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Abstract Coral reefs are some of the most important and ecologically diverse marine

environments. At the base of the reef ecosystem are dinoflagellate algae, which live symbiotically

within coral cells. Efforts to understand the relationship between alga and coral have been greatly

hampered by the lack of an appropriate dinoflagellate genetic transformation technology. By

making use of the plasmid-like fragmented chloroplast genome, we have introduced novel genetic

material into the dinoflagellate chloroplast genome. We have shown that the introduced genes are

expressed and confer the expected phenotypes. Genetically modified cultures have been grown

for 1 year with subculturing, maintaining the introduced genes and phenotypes. This indicates that

cells continue to divide after transformation and that the transformation is stable. This is the first

report of stable chloroplast transformation in dinoflagellate algae.

DOI: https://doi.org/10.7554/eLife.45292.001

Introduction
Coral reefs are complex ecosystems, made up of many thousands of species. At the base of the eco-

system are dinoflagellate algae, frequently referred to as zooxanthellae. These single-celled algae

live in symbiosis with corals as intracellular photosynthetic symbionts, providing fixed carbon to the

host. Loss of the symbiotic alga results in coral bleaching, which is one of the most urgent and wors-

ening worldwide ecological concerns. In 2016, 85% of the Great Barrier Reef was found to be

affected by coral bleaching, a significantly higher proportion than had been previously identified

(Hughes et al., 2017).

Change in sea water temperature is recognized as one of the environmental causes of coral

bleaching (Spalding and Brown, 2015). It is likely that this results in disturbance of photosynthetic

electron transfer in the dinoflagellate symbiont and consequent damage (Rehman et al., 2016),

(Slavov et al., 2016). The PsbA (D1) reaction center protein of photosystem II is believed to be an

important target of such damage (Warner et al., 1999). The key subunits of photosynthetic electron

transfer chain complexes, including the PsbA protein, are encoded in the dinoflagellate chloroplast

genome (Howe et al., 2008). There have been no reports to date of transformation of the dinofla-

gellate chloroplast genome, hampering attempts to study the mechanism of bleaching.

An alternative approach to transformation of the chloroplast might be to insert genes for proteins

carrying chloroplast targeting sequences into the nucleus. There have been numerous attempts at

stable nuclear transformation of dinoflagellates, but none has been clearly successful. An early report
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of the transformation of the dinoflagellates Amphidinium sp. and Symbiodinium microadriaticum

mediated by silicon carbide whiskers, with selection for resistance to hygromycin or G418 and using

b-glucuronidase (GUS) as a reporter, appeared to produce transformants after 12 weeks (ten Lohuis

and Miller, 1998). However, there are no reports of successful use of this technique since the initial

publication. In 2019, a series of experiments on Symbiodinium microadriaticum, using biolistics, elec-

troporation and agitation with silicon carbide whiskers failed to introduce a chloramphenicol acetyl

transferase (CAT) gene to the nuclear genome (Chen et al., 2019).

Despite this, Ortiz-Matamoros and co-workers reported transient expression of GFP in Symbiodi-

nium using a plasmid designed for plant transformation introduced by treatment with glass beads

and polyethylene glycol, and selection for resistance to the herbicide Basta (gluphosinate) (Ortiz-

Matamoros et al., 2015a). However, transformed cells were not capable of cell division, and no

genetic confirmation of transformation was carried out. Transformation with the same plasmid mobi-

lized by the plant pathogen Agrobacterium was also reported, although the transformed cells again

failed to divide (Ortiz-Matamoros et al., 2015b). The lack of stable expression of heterologous

genes limits the use of these techniques for functional biochemical studies.

Here, we describe a method for stable transformation of the dinoflagellate chloroplast. The chlo-

roplast genome of dinoflagellate species containing the carotenoid peridinin (which is the largest

group and includes those forming symbionts with coral) is typically fragmented, comprising approxi-

mately 20 plasmid-like DNA molecules of 2–5 kbp known as ‘minicircles’ (Zhang et al., 1999),

(Barbrook et al., 2014). Each minicircle typically carries a single gene, together with a conserved

core region which is assumed to contain the origin of replication as well as the transcriptional start

site (Howe et al., 2008). These minicircles have been shown to be localized to the chloroplast using

in situ hybridization (Owari et al., 2014). Each chloroplast contains multiple copies of each mini-

circle, although the exact copy number varies according to the growth stage of a culture

(Koumandou and Howe, 2007).

We exploited this unusual minicircular genome organization to create shuttle vectors for dinofla-

gellate chloroplast transformation. We created two artificial minicircles, both based on the psbA

minicircle from the dinoflagellate Amphidinium carterae, as the A. carterae chloroplast genome is

the best characterized amongst dinoflagellates (Barbrook et al., 2012; Koumandou et al., 2004;

Barbrook et al., 2001). We replaced the psbA gene with a selectable marker (either a modified ver-

sion of psbA which confers tolerance to the herbicide atrazine (Hirschberg and McIntosh, 1983), or

a gene for chloramphenicol acetyl transferase (CAT), which confers resistance to chloramphenicol),

and an E. coli plasmid backbone (to allow propagation in E. coli). We tested numerous transforma-

tion methods and were able to obtain sucessful introduction of these artificial minicircles into dinofla-

gellates using particle bombardment. Following selection, we could detect the presence of the

artificial minicircles, and transcripts from them, using PCR and RT-PCR. We were able to detect the

product of the introduced chloramphenicol acetyl transferase gene using immunofluorescence

microscopy. Cultures under selection continued to divide and maintain the artificial minicircles for at

least 1 year, indicating that transformation was stable. The availability of a method for dinoflagellate

chloroplast transformation enables a range of studies on the maintenance and expression of this

remarkable genome and the proteins it encodes, such as PsbA.

Results

Construction of artificial minicircles
Two artificial minicircles were used in this study. The first, pAmpPSBA, was designed to confer atra-

zine tolerance. Tolerance to atrazine in plants can be conferred by a single residue change in the

PsbA protein, where a Serine is mutated to a Glycine (Goloubinoff et al., 1984). We therefore

cloned the A. carterae psbA minicircle into the E. coli vector pGEM-T easy (Promega) and intro-

duced the necessary mutations into the psbA gene using site-directed mutagenesis, Figure 1. The

second artificial minicircle, pAmpChl, was designed to confer chloramphenicol resistance. It is also

based on the A. carterae psbA minicircle, but the psbA gene was excised and replaced by a A. car-

terae codon-optimized gene encoding chloramphenicol acetyl transferase. The plasmid backbone is

E. coli pMA, Figure 1.
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Glass beads and electroporation
There has been one previous report of stable transformation of dinoflagellates, using silicon carbide

whiskers (ten Lohuis and Miller, 1998). This has never been reproduced, despite numerous

attempts (Walker et al., 2005). Additionally, the whiskers are a significant health hazard, and, in

other species, glass bead-mediated transformation has a higher transformation efficiency (Ortiz-

Matamoros et al., 2018). There has been one previous report of transient transformation of dinofla-

gellates with glass beads (Ortiz-Matamoros et al., 2015a). We therefore first sought to replicate

this finding, by transforming the A. carterae dinoflagellate chloroplast genome using glass beads.

We used the artificial minicircle pAmpPSBA followed by selection with atrazine. The experiment was

carried out three times, but no viable cells were seen following selection (i.e. following the addition

of atrazine, all cells died at the same time that untransformed cells died).

Polyethylene glycol has been reported to increase glass bead transformation efficiency. We there-

fore added polyethylene glycol and repeated the transformation (in triplicate). No live cells were

recovered following selection, indicating that this method did not give rise to stable transformants.

A second attempt (in triplicate) was also not successful.

Many eukaryotic protist species can be transformed using electroporation, and the Lonza Nucleo-

fector system is used with many hard-to-transfect species. This includes Perkinsus marinus, a sister

group to the dinoflagellates (Burkett and Vasta, 1997). The artificial minicircle pAmpPSBA was

used to attempt to transfect A. carterae using the Lonza Nucleofector with several settings indicated

as suitable for protist transformation (X-100, D-023, L-029 and EH 100), each in triplicate. We were

never able to recover any transformants.

Figure 1. Artificial minicircle design. Left, pAmpPSBA. Right, pAmpChl. Origins of replication (ori for E. coli plasmid, core region for A. carterae

minicircle) are shown in red. Protein-coding genes (encoding ampicillin resistance, chloramphenicol resistance or PsbA) are shown in green. The blue

shows the original source of of the genetic material (E. coli plasmid and A. carterae minicircle). The red arrow showing the position of the mutation in

psbA that confers resistance to atrazine is marked with ‘M’. Primer sites pAmpPSBA 1: MC-pG-F-II, 2: MC-pG-F, 3: MC-pG-R-II, 4: MC-pG-R; pAmpChl:

5: CAT-R, 6: CAT-F, 7: CAT-FSS. CAT-F-Nest and CAT-R-Nest are immediately adjacent to CAT-F and CAT-R, respectively.

DOI: https://doi.org/10.7554/eLife.45292.002
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Biolistic transformation with pAmpPSBA
We next turned to biolistics, since this has been reliably used to transform the unicellular alga Chla-

mydomonas for 30 years (Boynton et al., 1988). Nine experiments to introduce the pAmpPSBA arti-

ficial minicircle into A. carterae using biolistic transformation were carried out, using a range of

rupture disk pressures. Each experiment was carried out in triplicate, and included a single negative

control line (cells subjected to biolistic treatment but without pAmpPSBA). The mean survival time

for each culture under selection was assessed by bright field microscopy, and results are shown in

Table 1. In six experiments, A. carterae cells shot with particles carrying pAmpPSBA showed greater

mean survival time under selection conditions than untransformed cells, suggesting successful trans-

formation (Experiments A2, A3, A4, A5, A7 and A8). One experiment (A6) was harvested prior to

the death of the control strain, so no conclusions can be drawn on relative survival times. Finally, two

experiments showed no difference in the length of time for which cells survived. The first (Experi-

ment A1) was carried out using the lowest pressure rupture disks. In this experiment, control and

experimental cells survived just 13 days, suggesting that cells had not been transformed, perhaps

because an insufficient bombardment velocity had been applied. In the second experiment (A9),

selection was carried out with 1 mg ml�1 atrazine, below the lethal concentration of 2 mg ml�1. Both

test and control cultures survived at least three months, with subculturing occurring at 8-week

intervals.

Biolistic transformation with pAmpChl
Transformation attempts were also made with A. carterae using chloramphenicol resistance as

selectable marker. Experiments were carried out with pAmpChl and 1550 p.s.i. rupture disks. In the

first experiment, chloramphenicol (final concentration 10–50 mg ml�1) was applied after 3 days in liq-

uid culture, to allow time for initial synthesis of chloramphenicol acetyl transferase (Experiments

C1A-E), Table 2. No untransformed wild-type cells (i.e. shot with gold particles without DNA) sur-

vived after 15 days, whatever the chloramphenicol concentration. However, at 10 mg ml�1 chloram-

phenicol, cells shot with particles carrying the pAmpChl plasmid survived for at least 35 days,

Experiment C1A). When chloramphenicol concentration was 30 mg ml�1 or greater, cells shot with

particles containing the pAmpChl plasmid had died by day 15, (Experiment C1C-E), Table 2. Note

that where appropriate, cells were subcultured after 28 days.

Detection of artificial minicircles using PCR
To test if the transformation construct could be recovered from putatively transformed cultures,

DNA was isolated from atrazine-selected A. carterae cultures (experiment A5, two lines designated

A5.1 and A5.2) by vortexing with glass beads. DNA was also isolated from wild-type A. carterae as a

Table 1. Biolistic transformation of A. carterae with pAmpPSBA.

Each experiment was carried out in triplicate, thus producing three potentially transformed lines. In addition, one line of cells was sub-

jected to biolistic bombardment, but without the pAmpPSBA (‘untransformed’). Note that cultures from experiments 5–9 were har-

vested for genetic analysis, and thus the listed survival time is the day of harvesting, labeled with *.

Experiment Rupture disk (p.s.i.) Atrazine concentration (mg ml�1)
Survival untransformed
(days)

Mean survival pAmpPSBA
(days)

A1 1100 2.5 13 13

A2 1350 2.5 13 16

A3 1350 2.5 13 15

A4 1550 2.5 13 17

A5 1550 2.5 12 20*

A6 1550 2 7* 7*

A7 1550 2 13 13*

A8 1550 2 12 15*

A9 1550 1 3 months* 3 months*

DOI: https://doi.org/10.7554/eLife.45292.003
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negative control. In addition, a DNA purification was carried out with transformed cells (line A5.1),

but without vortexing with glass beads (‘unbroken cells’) in order to test whether DNA remained

adsorbed to the outside of cells. A positive control was included using the pAmpPSBA artificial mini-

circle. PCR was performed using the primers MC-pG-F and MC-pG-R (Figure 1) which lie on either

side of the junction between the psbA minicircle and the pGEM-T Easy vector. A single product was

amplified from each of lines A5.1 and A5.2, with no product detected from either the wild type or

the ‘unbroken cells’ (Figure 2A). This product matched the size of product from the positive control.

Products from both lines were cloned and sequenced. The sequence was as expected from

pAmpPSBA, as a chimaera between the psbA minicircle and the pGEM-T Easy vector, confirming

that the atrazine-resistant A. carterae did indeed contain the pAmpPSBA sequence.

To test if the pAmpChl artificial minicircle was present, DNA was isolated from three chloram-

phenicol-selected A. carterae lines (C1A.1, C1A.2 and C1A.3) after 35 days of selection. PCR using

primers within the chloramphenicol resistance gene (CAT-F and CAT-R) was carried out. A positive

control was included using the pAmpChl artificial minicircle. A single product was obtained from

lines C1A.1 and C1A.3, with no product detected from line C1A.2 (Figure 2B). Products from lines

C1A.1 and C1A.3 were cloned and sequenced. The sequence was the same as that expected from

pAmpChl, which confirmed that the chloramphenicol-resistant A. carterae did indeed contain the

pAmpChl sequence.

Relative copy number of artificial minicircles
As we utilized the backbone of an existing psbA minicircle to create pAmpChl we tested to see

what proportion of the psbA minicircles contained the psbA gene and what proportion contained

the CAT gene (and associated shuttle vector). We therefore designed primers immediately flanking

the psbA gene (copy-F and copy-R), in a region that was common to both the psbA and pAmpChl

minicircles, and carried out PCR. This should amplify either psbA or CAT. Analysis of the products

using agarose gel electrophoresis revealed the presence of two bands, one corresponding to the

psbA gene and one to the CAT gene, as shown in Figure 3. Taking into account the size of the

products, the likelihood that the CAT-specific product would be generated more efficiently, being

smaller, and the relative intensity of each band, it would appear that there are roughly similar num-

bers of each minicircle in the chloroplast.

Transcription of the artificial minicircles
In order to test if transcripts from the two artificial minicircles could be detected in the putatively

transformed lines, total RNA was extracted and purified. cDNA was synthesized using RNA from

Table 2. Biolistic transformation of A. carterae with pAmpChl.

Each experiment was carried out in triplicate, thus producing three potentially transformed lines. In addition, one line of cells was sub-

jected to biolistic bombardment, but with gold particles lacking the pAmpChl (‘untransformed’). For experiment 1, cells from each

plate (three shot with gold particles carrying the plasmid and one with gold particles only) were divided into five separate samples,

each incubated at a different chloramphenicol concentration. Note that cultures from experiments C1A, C2, and C3, were harvested

for genetic analysis, and thus the listed survival time of lines still alive at that point is the day of harvesting, labeled with *. Experiment

C4 was still alive at 57 weeks and is thus marked with +.

Experiment Rupture disk (p.s.i.) Chloramphenicol concentration (mg ml�1)
Survival untransformed
(days)

Mean survival pAmpChl
(days)

C1A 1550 10 15 35*

C1B 1550 20 15 17

C1C 1550 30 15 15

C1D 1550 40 15 15

C1E 1550 50 13 15

C2 1550 10 13 13*

C3 1550 10 14* 14*

C4 1550 20 16 57 weeks +

DOI: https://doi.org/10.7554/eLife.45292.004
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atrazine-selected cultures from experiment A6 (lines A6.1, A6.2, A6.3 and untransformed) and ran-

dom hexamer primers, followed by PCR with the specific primers MC-pG-F-II and MC-pG-R-II. cDNA

was synthesized using RNA from chloramphenicol-selected culture lines C3.1, C3.2 and C3.3 and the

gene-specific primer CAT-FSS, followed by a nested PCR strategy. Primers CAT-F and CAT-R were

used in the first round of PCR (30 cycles). 1 ml of PCR product was used as template for the second

round of PCR (10 cycles) with primers CAT-F-Nest and CAT-R-Nest. Negative controls, which omit-

ted the reverse transcriptase, were included for all RT-PCRs. A positive control was included using

the pAmpPSBA or pAmpChl artificial minicircle.

RT-PCRs using RNA from the three atrazine-selected lines in Experiment A6 all yielded a band

consistent with the size of the positive control, Figure 4A. The DNA in the bands was purified,

cloned and sequenced. The sequence of all three matched the pAmpPSBA artificial minicircle, con-

firming that it was transcribed. The sequence spanned the site of the atrazine resistance mutations

and included the expected sequence alterations. The negative control yielded no PCR products

(data not shown). The same results were obtained for three lines in each of Experiments A7 and A8

(data not shown).

RT-PCRs using RNA from the three chloramphenicol-selected lines (C3.1-C3.3) yielded bands

from two of the three cell lines in Experiment C3 (Figure 4B). The PCR products were sequenced

directly and shown to correspond to the pAmpChl minicircle. The negative control yielded no PCR

product. Two of three lines in Experiment C2 yielded bands in RT-PCRs (data not shown).

Figure 2. Presence of vectors in transformed A. carterae. Panel A shows results with pAmpPSBA. DNA was isolated from cells putatively transformed

with pAmpPSBA, and a PCR reaction performed to amplify a ~ 200 bp region in the plasmid. Lane P, positive control (PCR with plasmid only), Lane L,

Hyperladder 100 bp (Bioline) marker, Lane 1, transformed cell line A5.1 (strong band), Lane 2, transformed cell line A5.2 (faint band), Lane 3,

transformed cell line A5.1 but without cells being broken open prior to DNA extraction (no band), Lane 4, wild type (i.e. untransformed cells, no band)).

Panel B shows results with pAmpChl. DNA was isolated from cells putatively transformed with pAmpChl, and a PCR reaction performed to amplify a

580 bp region in the plasmid. Lane L, Hyperladder 1 kb (Bioline) marker, Lane P, positive control (PCR with plasmid only), Lane N, negative control (no

template), Lane 1, transformed cell line C1A.1, Lane 2, transformed cell line C1A.2, Lane 3, transformed cell line C1A.3. Apparent differences in mobility

between bands in lanes P, 1 and 3 are due to gel loading.

DOI: https://doi.org/10.7554/eLife.45292.005
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Artificial minicircle products
localize to the chloroplast
In order to confirm that we had transformed the

chloroplast genome and not the nuclear genome,

we carried out an immunofluorescence assay with

an anti-chloramphenicol acetyl transferase anti-

body, together with a secondary antibody

labeled with Alexa Fluor 405. The antibodies co-

localized with the chloroplast, identified as the

region of the cell with significant autofluores-

cence, as shown in Figure 5. The antibodies did

not localize with the nucleus or other parts of the

cell. This result shows that the CAT protein is

expressed in the chloroplast (compare the

merged image with the chloroplast autofluores-

cence and CAT images). As the CAT gene did

not include a chloroplast targeting sequence

(which would be necessary to target nuclear-

encoded proteins to the chloroplast), the

pAmpChl artificial minicircle must be located in

the chloroplast.

Stability of transformation
To test if the atrazine-resistance phenotype trans-

formation of the dinoflagellate chloroplast was

stable under low-level selection, cells were shot

with gold particles carrying pAmpPSBA and cul-

tured under continuous atrazine selection at 1 mg

ml�1 (experiment A9 in Table 1). Cell counts

increased over time, although at a rate much

lower (~10%) than untransformed cells under no

selection. An untransformed cell line was also

maintained, which survived under the same atra-

zine concentration (1 mg ml�1). Both cell lines

were subcultured at 8-week intervals. After 3

months, cells were harvested and DNA was iso-

lated. PCR using the primers MC-pG-F and MC-

pG-R was carried out (as above). A positive con-

trol PCR was included using the pAmpPSBA vector, and PCR with DNA isolated from the untrans-

formed, wild type cells maintained at non-lethal atrazine concentration was included as a negative

control (Figure 6A). A single product, of expected size, was obtained using the three transformed

cell lines, with no product detected from the untransformed cells. DNA sequencing confirmed that

the products from all three lines corresponded to pAmpPSBA. This showed that the transformation

of A. carterae with pAmpPSBA was stable at a non-lethal atrazine concentration.

To test if the chloramphenicol-resistance phenotype transformation of the dinoflagellate chloro-

plast was stable, three lines were generated by shooting with gold particles carrying pAmpChl and

cultured under continuous chloramphenicol selection at 20 mg ml�1 (Experiment C4 in Table 2) with

subculturing every 14 days. After 18 weeks, well after control untransformed cells had died, a sample

of cells was harvested from each transformed line and DNA was isolated. A PCR reaction using the

primers CAT-F-Nest and CAT-R-Nest was carried out on each sample. A positive control PCR was

included using the pAmpChl vector (Figure 6B). A single product, of expected size, was obtained

for each of the three transformed cell lines. DNA sequencing confirmed that the products from all

three lines corresponded to pAmpChl. No band was seen in a wild-type PCR carried out with the

same primers on wild-type cells (data not shown), confirming that the band could only have arisen

L 1 2

1000

800

600

400

1500

Figure 3. Relative copy number of psbA and pAmpChl

minicircles. DNA was isolated from cells transformed

with pAmpChl, and a PCR reaction performed to

amplify either psbA or CAT. Lane L, Hyperladder 1 kb

(Bioline) marker, Lane 1, wildtype cells (amplifying psbA

only), Lane 2 pAmpChl line (amplifying psbA (top band)

and CAT (lower band)).

DOI: https://doi.org/10.7554/eLife.45292.006
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from pAmpChl. The cultures remained alive at the time of writing, 1 year post-transformation. These

results show that there was stable transformation of A. carterae with pAmpChl.

Discussion
Here, we present evidence for the first stable transformation of the dinoflagellate chloroplast

genome. By making use of the plasmid-like fragmented chloroplast genome and a biolistic system,

we have introduced a modified version of an existing sequence as well as a heterologous gene.

These genes are transcribed, and produce protein, as shown by immunofluorescence microscopy

and the presence of an expected phenotype. Stable transformation was achieved with two separate

artificial minicircles, one containing a modified psbA gene designed to confer atrazine tolerance and

another encoding chloramphenicol resistance, with cultures surviving at least 1 year under selection.

The copy number of the artificial minicircle is similar to that of native minicircles.

A. carterae cells transformed with the modified psbA gene (atrazine tolerance) survived under

non-lethal concentrations of atrazine for at least 3 months, retaining the modified gene, indicating

that the transformation is stable even under low levels of selection. The results suggest it is impor-

tant to titrate the concentration of selective agents used. With an atrazine concentration of 2.5 mg

ml�1 some of the transformed cultures did not survive more than a few days longer than untrans-

formed ones, suggesting that the modified PsbA was at least partially inhibited at that higher atra-

zine concentration. In addition, it is possible that a background of minicircles containing wild-type

psbA genes competed with the introduced artificial minicircles for replication or transcription fac-

tors, making it difficult for adequate levels of atrazine-insensitive PsbA to be maintained to cope

with the higher atrazine concentration. With chloramphenicol concentrations of 30 mg ml�1 or above,

Figure 4. Transcription of minicircles. Panel A shows results with pAmpPSBA. RNA was extracted from cells putatively transformed with pAmpPSBA,

and RT-PCR performed to amplify a ~ 500 bp region. Lane L, Hyperladder 1 kb (Promega), Lane P, positive control (PCR from plasmid DNA), Lane N,

negative control (no template), Lanes 1–3 show products with RNA from three different pAmpPSBA-transformed cell lines (A6.1, A6.2 and A6.3) shown

with reverse transcriptase (+RT) and without (-RT). Panel B shows results with pAmpChl. RNA was extracted from cells putatively transformed with

pAMPChl, and RT-PCR performed to amplify a 580 bp region. Lane L, Hyperladder 100 bp (Bioline), Lane P, positive control (PCR from plasmid DNA),

Lane N, negative control (no template), Lanes 1–3 show products with three different pAmpChl-transformed cell lines (C3.1, C3.2 and C3.3) with reverse

transcriptase (+RT) or without (-RT).

DOI: https://doi.org/10.7554/eLife.45292.007
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the survival of transformed and untransformed strains was similar. However, at 20 mg ml�1 or lower

the transformed cultures outlasted the untransformed ones, and some were able to survive appar-

ently indefinitely.

There have been multiple previous reports of transformation in dinoflagellates. Although the ini-

tial report (using silicon carbide whiskers) described transformation as stable (ten Lohuis and Miller,

1998), it has never been successfully reproduced (Walker et al., 2005). Transient expression has

brightfield chloroplast CAT merge

Figure 5. A chloroplast localization for chloramphenicol acetyl transferase. Immunofluorescence microscopy using the A. carterae pAmpChl line. Cells

(brightfield) showed significant autofluorescence in the chloroplast (red). A primary antibody specific for CAT with a secondary Alexa Fluor 405 antibody

(blue) showed localization of CAT to the chloroplast (indicated by the overlay image labeled merge).

DOI: https://doi.org/10.7554/eLife.45292.008

Figure 6. Long-term stability of transformation. DNA was isolated from cells putatively transformed with pAmpPSBA or pAmpChl and maintained

under selection 3 months (Experiments A9 and C4). Panel A shows PCR to amplify a 200 bp region of pAmpPSBA. Lane L, Hyperladder 100 bp (Bioline)

marker, Lane N, untransformed cells, Lane 1, transformed cell line A9.1, Lane 2, transformed cell line A9.2, Lane 3, transformed cell line A9.3. Panel A

shows PCR to amplify a 560 bp region of pAmpChl. Lane L, Hyperladder 100 bp (Bioline) marker, Lane P, positive control (pAmpChl), Lane N,

untransformed cells, Lane 1, transformed cell line C4.1, Lane 2, transformed cell line C4.2, Lane 3, transformed cell line C4.3.

DOI: https://doi.org/10.7554/eLife.45292.009
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been carried out using glass beads (Ortiz-Matamoros et al., 2015a). However, we were unable to

build on this result to obtain stable transformation, despite numerous attempts (and there have not

been any subsequent reports of transformation using either glass beads or Agrobacterium). Instead,

we found that microparticle bombardment gave stable transformants. Our results – using the same

artificial minicircle in all experiments – suggest that the primary reason for failure of the majority of

methods to give stable transformation is due to inability of the DNA to enter the cell, rather than

inherent dinoflagellate genetics.

The ability to modify the dinoflagellate chloroplast genome will be of enormous value in many

areas of dinoflagellate biology. Modification of existing minicircles should allow us to study many

other aspects of this highly unusual chloroplast genome, such as the promoter regions of the genes.

For example, many chloroplast genes are down-regulated under high temperature stress

(Gierz et al., 2017). Little is known about how transcription is regulated, or initiated

(Barbrook et al., 2012), though it is assumed that initiation occurs in the conserved core region of

the minicircle (Barbrook et al., 2001; Zhang et al., 2002). We also do not know how the minicircles

are replicated (Barbrook et al., 2018), although again it is assumed the core region is important. It

will now be possible to mutate this core region to determine which sections are important. The abil-

ity to express heterologous proteins will be of great value in studying a wide range of other aspects

of dinoflagellate chloroplast biology. The ability to express modified forms of the PsbA protein will

be of particular value in studying the role of this protein in the response by dinoflagellates to the dis-

turbances that are believed to precipitate coral bleaching.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Cell line
(Amphidinium
carterae)

A. carterae
CCMP1314

Culture Collection
of Marine
Phytoplankton

CCMP1314

Genetic
reagent (vector)

pAmpChl this paper,
synthesized
by GeneArt

Full sequence
provided in
supplemental data.

Genetic
reagent (vector)

pAmpPSBA this paper Full sequence
provided in
supplemental data.

Antibody Rabbit
anti-Chloramphenicol-
acetyl-transferase,
polyclonal

Antibodies-Online Antibodies-Online
Cat# ABIN285051,
RRID:AB_10781219

1:500 in f/2
medium with
5% BSA, 1 hr.

Antibody Goat anti-Rabbit
IgG (H + L)
Cross-Adsorbed
Secondary
Antibody, Alexa
Fluor 405, polyclonal

ThermoFisher Thermo Fisher
Scientific Cat#
A-31556,
RRID:AB_221605

1:1000 in f/2
medium with
5% BSA, 1 hr.

Commercial
assay or kit

DNAdelTM Gold
Carrier Particles
Optimized for
Plasmid Delivery

Seashell
Technology

Seashell Technology
Cat# S550d

Culturing of Amphidinium carterae
A. carterae CCMP1314 (from the Culture Collection of Marine Phytoplankton) was cultured in f/2

medium on a 16 hr light/8 hr cycle, 18˚C at 30mE m�2 s�1, as described previously (Barbrook et al.,

2006). Cells were returned to this light regime immediately following all transformation methods.
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Design of artificial minicircles
The pAmpPSBA artificial minicircle (predicted to confer atrazine tolerance) was prepared by PCR

amplification of the wild-type psbA mincircle with outward facing primers from a point immediately

downstream of the proposed poly-U addition site (Genbank AJ250262, fwd primer 1128–1155, rev

primer 1127–1106) (Barbrook et al., 2012). The linear PCR product was purified and cloned into the

pGEM-T Easy plasmid (Promega), which contains the ampicillin resistance marker and a bacterial ori-

gin of replication. The point mutations necessary to confer atrazine tolerance were introduced in a

further round of PCR with Pfu polymerase and the following mutagenic primers, forward primer GTC

TTATCTTCCAGTATGCTGGCTTCAACAACTCCCGTTCTC, reverse primer GAGAACGGGAGTTG

TTGAAGCCAGCATACTGGAAGATAAGAC. This altered a TCC (Serine) codon to a GGC (Glycine)

codon at position 260 of the PsbA protein (numbered as in AJ250262). The PCR products were

treated with DpnI to digest any template DNA and then used to transform chemically competent E.

coli JM109. Ampicillin selection was used to identify colonies containing pAmpPSBA, and plasmids

were sequenced. A plasmid map is shown in Figure 1. The full vector sequence is given in Supple-

mentary Data.

The pAmpChl vector was synthesized by GeneArt. This vector was based on a pMA vector back-

bone, and contained the psbA minicircle (as above), but with the psbA coding region removed and

precisely replaced by an A. carterae chloroplast codon-optimized E. coli chloramphenicol acetyl

transferase gene (CAT) (Barbrook and Howe, 2000), Figure 1. The full vector sequence is given in

Supplementary Data.

Both vectors were propagated in E. coli under ampicillin selection, and isolated using the Prom-

ega Maxiprep plasmid purification protocol prior to transformation into A. carterae. The vectors

were verified by DNA sequencing before use.

Glass bead mediated transformation
A. carterae cells (1.3 � 107) were transformed with pAmpPSBA using glass beads, with or without

polyethylene glycol, following the protocol as described by Ortiz-Matamaros et al (Ortiz-

Matamoros et al., 2015a). A control, where cells were treated with glass beads but without

pAmpPSBA, was carried out at the same time. Selection was applied (2 ug/ml atrazine) after 24 hr.

Each experiment was carried out in triplicate (i.e. three reactions, three controls).

Electroporation with Lonza nucleofector
A. carterae cells (1 � 106) were electroporated using the Lonza Nucleofector, in Lonza media. Set-

tings used were X-100, D-023, L-029 and EH 100. Following electroporation, cells were replaced into

f/2 media, and selection applied (2 ug/ml atrazine) after 24 hr. Each experiment was carried out in

triplicate (i.e. three reactions, three controls).

Biolistic transformation of A. carterae
Biolistic transformation was carried out using a Biorad Biolistics PDS-1000/He system, Biorad rupture

disks, stopping screens and macrocarriers. Preparation of particles carrying DNA was carried out

using Seashell Technology’s DNAdel gold carrier delivery system and 550 nm diameter gold

particles.

A. carterae cells were grown to early log growth phase before harvesting prior to transformation.

For each transformation, ~2.5�107 cells (as determined by light microscopy utilizing a haemocyto-

meter) were spotted onto the center of a 1% agarose f/2 medium plate and allowed to dry. 0.5 mg

of gold particles and 0.5 mg of vector DNA were used for each plate to be transformed. Each plate

was shot using the above-mentioned Biorad Biolistics PDS-1000/He system and rupture disks of

either 1100 PSI, 1350 PSI or 1550 pounds per square inch (p.s.i.) (see Table 1 for details).

Cells were immediately resuspended in 30–50 ml fresh f/2 medium and allowed to recover before

the addition of the selective agent. Cells shot using the pAmpPSBA artificial minicircle were allowed

16–24 hr to recover. Cells shot using the pAmpChl artificial minicircle were allowed 72 hr to recover.

Cells were maintained in liquid culture as they do not grow on solid medium. Medium was replaced

every 4 weeks (atrazine) or 2 weeks (chloramphenicol). Cells were subcultured (two fold dilution)

every 8 weeks (atrazine) or 4 weeks (chloramphenicol). A step-by step protocol is described in
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‘Biolistic Transformation of Amphidinium’ (https://www.protocols.io/view/biolistic-transformation-of-

amphidnium-hnmb5c6).

Culture survival was assessed by microscopy. A spot of 50 ml was placed onto each of three

microscope slides for each culture. After covering with standard coverslips, the entire volume for

each was examined using a light microscope at x100 magnification. Cells were assessed as living if

they showed more than simple Brownian motion. In general, ‘dead’ cells appeared to disintegrate

shortly after movement ceased. If no living cells were found 3 days in a row, the culture was

recorded as dead on day 3.

Extraction of DNA and RNA from A. carterae
Total RNA was isolated from A. carterae using the Trizol - chloroform method. Purification was car-

ried out using the RNA clean-up with on-column DNase protocol of the Qiagen RNeasy kit as

described (Rio et al., 2010) except that isopropanol precipitation was carried out overnight, rather

than for 10 min.

DNA was released from cells prior to PCR by resuspending 5 � 104 to 107 cells (depending on

the number available) in 50 ml dH2O with ~10–20 acid-washed 500 mm glass beads and vortexing for

10 min.

RT-PCR and PCR
First strand synthesis of the RNA was performed using Invitrogen Superscript IV using the manufac-

turer’s protocol and either random hexamer primers or a gene-specific primer. Negative controls

lacking reverse transcriptase were performed by the same method but replacing the reverse tran-

scriptase enzyme with dH2O. PCR was carried out using Promega GoTaq polymerase according to

the manufacturer’s instructions, and annealing temperature, extension time and MgCl2 concentration

were varied as appropriate.

Cloning and sequencing of PCR products
PCR products were separated by 1–1.5% agarose gel electrophoresis and visualized by staining with

GelRed. PCR products were purified from excised gel pieces using the MinElute gel extraction kit

(Qiagen). Some PCR products were directly sequenced after gel extraction whilst others were

ligated into the pGEM-T Easy plasmid vector (Promega), following the manufacturer’s instructions.

The ligation mix was used to transform chemically competent Escherichia coli TG1, followed by over-

night growth on 1.5% LB agar containing ampicillin at 100 mg/ml. Individual colonies were picked

and grown overnight in LB containing ampicillin at 100 mg/ml. Plasmids were extracted from result-

ing cultures using the QIAprep Spin Miniprep Kit (Qiagen). All sequencing was carried out using an

Applied Biosystems 3130XL DNA Analyser in the Department of Biochemistry, University of Cam-

bridge sequencing facility.

Immunofluorescence microscopy
Five � 105 cells were fixed in 1% paraformaldehyde in f/2 medium for 5 min. The reaction was

quenched by the addition of glycine to a final concentration of 0.125 M for a further 5 min. Both

steps were carried out with constant agitation. Cells were washed in f/2 medium three times for 5

min each, and then permeabilised by addition of 0.2% Triton-X-100 for 15 min, again with constant

agitation, and washed three further times in f/2 medium. Blocking was carried out in 5% BSA in f/2

for 30 min under constant agitation.

Cells were incubated with a rabbit anti-chloramphenicol acetyl transferase as the primary anti-

body (Antibodies online, ABIN285051) at a final concentration of 1:500 in f/2% and 5% BSA for 1 hr

under constant agitation, and washed three times in f/2 medium for 5 min. Cells were then incu-

bated with an anti-rabbit Alexa Fluor 405 secondary antibody (raised in goat; ThermoFisher) at a

final concentration of 1:1000 in f/2% and 5% BSA for 1 hr under constant agitation, washed in f/2

medium three times for 5 min, and mounted on VWR-polysine-coated slides using Vectashield

mounting medium. Cells were visualized using a Nikon C2 confocal microscope.
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