abnormalities in chest CT 
(Computed Tomography) and x-rays images, with most 
having bilateral involvement [18]. Patients referred to 
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intensive care normally present in these images multiple 
bilateral lobes, while others identified with the virus but not 
treated in intensive care due to less severity of their cases, 
were detected in the images bilateral lobes of lower intensity 
but with similar characteristics. 

Patients infected with COVID-19 with pneumonia show 
specific patterns in the images of chest x-rays that serve to 
identify the presence of the virus. Unfortunately, these 
patterns are not easy to identify with the naked eye [14], 
[19], [20]. Specialized radiologists can distinguish the 
COVID-19 from images with high specificity, but with 
moderate sensitivity [14]. The speed of the spread of this 
new virus is strongly dependent on the ability and speed of 
identifying infected patients reliably (low false-positive 
rate). Local authorities in each country are currently facing 
this problem to reduce the spread, and therefore the 
saturation of their medical facilities and the number of 
deaths related to the virus [21]. 

Immediate solutions are aimed at adequate infection 
control, both in sick patients and in measures of isolation 
from the general population. However, these measures must 
go hand in hand with the use of tools that allow the timely 
detection of the disease, both to stop the spread of the virus 
and to ensure the care required by patients affected by 
COVID-19 [22], [23]. 

We propose the use of a neuronal model based on 
convolutional networks trained explicitly as an AI tool for 
the rapid and low-cost detection of individuals with COVID-
19 [24]-[29]. For the model, we selected the NASNet deep 
network by Google Brain, due to its high performance 
against architectures like Inception-v2, Inception-v3, 
Xception, ResNet, and Inception-ResNet-v2 [30]-[32]. The 
model was optimized for a dataset with X-ray images taken 
from patients who have tested positive for COVID-19 and 
healthy people. Performance metrics applied to a set of 
images unknown to the model yielded results far superior to 
those reported in the literature [33], [34]. 

The following part of the paper is arranged in this way. 
Section 2 presents preliminary concepts and problem 
formulation. Section 3 illustrates the design profile and 
development methodology. Section 4 presents the 
preliminary results. And finally, in Section 5, we present our 
conclusions. 

II. MATERIALS AND METHOD 

The research group has developed some classification 
models based on convolutional networks for use in assistive 
robots. Most of these applications require visually 
determining a user condition that triggers a certain behavior 
in the robot. Previous research has shown the ability of our 
models to identify specific patterns in x-ray images. With the 
great social and economic impact that the COVID-19 has 
had, particularly in societies with limited resources, the 
concern to develop a similar tool for the initial screening of 
patients with suspected infection was born. In principle, our 
image classification models could be used to develop such a 
tool. 

In the specific case of the diagnosis of COVID-19, RT-
PCR is used in conjunction with two or three test protocols 
to identify the nucleotides of the virus. However, this test 
has limited availability in developing and poor countries and 

requires long intervals (one or more days) to deliver 
conclusive results. These are logistical problems that can 
increase exponentially in places with limited isolation, where 
infected individuals with no symptoms can take the infection 
rate to levels impossible to manage by medical facilities. 

In these cases, it would be desirable to have a system 
capable of working with existing equipment in medical 
centers, as this would reduce the investment and 
implementation time. It would also be desirable that this 
system could discriminate quickly and with a high rate of 
reliability to those patients infected with the virus, from 
those who are not. This process would not only allow 
focusing the attention on the infected patients but also to 
isolate them more quickly and reduce the virus dispersion 
rate. 

The vast majority of medical centers in the world have x-
ray equipment. This technology has been used for a medical 
diagnosis for over 100 years, and with various technologies 
can be found in virtually any medical center in the world. A 
chest x-ray is a diagnostic test that can be performed in 
minutes, which can quickly diagnose a large number of 
patients. A bottleneck, however, is the need for specialized 
medical personnel to interpret the images correctly. The 
number of personnel is usually much lower than the number 
of X-ray images taken under normal conditions, and much 
more would be needed to diagnose COVID-19. 

A high-performance automated system is therefore 
required (in terms of classification capacity, speed of 
response, and resource consumption) capable of identifying 
sick patients directly from the images. This system would 
take as input the images of chest x-rays taken from the 
patients and would determine which category they 
correspond to Normal (not sick by COVID-19) or Sick. This 
system would be made up of a classification model trained 
from information collected from other sick patients as well 
as healthy people (Fig. 1). This model should identify the 
characteristics of the virus in the images, and learn this 
information to classify unknown cases. 

 

 
Fig. 1  Dataset used in the proposed recognition system 

 
The damage caused by the virus to patients' lungs has 

particular characteristics that are common to all patients 
regardless of age, size, or sex. This means that the dataset 
must be made up of patients of all ages, sizes, and sexes. The 
greater the variability in the dataset images, the greater the 
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ability of the model to identify the relevant parameters in the 
images. The same happens with the position of the 
individual in the image, identifying the Region of Interest 
(ROI) in the image using traditional image processing 
techniques could make most of the images captured in real-
life unusable, for this reason, the model must be immune to 
this problem, which implies the use of convolutional 
networks. 

We propose the use of the Neural Architecture Search 
Network (NASNet) as the structure for the convolutional 
model. This deep network was introduced in early 2018 by 
the Google Brain team. In its design, they sought to define a 
building block with high performance in the categorization 
of a small set of images (CIFAR-10). They then generalized 
the block to a more extensive data set (ImageNet). In this 
way, this architecture achieves a high classification capacity 
and a reduced number of parameters (Fig. 2). 

 

 
Fig. 2  ImageNet architecture (NASNet) 

 
We compiled our dataset from public images published 

due to the rapid spread of the COVID-19 outbreak (Fig. 1). 
We have formed a dataset of 240 chest x-rays corresponding 
to the same number of patients, half in the Normal category 
and half in the Sick category. The images come from two 
public repositories. The first corresponds to X-ray images 
taken from patients who have tested positive for COVID-19. 
It is under construction by Dr. Joseph Cohen, a postdoctoral 
fellow at the University of Montreal [35], ignoring MERS, 
SARS, and ARDS cases. This initial database was 
complemented with images taken from public articles, and 
we performed data augmentation to increase its size [36], 
[37]. The second repository, corresponding to healthy 
patients, corresponds to images taken from healthy children 
(and with pneumonia, but these were only used in validation 
processes) [38]. These images were also filtered, and a 
dataset of the same size as the one resulting in the Sick 
category was chosen. 

There is no specific information related to the age or sex 
of the patients in the images used in the Sick category, but 
this is good to increase the variability in the dataset and 
facilitate the identification of essential characteristics [39], 
[40]. 

We built a 771 layers NASNet network with two output 
nodes (one for each category) and 256x256x3 input nodes 
corresponding to the input size of the images, three RGB 
arrays (Red, Green, Blue) of 256x256 pixels. All the input 
images were scaled to 256x256 pixels to guarantee 
uniformity in the training dataset (Fig. 2). We do not 
consider the aspect ratio of the images as an important factor 
in the model because the parameters to be identified by the 
network are not altered when changing the aspect ratio. 
Besides, the real images with which the model will work 
have different sizes. This network design produced a total of 
4,236,149 trainable parameters and 36,738 fixed parameters 
of the architecture. We randomly mixed the images during 
the training process to improve the performance of the 
network. 

 

 
Fig. 3  One of the images of the dataset after the scaling process 

 
We normalize the value of each RGB matrix from 0-255 

to the range of 0-1 since these are the working values of the 
network. To perform the training, we randomly separated the 
dataset into two groups, the first group with 70% of the data, 
which was used exclusively for training, and a second group 
with the remaining 30% for the model validation process. As 
optimization and cost metrics in training, we use stochastic 
gradient descent, categorical cross-entropy, accuracy, and 
MSE. 

The neural model training code was developed in Python 
3.7.3 within the Keras framework (using TensorFlow 
backend). As libraries, we use Scikit Learn 0.20.3, Pandas 
0.24.2, Nltk 3.4, Numpy 1.16.2, Scipy 1.2.1, and Matplotlib 
3.0.3. The model was trained and validated on a 64-bit Linux 
machine with kernel 5.3.0-40. 

III.  RESULTS AND DISCUSSION 

The final model was trained for ten epochs. To evaluate 
the training progress, we calculated in each epoch the values 
of the function of cross-entropy loss (categorical cross-
entropy loss), the accuracy (or success rate), and the MSE 
(Mean Squared Error) (Fig. 4). The behavior of these metrics 
indicates not only the capacity and accuracy in the 
classification but also their capacity to identify the patterns 
in new images, that is, the levels of over-adjustment of the 
network. 
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The behavior of the metrics during training can be seen in 
Figs. 5 and 6. Fig. 5 shows the behavior of the categorical 
cross-entropy loss (or softmax loss), this metric evaluates 
how close the model outputs are to the true class, reducing 
the loss the closer it is. Fig. 6 shows the accuracy of the 
model with the parameters set in each epoch using both 
images of the training process and unknown to the model. In 
Fig. 5 it can be seen that the error is reduced strongly and 
constantly until the fourth epoch, then it continues to reduce 
very slowly until a minimum saturation is reached. The error 
of the validation data is also reduced similarly; the curves 
are kept parallel, which indicates that there is no over-
adjustment. In Fig. 6 a similar behavior is observed, the 
accuracy calculated for the training data and the validation 
data behave similarly, and with a saturation value around 
0.97, this not only shows a high capacity of classification of 
the model but also that it can maintain this accuracy with 
new images. 

 

 
Fig. 4  Training of the model over ten epochs with details of the metrics in 
each cycle 
 

 
Fig. 5  Training loss and validation loss 

 

 
Fig. 6  Validation accuracy and training accuracy 

 
The model performance was evaluated using the 

validation data through its Confusion Matrix, the Precision, 
Recall and F1-score metrics, and through the ROC (Receiver 
Operator Characteristic) curve. The confusion matrix (or 
error matrix, Fig. 7) is a table that displays the model's 
ability to confuse the categories of the classified elements. 
On the left is the category to which the element belongs, and 
on the top is the category in which the element has been 
classified. Ideally, the elements should be classified in the 
category to which they belong, that is, they should appear in 
the diagonal of the matrix. To the right of the matrix is a 
temperature scale that assigns light colors to the highest 
concentrations, which in our model are actually in the 
diagonal. Only two images from the Sick category were 
wrongly classified in the Normal category, and only one 
image from the Normal category was classified in the Sick 
category. 

 

 
Fig. 7  Confusion Matrix 

 
Fig. 8 shows the summary of the metrics used for 

validation. The Precision (or positive predictive value) 
assigns a percentage value to the correct classification hits 
for the total number of elements classified in the category. 
Recall (or sensitivity) corresponds to the percentage of 
correct hits for the total number of elements that belong to 
the category. The F1-score (also F-score or F-measure) 
corresponds to a weighted value between precision and 
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recall. All the metrics in our model have a value of 97%, 
which means that the model has an excellent classification 
capacity. 

 

 
Fig. 8 Metrics used for validation: Precision, Recall and F1-score 

 
Figs. 9 and 10 show the ROC (Receiver Operator 

Characteristic) curves of the model. The ROC curve 
graphically shows the percentages of true positives and false 
positives in the category classification, i.e., it produces a 
curve for each category in which the area under the curve 
indicates the ability to classify the elements under validation 
correctly. Fig. 10 corresponds to the detail of the upper left 
corner of the ROC curve, in which the behavior can be better 
appreciated. These figures also show the average behavior of 
the categories. 

 
Fig.9  ROC curve and ROC area for each class 

 

 
Fig.10  Top left corner detail in ROC curve 

 
The behavior of the loss and accuracy curves shows that 

our model is perfectly tuned, and does not present any 
problems of over-fitting. However, the number of images 
corresponding to the Sick category is still too low to 
consider the model as final. However, the results of the 

metrics allow us to classify it as a high performance for the 
task of automatic identification of contaminated persons. 
According to these results, it is feasible to develop an 
autonomous system capable of processing images in real-
time in the triage stages of medical centers. The model must 
be trained and adjusted again according to the availability of 
new images of people contaminated with this virus. 

IV.  CONCLUSION 

In this paper, we perform the performance evaluation of a 
NASNet (Neural Architecture Search Network) to classify 
(and identify) the presence of Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2) in patients from 
chest x-ray images. We assume that the virus produces 
damage in the lungs of infected patients and that this damage 
can be identified visually on chest x-rays. The evaluation of 
the neuronal model arises from the need to develop a low-
cost automated tool capable of speeding up medical care in 
medical centers and reducing the spread of the virus. We 
selected the NASNet architecture due to the high 
performance documented in the literature published in 
similar applications, and its previous use in other tasks by 
the research group. The neural model was trained with a 
deep network of 771 layers and 4,236,149 adjustable 
parameters. These parameters were adjusted using the 
categorical cross-entropy loss and the MSE (Mean Squared 
Error) as an error function. The model was tuned to a 97% 
F1-score. The tuned model can detect patients with COVID-
19 and differentiate them from healthy patients in real-time 
and with an overall accuracy rate of 97%, a higher value 
than reported in the published literature [18], [25]-[27]. The 
result of the evaluation indicates that the model can support 
the diagnosis of the disease and that it is possible to use it in 
the development of an automated detection system. This 
system should have a model with a similar structure but 
trained with a greater number of images of infected people, 
adjusting the parameters to achieve equivalent or superior 
performance. 
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