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Abstract

We present an atomistic force field for the azo-moiety of the photo-switchable FK-

11-X peptide. We use the parameters to study the unfolding of the peptide through

molecular dynamics simulations. The unfolded ensemble contains many different struc-

tures, ranging from a partially unfolded peptide to a fully unfolded structure. The aver-

aged computed far-ultraviolet circular dichroism (CD) spectrum of the set of structures,

which were simulated using the newly developed force field, agrees well with experiment.

The rate of the simulated unfolding process was estimated to have a time constant of

5.80±0.03 ns from the time-evolution of the CD spectrum of the peptide, computed

from the backbone conformations sampled over 40 simulated trajectories. Our esti-

mated time constant is faster than, but not inconsistent with, previous experimental

estimates from time-resolved infrared and optical rotatory dispersion spectroscopy.
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Introduction

The cooperative nature of protein folding suggests that individual α-helices should not fold in

isolation. However, Brown and Klee1 observed, using circular dichroism (CD) spectroscopy,

partial helical structure in the isolated C-peptide of ribonuclease A. Subsequently, the ther-

modynamics and kinetics of the folding of α-helices have been widely studied2 and these

studies have elucidated many important aspects of protein folding. One example of many

was examination of the stabilizing thermodynamic influence of side-chain interactions in

isolated helices in the absence of the complexities of a surrounding protein environment.3

The unfolding dynamics of helical peptides have been studied using temperature-jump

(T-jump) techniques in conjunction with various spectroscopies. T-jump experiments move a

system away from equilibrium by rapid heating of the solvent by several degrees within a few

nanoseconds by irradiating the sample with a pulsed infrared laser. They provide insights

on microsecond and nanosecond timescales, which are of particular interest for early events

in protein folding. Techniques employed in these studies include infrared spectroscopy4

and ultraviolet (UV) resonance Raman spectroscopy.5 Khuc et al.6 used a T-jump far-

UV CD experiment with a time step of 12 ns to follow the loss of helical structure upon

thermal denaturation of a poly(glutamic acid) peptide, exploiting a well-known empirical

relationship between the intensity of a distinctive negative band at 222 nm and the α-

helical content.7 The influence of the backbone conformation on far-UV CD spectra has

been explored theoretically over many years,8,9 including the role of main-chain hydrogen

bond lengths10 and the sensitivity to the backbone dihedral angles.11 This provides a direct

connection between atomistic models of peptide (un)folding and CD spectroscopy.

Molecular dynamics (MD) simulations on nanosecond and microsecond timescales com-

plement experimental investigations and furnish atomistic detail about the folding mecha-

nism and the associated folding landscape, including the transiently stable conformations.12,13

Simulations of peptides are computationally more tractable than simulations of proteins, be-

cause of their smaller size. However, this is somewhat offset by their greater conformational
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flexibility, which presents a non-trivial sampling challenge. Another key aspect is the quality

of the empirical force fields used in the simulations. Confidence in the sampling and the

force field can be developed by computing spectroscopic observables, with the caveat that

reproduction of experiment is a necessary but not sufficient condition for establishing the

adequacy of the simulation methodology.

There are several approaches to computing CD spectra from the atomic coordinates

from an MD simulation (or indeed an experimentally determined structure) of a peptide or

protein. These have recently been reviewed in detail elsewhere.14 Empirical approaches, such

as BeStSel,15 PDB2CD16 and SESCA,17 take various structural descriptors derived from the

atomic coordinates and some “basis” spectra to generate a computed spectrum. Quantum

chemical methods can be used. Time-dependent density functional theory (TDDFT) has

been employed18 and inventive approaches applicable to large molecular systems have been

proposed,19 involving simplified Tamm-Dancoff density functional theory.

Calculations based on exciton theory,20,21 with an effective Hamiltonian, are more approx-

imate than fully quantum mechanical methods. They are applicable to large biomolecules

and the first principles nature of the approach means it should be more applicable than

fully empirical methods to partially unfolded conformations that may not be present in

structural databases. Local excitation properties and exciton couplings can be computed

with TDDFT.22 Much work has also been done on developing parameters from higher level

multi-configurational ab initio methods for the relevant electronic excitations of the peptide

backbone.11 These parameters and the computational methodology are available via the

DichroCalc web interface23 and a github repository.14

Simulation of conformational dynamics and the associated CD spectra is proving to be

a useful strategy for studying peptide and protein folding. A combination of CD spec-

troscopy, exciton calculations, standard MD simulations, and advanced-sampling methods

allowed Hildebrand et al.24 to pinpoint a destabilization effect of silica on specific structural

motifs of chymotrypsin. Using a similar strategy, Michaelis et al.25 demonstrated that an
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appropriate sampling of structures between a folded helix and its unfolded state permits one

to generate reliable computed spectra of transient states. First and Webb26 performed MD

folding simulations of a highly charged peptide in different solvents and bound to the sur-

face of a methyl-terminated self-assembled monolayer. They found quantitative agreement

between previous CD experiments and their MD simulations of solvent- and surface-induced

conformational changes of the peptide. A related approach was used by Gattuso et al.27 to

study the light-triggered conformational change of an α-helical peptide of 27 amino acids

with a retinal-like photoswitch covalently linked to the backbone. They correctly predicted

the reduction in helicity of the peptide upon E to Z photoisomerisation of the switch.

Photoisomerisation of a molecular switch attached to the peptide backbone is strategy

often employed to access fast timescales.28 Different molecular photo-switches have been

studied. Of these, the azobenzene moiety has been frequently utilised.29,30 Azobenzene can

be isomerised from the trans to cis and cis to trans conformation using a 370 nm and a

visible light source (460 nm), respectively.31 Several groups have studied the dynamics of

this photo-induced reaction and the isomerisation of the azobenzene appears to occur within

one picosecond.32–35 The changes in the molecular geometry that occur over its isomerisation

can be used to induce an imbalance in the structure of larger molecules, such as peptides

and proteins.36–38

The study that we present here focuses on the azobenzene cross-linked 16 amino-acid

peptide FK-11-X.29,39 The isomerisation of the azobenzene triggers the unfolding/folding

process of the peptide. Experimental studies agree that, following the trans to cis azoben-

zene isomerisation, peptide conformational changes related to the unfolding process occur

on the 100 ns to 1 µs time scale.40,41 Xia et al.42 used a combination of quantum mechan-

ics/molecular mechanics (QM/MM) methods with a classical MM atomistic force field to

simulate the unfolding process of a peptide with a similar sequence to FK-11-X. Although

this approach successfully simulated the unfolding process of the peptide, the timescale of

the dynamics did not match with the values found experimentally. In our study, using a
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purely classical MD approach, we sample significantly more of the conformational space.

In this study, we develop an atomistic force field for the azo-moiety of the FK-11-X

peptide for use in MD simulations. We will describe the methodology we employed and the

set of parameters we obtained. We utilise this atomistic force field to run 40 MD trajectories

simulating the unfolding process of FK-11-X. We characterise the folding state of the peptide

over time using various structural properties and we compare the trajectories with each other.

We calculate the rate of unfolding and compare this to experimental data. Using ensembles

of computed molecular geometries, we calculate the time-evolution of the CD spectrum of

FK-11-X as it unfolds. We connect these spectra to structural aspects of FK-11-X. Our

results confirm that MD simulations can complement experimental measurements to give

insights into transient conformations of small peptides as they unfold. Our assessment of the

rate of the simulated unfolding process corresponds well to the value found experimentally,

giving some confidence to the new atomistic force field parameters presented herein.

Methods

We built the peptide and the azo-moiety with the Avogadro software43 (version 1.2.0), using

the feature that allows one to generate an α-helix structure from an amino acid sequence. We

constructed the azo-moiety in its trans configuration, placed it close to the position where it

should be when it is linked to the peptide and created the bonds between the azo-moiety and

the two sulfur atoms of the cysteines. The resulting structure after minimisation is shown

in Figure 1. All the molecular visualisations presented in this paper were rendered using the

Tachyon extension in VMD.44

We solvated the molecule using a box of TIP3P water.45 We determined the appropriate

size of the water box from the length of the peptide and the cutoff distance of the non-

bonded interaction we used for the simulation. We performed a preliminary MD simulation

with the unfolded peptide to estimate of the maximum length of the peptide. The distance

between the C- and N-termini never exceeded 35 Å. The cutoff distance for the non-bonded
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interactions is 12 Å, so we set the edge of the cubic water box at 50 Å. The solvated system

comprises 15570 atoms.

Figure 1: Structure of the FK-11-X peptide. Its amino acid sequence is Ac-Glu-Ala-CysAZO-
Ala-Arg-Glu-Ala-Ala-Ala-Arg-Glu-Ala-Ala-CysAZO-Arg-Gln-NH2.

We performed the simulation using NAMD.46 It models the bonded and non-bonded

interactions of each atom with all the other atoms of the system with a potential energy

function whose form is well established in the field. We used the CHARMM36 All-Hydrogen

force field47–49 to model the peptide. For the azo-moiety, Carstens50 developed parameters

that have been used in some studies;39,40 and Böckmann et al.51 proposed a set of force

field parameters for an azobenzene derivative. However, even if we could use these for

the azobenzene, we would still need parameters for the atoms that link the peptide to

the azobenzene. We used the online interface52 of the CHARMM General Force Field53

(CGenFF) to determine the required parameters by analogy with existing parameters of

small organic molecules. This tool provides a penalty score for each attributed parameter.

If this score is higher than 50, it is recommended to develop a customized force field for the

corresponding bonds/angles. In the case of the azo-moiety, this score remains below 50 except

for the parameters of dihedral angles. These dihedral angles have a relatively low contribution

to the total potential energy. So we performed some preliminary tests using the CHARMM36

6
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All-Hydrogen force field for the peptide, the parameters proposed by Böckmann et al.51 for

the azobenzene and the parameters generated by CGenFF for the atoms connecting the

azobenzene and the peptide. However, the FK-11-X did not behave as expected. The

strain applied by the cis azobenzene did not induce a decrease in the helical content of

the peptide structure even after 25 ns of simulation. Time-resolved IR spectroscopy41,54 and

optical rotatory dispersion spectroscopy40 (ORD) experiments shown that the first changes in

conformation appear within a few nanoseconds after the isomerisation of the azobenzene. We

concluded that the force field parameters given by CGenFF were not adequate. We developed

a force field for the whole molecule, rather than use Böckmann et al.’s parameters51 for the

azobenzene, to ensure internal consistency.

We followed the procedure proposed by Vanommeslaeghe et al.53 It consists of optimising

the parameters to obtain similar potential energy profiles calculated from geometries mini-

mized with QM and MM approaches. The geometries and energy profiles from QM are the

target of the optimisation process. We considered the azo-moiety as comprising two smaller

molecules to reduce the number of degrees of freedom of the system. We optimized separately

the parameters of the azobenzene (Figure 2a) and the atom chain that links the azobenzene

to the peptide (Figure 2b). We added a sulfur and a methyl to the carbon C4 to determine

the parameters of the link between the cysteines of the peptide and the azo-moiety.

Figure 2: a. Azobenzene b. Structures used for the force field parameter optimisation of
the linker between the azobenzene and the peptide.

The first step of the procedure is the partial atomic charge determination to attribute

a charge to each atom. We generated the initial guesses with CGenFF. The penalty scores

were below ten for all the atoms except for four atoms of the azobenzene (C2, N1, N2 and
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C3). However, for these four atoms, differences between the charges generated by CGenFF

and the charges proposed by Böckmann et al.51 were below 5%. So we kept the initial

guess of the partial atomic charges generated by CGenFF for the optimisation and for the

simulations. We computed the QM geometries with Q-Chem55 at the MP2/6-31G* level of

theory. We calculated the energy profile for all the bonds, the angles and the dihedral angles

involving atoms that are indexed in Figure 2. The parameters of the benzene rings and the

parameters of the bonds/angles involving hydrogens are generated by CGenFF.

We performed the MM minimisation of the structures using NAMD. We adjusted the

parameters ‘by hand’ until the energy profiles from MM fit with the profile from QM. We

first optimised the parameters of the bonds, then the parameters of the angles and finally

the parameters of the dihedral angles. Examples of the potential energy surfaces are shown

in Figure 3. Both the MM geometries computed with initial guess and optimised parame-

ters are represented. The energy profiles calculated with the initial guess from CGenFF are

significantly different compared to the profiles based on QM calculations. These differences

may be responsible for the qualitatively incorrect behaviour we observed in the preliminary

simulations using the initial guess. The profiles obtained with the optimised parameters are

closer to the target and should improve the fidelity of the simulation. The optimised param-

eters are presented in Tables 1 and 2, and are compared in the Supplementary Information

(Tables S1 and S2).

The MD simulations were performed with NAMD 2.12 with a 2 fs timestep. The tempera-

ture was maintained at 295 K using Langevin dynamics parameters with a friction coefficient

of 5 ps−1. The pressure was kept constant at 1 atm with a Langevin piston that modifies

the size of the unit cell to adjust the pressure. The maximum distance of non-bonded inter-

actions was 12 Å. We used cubic periodic boundary conditions. Electrostatics were treated

using the particle-mesh Ewald method56 with a grid spacing of 1 Å. We used the SETTLE

algorithm57 and the ShakeH algorithm58 to constrain water molecules and the other bonds

involving hydrogen atoms, respectively. We performed two sets of simulations. The first
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is composed of 40 trajectories where the azobenzene is isomerised in the cis form and a

second set of 10 trajectories with the trans configuration of the azobenzene, which served as

a control. Each of the trajectories consisted of 120 ns of production dynamics. In each case,

the initial structure was minimized for 200 steps and was equilibrated for 200 ps, which was

sufficient based on the convergence of the RMSD (Supplementary Information, Figure S1).

Figure 3: Examples of potential energy profiles of the structure shown in Figure 2b. The
profile from MP2/6-31G* geometries are plotted in black. The profile from MM geometries
minimised using initial guess and optimised parameters are plotted in red and green, respec-
tively. a. N1C3 bond b. C4S1 bond c. C1C2N1 angle d. C3C4S1 angle e. O1C3C4S1 dihedral
angle f. C1C2N1C3 dihedral angle.
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Table 1: Optimised force field parameters of the azobenzene (Figure 2a).

Dihedral angle k (kcal/mol) n δ (◦)

C1C2N1N2 2.5 2 180

C2N1N2C3 23.0 2 180

Angle k (kcal/mol) θ0 (◦)

C1C2N1 50 116.5

C2N1N2 75 106.0

Bond k (kcal/mol) b0 (Å)

C2N1 300 1.415

N1N2 500 1.295

Table 2: Optimised force field parameters of the molecule shown in Figure 2b.

Dihedral angle k (kcal/mol) n δ (◦)

C1C2N1C3 1.20 2 180

C2N1C3O1 2.65 2 180

C2N1C3C4 2.00 2 180

N1C3C4S1 0.50 1 180

O1C3C4S1 0.50 1 0

C3C4S1C5 0.24 1 180

Angle k (kcal/mol) θ0 (◦)

C1C2N1 70 115.2

C2N1C3 60 120.8

N1C3O1 92 124.5

N1C3C4 68 118.0

O1C3C4 78 122.0

C3C4S1 40 115.3

C4S1C5 58 99.0

Bond k (kcal/mol) b0 (Å)

C2N1 380 1.420

N1C3 460 1.385

C3O1 830 1.275

C3C4 250 1.542

C4S1 225 1.893

S1C5 225 1.893

There are two methods to trigger the isomerisation of the azo-moiety. One can use a QM

approach42 or a potential energy triggering.59 We used the second option. The principle of

this method is to change the parameters of the dihedral angle responsible of the azobenzene

configuration (C-N-N-C). We modified the multiplicity of this dihedral from two to one (see

Figure 4a). This modification changes the number of minima from two to one. The unique

energy minimum is located at 0◦, which corresponds to the cis configuration of the azoben-

zene. We performed a 1.5 ps simulation with this modification for each structure starting

from the conformation of the last step from the equilibration trajectory. The averaged value

of the C-N-N-C angle of the azobenzene over time is plotted in Figure 4b. We see that the

dihedral angle decreases from 180◦ to approximately 60◦ before the first picosecond. The an-

gle passes the potential barriers located at -90◦ and +90◦ when n = 2 and so the azobenzene

will remain in the cis conformation even with n = 2. We used the conformation of the last

step from the 40 isomerisation trajectories for the 120 ns simulations. For these simulations,

the multiplicity parameter of the C-N-N-C dihedral angle was n = 2.
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Figure 4: a. C-N-N-C dihedral angle energy function with multiplicity n = 1 (solid line)
and n = 2 (dashed line). b. Averaged C-N-N-C dihedral angle value over the isomerisation
trajectories. The error bars correspond to one standard deviation.

Theoretical CD spectra were calculated using the DichroCalc web interface23 for indi-

vidual frames of the simulated trajectories. DichroCalc constructs an exciton Hamiltonian

matrix using electronic excitations of the local peptide chromophores. The Hamiltonian

models how electronic transitions interact with one another. The sign and magnitude of

the interactions depend on the relative orientation and separation of chromophores, which

in turn arise from the precise structure of the peptide. For each peptide chromophore two

transitions, n→ π∗ and πnb → π∗, were considered using an ab initio parameter set.11 Other

transitions, such as the πb → π∗ and charge transfer transitions, were not included. The

calculated line spectra were convoluted with Gaussian bands of bandwidth 12.5 nm.

Results & Discussion

The trajectories are, on the whole, relatively similar to one another. The similarity amongst

the trajectories was assessed by computing the root mean squared inner product between

pairs of trajectories,60 where each trajectory was represented by the first principal component

of the backbone dynamics computed over the final 5 ns. The tenth trajectory appears to

be the most representative, as it has the highest average RMSIP value (0.51) over the 39
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pairwise comparisons that include the tenth trajectory. We performed this analysis with

the Python package ProDy .61 Five snapshots of the tenth trajectory are shown in Figure

5. The peptide starts to unfold within the first 6 ns and keeps the same partially unfolded

structure after 40 ns, approximately. Thus, the peptide eventually attains this conformation,

which seems stable, in most trajectories. The helical structure that remains is formed by

six residues (Ala-Arg-Glu-Ala-Ala-Ala). The three consecutive alanines are localised at the

centre of the peptide. Alanine has a propensity to form and stabilise α-helix structure.62

This property and central location likely explain the high stability of this part of the peptide

α-helix conformation.

Figure 5: Typical trajectory from the 40 simulations.

We also identified other trajectories where the unfolding process is in a more advanced

state after 120 ns. One of these trajectories is shown in Figure 6. In this case, the peptide

is completely unfolded after 80 ns. Although the structure of the α-helix is modified after

80 ps, it only starts to unfold after 200 ps. The conformation at 10 ns is similar to the

stable conformation we identified in Figure 5. However, in this case, the peptide continues

to unfold and the unfolding process is completed after 80 ns, approximately. The trajectory

in Figure 6 is less frequent than the type shown in Figure 5. It occurs only once in the set of

40 trajectories. We can gather more detailed information about the unfolding process using

a Ramachandran plot representation (Figure 7) showing each residue from the trajectory

presented in Figure 6.

Figure 7 allows us to obtain information about the secondary structure of each residue.63
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Figure 6: A trajectory where the peptide is completely unfolded by the end of the simulation.

The two most represented secondary structures are the α-helix and the β-strand. They

correspond to the cluster of points centered around φ = −57◦, ψ = −47◦ and φ = −80◦,

ψ = 150◦, respectively. As expected, all the residues form an α-helix structure at the

beginning of the simulation. The dihedral angles of the residues Arg2, Glu6, Ala8 and Ala15

are the first to change. They are followed by the residues Ala9, Ala10, Arg12 and Cys14,

which switch from the helical region to the extended structure region of the Ramachandran

plot. The dihedral angles of the residues Arg2, Cys3, Ala8 and Ala15 return approximately

to their initial value at the end of the simulation. We also observe that the dihedral angles of

the residues Arg2, Ala9, Ala10, and Arg12 transiently populate the upper-right quadrant of

the Ramachandran plot, which corresponds to the region of the left-handed α-helix structure.

In order to quantify the rate of the unfolding process we examine some representative

quantitative progress coordinates, such as the distance between the two sulfur atoms and the

Oi-Hi+4 distances. The S-S distance is directly related to the structure of the azo-moiety.
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Figure 7: Ramachandran plots of the trajectory shown in Figure 6. The colour of the scatter
plot corresponds to the time of the simulation.
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We expect that, once isomerised, the azo-moiety tends to a lower energy conformation with

this configuration. We also think that as long as the distance between the two sulfur atoms

decreases, the azo-moiety induces a strain on the peptide. The hydrogen bond between Oi

and Hi+4 characterises the α-helix structure and the distance between these two atoms allows

one to assess the stability of the structure.64 The averaged Oi-Hi+4 distance of the peptide

residues will probably be partially correlated to the distance between the two sulfur atoms

but we can expect that the conformation of the peptide continues to change even after the

S-S distance converges. The S-S distance and the Oi-Hi+4 distances are presented in Figures

8 and 9, respectively.

Figure 8: Distance between the two sulfur atoms of the cysteines over time (logarithmic
scale).

In Figure 8, the S-S distance decreases from 16 Å to 12 Å within the first 10 ns of the

simulation. Then it stabilises between 11 Å and 12 Å until the end of the simulation. We

see in Figure 9a the heterogeneity in the speed of unfolding over the 40 trajectories. The

trajectory in Figure 6 is trajectory number 26. Its mean Oi-Hi+4 distance (averaged over

residues) is plotted against time in Figure 9b. The averaged Oi-Hi+4 distance from the 40

trajectories with the cis azo-moiety is shown in Figure 9c. The abscissa scale is logarithmic

so the Oi-Hi+4 distance increases exponentially. The averaged Oi-Hi+4 distance increases
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Figure 9: a. 2D representation of the averaged Oi-Hi+4 distance for each trajectory over time.
b. Averaged Oi-Hi+4 distance of the trajectory shown in Figure 6 over time. c. Averaged Oi-
Hi+4 distance of the 40 trajectories with the cis azo-moiety over time. d. Averaged Oi-Hi+4

distance of the 40 trajectories with the cis azo-moiety per residue over time. e. Averaged
Oi-Hi+4 distance of the 10 trajectories with the trans azo-moiety over time. f. Averaged
Oi-Hi+4 distance of the 10 trajectories with the trans azo-moiety per residue over time.
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after 10 ns even though the S-S distance is constant. Thus, the peptide structure continues

to change. In Figure 9b we see that the averaged Oi-Hi+4 distance when the peptide is com-

pletely unfolded is approximately 7.5 Å. Considering that Figure 9c shows that the averaged

Oi-Hi+4 distance increases by approximately 1 Å every order of magnitude and reaches 4.5

Å after 100 ns, it suggests that all the peptides should be completely unfolded after 100

µs. This extrapolated value does not correspond to values determined experimentally, which

range between 100 ns and 1 µs.40,41 We will continue this comparison with experimental

measurements in the next section. In Figure 9d, we plot the averaged Oi-Hi+4 distance for

the first 12 residues. This representation confirms that the α-helix structure of the residues

located at the centre of the peptide is more stable than at its termini. Earlier, we presented

the hypothesis that the FK-11-X reaches a stable conformation after 40 ns approximately.

We see in Figure 9d that the Oi-Hi+4 distances of the residues Ala10 to Glu6 continue to

increase even after 40 ns. It could mean that the stable conformation shown in Figure 5

might be a local minimum and that the peptide will finally unfold completely on a longer

time scale. The control simulation is shown in Figures 9e and 9f, which show the averaged

Oi-Hi+4 distances and the averaged Oi-Hi+4 distances, respectively, per residue from the ten

trajectories with the trans azo-moiety. These two figures show that the termini of the α-helix

structure are not stable on the nanosecond time scale. However, we see a clear difference

between the central residues with the cis and with the trans azo-moiety, which confirm the

impact of the isomerisation of the azo-moiety on the peptide structure.

We performed an analysis based on CD spectra computed with the online version of

Dichrocalc.23 We calculated the CD spectra of the structures from MD simulations at 11

different times (0, 0.02, 0.08, 0.2, 0.8, 2, 8, 20, 30, 60, and 120 ns). We selected these

time points to sample homogeneously an exponential decay. The spectra of the trajectory

illustrated in Figure 6 are shown in Figure 10. The CD spectrum at t0 is close to the spectral

signature of an α-helix with a positive peak at 190 nm and a negative peak between 200 and

230 nm, centered at 208 nm. Whilst the well-known band at 222 nm appears as a shoulder
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Figure 10: CD spectra calculated from the trajectory shown in Figure 6. The spectra belong
to the structures extracted at 0 (blue), 0.02, 0.08, 0.2, 0.8, 2, 8, 20, 30, 60, and 120 ns (red).

rather than being more clearly distinct from the 208 nm band, the calculated intensity at

222 nm has been previously shown to be highly correlated with the experimental intensity at

that wavelength.11 The amplitude of the signal decreases progressively over the simulation.

We also noticed that the spectrum of the last time frame, at 120 ns, is different. It exhibits

a negative peak at 190 nm and a positive peak at 205 nm. This spectrum corresponds to

the spectral signature of a random coil. Figure 6 shows that the α-helix content of the

peptide decreases over the simulation and it is completely unfolded after 80 ns. In the

literature, the stable conformation of the cis FK-11-X peptide has been associated with the

conformation at 120 ns in Figure 6.39 The experimental synchrotron radiation CD (SRCD)

spectra of trans and the cis configuration of FK-11-X have the same shape but with different

amplitudes65(Figure 11b). Thus, the stable conformation of the cis FK-11-X is partially

helical. If it were not, its CD spectra would correspond to a random coil based structure

as the computed CD spectra at 120 ns (Figure 10). In addition, Auvray et al.65 recently

showed that the use of the natural polarisation of the synchrotron radiation may improve

the temporal resolution of the technique to reach sub-nanosecond resolution. They assessed
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the capacity of the instrument to record changes in CD of small molecules by monitoring the

change in concentration of the enantiomers of the FK-11-X peptide. This novel SRCD setup

would allow one to follow ultrafast dynamics occurring within a a few tens of nanoseconds

and thus it would also help to assess the reliability of computational models such as the one

presented in this paper by providing transient SRCD spectra.

In order to analyse results that represent all the trajectories, we averaged the computed

CD spectra from the 40 simulations to obtain averaged CD spectra that may be compared

to the experimental SRCD spectra in solution. The computed CD spectra at t = 0 ns and

t = 120 ns and the associated averaged spectra are plotted in Figure 11a. Approximately

80% of the trajectories populated an ensemble of related structured conformations and the

others are between this set of structures and a completely unfolded ensemble. We see that the

impact of the helical content on the spectrum is more important than the unfolded structure

because the averaged spectrum at 120 ns still corresponds to an α-helix. In addition, the

Figure 11: a. The computed CD spectra of the 40 trajectories from structures extracted at
t = 0 ns (blue) and t = 120 ns (red). The thicker curves correspond to the average spectra.
b. SRCD spectra of cis (red) and trans (blue) FK-11-X, as published in ref [63] under a
Creative Commons CC BY license.

SRCD spectra plotted in Figure 11b show that the amplitude of the CD signal at 222 nm

decreases by 80% when the configuration of the azo-moiety passes from trans to cis. The
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same decrease in amplitude of the averaged CD spectrum computed with the structures at

t = 0 ns (trans configuration) would result in a computed CD spectrum with an amplitude of

-3,600 deg cm2 dmol−1 at 222 nm. The amplitude of the average of the CD spectra computed

with the structures at t = 120 ns (cis configuration) is -9,800 deg cm2 dmol−1 at 222 nm.

Thus, it decreases by 46% within the first 120 ns of simulation. The differences may come

from either the sampling and could be addressed by increasing the number of trajectories or

the duration of the simulation. We observed in Figure 9b that the averaged Oi-Hi+4 distance

continues to increase at the end of the simulation, so we can expect that the average helical

content of the 40 trajectories tends to the value determined experimentally within the next

tens of nanoseconds.

In Figure 11a we see that in some trajectories, the peptide is in a more advanced unfolding

state, in which the CD at 222 nm decreases to -5,000 deg cm2 dmol−1, approximately,

which corresponds to a decrease of 70%. This estimation is close to the value determined

with experimental results and thus the computed structure of the peptide at 120 ns in

these trajectories may correspond to the most likely conformation of the FK-11-X in the cis

configuration. The structures from three of these trajectories are shown in Figure 12. The

helical content that remains in these structures is formed by the same residues as the helix

shown in Figure 5, which include four alanines (Ala-Arg-Glu-Ala-Ala-Ala). Again, it shows

the propensity of alanines to stabilise α-helix structure.

Chen et al.40 used data from time-resolved ORD experiments to estimate a time constant

of 55 ± 6 ns (single-exponential decay) for the unfolding process of the FK-11-X peptide.

This estimation is based on data points measured from 50 ns to 10 µs after the trigger of

the isomerisation. The lack of information over the first 50 ns leads to a significant over-

estimation of the value of the time constant. Based on this time-constant estimation, we can

deduce that the dynamics should reach 95% of its total variation after 165±6 ns. So, even if

this estimation may be too long, it shows that the unfolding process occurs within the first

165 ± 6 ns after the isomerisation of the azobenzene. In order to estimate the rate of the
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Figure 12: Structure of the FK-11-X peptide at 120 ns of the trajectories 1, 20 and 30. The
colors of the peptide correspond to the amino acid type. Gln, Arg, Cys, Ala and Glu are in
orange, white, yellow, blue and pink, respectively.

unfolding process via the change in CD, we averaged the computed CD spectra from the 40

simulations at 0, 0.02, 0.08, 0.2, 0.8, 2, 8, 20, 30, 60, and 120 ns. The averaged computed CD

spectra and the trace of the CD signal at 222 nm are plotted in Figures 13a and 13b. The

average spectra show that the amplitude of the CD signal decreases continuously over the

simulation and homogeneously between 180 and 240 nm. The time-evolution of the intensity

at 222 nm (Figure 13b) is sigmoidal, albeit not sharply so, reflecting a cooperative process,

which evident in the correlated increase of several of the Oi-Hi+4 distances seen in Figure 9d.

In Figure 13b, the signal decreases rapidly over the first 20 ns and it starts to stabilise after

20 ns. So we can expect that the signal continues to decrease slightly over the next tens of

nanoseconds. We performed a non-weighted least-squares fitting with a single-exponential

decay model of the computed CD signal at 222 nm. The resulting curve is plotted in Figure

13b. This fitting allows us to estimate the time-constant of the simulated unfolding process

at τ=5.80±0.03 ns. Because we see that the computed CD signal seems to not reach a

plateau at the end of the simulation, this may be an under-estimate and could be refined

with longer simulations or perhaps with simulations using a polarisable force field. The final

slower decrease in amplitude expected after 120 ns should make the loss of amplitude at 222

nm approach 80%, the value that we deduced from experimental data. These results show
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Figure 13: a. Averaged CD spectra of the 40 trajectories from structures extracted at 0
(blue), 0.02, 0.08, 0.2, 0.8, 2, 8, 20, 30, 60, and 120 ns (red). b. Trace of the computed CD
signal at 222 nm. The boxes extend from the first to the third quartile values of the data,
with a horizontal red line at the median. The whiskers attached to the boxes extend to the
extrema of the data. If the whiskers are 50% longer than the difference between the first
and the third quartile values, then the outer data points are represented as circles. The red
curve is a non-weighted least-squares fitting with a single-exponential decay model with a
time constant of τ=5.80±0.03 ns.

that the rate of the simulated unfolding process is consistent with that provided by time-

resolved ORD experiments. Comparison with the time-resolved ORD experiment of Chen

et al.40 is more relevant than comparison with the time-resolved IR data from Bredenbeck

et al.,41 because the trans to cis isomerization is followed by equilibration on the cis energy

landscape, whereas the latter investigated dynamics on the trans landscape.

Khuc et al.6 performed quantitative time-resolved CD measurement with a time step

of 12 ns at 225 nm. They successfully estimated the variation of the helical fraction of a

poly(glutamic acid) peptide over a T-jump experiment using a nanosecond Nd:YAG laser

to heat up the solvent and a sub-picosecond source based on a 1 kHz amplified Titanium-

Sapphire system for the CD measurement.66 Dartigalongue et al.66 used this light source

to perfom sub-picosecond measurements to assess the change in CD over the photodisso-

ciation of carbonmonoxy-myoglobin. Thus, time-resolved pump-probe CD measurements

with either sub-picosecond or nanosecond temporal resolution on the FK-11-X peptide using
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this approach would bring further information which would complement the model that we

propose in this paper.

Conclusion

We have investigated the unfolding of the FK-11-X peptide based on a computational ap-

proach. We optimised a force field for the azo-moiety to ensure that this part of the FK-11-X

peptide is parameterised well and in an internally consistent fashion. Our parameters should

find utility in future simulation studies of other azo-peptides. Using this force field, we com-

puted 40 MD trajectories of 120 ns simulating the unfolding process of the FK-11-X peptide.

Approximately 80% of the trajectories presented a partially unfolded peptide with a similar

conformation at the end of the simulation. The remaining 20% were in a more advanced

unfolded state and in one trajectory the peptide was completely unfolded. We analysed

the dynamics of the process looking at the distance between the two sulfur atoms and the

Oi-Hi+4 backbone hydrogen bond distances. The S-S distance decreases progressively during

the first 10 ns and then is stable until the end of the simulation. The Oi-Hi+4 distances

and the structure of the peptide at 120 ns indicated that the three alanines located between

the two cysteines significantly stabilise the α-helix. We also see that the termini of the

FK-11-X helix are quite labile on the nanosecond timescale, even in the trans configuration.

The amino acids at the termini unfold progressively over the first 100 ns. An analysis of

CD spectra computed from snapshots from the MD simulations allowed us to compare the

dynamics of the simulated unfolding process and the experimental data, with the caveat

that an improved model of the coupling of the ππ∗ and nπ∗ transitions might resolve the

calculated band at 222 nm better. The calculated CD signal at 222 nm reaches a plateau at

the end of the simulation. The 55 ± 6 ns time constant proposed by Chen et al. allows us

to estimate that 95% of the reaction would occur within 165± 6 ns. This estimate matches

well with the rate of the simulated dynamics. We also used the variation of the CD signal

at 222 nm from experimental data and from the calculated spectra to demonstrate that the
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most likely stable conformation of the cis FK-11-X is not the fully unfolded conformation

but a conformation close to the structure shown in Figure 12.

Supporting Information Available

The supporting information includes an assessment of the equilibration process and compares

the force field parameters that we developed for the azobenzene with those proposed by

Böckmann et al.51
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Supporting Information

Unfolding Dynamics of a Photo-switchable Helical Peptide

Francois Auvray and Jonathan D. Hirst

1. Equilibration RMSD

The averaged root-mean-squared deviation (RMSD) of the peptide backbone is plotted as a

function of time in Figure S1.

Figure S1: RMSD variation over time. The error bars width corresponds to one standard
deviation. The RMSD calculation is only base on the atoms of the peptide backbone.

The reference of our RMSD calculation was the initial conformation of the equilibration

simulation. The RMSD increases over the first 25 ps of the simulation and then stabilises

around 0.65 Å, showing that the backbone structures reach stable conformations and that

the systems are equilibrated.
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2. Force field parameters

The labeled structures of the parameterised molecules are shown in Figure S2. The force

field parameters proposed by Böckmann et al.51 for the azobenzene (Figure S2a) are shown

in Table S1. The optimised parameters presented in this paper for the structure shown in

Figure S2a and S2b are in Table S2 and S3, respectively.

Figure S2: a. Azobenzene b. Structures used for the force field parameter optimisation of
the linker between the azobenzene and the peptide.

Table S1: Optimised force field parameters of the azobenzene (Figure S2a) proposed by
Böckmann et al.51

Dihedral angle k (kcal/mol) n δ (◦)

C1C2N1N2 1.43 2 180

C2N1N2C3 16.70 2 180

Angle k (kcal/mol) θ0 (◦)

C1C2N1 134 120.0

C2N1N2 155 116.5

Bond k (kcal/mol) b0 (Å)

C2N1 172 1.432

N1N2 335 1.262

Table S2: Optimised force field parameters of the azobenzene (Figure S2a).

Dihedral angle k (kcal/mol) n δ (◦)

C1C2N1N2 2.5 2 180

C2N1N2C3 23.0 2 180

Angle k (kcal/mol) θ0 (◦)

C1C2N1 50 116.5

C2N1N2 75 106.0

Bond k (kcal/mol) b0 (Å)

C2N1 300 1.415

N1N2 500 1.295
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