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Cytokine-based immunotherapy is a promising field in the cancer treatment, since
cytokines, as proteins of the immune system, are able to modulate the host immune
response toward cancer cell, as well as directly induce tumor cell death. Since a low
dose monotherapy with some cytokines has no significant therapeutic results and a
high dose treatment leads to a number of side effects caused by the pleiotropic effect
of cytokines, the problem of understanding the influence of cytokines on the immune
cells involved in the pro- and anti-tumor immune response remains a pressing one.
Immune system cells carry CD makers on their surface which can be used to identify
various populations of cells of the immune system that play different roles in pro- and
anti-tumor immune responses. This review discusses the functions and specific CD
markers of various immune cell populations which are reported to participate in the
regulation of the immune response against the tumor. The results of research studies
and clinical trials investigating the effect of cytokine therapy on the regulation of immune
cell populations and their surface markers are also discussed. Current trends in the
development of cancer immunotherapy, as well as the role of cytokines in combination
with other therapeutic agents, are also discussed.

Keywords: cancer immunotherapy, cytokines, anticancer immune responses, immune cell markers/populations,
tumor microenvironment

IMMUNE SYSTEM AND CANCER

The immune system is a complex system consisting of immune cells, compliment proteins
and cytokines which provide communication and coordinated cell functions. The coordinated
functioning of the immune system allows the maintenance of the body’s homeostasis, eliminating
foreign antigens or proteins (Eyileten et al., 2016). The immune system can protect the body against
virus-induced tumors by limiting or terminating viral infection. Also, the well-timed elimination
of pathogens by the immune system and the rapid termination of inflammation prevents the
formation of inflammatory sites which are favorable for tumor development. Finally, the immune
system can identify and eliminate tumor cells relying on the recognition of tumor-specific antigens.
This process of identifying transformed cells and eliminating them before the tumor forms is
referred to as immunological surveillance (Terme and Tanchot, 2017). However, recent discoveries
in human immunology also confirm the involvement of immune cells in the maintenance of tumor
development and growth (Duan et al., 2014).
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Depending on speed and specificity of the immune response
innate and adoptive immune responses can be identified.
Innate immunity is assumed to be rapid but non-specific
response mediated by phagocytes (neutrophils, monocytes, and
macrophages), natural killer (NK) cells and complement system
(Liu and Zeng, 2012). On the contrary, adaptive immune
response takes time to mature naive lymphocytes, T- and B cells,
into effector T-cells and secreting B cells (Chaplin, 2010).

It is known that innate and adoptive immune responses are
involved in surveying tumor development which can be divided
into three stages: elimination, equilibrium, and escape (Dunn
et al., 2004; O’Sullivan et al., 2012). With elimination, the innate
immune system is able to identify and destroy a nascent tumor
using a number of inflammatory cells and signaling molecules
(Ricciardi et al., 2015). However, if the tumor cell with a rare
and aggressive mutation survives at the elimination stage, the
process proceeds to the next stage of equilibrium in which
excessive growth of the tumor is prevented by immunological
mechanisms. At this second equilibrium stage, the tumor cells
are not completely destroyed, but the tumor growth is controlled
by the immune system (Ricciardi et al., 2015). The equilibrium
stage is the longest of the three stages and can last up to 20 years,
from the initial transforming event to the clinical manifestation of
the tumor (Miliotou and Papadopoulou, 2018). The escape stage
occurs when tumor cells which have survived both elimination
and equilibrium become resistant to immunological surveillance
allowing the tumor to grow and become clinically detectable
(Dunn et al., 2004).

Tumors inherently are characterized by low immunogenicity
since they arise from the body’s normal cells. The tumor
microenvironment (TME), which in addition to the tumor cells
contains a large number of other cell populations (Chulpanova
et al., 2018b; Kitaeva et al., 2019) inhibits the tumor killing
capacities of immune cells (Borst et al., 2018). Thus, there is a
close relationship between the tumor and immune system cells,
which is the key to understanding the processes that lead to
the elimination of the tumor or its progression. The majority
of immune system cells and signaling molecules involved in
immunological surveillance will be comprehensively discussed in
this review. Understanding the role of immune cells expressing
specific surface markers typical for cell populations with pro-
or anti-tumor properties, and their identification will allow
researchers to develop new methods for predicting tumor
progression as well as to identify new targets and possible
immune system modulation mechanisms for optimal drug
selection. In particular, the success of cytokine-based cancer
therapies in modulating various populations of immune system
cells and the prospects for the further development of this
approach for cancer therapy will be discussed.

NK CELLS

Natural killer cells are important participants in the antitumor
immunity, as they detect the major histocompatibility complex
(MHC) presented on the surface of all nuclear cells of the body.
NK cells secrete perforins and granzymes to induce apoptosis of

cells that have abnormal or altered MHCI expression (Brodbeck
et al., 2014). Typically, NK cells express CD56, in the absence
of CD3 (T-cell receptor). Depending on CD56 surface-density
expression NK cells can be divided into two populations –
CD56bright (or CD56high) and CD56dim (or CD56low) NK cells
(Poli et al., 2009).

CD56low NK cells, which also have high expression of
CD16 (CD16high), exhibit cytotoxic function and contain
large amounts of perforin (Angelo et al., 2015). CD56high

CD16± NK cells are characterized by low perforin levels and
mainly specialize in the production of cytokines, predominately
IFN-γ, which is necessary for the maturation of dendritic
cells (DCs) (Stabile et al., 2017). TME can significantly
affect population distribution and the function of tumor-
infiltrating NK cells (TINKs). For example, a high number
of CD56high perforinlow NK cells are observed in breast and
lung cancers compared with normal tissues. High accumulation
of CD56high perforinlow NK cells is associated with the
secretion of specific chemokine (C-X-C motif) ligand 9
(CXCL9) and CXCL10, which support the migration of non-
cytotoxic CD56high NK cells in TME (Carrega et al., 2014).
The population of CD56high NK cells also prevails among
patients within breast, melanoma, colon cancer (Levi et al.,
2015), non-small lung cancer and has a pro-angiogenic
effect, thereby promoting tumor growth (Bruno et al., 2013).
However, CD56low NK cells found in the lymph nodes
infiltrated with tumor cells were highly cytotoxic against
autologous melanoma (Ali et al., 2014). Probably, tumor-
related soluble factors [e.g., interleukin (IL)10, indoleamine-
pyrrole 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2)] and
TME cells are responsible for phenotypic and functional
changes in NK cells (Stabile et al., 2017) and help tumors to
recruit NK cells.

Unlike B and T-cells, NK cells do not undergo gene
rearrangements to generate the repertoire of cell surface
receptors. Instead, they use germline-encoded inhibiting and
activating receptors (Carrillo-Bustamante et al., 2016). NK
cells possess the ability to distinguish between normal and
transformed cells based on the expression of MHCI on the cell
surface. MHCI molecules, which are largely expressed in normal
cells, bind to the inhibitory receptors on the surface of NK cells,
which leads to NK cell inactivation. In addition to aberrant MHCI
expression, transformed cells also acquire stress-induced ligands
for activating NK cell receptors (Caligiuri, 2008). The most
important activating NK cell receptors are natural cytotoxicity
receptors (NKp46, NKp30, and NKp44), C-type lectin natural
killer group 2D receptor (NKG2D), DNAX accessory molecule
1 (DNAM1) and immunoglobulin-like killer receptors (KIR2DS
and KIR3DS) (Martinet and Smyth, 2015). Inhibitory receptors
that can bind to human leukocyte antigen (HLA) class I
(HLA-I) or HLA-I-like molecules include two different classes:
immunoglobulin-like killer receptors (KIR2DL and KIR3DL) and
C-type lectin receptors NKG2A/B (Campbell and Purdy, 2011).

In order to avoid an NK cell mediated immune response,
tumor cells secrete various immunosuppressive factors that
regulate the expression or functional activity of NK cell
receptors. For example, the binding of proliferating cell nuclear
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antigen (PCNA) to the NKp44 receptor leads to activation
of the constitutively inactive immunoreceptor tyrosine-based
inhibition motif (ITIM) in the cytoplasmic domain of the
receptor, which inhibits the cytotoxic function of NK cells
(Rosental et al., 2011). Transforming growth factor-β (TGF-
β) and IL10 produced by tumor cells and immune cells of
TME can inhibit NKG2D expression (Schiavoni et al., 2013).
Other TME participants, tumor-associated fibroblasts, can also
inhibit the expression of NKp44, NKp30, and DNAM-1 receptors
due to PGE2 secretion, which suppress the antitumor activity
of NK cells (Balsamo et al., 2009). As expected, the reduced
expression of activating receptors, in particular NKG2D, NKp30,
NKp46, DNAM1, is associated with poor prognosis in patients
with pancreatic cancer, gastric cancer, colorectal cancer and
melanoma (Peng et al., 2013; Mirjacic Martinovic et al., 2014).
Whilst the increased expression of inhibitory receptors KIR2DL1
and KIR2DL2/3 negatively correlates with the cytotoxicity of
NK cells and enhances the melanoma progression (Naumova
et al., 2007). Overexpression of the NKG2A inhibitory receptor
is also associated with poor prognosis in patients with breast and
colorectal cancer (Balsamo et al., 2009).

NEUTROPHILS

Neutrophils, polymorphonuclear and granulocytic cells, consist
approximately 50–70% of the total immune cell population
and act as the first responders to infection and injury (Singel
and Segal, 2016). Neutrophils mature in the bone marrow and
enter the bloodstream as terminally differentiated cells, carrying
CD11b, CD66b, CD16, Ly6G, C-X-C chemokine receptor type
2 (CXCR2) on their surface (Coffelt et al., 2016; Lakschevitz
et al., 2016). The role of neutrophils in tumor immunity has
long remained unclear, since it was thought that neutrophil
lifespan is too short to influence cancer progression. However,
neutrophil half-life increases from 7 h in normal conditions
to 17 h in cancer (Ocana et al., 2017) which may allow
them to further contribute to tumor progression. The effect
of neutrophils on tumor progression remains controversial,
and N1/N2 nomenclature has been proposed, where N1 are
neutrophils that support tumor progression, whilst N2 are
those that suppress tumor progression (Fridlender et al., 2009).
However, this nomenclature seems to be too simplified and
there is not enough information regarding different functions
and CD markers to identify N1/N2 neutrophils. A previous
study declares that neutrophils can lead to tumor regression
(Stoppacciaro et al., 1993). However, most of the information
suggests that neutrophils promote tumor growth, mainly by
the stimulation of angiogenesis (Nozawa et al., 2006; Jablonska
et al., 2010). Neutrophils are also able to suppress the
immune response against tumor cells including the secretion
of nitric oxide synthase (iNOS), or arginase 1 (ARG1) which
suppress CD8+ T lymphocyte antitumor response (Fridlender
et al., 2009). It is also worth noting that several studies
have shown neutrophils to have a pro-tumor effect, while
in others no effect has been found (Granot et al., 2011;
Li Z. et al., 2012).

MACROPHAGES

Monocytes originate from circulating peripheral blood
monocytes and play an important role in maintaining
homeostasis (Wynn et al., 2013). Macrophages are traditionally
classified into M1 and M2 macrophages depending on their
function in the immune system (Mills et al., 2000). Classically
activated macrophages (M1) protect the body from external
pathogens and destroy tumor cells by secreting the pro-
inflammatory cytokines IL6, IL12, IL23, and tumor necrosis
factor-α (TNF-α), as well as releasing reactive oxygen/nitrogen
species (Atri et al., 2018). Phenotypically, M1 express CD68,
CD80, CD86, CD206low, and HLA-II DR isotype (HLA-DR)high

(Li W. et al., 2012; Bertani et al., 2017).
The alternatively activated macrophages (M2) are involved in

the resolution of inflammation by producing anti-inflammatory
IL10 and TGF-β (Aras and Zaidi, 2017). M2 macrophages are
positive for CD163 (Hu et al., 2017), CD68, CD206, negative
for CD80 and have a low level of HLA-DR expression (Bertani
et al., 2017). However, it is worth noting that such a classification
is regarded as too simplified, and now the M1< –. . .– >M2
spectrum concept is considered to be more preferable. According
to this concept, macrophages do not differentiate strictly into
stable M1 and M2 subsets, but form complex mixed phenotypes
depending on the combination of received external stimuli
[discussed in detail in Murray et al. (2014)].

Tumor-associated macrophages (TAMs) are close to M2-
polarized type. The cells of tumor and TME secrete CCL2 and
macrophage colony-stimulating factor (M-CSF) (Qian et al.,
2011) and attract a large number of inflammatory monocytes to
tumor sites where they differentiate into TAMs due to secretion
of IL4, IL10, and IL13 (Wang and Joyce, 2010; Chuang et al.,
2016). TAMs can be identified by CD163, CD200R, CD204,
CD206, and HLA-DRlow expression (Yang et al., 2015; Cope
et al., 2016; Kubota et al., 2017). The recruited macrophages
represent a significant part of the TME and provide significant
support to the tumor. TAMs secrete pro-angiogenic factors, such
as vascular endothelial growth factor (VEGF) family members,
and provoke neovascularization and lymphovascularisation of
the tumor (Linde et al., 2012; Werchau et al., 2012). The secretion
of matrix metalloproteinases (MMPs) and cathepsins supports
tumor cell invasion and metastasis (Gocheva et al., 2010; He
et al., 2016). TAMs are also able to inhibit the CD8+ T-cell
immune response through direct interaction with T-cells, for
example, using programmed cell death 1 ligand 1 (PD-L1)
(Kubota et al., 2017) or by secretion of immunosuppressive
molecules, such as IL10, TGF-β, ARG1, and PGEs (Kubota et al.,
2017; Takahashi et al., 2017).

GAMMA-DELTA (γδ) T-CELLS

T lymphocytes can be divided into two subtypes: αβ and γδ

T-cells. αβ T-cells represent up to 95% of the CD3+ cell
population and recognize the antigen presented on MHCI or
MHCII (Zou et al., 2017) (since αβ T-cells is a larger population,
we will use “T-cells” to denote αβ T lymphocytes). The γδ T-cells

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 June 2020 | Volume 8 | Article 402

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00402 June 1, 2020 Time: 18:6 # 4

Chulpanova et al. Molecular Aspects of Cytokine-Based Cancer Immunotherapy

form the remaining T lymphocyte population, but do not need
conventional MHC-dependent antigen presentation (Tanaka
et al., 1995). Most often, γδ T-cells are classified by the type of
variable chains (γ and δ) in the T-cell receptor (TCR). The vast
majority of γδ T lymphocytes (75%) in peripheral-blood express
Vδ2 chain and co-express Vγ9 chain (Dimova et al., 2015). Such
Vγ9Vδ2 T-cells are able to directly lyse tumor cells due to the
secretion of perforin/granzymes (Mattarollo et al., 2007). They
can also induce apoptosis of tumor cells through the TNF-related
apoptosis-inducing ligand (TRAIL)/TRAIL receptor (TRAILR)
system (Zou et al., 2017). Such cytotoxic Vγ9Vδ2 T-cells can be
identified by increased NKG2D (natural killer group 2D) (Todaro
et al., 2009), CD56 (Alexander et al., 2008), and CD16 expression
(Lafont et al., 2001). However, Vγ9Vδ2 T-cells may also have
antigen-presenting cell-like activity, which is accompanied by
the expression of CD86, CD80, CD40, and MHCII (Pang et al.,
2012). Other T-cells that have a Vδ1 chain prevail in tissues
and are able to recognize malignant epithelial cells (Maeurer
et al., 1996). Both subgroups express CD6 (Zhou et al., 2012).
Both subgroups can also be classified by the expression of
CD45RA and CD27 on CD45RA+ CD27+ naïve, CD45RA−
CD27+ central memory, CD45RA− CD27− effector memory
and CD45RA+ CD27− effector memory T cells [for more
information see Pang et al. (2012)]. However, in TME, under
the influence of secreted factors, γδ T-cells can be polarized;
i.e., can shift from one phenotype to another, in forkhead box
P3 (FOXP3)+ regulatory γδ T-cells (γδ Tregs) which display
regulatory/immunosuppressive activity (Casetti et al., 2009) or
in CD30+ γδ T17 cells, which secrete large amounts of IL17
and can provide the accumulation of immunosuppressive cells
in the tumor and stimulate angiogenesis (Wu et al., 2014;
Patil et al., 2016).

T-CELLS

T-cells with αβ TCR are the main participants in the adaptive
immune response and are usually classified by polarization
(functional subtypes) or degree of differentiation (naïve,
activated, memory) (Geginat et al., 2014). T-cells can be grouped
into functional subsets depending on the expression of CD
markers. In the process of maturation in the thymus, T-cells
acquire CD4 or CD8 markers (Kurd and Robey, 2016). CD4+
T-cells (helper T-cells) are divided into different subsets: Th (T
helper) 1, Th2, Th9, Th17, Th22, Tregs (regulatory T cells), and
Tfh (follicular helper T-cells), which are characterized by different
CD expression profiles and their functions in the immune
system (Raphael et al., 2015). Th1 can enhance the priming
and expansion of CD8 T-cells or inhibit angiogenesis in IFN-
γ-dependent manner (Qin and Blankenstein, 2000; Chraa et al.,
2019). Most Th1 cells are CXCR3+ and CCR4−, and also express
CCR2, CCR5 and CXCR6 in the activated state (Kim et al., 2001)
(activation and memory states are discussed below).

The effect of Th2 on tumor growth is not so clear. IL10,
expressed by Th2, inhibits the processing and presentation of
antigens by DCs (Steinbrink et al., 2002) and also activates Tregs
(Levings et al., 2002). At the same time, another Th2 cytokine IL4

increases tumor infiltration with eosinophils and macrophages
that can kill tumor cells (Tepper et al., 1992). Almost all Th2
cells are CCR4+ CXCR3− (Kim et al., 2001), and can also
express CCR3 (Sallusto et al., 1997) and CCR8 on their surface
(Zingoni et al., 1998).

Th17 cells are found in a large number of different tumors,
but their effect remains controversial (Asadzadeh et al., 2017).
On one hand, Th17 cells are able to secrete various cytokines
and chemokines, such as IL17, IL23, CCL20 which promote
tumor growth (Tartour et al., 1999; Langowski et al., 2006).
On the other hand, IL17 supports the recruitment of NK cells
(Lv et al., 2011) and stimulates the production of cytokines
by stromal cells, which finally results in the recruitment and
activation of neutrophils (Witowski et al., 2000). The interaction
of Th17 cells and the tumor is comprehensively discussed in
Asadzadeh et al. (2017). Basically, Th17 cells are determined
by the CCR6+ marker, then two populations of CCR6+ Th17
cells can de distinguished. CCR6+ CCR4+ Th17 cells produce
more IL17 as well as IL22 (Acosta-Rodriguez et al., 2007b) and
are able to suppress the activity of CD8+ T-cells (Greten et al.,
2012). Another population, CCR6+ CXCR3+ Th17 cells, produce
less IL17, but also synthesizes IFN-γ (Acosta-Rodriguez et al.,
2007b). Th17 cells have also increased expression of IL1, IL6,
and IL23 receptors, which are necessary for their differentiation
(Acosta-Rodriguez et al., 2007a; Chung et al., 2009).

Tfh are characterized by expression of CD28, CD40L,
CXCR5 (or CD185), inducible T-cell costimulator (ICOS), and
programmed cell-death protein 1 (PD-1) (Deenick and Ma, 2011;
Ame-Thomas et al., 2012) which appear during the process
of Tfh differentiation after stimulation by DCs. Tfh cells seem
to support antitumor immunity (Jia et al., 2015). Their main
function is to promote B cells differentiation into antibody-
secreting cells in secondary lymphoid organs (Kim and Cantor,
2014). Tfh cells also secrete IL21, which can stimulate CD8+
T-cells (Shi W. et al., 2018). However, Tfh can stimulate growth
and survival of some lymphoid tumors. For example, these cells
can promote the proliferation of chronic lymphocytic leukemia
(CLL) from secondary lymphoid tissue (Pascutti et al., 2013),
support follicular lymphoma (FL) (Ame-Thomas et al., 2012).

Tregs are one of the most common T-cell phenotypes in
TME (20–30%) (Quezada et al., 2006). They can be detected
by the expression of CD25 and FOXP3 transcription factor
(Sharma et al., 2005). Tumor cells recruit Tregs from lymphoid
organs (Malchow et al., 2013) by the expression of specific
chemokines such as CCL2 or CCL21 (Curiel et al., 2004;
Shields et al., 2010). Tregs in turn provide suppression of
antitumor immunity through the increased expression of PD-1
and cytotoxic T-lymphocyte (CTL)-associated antigen 4 (CTLA-
4) (Zappasodi et al., 2018). A number of studies have also
been shown that CD39+ and/or CD73+ Tregs have higher
immunosuppressive properties due to the synthesis of adenosine
(Borsellino et al., 2007; Deaglio et al., 2007).

Th9 cells are another T-cell population that produces a large
amount of IL9 and plays an important role in the antitumor
immune response (Rivera Vargas et al., 2017). Th9 cells can
both directly lyse tumor cells due to the secretion of granzyme
B (GrzmB) (Purwar et al., 2012), and induce TRAIL-mediated
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apoptosis (Fang et al., 2015). Indirect antitumor activity is
mediated by the regulation of DCs and CD8+ T-cells which
is discussed in detail in Rivera Vargas et al. (2017). Th9 cells
express functional CCR3, CCR6, CXCR3 (Kara et al., 2013),
and IL17B receptors as well as secrete IL4, TGF-β essential for
their differentiation (Veldhoen et al., 2008; Angkasekwinai et al.,
2010). Also, since IL1β can induce secretion of IL9 in Th9,
thereby increasing antitumor activity (Vegran et al., 2014), it can
be concluded that IL1β receptors have been also presented on
the surface of Th9.

CD8+ T-cells are effector group of T-cells that can kill
tumor cells by granule exocytosis and Fas ligand (FasL) (CD95)-
mediated apoptosis (Farhood et al., 2019). Activation of naïve
CD8+ T-cells begins with the binding of CD3 on the T-cell
surface with the MHCI-protein complex on the surface of antigen
presenting cell (APC). In addition, CD28 replaced on the surface
of CD8+ T-cell recognizes co-stimulatory B7 proteins (CD80
and CD86) of APC (usually DCs), and CXCR3 expressed in
T-cell binds to CXCL9 and CXCL10 chemokines produced by DC
(Spranger and Gajewski, 2018). Having bonded with DCs, CD8+
T-cells begin to express lymphocyte-function-associated protein
1 (LFA-1) adhesion molecules to enhance binding (Semmrich
et al., 2005). After the antigen presentation, CD8+ T-cells begin to
secrete IL2 and also express its receptor (CD25), thus stimulating
proliferation by themselves (Cheng et al., 2002). Following IL2
stimulation, activated CD8+ T-cells begin to express lysosomal-
associated membrane protein 1 (LAMP-1 or CD107a) which is
related to T-cell cytotoxicity (Aktas et al., 2009). Hours or days
after activation, CD8+ T-cells start expressing PD-1 and CTLA-
4, which can form part of a mechanism by which cancer cells
would suppress immune responses (Topalian et al., 2016). The
relationships of CD8+ T-cells and tumors is discussed in detail
in Farhood et al. (2019).

Another approach to classify T-cells is by the degree of
differentiation. In the process of the differentiation mature,
naïve carrying TCR T-cells emerge from the thymus and are
able to differentiate into effector and memory cells (Restifo
and Gattinoni, 2013). At different stages of differentiation,
T-cells carry many different markers on their surface. From
the perspective of this article we consider surface markers that
are essential for CD-based identification of T-cell populations
in vitro, but provide links to articles that address these issues
in more detail. Naïve T-cells (CD45RA+ CD45RO−) carry on
their surface CD27, CD28 which are essential for interaction
with APC (Chen and Flies, 2013). Naïve T-cells are also CCR7+
and CD62L+ (l-selectin), which ensures their ability to migrate
toward secondary lymphoid organs (Picker et al., 1993; Campbell
et al., 2001). After antigen presentation, T-cells acquire an
effector phenotype (activation) and migrate to the sites of tumor
localization. Activated T-cells lose almost all CD markers of
naïve T-cells and start de novo expressing CD95, which provides
either co-stimulating or pro-apoptotic signals (Siegel et al., 2000).
Other markers also appear during the activation process, the
earliest activation markers (12 h) are CD69 and CD25, the α

subunit of the IL2 receptor (Salgado et al., 2002). Expression
of CD38 and HLA-DR is associated with late (1 day and 3–
5 days, respectively) activation and proliferation of subset of

mature T-cells (Amlot et al., 1996; Sandoval-Montes and Santos-
Argumedo, 2005). CD134, also known as tumor necrosis factor
receptor superfamily, member 4 (TNFRSF4 or OX40), is a specific
marker of CD4+ T-cells activation, which increases their survival
(Ladanyi et al., 2004). CD137, also called 4-1BB, stimulates
survival and enhances the cytotoxic function of CD8+ T-cells
which infiltrate the tumor (Zhu and Chen, 2014). Isolated from
the tumor site CD137+ T cells can inhibit tumor cell growth
in vivo (Ye et al., 2014).

T-cells can also differentiate into memory cells, which provide
a quick immune response upon reinfection (Mahnke et al., 2013)
and also contribute to the antitumor immunity. Traditionally,
the classification into different memory populations takes place
in the context of CD8+ T-cells. Memory cells can be located in
the secondary lymphoid organs (central memory cells, TCM) or
in recently infected tissues – effector memory cells, TEM cells
(Opata and Stephens, 2013). TEM cells (CD45RA−, CD45RO+,
CD62L−, CCR7−) provide a more rapid cytotoxic response
during infections than TCM (CD45RA−, CD45RO+, CD62L+,
CCR7+) (Mahnke et al., 2013). However, in the context of
a tumor, TCM can more effectively suppress tumor growth
compared to TEM (Klebanoff et al., 2005). Another population
of memory cells is resident memory T-cells (TRM) (CD103+,
CD69+, CD49a+, CD62L−, CCR7−), which are located in
various tissues of the body (Cheuk et al., 2017; Reading et al.,
2018). Although their role in antitumor immunity is not fully
understood, an increased number of CD8+ CD103+ T-cells are
associated with prolonged patient survival (Dumauthioz et al.,
2018). There are several different theories, which phenotype,
effector or memory, appears first, the relationships between
effector cells and memory cells which are comprehensively
discussed in Restifo and Gattinoni (2013).

NKT-CELLS

Natural Killer T-cells are a group of cells that play an important
role to link the innate and adaptive immunity since they have
the characteristics of both conventional T-cells and NK cells
(Kumar et al., 2017). NKT-cells mature in the thymus and
acquire specific TCRs that can recognize lipid, but not protein,
molecules represented by MHCI-like CD1d molecules (Metelitsa
et al., 2001). Usually, NKT-cells are classified in two large groups
depending on the structure of TCR chains and its ability to bind
to lipid molecules. Type I NKT-cells bind to a common lipid
prototype, α-galactosylceramide (α-GalCer) (Horikoshi et al.,
2012). Since these cells express many typical NK cell and T-cell
markers on their surface, fluorescent dye-conjugated α-GalCer
lipid tetramers that will selectively bind to TCR are primarly
used to detect NKT-cells (Kawano et al., 1997). Antibodies to
specific fragments of TCR chains, such as Vα24 (especially clone
6B11) and Vβ11 are also used to identify these cells (Montoya
et al., 2007). After interaction with α-GalCer type I NKT-cells
activate (Kawano et al., 1997) and acquire typical activation
markers, such as CD69 (Kitayama et al., 2016), CD38 (Chan
et al., 2013), CD25 (Chan et al., 2013). Activated type I NKT-cells
are capable of killing CD1d+ tumor cells in a CD1d-dependent
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manner (Ni et al., 2015). However, they will most likely mediate
antitumor activity through activation of downstream immune
effector cells. Secretion of large amounts of IFN-γ leads to
the formation of tumor-specific CD8+ CTLs (Nishimura et al.,
2000) and rapid activation of NK cells (Ishihara et al., 2000;
Escriba-Garcia et al., 2017). A noteworthy detail is that type I
NKT-cells express a variable number of CD4 and CD8 receptors
depending on the donor. For example, neonatal NKT-cells are
predominantly (>90%) CD4+, whereas adult peripheral blood
NKT-cells are either CD4+ or CD4−. The same can be said
about typical markers of NK cells, CD56 and CD161, which
are expressed on NKT-cells in varying numbers. For example
CD4− cells express CD56 in 17–70% of cases and have a more
significant cytotoxic function in the activated condition (Eger
et al., 2006). However, the anti-cancer effect of the individual
NKT-cell populations has not yet been investigated.

Another large group of NKT-cells is type II NKT-cells which
do not have any specific receptors and do not respond to α-
GalCer (Dasgupta and Kumar, 2016), but can recognize many
other lipids, including sulfatides and lipopolysaccharides (LPS)
(Chang et al., 2008; Blomqvist et al., 2009). For lack of any
specific markers, it is sulfatide-loaded CD1d multimers with
a fluorescent label that are often used to identify these cells
(Zhang et al., 2011). The antitumor function of these cells is
ambiguous, where most studies indicate that type II NKT-cells
support tumor immunosurveillance by secreting IL13 (Terabe
et al., 2003; Ambrosino et al., 2007; Fichtner-Feigl et al., 2008).
However, Th1-like type II NKT cells are also able to suppress
tumor growth due to IFN-γ secretion (Zhao et al., 2014).

In general, NKT-cells play an important role in the antitumor
immune response, but their identification and clustering using
surface markers is rather difficult due to small amount of
cumulative knowledge.

B CELLS

Despite the fact a lot of attention is paid to the role of T-cells in the
antitumor immune response, B cells play an equally important
role in carcinogenesis and tumor progression (Tsou et al., 2016).
B cells mature in the bone marrow and enter the peripheral
blood as transitional B cells, which carry typical B cell markers
CD19 and CD20 as well as are CD5+, CD38high, CD27− (LeBien
and Tedder, 2008). This population of B cells can differentiate
into follicular (FO), marginal zone (MZ), and regulatory B cells
(Bregs) (Clavarino et al., 2016). FO B cells (CD19+, CD20+,
CD21+, CD22+, CD23+, CD24+, CD10−, CD27−) can activates
after stimulation by antigen and differentiate into effector cells
(Sarvaria et al., 2017). After binding to the antigen, B cells bind
to Th1 cells via the MHC-peptide complex, B7 and CD40 on
the surface of B cells (Watanabe et al., 2017). Such activated B
cells (CD19+, CD20+, CD25+, CD27+, CD30+, CD69+, CD80+,
CD88+) can become short-lived plasma cells (CD19low, CD20−,
CD27+, CD38high, CD69+, CD138+), that secrete specific
antibodies or form germinal centers (GCs) in lymph nodes
and the spleen (De Silva and Klein, 2015). GCs are temporary
formations in which activated B cells (CD10+, CD19+, CD20+,

CD27−, CD33+, CD38high) continue their maturation and can
develop into long-lived memory cells (CD19+, CD20+, CD27+,
CD38−, CD40+, CD23low).

Another significant B cell population is MZ B cells (CD1c+,
CD19+, CD20−, CD21high, CD27var), which recognize T-cell-
independent carbohydrate and phospholipid antigens and
produce multireactive IgM antibodies (Descatoire et al., 2014),
providing a rapid response to T-cell- independent antigens.

Tumor-infiltrating B cells can have both pro- and antitumor
effects (Yuen et al., 2016). B cells are capable of producing
antibodies that target tumor intracellular antigens, for example,
against aberrantly exposed β-actin (Hansen et al., 2001) or p53
(Kumar et al., 2009), the presence of the antibodies correlates
with a favorable outcome of the disease. B cells can also act
as APCs and stimulate the T-cell-mediated immune response
(Bruno et al., 2017) or directly induce TRAIL/Apo-2L-mediated
death of tumor cells (Kemp et al., 2004). However, B cells
can also contribute to tumor progression due to the secretion
of lymphotoxin (Ammirante et al., 2010) and Bregs, whose
functions are discussed below.

The immunophenotype and functions of another B cell
population have been studied more widely. Bregs seem to evolve
from transitional B cells, however, it is suggested that mature B
cells and plasmoblasts also have the ability to differentiate into
IL10-producing Bregs (Rosser and Mauri, 2015). The function
of IL10-producing CD1dhigh CD5+ B cells, that suppress anti-
tumor immunity by stimulating the development of Tregs (Liu
and Zeng, 2012) and suppressing CD8+ T-cells is best described
(Wei et al., 2016). The same properties to suppress CD4+
T-cell proliferation and effector function have been described
for CD19+ CD24high CD38high Bregs (Bouaziz et al., 2010;
Flores-Borja et al., 2013; Zhang et al., 2017). The various Bregs
populations and their functions are described in Sarvaria et al.
(2017). The role of B-cells in antitumor immunity is Janus-
faced, as well as the one of T-cells, although they have not been
investigated as intensively as T-cells. Apart from Bregs, pro- and
antitumor properties are mainly determined for general CD19+
CD20+ B cell population, therefore, the role of each individual
B cell population in the tumor immune response remains to
be investigated.

DENDRITIC CELLS

The presentation of the antigen to the cells of an adaptive
immunity is an essential for providing the antitumor immune
response. Conventional population of DCs is one of the main
sources of processed tumor antigens for T-cells (Gardner and
Ruffell, 2016). DCs can be divided into two populations, DC1
and DC2, which develop depending on the activation of different
transcription factors (Murphy et al., 2016). Both of these
populations express CD11c and MHCII, with DC1 expressing
X-C motif chemokine receptor 1 (XCR1) and dendritic cell
NK lectin group receptor-1 [DNGR-1, also called C-type
lectin domain family 9 member A (CLEC9A)] and CD141
(blood dendritic cell antigen 3, BDCA3) (Poulin et al., 2010).
DC1 provide the processing of tumor antigens, migrate via
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CCR7 chemotaxis to the lymphoid organs and ensure antigen
presentation to T-cells (Roberts et al., 2016). DC1 also express
IFN-α receptor 1 (IFNAR1) because type I IFNs (IFN-α, IFN-
β) promote their activation, migration and cross-presentation
(Diamond et al., 2011). DC2 can be separated from DC1 by
expression of CD11b, CD1c (BDCA1) and CD172a (Veglia and
Gabrilovich, 2017), however, they are very difficult to distinguish
from CD11c+ MHCII+ macrophages and monocyte-derived
DCs (moDCs), so understanding the role of DC2 in tumor
immunity remains limited.

A population of moDCs, also known as inflammatory DCs,
are formed from CD14high monocytes as a result of inflammation
(Segura and Amigorena, 2013). These cells carry a large number
of common markers of myeloid cells, namely CD1a, CD11c,
BDCA1, CD172a, CD206, and HLA-DR (Veglia and Gabrilovich,
2017). However, they can be identified by the expression
of CD64 or the receptor of granulocyte-macrophage colony-
stimulating factor (GM-CSFR), since GM-CSF is necessary for
the development of moDCs from monocytes (Hiasa et al., 2009).
It is GM-CSF-generated moDCs that are used to create antitumor
vaccines. In vivo differentiated moDC-based vaccines are safe
but not effective in a large number of clinical trials in patients
with various tumors (Anguille et al., 2014; Chulpanova et al.,
2018a). The failure of moDCs-based vaccines to stimulate an
antitumor immune response in patients may be due to the
compromised functionality of immune cells isolated from cancer
patients (Shinde et al., 2018). In the human body, moDCs are
able to present antigen, which leads to the simulation of CD8+
T-cells, inhibition of tumor growth (Kuhn et al., 2015) and Th17
cell stimulation (Segura et al., 2013).

Another population with a described role in antitumor
immunity is plasmacytoid DCs (pDCs), which are characterized
by a high level of type I IFN secretion (Facchetti et al., 2003).
These cells mature in the bone marrow and have a plasma
cell-like morphology; typically, pDCs express CD4, HLA-DR,
CD123, BDCA2 (CD303), BDCA4 (CD304) and do not express
CD11c (Veglia and Gabrilovich, 2017). Through the secretion
of IFN-α and other pro-inflammatory cytokines, pDCs promote
innate immune responses via the induction of NK cell migration
and stimulation of macrophages and dendritic cells (Mitchell
et al., 2018). pDCs can also regulate the T-cell mediated immune
response and act as APCs [for more details see Mitchell et al.
(2018)]. Direct GrzmB and TRAIL-mediated antitumor activity
of pDCs has also been reported in some studies (Tel et al.,
2012; Lombardi et al., 2015). However, a number of studies of
pDCs isolated from cancer patients show a tendency toward the
formation of immunological tolerance of the tumor due to pDCs
(Maldonado and von Andrian, 2010). TME appears to suppress
IFN-α secretion in pDCs and stimulate the development of Tregs
(Faith et al., 2007; Sisirak et al., 2013).

Markers of various populations of DCs and their role in the
tumor immunity, which varies depending on the population,
have been widely investigated. Antitumor properties of moDCs
have been actively explored, however, the active use of DCs
as a platform for the development of anticancer vaccines
has not led to significant success in the treatment of cancer
(Chulpanova et al., 2018c).

The functions and CD markers of above populations of
immune cells are summarized in Table 1 and Figure 1.

MOLECULAR ASPECTS OF
CYTOKINE-BASED CANCER THERAPY

Interleukin 2
The history of the use of cytokines as agents for the treatment
of various diseases, including cancer, began in the mid-1990s
when the anticancer effect of High-dose (HD) IL2 therapy
was first demonstrated (West, 1989). IL2 is predominantly
produced by antigen-stimulated CD4+ T-cells (Choudhry et al.,
2018), as well as NKT-cells, CD8+ T-cells, mast cells and
DCs (Paliard et al., 1988; Granucci et al., 2001; Yui et al.,
2004; Hershko et al., 2011). IL2 can stimulate the proliferation
of antigen-activated CD8+ T-cells (Cornish et al., 2006),
treatment with endogenous IL2 leads to an increase in the
expression of CD25, IL2 receptor, which in turn stimulates
the proliferation of CD8+ T-cells (Hinrichs et al., 2008). IL2
increases the expression of LAMP-1 on the surface of CD8+
T-cells (Hromadnikova et al., 2016), decreases the expression
of PD-1, an immunosuppressive receptor (Thommen et al.,
2018), thereby mediating the cytotoxic activity of CD8+
T-cells. IL2 can stimulate the expansion and activation of
NK cells with CD56high CD16− receptor (Caligiuri et al.,
1993), with the cytotoxic function of this population is
increased after activation (Fehniger et al., 2003). This cytokine
also enhances the cytotoxic effect of γδ T-cells, increasing
CD69 and degranulation marker CD107a expression and IFN-
γ secretion (Ribot et al., 2014). Furthermore, IL2 can also
promote the expansion of NKT-cells in cancer patients (Euhus
et al., 1997; Engel et al., 1998). IL2-based therapy has several
significant drawbacks, particularly the stimulation of Tregs,
which are associated with the suppression of the antitumor
immune response (Boyman et al., 2006). Stimulation with
IL2 leads to increased expression of CD25, CTLA-4, and
HLA-DR (Hirakawa et al., 2016) on the surface of CD3+
T-cells. IL2 treatment leads to an increase in the expression
of FOXP3 in CD3+CD25+ T-cells and the formation of the
Tregs phenotype, including during low-dose therapy (Zorn
et al., 2006). However, recent discoveries in understanding
the functioning of Tregs have opened up new possibilities
for the use of IL2 in combination with Treg inhibitors,
such as anti-CTLA-4 and anti-PD-1 (West et al., 2013). The
combination of IL12 (Prochazkova et al., 2012) and IL21
(Attridge et al., 2012) has also been shown to block IL2-induced
Treg activation.

Currently, IL2 has found its place in cancer immunotherapy
for the expansion of immune cells such as NK cells, T-cells,
NKT-cells, cytokine-induced killer (CIK) cells (Chung et al.,
2014; Boyiadzis et al., 2017; Exley et al., 2017; Yoshida et al.,
2017). IL2 is also used as an adjuvant in the treatment of
patients with melanoma, advanced colorectal cancer or ovarian
cancer with autologous dendritic cells stimulated by autologous
tumor lysate (Baek et al., 2015; Greene et al., 2016; Liu
et al., 2016), as well as in the treatment with viral vaccines
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TABLE 1 | Typical CD markers and functions in tumor immunity of various populations of human immune cells.

Immune cells Typical CD markers Anti-tumor properties Pro-tumor properties

NK cells Cytotoxic CD3−, CD56mid, CD16high, NKp46,
NKp30, NKG2D, KIRs

Perforin and granzyme-mediated induction
of apoptosis

NA

Regulatory CD3−, CD56high, CD16±, NKp46,
NKp30, NKG2D, KIRs

IFN-γ-mediated regulation of DC maturation Pro-angiogenic effect

Neutrophils CD11b+, CD66b+, CD16, Ly6G+,
CXCR2+

Inhibition of tumor by IL1 and TNF-α
secretion

Pro-angiogenic effect; suppression of
CD8+ T-cell mediated immune
response

Macrophages M1 CD68+, CD80+, CD86+, CD206low,
HLA-DRhigh

IL6, IL12, IL23 and TNF-α-mediated
stimulation of immune response and
reactive oxygen/nitrogen specie-mediated
tumor killing

NA

M2-like TAMs CD163, CD200R, CD204, CD206,
HLA-DRlow

NA VEGF-mediated ro-angiogenic effect;
MMPs and cathepsin-mediated
supports of invasion and metastasis;
IL10, TGF-β, ARG1, and PGE-mediated
suppression immune response

γδ T-cells Vγ 9Vδ 2
T-cells

CD3+, Vγ 9Vδ 2 TCR, NKG2D+,
CD56+, CD16+

TRAIL-induced apoptosis of tumor NA

CD3, Vγ 9Vδ 2 TCR, CD86+, CD80+,
CD40+, MHCII+

Antigen-presenting cell-like activity NA

γδ Tregs CD3+, γδ TCR, FOXP3+ NA Suppression immune response

γδ T17 CD3+, γδ TCR, CD30+ NA Accumulation of immunosuppressive
cells in TME; pro-angiogenic effect

T-cells Th1 CD3+, CD4+, CD8−, CXCR3+,
CCR4−, and CCR2+, CCR5+,
CXCR6+ when activated

Stimulation of CD8+ T-cell expansion;
IFN-γ-dependent inhibition of angiogenesis

NA

Th2 CD3+, CD4+, CD8−, CCR4+,
CXCR3−, CCR3, CCR8

IL4-mediated increase of tumor infiltration
with eosinophils and macrophages

IL10-mediated inhibition of antigen
presentation and activation of Tregs

Th17 CD3+, CD4+, CD8−, CCR6+,
CCR4+, CXCR3+, IL1R+, IL6R+,
IL23R+

IL17-mediated recruitment of NK cells and
neutrophils

IL17, IL23, CCL20-mediated promotion
of tumor growth; IL17 and IL22
mediated suppression of CD8+

mediated immune response

Tfh CD3+, CD4, CD8−, CD28+, CD40L+,
CXCR5+, ICOS+, PD-1+

Promotion of B cells differentiation;
IL12-mediated stimulation of CD8 + T-cells

Can stimulate growth and survival of
some lymphoid tumors

Tregs CD3+, CD4, CD8−, CD25+,
FOXP3+, CD127low, PD-1+,
CTLA-4+, CD39+, CD73+

NA Suppression of CD8+ T-cell mediated
immune response

Th9 CD3+, CD4+, CD8−, CCR3+,
CCR6+, CXCR3+, IL17BR

GrzmB-mediated tumor killing;
TRAIL-mediated apoptosis induction;
regulation of DCs and CD8+ T-cells

NA

CD8+ T-cells CD3, CD4−, CD8+, CD28+, CXCR3+,
LFA-1+, CD25+, CD107a+, PD-1+,
CTLA-4+

Granule exocytosis-mediated tumor killing
and FasL-mediated apoptosis induction

NA

NKT-cells Type I TCR which binds with α-GalCer
lipid tetramer, CD3, CD4±, CD8±,
CD56±, CD161±

Direct killing CD1d+ tumor cells;
IFN-γ-mediated stimulation of formation of
tumor-specific CD8+ T-cells and activation
of NK-cells

NA

Type II TCR which binds with
sulfatide-loaded CD1d multimers,
CD3+

IFN-γ-mediated suppression of tumor
growth

IL13-mediated support of tumor
immunosurveillance

B cells FO CD19+, CD20+, CD21+, CD22+,
CD23, CD24+, CD10−, CD27−

Pro- and antitumor properties are mainly
determined for general CD19+ CD20+ B
cell population, the role of individual B cell
population remains unclear Production of
antibodies that target tumor intracellular
antigens; antigen presentation and
stimulation of T-cell-mediated immune
response; TRAIL/Apo-2L-mediated
induction of apoptosis

Stimulation of tumor progression due to
the secretion of lymphotoxin

(Continued)
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TABLE 1 | Continued

Immune cells Typical CD markers Anti-tumor properties Pro-tumor properties

Activated CD19+, CD20, CD25+, CD27+,
CD30+, CD69+, CD80+, CD88+

Short-lived
plasma cells

CD19low, CD20−, CD27+, CD38high,
CD69+, CD138+

GC cells CD10+, CD19+, CD20+, CD27−,
CD33+, CD38high

Long-lived
memory cells

CD19+, CD20+, CD27+, CD38−,
CD40+, CD23low

MZ CD1c+, CD19+, CD20−, CD21high,
CD27var

Recognize T-cell-independent carbohydrate
and phospholipid antigens

NA

Bregs CD1dhigh CD5+, CD19+, CD24high,
CD38high

NA IL10-mediated suppression of CD8+

T-cell mediated immune response and
stimulation of development of Tregs

DCs DC1 CD11c+, MHCII+, XCR1+, CLEC9A+,
CD141+, IFNAR1+

Antigen presentation to T-cells NA

DC2 CD11c+, MHCII+, CD11b+, CD1c+,
CD172a+

The function is not clear since they are very
difficult to distinguish from CD11c+ MHCII+

macrophages moDCs

NA

moDCs CD11c+, HLA-DR+, CD64+,
GM-CSFR+, CD1c+, CD1a+,
CD172a+, CD206+,

Presentation of antigen which leads to the
simulation of CD8+ T-cells, inhibition of
tumor growth and Th17 cell stimulation

NA

pDCs CD11c−, HLA-DR+, CD123+, CD4+,
BDCA2 (CD303)+, BDCA4 (CD304)+

Induction of NK cell migration and
stimulation of macrophages and dendritic
cells; GrzmB and TRAIL-mediated
apoptosis induction

NA

Surface markers essential for flow cytometry-based determination of immune cells are in bold.

(Oudard et al., 2011). The addition of IL2 to the treatment
regimen can increase the effectiveness of therapy due to the
induction of expansion of tumor antigen presented T-cell
(Oudard et al., 2011).

Interleukin 2 is also effective to treat patients with melanoma
when combined with dacarbazine monotherapy or anti-VEGF
monoclonal antibody (mAb) monotherapy, but do not increase
the effectiveness of neuroblastoma therapy in combination
with dinutuximab (anti-GD2 mAb) (Ladenstein et al., 2018;
Tarhini et al., 2018; Weide et al., 2019). Several clinical trials
have also evaluated the effectiveness of the combination of
radiotherapy and IL2, however, this approach has not been
further developed (Oudard et al., 2011; Ridolfi et al., 2014;
van den Heuvel et al., 2015).

One of the newest approaches to cancer immunotherapy
is the combination of immune checkpoint inhibitors and
recombinant IL2 for the treatment of melanoma and renal cell
carcinoma. Such a combination may improve the activation
of the immune system (West et al., 2013) and potentially
enhance clinical efficacy. HD IL2 increased overall survival
(OS) in patients with renal cell carcinoma and progressive
melanoma who was previously treated with a PD-1 or PD-
L1 inhibitor compared to patients without pretreatment with
anti-PD-1/PD-L1 (Buchbinder et al., 2019). The combination
of IL2 and ipilimumab (CTLA-4 checkpoint inhibitor) for the
treatment of patients with melanoma led to large side effects
expected from single agent treatment, with an increase in the
number of peripheral IFN-γ producing CD8+ T-cells in most
patients, which indicated the effectiveness of IL2 and ipilimumab

combination to stimulate the immune response (Ray et al., 2016;
Weide et al., 2017; Silk et al., 2019).

Interleukin 12
Interleukin 12 is another cytokine with well-studied antitumor
activity, which is mainly mediated by stimulation of IFN-γ
production in cytotoxic cells (CD8 T-cells and NK cells) and
Th1 cells (Lasek et al., 2014). Treatment with IL12 leads with
varying degrees of success to an increase in the number of CD56+
NK cells (Agaugue et al., 2008), as well as CD2 and LFA-1
expression (Robertson et al., 1999), which ultimately results in
the increased cytotoxicity of IL12-treated NK cells (Lehmann
et al., 2014; Martinovic et al., 2015). IL12 also stimulates the
production of IFN-γ in cytotoxic CD8+ T-cells (Yang et al.,
2016), enhances their proliferative activity (Mukhopadhyay et al.,
2019) and cytotoxicity, probably due to increased expression of
GrzmB (Rubinstein et al., 2015; Li et al., 2017). In addition,
IL12-stimulated CD8 T-cells are able to reduce the number of
Tregs in TME by Fas-mediated apoptosis (Kilinc et al., 2009;
Kerkar et al., 2010). IL12 is also involved in the differentiation
of naïve Th cells in Th1 cells (Kennedy et al., 1994). Promising
results in cell and animal models have prompted clinical studies
of IL12. However, the future of IL12 in the treatment of cancer
was overshadowed by the significant side effects that were
observed in the first clinical trials. The established protocol in
the Phase I study schedule of IL12 administration was slightly
amended (patients in Phase 2 trial received daily IL12 dosing
without the single injection of IL12 2 weeks earlier that was
employed in the Phase 1 study) that led to the development
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FIGURE 1 | Biological functions in tumor immunity and CD markers essential for ex vivo determination of various populations of human immune cells.

of severe IFN-γ-mediated toxicity, resulting in 12 patients
being hospitalized and two patients dying (Leonard et al.,
1997). Clinical trials of IL12 have continued, but with more
caution, however, ultimately IL12 has not been shown particular
efficacy, either alone or in combination with various therapeutic
agents, with the exception of patients with cutaneous T-cell
lymphoma (CTCL), with non-Hodgkin’s B-cell lymphoma, and
with acquired immune deficiency syndrome (AIDS)-associated
Kaposi sarcoma (Lasek et al., 2014).

To avoid the high IL12-mediated systemic toxicity,
regulated plasmids have been developed in which IL12
expression is induced by an activator. The use of a
plasmid in which the expression of IL12 is regulated by
a promoter sensitive to nuclear factor of activated T-cells
(NFAT) for the genetic modification of TILs has allowed a
reduction in the number of cells necessary for significant
response by 10–100 times in comparison with standard
treatment protocols. However, serum IL12 levels were
unpredictable and significant toxicity was observed in
patients (Zhang et al., 2015). In another study, a regulated
plasmid was injected at the site of tumor resection, and
IL12 expression was then activated. After this therapy

OS rates were encouraged compared to historical controls
(Chiocca et al., 2019).

In combination with chemotherapy (Anwer et al., 2013)
or mAbs (McMichael et al., 2019) IL12 did not show
significant toxicity, as well as promising result indicating the
usefulness of IL12.

An actively developing approach is the use of IL12 in
combination with oncolytic viruses (OVs), which selectively
replicate in and kill cancer cells. The integration of the IL12 gene
in the virus genome can enhance the virus-mediated immune
response, while avoiding systemic toxicity (Nguyen et al., 2020).
OVs with IL12 showed safety and promising efficacy in mouse
models compared with OS without IL12 (Cheema et al., 2013;
Alessandrini et al., 2019), however, the results of clinical trials
on humans have not yet been presented (Patel et al., 2016)
(NCT02555397, NCT00406939, NCT03281382, NCT00849459,
and NCT01397708).

Interleukin 15
Another cytokine that belongs to the same family as IL2 and
has many overlapping functions is IL15 (Waldmann, 2018).
Since IL15 and IL2 use several identical receptor components,
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IL2/IL15Rβ and γc, and trigger the common molecules of
Janus kinase (JAK) 1/3 and signal transducer and activator
of transcription (STAT) 3/5 pathways they have overlapping
functions (Robinson and Schluns, 2017). The administration of
IL15 leads to an increase in the expansion of CD8+ T-cell, as well
as expression of CD38 and HLA-DR activation markers (Conlon
et al., 2015). This cytokine also enhances the proliferation of
NK cells in cancer patients with greater stimulation of CD56high

NK cells (Dubois et al., 2017). IL15 can also stimulate the
cytotoxic functions of CD56high NK cells (Wagner et al., 2017),
while increasing the expression of CD16 and CX3C chemokine
receptor 1 (CX3CR1), which are mainly expressed on CD56low

NK cells (Dubois et al., 2017). A similar effect (enhanced
expansion and cytotoxicity) IL15 has on γδ T-cells (Ribot et al.,
2014; Conlon et al., 2015). Despite similar functions with IL2,
IL15 therapy does not stimulate the expansion of Tregs and
does not cause capillary leak syndrome. However, recombinant
IL15 therapy can lead to general systemic toxicity by increasing
the production of pro-inflammatory cytokines or by stimulating
autoimmune-like responses (Cooley et al., 2019).

Phase I clinical trials of subcutaneous recombinant human
IL15 (rhIL15) therapy showed that rhIL15 was well tolerated and
caused expansion of circulating NK cells, especially CD56bright

subset, and to a lesser degree CD8+ T-cells (Miller et al.,
2018). Since IL15 is trans-presented to CD8+ T and NK cells
in a complex with the IL15α receptor in order to increase its
immunomodulating activity, the ALT-803 therapeutic complex
has been developed, which is IL15 with IL15α receptor fused to
human IgG1 dimer Fc, which maintains stability and extends
the half-life of the entire complex (Knudson et al., 2019). ALT-
803 showed safety and the ability to increase the number of
NK cells after subcutaneous administration to patients with
progressive solid tumors in phase I clinical trials (Margolin et al.,
2018). Clinical effect demonstration in single-agent phase I trials
is rare, and has not been observed in these trials. However,
several clinical trials to evaluate the therapeutic potential of
rhIL15 in combination with other therapeutic agents are ongoing
(NCT03905135, NCT03388632).

ALT-803 in combination with nivolumab (anti-PD-1
mAb) may repeatedly elicit objective responses to anti-PD-1
immunotherapy after relapse or treatment failure in patients
with non-small cell lung cancer (NSCLC) (Wrangle et al., 2018).

Interleukin 15 is actively used to activate and expand NK
cells, which are then transplanted to patients with leukemia (Vela
et al., 2018) or solid tumors (Perez-Martinez et al., 2015), as
well as to stimulate the proliferation of chimeric antigen receptor
(CAR) T-cells in combination with IL2 (Wang et al., 2019). In
a recent clinical trial, anti-CD19 CAR-NK cells encoding the
human IL15 gene were used to treat patients with recurrent or
refractory CD19-positive cancer. Most patients had a response to
treatment with CAR-NK cells without the development of major
toxic effects (Liu et al., 2020).

Mouse models also showed the efficacy of using IL15/IL15R in
combination with an autologous vaccine to stimulate antitumor
immunity against acute myeloid leukemia (Shi Y. et al., 2018).
However, these studies have not yet reached human clinical trials.

It is most likely that in the near future combinations of IL15
with various therapeutic agents, such as immune checkpoint
inhibitors, will be actively investigated.

Interleukin 21
Interleukin 21, another member of the IL2 family, is one of
the last cytokines investigated for the clinical use in cancer
treatment (Santegoets et al., 2013). One of the most important
functions of IL21 is to stimulate the proliferation of germinal
center (GC) B cells (Zotos et al., 2010), as well as to induce the
differentiation CD40L-stimulated B cells in plasma cells (Ding
et al., 2013). However, IL21 treatment also results in an increase
in the number of B10 cells as well as the levels of IL10 that
they produce (Yoshizaki et al., 2012). The increase in IL10
secretion after IL21 stimulation is also observed in CD4+, CD8+
T-cells (Spolski et al., 2009). IL21 is also able to activate NK
cells by stimulating the expression of CD69 and the natural
cytotoxicity receptor NKp46 and increasing cytotoxic activity
(Skak et al., 2008). IL21 stimulates differentiation of naïve CD4+
T-cells in Th17 cells, inducing expression of IL17, retinoic-
acid-receptor-related orphan nuclear receptor gamma (RORγt)
transcription factor and IL23R (Korn et al., 2007). Also, this
cytokine plays an important role in the autocrine stimulation of
proliferation and differentiation (expression of inducible T-cell
costimulator (ICOS) is increased) of Tfh (Vogelzang et al.,
2008). It is also worth noting that IL21 negatively regulates
homeostasis of CD4+ CD25+ FOXP3+ Tregs (Attridge et al.,
2012). However, in clinical trials the therapeutic effect of IL21 is
evaluated by analyzing the secretion of soluble CD25, the level
of which increases during the activation of T-cells and NK cells
(Thompson et al., 2008; Davis et al., 2009). Whilst the effect of
IL21 therapy on the remaining immune system cell populations
of cancer patients remains unexplored.

Clinical trials have shown that rIL21 is able to increase the
number of CD3+ CD56 NKT-like cells in patients with stage
IV malignant melanoma (Coquet et al., 2013), and also activate
T and NK cells in patients with stage IV colorectal cancer
(Steele et al., 2012). The combination of IL21 with various mAbs
showed that the combination of IL21 with rituximab (anti-CD20
mAb) or sorafenib (anti-VEGF mAb) was well tolerated and had
antitumor activity (Timmerman et al., 2012; Bhatia et al., 2014).
However, the contribution of IL21 into the shown antitumor
activity has not been fully determined.

Interleukin 21, like other members of its family, is used to
activate and expand T-cell and NK cells (Chapuis et al., 2016;
Ciurea et al., 2017). There are several completed and active
clinical trials where IL21 is combined with checkpoint inhibitors
or with anti-CD19 CAR T-cells (NCT01629758, NCT04093648).
There is insufficient clinical data on the use of this cytokine.
However, it is likely that the use of IL21 in cancer immunotherapy
will be investigated in this direction.

Interferons
Another group of cytokines, interferons, has also been shown
to be effective in cancer immunotherapy. IFNs are divided
into three types depending on the function and the target
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receptor: type I (α, β, ε, κ, and ω), type II (γ), and type III
(λ) (Budhwani et al., 2018). IFN-α2a was the first approved
cytokine for the treatment of chronic myeloid leukemia (Italian
Cooperative Study Group on Chronic Myeloid Leukemia, Tura
et al., 1994), since type I IFNs have broad immunomodulatory
activity. IFN-α can stimulate differentiation of CD14+monocytes
in DCs jointly with GM-CSF (Gabriele et al., 2004) which
will be discussed below. IFN-α/GM-CSF stimulation leads
to the increased expression of HLA-DR, CD11c, CD83, B7
costimulatory molecules CD80 and CD86, including on DCs
of cancer patients, and such DCs are able to efficiently present
an antigen to CD4+ and CD8+ T-cells (Paquette et al., 2002;
Jin et al., 2017). However, IFN-β reduces the ability of mature
DCs to stimulate T-cell proliferation and differentiate into IFN-
γ-producing Th1 cells (Yen et al., 2010). In addition to its
apparent effect on T-cells via DCs, IFN-α is also able to stimulate
the effector functions of pre-activated CD8+ T-cell (which have
already interacted with antigen and costimulatory molecules),
leading to increased number of activation markers CD38 and
CD25 and raised expression of GrzmB, TRAIL, FasL, and IFN-
γ (Sikora et al., 2009; Hervas-Stubbs et al., 2010; Lu et al.,
2019). Type I IFNs have different effects on the differentiation
of CD4+ T-cells, supporting the polarization into Th1 cells and
inhibiting the formation of Th2 and Th17 T-cell phenotypes
(Huber et al., 2010; Huber and Farrar, 2011). Type I IFNs also
play an important role in the regulation of NK cell cytotoxicity,
however, low cytotoxicity in the absence of type I IFN stimulation
can be overcomed by stimulation with IL2 (Muller et al., 2017).

IFN-γ is a type II IFN cytokine which can both regulate
the antitumor immune response and directly induce apoptosis
of tumor cells (Zaidi, 2019). Here we focus on the regulation
of the immune system cells. It was shown that IFN-γ therapy
leads to a significant increase in the number of CD14high CD16+
monocytes and a rise in MHCII expression on all monocytes
(Kirkwood et al., 1997) in patients with various types of tumors.
The number of activated NK cells also increases (expression
of NK receptor activation marker NKp30 was increased on
both CD56high and CD56low NK cells) (Zibelman et al., 2017)
(NCT02614456). In addition, a number of investigations in
mouse models has been shown that IFN-γ is able to modulate
polarization toward CD86+ iNOS+ M1 macrophages, which
can inhibit tumor cell growth by releasing NO (Ren et al.,
2014; Muller et al., 2018). Nevertheless, IFN-γ stimulates
differentiation of CD4+CD25− T-cells in CD4+ Tregs in a mouse
model of experimental autoimmune encephalomyelitis (Wang
et al., 2006) as well inhibiting the proliferation of Th2 cells
(Gajewski and Fitch, 1988; Oriss et al., 1997). However, the effect
of IFN-γ on various T-cell populations in cancer patients requires
more detailed investigation. In addition, there is an evidence of
the pro-tumor effect of IFN-γ [for more details see Zaidi (2019)]
which also requires the attention of researchers.

Type I interferons are actively combined with various
therapeutic agents in clinical trials (NCT03112590). In the
number of clinical trials, IFN-α or IFN-β were used to stimulate
the immune response in patients who received therapy with
DC vaccines (Schwaab et al., 2009; Duggan et al., 2016) or

tumor-specific antigens (Elkord et al., 2015; Hawkins et al., 2016;
Shima et al., 2019). Vaccination itself did not always lead to the
increase in OS or showed some encouraging results (Shima et al.,
2019). However, IFN-α administration was sometimes able to
significantly increase OS compared to a single vaccine (Duggan
et al., 2016; Sheng et al., 2020).

Interferons have also been combined with chemotherapy and
mAbs for the treatment of various types of tumors (Dijkgraaf
et al., 2015). The combination of IFN-β with temozolomide did
not show any promising results in patients with glioblastoma
(Wakabayashi et al., 2018). Also, the combination of IFNs with
bevacizumab (anti-VEGF mAb) did not show much benefit
compared to the combination of bevacizumab + everolimus,
which is usually used to treat metastatic renal cell carcinoma
(Ravaud et al., 2015).

In general, there are not many clinical trials that are ongoing
to evaluate the efficacy of combination of IFNs with immune
checkpoint inhibitors, most often IFN-α monotherapy is used as
a reference to evaluate the effectiveness of the inhibitors for the
treatment of advanced melanoma (Li et al., 2020; Tarhini et al.,
2020). However, the clinical trials of IFN-α and pembrolizumab
have shown the safety but had limited antitumor activity of
the IFN-α + pembrolizumab combination (Atkins et al., 2018).
Several clinical trials of IFN-γ with PD-1 inhibitors are ongoing
(NCT02614456, NCT03063632).

Granulocyte-Macrophage
Colony-Stimulating Factor
Granulocyte-Macrophage Colony-Stimulating Factor plays
an important role in the regulation of proliferation and
differentiation of myeloid cells (Bhattacharya et al., 2015). One
of the main functions of GM-CSF that is actively used for
cancer immunotherapy is its ability to regulate the maturation
of DCs from myeloid progenitors (Ushach and Zlotnik, 2016).
Stimulation of CD14high or CD133+ monocytes with GM-CSF
together with IL4 and/or type I IFNs leads to differentiation
in moDCs expressing MHCII, CD80, CD83, and CD86
costimulatory molecules (Moldenhauer et al., 2010; Blyszczuk
et al., 2013). This cytokine has been used in a large number of
clinical trials of antitumor vaccines (Chang et al., 2000; Slingluff
et al., 2003). However, such moDCs are able to stimulate Th17
due to the secretion of IL1b and IL6, as already noted above
(Ko et al., 2014), and also provoke the formation of FOXP3+
Tregs (Gopisetty et al., 2013). GM-CSF is also involved in
the programming of M1 macrophages, and may promote M2
to CD45+ CD11b+ F4/80 MHCII+ CD163− CD206− M1
polarization of macrophages in TME (Eubank et al., 2009; Brenot
et al., 2018; Benner et al., 2019). The ability of GM-CSF to
stimulate the proliferation of activated CD54+ neutrophils has
also been described, which may be useful for immunotherapy,
since neutropenia is one of the most common symptoms of
cytokine-based immunotherapy in cancer patients (Yu and Hua,
2018). However, the effect of neutrophils on tumor progression is
still under discussion, and GM-CSF can stimulate the expression
of PD-L1, an immunosuppressive molecule, on the surface
of neutrophils (Wang et al., 2017). Despite the pronounced
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TABLE 2 | The effect of endogenous cytokines on various populations of immune cells.

Immune cells Cytokines

IL2 IL12 IL15 IL21 Type I IFNs IFN-γ GM-CSF

Innate immunity
cells: NK cells,
Neutrophils,
Macrophages, DCs

NK cells: CD56,
proliferation, cytotoxicity↑

NK cells: CD2, LFA-1,
proliferation,
cytotoxicity↑

NK cells: CD16, CX3CR,
proliferation, cytotoxicity↑

NK cells: CD69,
NKp46, proliferation,
cytotoxicity↑

NK cells: Cytotoxicity↑
DCs: IFN-α:
differentiation in
moDCs, HLA-DR, B7,
CD11c, CD80, CD83
and CD86↑ IFN-β:
ability of mature DCs to
stimulate T-cell
proliferation and
differentiate into Th1↓

NK cells: NKp30,
proliferation↑
Macrophages:
Number of CD14high

CD16+ monocytes; M1
polarization↑

Neutrophils: PD-L1,
proliferation↑
Macrophages: M1
polarization↑
DCs: Differentiation in
moDCs, MHCII, CD80,
CD83, CD86↑

NKT-cells, γδ T-cells NKT-cells: Proliferation↑
γδ T-cells: CD69, CD107a,
IFN-γ, cytotoxicity↑

NA NKT-cells: Proliferation,
cytotoxicity↑

NA NA NA NA

Adoptive immunity
cells: Th1, Th2, Th17,
Tfh, Tregs, CD8+

T-cells, FO B cells,
Bregs

Tregs: CD25, CTLA4, and
HLA-DR, FOXP3,
proliferation↑
CD8+ T-cells: CD25,
LAMP-1, proliferation,
cytotoxicity↑ PD-1↓

Th1: IFN-γ,
differentiation from
naïve T-cells↑
Tregs: The number in
TME↓ CD8+ T-cells:
IFN-γ, GrzmB,
proliferation,
cytotoxicity↑

Tregs: No effect
CD8+ T-cells: CD38,
HLA-DR, proliferation,
cytotoxicity↑

Th17: Differentiation
from naïve T-cells, IL17,
RORγt, IL23R↑
Tfh: Proliferation,
differentiation, ICOS↑
Tregs: Proliferation↓
FO B cells: GC B cell
proliferation, plasma
cell differentiation↑
Bregs: B10 cell
proliferation, IL10↑

Th1: Differentiation↑
Th2: Differentiation↓
Th17: Differentiation↓
CD8+ T-cells: CD38,
CD25, GrzmB, TRAIL,
FasL, IFN-γ,
cytotoxicity↑

Th2: Proliferation↓
Tregs: Proliferation↑

NA

↑ – increase in expression/secretion or some function (activity), ↓ – decrease in expression/secretion or some function (activity).
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stimulation of differentiation of DCs, the effect of GM-CSF on
other populations of the innate immune system cells remains
insufficiently explored, especially in cancer patients. The use of
this cytokine requires broader inquiry, because, despite active
investigations, GM-CSF-based therapeutic vaccines have not
shown the expected effectiveness.

Despite this, the number of clinical trials of antitumor
vaccines that are used in combination with GM-CSF remains
unchanged. Over the past 5 years (2015–2020), 58 new clinical
trials have been registered, whilst between 2010 and 2015 69
clinical trials of antitumor vaccines were registered1. GM-CSF
is added as an adjuvant to DCs for both DC-based vaccines
and autologous tumor cell vaccines (Dillman et al., 2018;
Clifton et al., 2019). Tumor cells can also be modified to
overexpress GM-CSF to generate the vaccines (Gray et al., 2018).
Interestingly, the administration of GM-CSF led to an increase
in anti-GM-CSF neutralizing antibodies (Nabs), which, however,
correlated with improved relapse-free survival (RFS) and OS
(Butterfield et al., 2017).

Granulocyte-Macrophage Colony-Stimulating Factor was
combined with radiation therapy to stimulate the maturation of
DCs that could present antigens released by radiation-damaged
cells. The combined therapy caused objective abscopal responses
in some patients with metastatic solid tumors (Golden et al.,
2015). The efficacy of T-vec oncolytic virus encoding the GM-
CSF gene for the treatment of patients with melanoma was also
shown (Andtbacka et al., 2016).

As with other cytokines, there is a tendency to combine
cell-based and DNA-based vaccines + GM-CSF with immune
checkpoint inhibitors (NCT04013672, NCT03600350) in order
to achieve a significant therapeutic effect. In clinical trials,
immune checkpoint inhibitors are combined with oncolytic
viruses containing GM-CSF (NCT02977156, NCT04197882,
NCT03206073, and NCT03003676). All of these clinical trials
are now ongoing.

The effect of cytokine therapy on various populations of
immune cells is summarized in Table 2.

CONCLUSION AND FUTURE
PERSPECTIVES

Undoubtedly, cytokines have proven to be effective in cancer
therapy, however, the effect of some promising targets on
various immune cell populations remains poorly understood.
The same situation is with respect to surface CD markers. For
well-studied populations, such as T-cells, the set and functions
of surface receptors are fairly well defined, and researchers
1 clinicaltrials.gov

use approximately the same sets of CD markers to identify
populations using flow cytometry. However, less studied are
the population of immune cells, the more diverse are the
sets of determined receptors, and the more difficult it is to
compare the results to identify persistent patterns. The study of
changes in the function and surface marker expression of each
individual immune system cell population after immunotherapy
will simplify and unify the assessment of the effectiveness
of therapy, as well as allow predicting the effectiveness of
immunotherapy by analyzing surface markers of immune cells of
cancer patients.

Despite the fact that this review focuses on a detailed
description of the functions and surface markers of immune
system cells in cancer and after cytokine-based immunotherapy,
a review of this topic requires discussion of the prospects of
cytokine-based cancer treatment. One of the main features of
cytokines, as regulators of the immune response, is its pleiotropic
effect. Each cytokine regulates many different populations of the
immune cells that can support both anti-tumor and pro-tumor
responses. Therefore, the future perspectives of cytokine-based
cancer therapy will depend on the production of combined
schemes aimed at enhancing the antitumor response and
suppressing immune cells that support tumor growth. Also,
other significant problems encountered are the short half-life and
systemic toxicity (pro-inflammatory and autoimmune reactions)
of high doses of cytokines which are necessary to elicit a
significant response in cancer patients. New approaches that
improve targeting of cytokines and alter their pharmacokinetics
might be useful (such cell based or other vector delivery,
chemically modified recombinant proteins, etc.) to overcome
limitations of different cytokine therapies. Current trends in the
development of cancer immunotherapy indicate that cytokines
may find their greatest role in therapy when administered in
combination with other agents, such as immune checkpoint
inhibitors, oncolytic viruses or as a component of DC-based and
tumor cell-based vaccines.
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