APPENDIX 1: Full reference list

- 1. Cruz-Jentoft, A.J., et al., *Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People.* Age Ageing, 2010. **39**(4): p. 412-23.
- 2. Cruz-Jentoft, A.J., et al., *Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS).* Age Ageing, 2014. **43**(6): p. 748-59.
- 3. Beaudart, C., et al., *Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review.* Osteoporos Int, 2017. **28**(6): p. 1817-1833.
- 4. Beaudart, C., et al., *Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis.* PLoS One, 2017. **12**(1): p. e0169548.
- 5. Ibrahim, K., et al., *The feasibility of assessing frailty and sarcopenia in hospitalised older people: a comparison of commonly used tools.* BMC Geriatr, 2019. **19**(1): p. 42.
- 6. Vandewoude, M.F., et al., *Malnutrition-sarcopenia syndrome: is this the future of nutrition screening and assessment for older adults?* J Aging Res, 2012. **2012**: p. 651570.
- 7. Borenstein, M.H., L.V.; Higgins, J.P.T.; Rothstein, H.R., *Converting Among Effect Sizes*, in *Introduction to Meta-Analysis*, L. John Wiley & Sons, Editor. 2009.
- 8. Downes, M.J., et al., *Development of a critical appraisal tool to assess the quality of crosssectional studies (AXIS).* BMJ Open, 2016. **6**(12): p. e011458.
- 9. Strasser, E.M., et al., *Strength training increases skeletal muscle quality but not muscle mass in old institutionalized adults: a randomized, multi-arm parallel and controlled intervention study.* Eur J Phys Rehabil Med, 2018. **54**(6): p. 921-933.
- 10. Guerreiro, A.C., et al., *Bedside Ultrasound of Quadriceps to Predict Rehospitalization and Functional Decline in Hospitalized Elders.* Front Med (Lausanne), 2017. **4**: p. 122.
- 11. Hasselgren, L., L.L. Olsson, and L. Nyberg, *Is leg muscle strength correlated with functional balance and mobility among inpatients in geriatric rehabilitation?* Arch Gerontol Geriatr, 2011. **52**(3): p. e220-5.
- 12. Bruyneel, A.V., et al., *Intra-rater reliability of hip abductor isometric strength testing in a standing position in older fallers and non-fallers*. Eur Rev Aging Phys Act, 2018. **15**: p. 9.
- 13. Suzuki, M., et al., *The relationship between knee extension strength and lower extremity functions in nursing home residents with dementia.* Disabil Rehabil, 2012. **34**(3): p. 202-9.
- 14. Kamo, T., et al., *Prevalence of sarcopenia and its association with activities of daily living among japanese nursing home residents.* Geriatric Nursing, 2018. **39**(5): p. 528-533.
- 15. Nakamura, H., et al., *A longitudinal study on the nutritional state of elderly women at a nursing home in Japan*. Intern Med, 2006. **45**(20): p. 1113-20.
- 16. Tarsuslu, et al., *Muscle Strength and Independence for Older Individuals in Nursing Homes.* Topics in Geriatric Rehabilitation, 2017. **33**(4): p. 255-261.
- 17. Chen, P.J., et al., *Predicting cause-specific mortality of older men living in the Veterans home by handgrip strength and walking speed: a 3-year, prospective cohort study in Taiwan.* J Am Med Dir Assoc, 2012. **13**(6): p. 517-21.
- 18. Martien, S., et al., *Is knee extension strength a better predictor of functional performance than handgrip strength among older adults in three different settings?* Arch Gerontol Geriatr, 2015. **60**(2): p. 252-8.
- 19. Ishiyama, D.Y., M.; Nishio, N.; Shinohara, A.; Kinkawa, J.; Teruya, K.; Matsunaga, Y.; Matsushita, K., *Factors associated with low physical performance among older inpatients.* Journal of Clinical Gerontology & Geriatrics, 2018. **9**(1): p. 13-19.
- 20. Thingstad, P., et al., *Identification of gait domains and key gait variables following hip fracture*. BMC Geriatr, 2015. **15**: p. 150.

- 21. Caballer, V.B., et al., *Factors associated with the 6-minute walk test in nursing home residents and community-dwelling older adults.* J Phys Ther Sci, 2015. **27**(11): p. 3571-8.
- 22. Batista, F.S., et al., *Relationship between lower-limb muscle strength and functional independence among elderly people according to frailty criteria: a cross-sectional study.* Sao Paulo Med J, 2014. **132**(5): p. 282-9.
- 23. Cuesta, F., et al., *Prevalence of sarcopenia in patients attending outpatient geriatric clinics: the ELLI study.* Age Ageing, 2015. **44**(5): p. 807-9.
- 24. Curcio, F., et al., *Tinetti mobility test is related to muscle mass and strength in non-institutionalized elderly people.* Age (Dordr), 2016. **38**(5-6): p. 525-533.
- 25. Sipers, W.M., et al., *The Martin Vigorimeter Represents a Reliable and More Practical Tool Than the Jamar Dynamometer to Assess Handgrip Strength in the Geriatric Patient*. J Am Med Dir Assoc, 2016. **17**(5): p. 466.e1-7.
- Aubertin-Leheudre, M., et al., *The usefulness of muscle architecture assessed with ultrasound to identify hospitalized older adults with physical decline.* Exp Gerontol, 2019.
 125: p. 110678.
- 27. Soares, A.V., et al., *Relation between functional mobility and dynapenia in institutionalized frail elderly.* Einstein (Sao Paulo), 2017. **15**(3): p. 278-282.
- 28. Bergland, A., et al., *Evaluating the Feasibility and Intercorrelation of Measurements on the Functioning of Residents Living in Scandinavian Nursing Homes*. Physical & Occupational Therapy In Geriatrics, 2010. **28**(2): p. 154-169.
- 29. Sabol, V.K., et al., *Exploring the factors that influence functional performance among nursing home residents.* J Aging Health, 2011. **23**(1): p. 112-34.
- 30. Wisniowska-Szurlej, A., et al., *Association between Handgrip Strength, Mobility, Leg Strength, Flexibility, and Postural Balance in Older Adults under Long-Term Care Facilities.* Biomed Res Int, 2019. **2019**: p. 1042834.
- Brtan, U., et al., Effect of muscle strength on falling risk and physical performance in hospitalised geriatric people: A preliminary report. Fizyoterapi Rehabilitasyon, 2015. 26 (2): p. S64.
- 32. Yeung, S.S.Y., et al., *Knee extension strength measurements should be considered as part of the comprehensive geriatric assessment*. BMC Geriatr, 2018. **18**(1): p. 130.
- 33. Janssen, H.C., et al., *Strength, mobility and falling in women referred to a geriatric outpatient clinic.* Aging Clin Exp Res, 2004. **16**(2): p. 122-5.
- 34. Alqahtani, B., et al., *Standing balance and strength measurements in older adults living in residential care communities.* Aging Clinical & Experimental Research, 2017. **29**(5): p. 1021-1030.
- Jeon, Y.T., et al., *Post-operative Physical Performance Factors Associated With Gait Speed in Patients Surgically Treated for Hip Fracture: A Cross-Sectional Study.* Ann Rehabil Med, 2019.
 43(5): p. 570-580.
- 36. Bastone Ade, C. and W. Jacob Filho, *Effect of an exercise program on functional performance of institutionalized elderly*. J Rehabil Res Dev, 2004. **41**(5): p. 659-68.
- 37. Suzuki, M., et al., Reliability and validity of measurements of knee extension strength obtained from nursing home residents with dementia. Am J Phys Med Rehabil, 2009. 88(11): p. 924-33.
- Golder, M.D., E.M. Earl, and L.H. Mallery, *Vestibular and motor contributions to mobility: limitations of seniors awaiting discharge from hospital care.* Physiother Res Int, 2012. 17(4): p. 200-7.
- 39. Zarzeczny, R., et al., *Aging effect on the instrumented Timed-Up-and-Go test variables in nursing home women aged 80-93 years.* Biogerontology, 2017. **18**(4): p. 651-663.
- 40. Giua, R., et al., *Relationship between respiratory muscle strength and physical performance in elderly hospitalized patients.* Rejuvenation Res, 2014. **17**(4): p. 366-71.

- Stasi, S., et al., Association between abductor muscle strength and functional outcomes in hip-fractured patients: a cross-sectional study. J Musculoskelet Neuronal Interact, 2018.
 18(4): p. 530-542.
- 42. Kline Mangione, K., et al., *Predictors of gait speed in patients after hip fracture*. Physiother Can, 2008. **60**(1): p. 10-8.
- 43. Martinikorena, I., et al., *Gait Variability Related to Muscle Quality and Muscle Power Output in Frail Nonagenarian Older Adults.* J Am Med Dir Assoc, 2016. **17**(2): p. 162-7.
- 44. Bianchi, L., et al., *Prevalence and Clinical Correlates of Sarcopenia, Identified According to the EWGSOP Definition and Diagnostic Algorithm, in Hospitalized Older People: The GLISTEN Study.* J Gerontol A Biol Sci Med Sci, 2017. **72**(11): p. 1575-1581.
- 45. Rossi, A.P., et al., *Identifying Sarcopenia in Acute Care Setting Patients*. Journal of the American Medical Directors Association, 2014. **15**(4): p. 303.e7-303.e12.
- 46. Van Puyenbroeck, K., et al., *The additional value of bioelectrical impedance analysis-derived muscle mass as a screening tool in geriatric assessment for fall prevention.* Gerontology, 2012. **58**(5): p. 407-12.
- 47. Chang, C.I., et al., *Comparison of three BIA muscle indices for sarcopenia screening in old adults.* European Geriatric Medicine, 2013. **4**(3): p. 145-149.
- 48. Di Monaco, M., et al., *Handgrip strength but not appendicular lean mass is an independent predictor of functional outcome in hip-fracture women: a short-term prospective study.* Arch Phys Med Rehabil, 2014. **95**(9): p. 1719-24.
- 49. Bodilsen, A.C., et al., *Prediction of Mobility Limitations after Hospitalization in Older Medical Patients by Simple Measures of Physical Performance Obtained at Admission to the Emergency Department*. PLoS One, 2016. **11**(5): p. e0154350.
- 50. Aarden, J.J., et al., *Muscle strength is longitudinally associated with mobility among older adults after acute hospitalization: The Hospital-ADL study.* PLoS One, 2019. **14**(7): p. e0219041.
- 51. Chen, T.C., et al., *The changes of lower muscle strength and physical performance in robust and pre-frail outpatient older adults.* Physiotherapy, 2015. **101**: p. e228-e229.
- 52. Uehara, A., et al., *The baseline speed of 10-m gait predicts ambulatory discharge for hospitalized frail elderly after DOPPO rehabilitation*. Int J Rehabil Res, 2018. **41**(4): p. 331-336.
- 53. Lauretani, F., et al., *Muscle weakness, cognitive impairment and their interaction on altered balance in elderly outpatients: results from the TRIP observational study.* Clin Interv Aging, 2018. **13**: p. 1437-1443.
- 54. Söke F., K., H. K., Ilgin, D., Yuksel, E., Ozcan, O., and Arslan, T., *Relationship between Postural Control and Hand Function in the Subjects Aged 65 Years and over* Turkish Journal of Physiotherapy and Rehabilitation, 2018. **29**(1): p. 33-38.
- 55. Bijlsma, A.Y., et al., *Muscle strength rather than muscle mass is associated with standing balance in elderly outpatients.* J Am Med Dir Assoc, 2013. **14**(7): p. 493-8.
- 56. Cardon-Verbecq, C., et al., *Predicting falls with the cognitive timed up-and-go dual task in frail older patients*. Ann Phys Rehabil Med, 2017. **60**(2): p. 83-86.
- 57. Van Ancum, J.M., et al., Muscle mass and muscle strength are associated with pre- and post-hospitalization falls in older male inpatients: a longitudinal cohort study. BMC Geriatr, 2018.
 18(1): p. 116.
- 58. Ikezoe, T., et al., *Physical function screening of institutionalized elderly women to predict their risk of falling*. Vol. 58. 2009. 489-498.
- 59. Keevil, V., et al., *Grip strength in a cohort of older medical inpatients in Malaysia: a pilot study to describe the range, determinants and association with length of hospital stay.* Arch Gerontol Geriatr, 2013. **56**(1): p. 155-9.
- 60. Ertan, U.K., et al., *Relationship among fall frequency, fear of falling, and muscle strength in elderly. [Turkish, English].* Fizyoterapi Rehabilitasyon, 2014. **1)**: p. S7-S8.

- 61. Janssen, H.C., et al., *Strength, mobility and falling in women referred to a geriatric outpatient clinic.* Aging-Clinical & Experimental Research, 2004. **16**(2): p. 122-5.
- 62. Moyer, H.S., et al., *Outcome measures correlated with falls in nursing home residents-A pilot study.* Physiother Theory Pract, 2017. **33**(9): p. 725-732.
- 63. Buckinx, F., et al., *Prediction of the Incidence of Falls and Deaths Among Elderly Nursing Home Residents: The SENIOR Study.* Journal of the American Medical Directors Association, 2018. **19**(1): p. 18-24.
- 64. Lloyd, B.D., et al., *Recurrent and injurious falls in the year following hip fracture: a prospective study of incidence and risk factors from the Sarcopenia and Hip Fracture study.* J Gerontol A Biol Sci Med Sci, 2009. **64**(5): p. 599-609.
- 65. Wilson, N., et al., *Physical functioning measures and risk of falling in older people living in residential aged care facilities.* Ther Adv Musculoskelet Dis, 2011. **3**(1): p. 9-15.
- 66. Yardimci, B., et al., *The role of geriatric assessment tests and anthropometric measurements in identifying the risk of falls in elderly nursing home residents*. Saudi Med J, 2016. **37**(10): p. 1101-8.
- 67. Yau, D.T., R.C. Chung, and M.Y. Pang, *Knee muscle strength and visual acuity are the most important modifiable predictors of falls in patients after hip fracture surgery: a prospective study.* Calcif Tissue Int, 2013. **92**(3): p. 287-95.
- 68. Yeh, H.F., et al., *Predictors of postoperative falls in the first and second postoperative years among older hip fracture patients*. Journal of Clinical Nursing, 2017. **26**(21-22): p. 3710-3723.
- 69. Garcia-Pena, C., et al., *Handgrip strength predicts functional decline at discharge in hospitalized male elderly: a hospital cohort study.* PLoS One, 2013. **8**(7): p. e69849.
- 70. Maeda, K., et al., *Sarcopenia Is Highly Prevalent in Older Medical Patients With Mobility Limitation*. Nutr Clin Pract, 2017. **32**(1): p. 110-115.
- 71. Savino, E., et al., *Handgrip strength predicts persistent walking recovery after hip fracture surgery*. Am J Med, 2013. **126**(12): p. 1068-75.e1.
- 72. Yamanouchi, A., et al., *Severely Decreased Muscle Mass among Older Patients Hospitalized in a Long-Term Care Ward in Japan.* J Nutr Sci Vitaminol (Tokyo), 2016. **62**(4): p. 229-234.
- 73. Yoshimura, Y., et al., *Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients.* Clin Nutr, 2017.
- 74. Selakovic, I., et al., *Can early assessment of hand grip strength in older hip fracture patients predict functional outcome?* PLoS One, 2019. **14**(8): p. e0213223.
- 75. Meskers, C.G.M., et al., Association of Handgrip Strength and Muscle Mass with Dependency in (Instrumental) Activities of Daily Living in Hospitalized Older Adults -The EMPOWER Study. J Nutr Health Aging, 2019. **23**(3): p. 232-238.
- 76. Bachrach-Lindström, M.A., A. Ek, and M. Unosson, *Nutritional state and functional capacity among elderly Swedish people with acute hip fracture.* Scandinavian Journal of Caring Sciences, 2000. **14**(4): p. 268-274.
- 77. Bjorkman, M.P., et al., *Bioimpedance spectroscopy as a measure of physical functioning in nursing home residents.* Aging Clin Exp Res, 2012. **24**(6): p. 612-8.
- 78. Bahat, G., et al., *Prevalence of sarcopenia and its association with functional and nutritional status among male residents in a nursing home in Turkey.* Aging Male, 2010. **13**(3): p. 211-4.
- 79. Di Monaco, M., et al., *Handgrip strength is an independent predictor of functional outcome in hip-fracture women: a prospective study with 6-month follow-up.* Medicine (Baltimore), 2015. **94**(6): p. e542.
- 80. Hershkovitz, A., et al., *The association between hand grip strength and rehabilitation outcome in post-acute hip fractured patients*. Aging Clin Exp Res, 2019. **31**(10): p. 1509-1516.
- 81. Neira Álvarez, M., et al., *Grip strength and functional recovery after hip fracture: An observational study in elderly population.* European Geriatric Medicine, 2016. **7**(6): p. 556-560.

- 82. Beloosesky, Y., et al., *Handgrip strength of the elderly after hip fracture repair correlates with functional outcome.* Disabil Rehabil, 2010. **32**(5): p. 367-73.
- 83. Gariballa, S. and A. Alessa, *Impact of poor muscle strength on clinical and service outcomes of older people during both acute illness and after recovery.* BMC Geriatr, 2017. **17**(1): p. 123.
- 84. Visser, M., et al., *Change in muscle mass and muscle strength after a hip fracture: relationship to mobility recovery.* J Gerontol A Biol Sci Med Sci, 2000. **55**(8): p. M434-40.
- 85. Moen, K., et al., *Physical function of elderly patients with multimorbidity upon acute hospital admission versus 3 weeks post-discharge*. Disability & Rehabilitation, 2018. **40**(11): p. 1280-1287.
- 86. Steihaug, O.M., et al., *Does sarcopenia predict change in mobility after hip fracture? a multicenter observational study with one-year follow-up.* BMC Geriatrics, 2018. **18**(1): p. 65.
- 87. Di Monaco, M., et al., *Muscle mass and functional recovery in men with hip fracture*. Am J Phys Med Rehabil, 2007. **86**(10): p. 818-25.
- 88. Di Monaco, M., et al., *Muscle mass and functional recovery in women with hip fracture*. Am J Phys Med Rehabil, 2006. **85**(3): p. 209-15.
- 89. Di Monaco, M., et al., *Appendicular lean mass does not mediate the significant association between vitamin D status and functional outcome in hip-fracture women.* Arch Phys Med Rehabil, 2011. **92**(2): p. 271-6.
- 90. Di Monaco, M. and C. Castiglioni, *Weakness and Low Lean Mass in Women With Hip Fracture: Prevalence According to the FNIH Criteria and Association With the Short-Term Functional Recovery.* J Geriatr Phys Ther, 2017. **40**(2): p. 80-85.
- Di Monaco, M., C. Castiglioni, and S. Di Carlo, Lean Mass and Functional Recovery in Men With Hip Fracture: A Short-Term Prospective Pilot Study. Am J Phys Med Rehabil, 2018. 97(6): p. 401-406.
- 92. Al Snih, S., et al., *Hand grip strength and incident ADL disability in elderly Mexican Americans over a seven-year period.* Aging Clin Exp Res, 2004. **16**(6): p. 481-6.
- 93. Rijk, J.M., et al., *Prognostic value of handgrip strength in people aged 60 years and older: A systematic review and meta-analysis.* Geriatr Gerontol Int, 2016. **16**(1): p. 5-20.
- 94. Bohannon, R.W., *Hand-grip dynamometry predicts future outcomes in aging adults.* J Geriatr Phys Ther, 2008. **31**(1): p. 3-10.
- 95. Alexandre Tda, S., et al., *Sarcopenia according to the European Working Group on Sarcopenia in Older People (EWGSOP) versus dynapenia as a risk factor for mortality in the elderly.* J Nutr Health Aging, 2014. **18**(8): p. 751-6.
- 96. Hicks, G.E., et al., *Absolute strength and loss of strength as predictors of mobility decline in older adults: the InCHIANTI study.* J Gerontol A Biol Sci Med Sci, 2012. **67**(1): p. 66-73.
- 97. Lauretani, F., et al., *Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia.* J Appl Physiol (1985), 2003. **95**(5): p. 1851-60.
- 98. Barbat-Artigas, S., et al., *Clinical relevance of different muscle strength indexes and functional impairment in women aged 75 years and older*. J Gerontol A Biol Sci Med Sci, 2013. **68**(7): p. 811-9.
- 99. Landi, F., et al., *Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study.* Clin Nutr, 2012. **31**(5): p. 652-8.
- 100. Moreland, J.D., et al., *Muscle weakness and falls in older adults: a systematic review and meta-analysis.* J Am Geriatr Soc, 2004. **52**(7): p. 1121-9.
- 101. Cruz-Jentoft, A.J., et al., *Sarcopenia: revised European consensus on definition and diagnosis.* Age Ageing, 2018.
- 102. Franchi, M.V., et al., *Muscle thickness correlates to muscle cross-sectional area in the assessment of strength training-induced hypertrophy.* Scand J Med Sci Sports, 2017.
- 103. Nijholt, W., et al., *The reliability and validity of ultrasound to quantify muscles in older adults: a systematic review.* J Cachexia Sarcopenia Muscle, 2017.

- 104. Clark, R.V., et al., *Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans.* J Appl Physiol (1985), 2014. **116**(12): p. 1605-13.
- 105. Cawthon, P.M., et al., *Strong Relation Between Muscle Mass Determined by D3-creatine Dilution, Physical Performance, and Incidence of Falls and Mobility Limitations in a Prospective Cohort of Older Men.* J Gerontol A Biol Sci Med Sci, 2019. **74**(6): p. 844-852.

APPENDIX 2: Systematic review search strategy

Example search strategy used for CINAHL database, searched 05/02/2020, using a combination of MESH headings and keywords.

- (MH "Acute Care") or (MH "Subacute Care") or (MH "Outpatients") or (MH "Inpatients") or (MH "Hospitals") or (MH "Hospitalization") or (MH "Rehabilitation Centers") or "hospitalisation" or (MH "Nursing Home Patients") or (MH "Nursing Homes") or (MH "Residential Care") or (MH "Hip Fractures")
- 2. (MH "Muscle Weakness") or (MH "Muscle, Skeletal") or (MH "Muscle Strength") or (MH "Muscular Atrophy") or (MH "Body Composition") or (MH "Sarcopenia") or "muscle thickness" or "Muscle mass" or (MH "Grip Strength") or "handgrip strength" or "quadriceps strength" or "upper extremity strength" or "upper limb strength" or "lower limb strength" or "lower limb strength" or "lower strength" or "muscle volume"
- 3. "bone fractures" or (MH "Accidental Falls") or "walking speed" or (MH "Gait") or (MH "Balance, Postural") or (MH "Physical mobility") or (MH "Activities of Daily Living") or "timed up and go test" or (MH "Physcial Performance") or "physical function" or "motor function" or "muscle function"
- 4. 1 and 2 and 3

APPENDIX 3: Table of Study Characteristics

Table 4 Characteristics of included studies listed alphabetically. Abbreviations: HGS – handgrip strength, KES – knee extension strength, LLS – lower limb strength, ULS – upper limb strength, BIA – bioelectrical impedance analysis, Anthro – anthropometry, USS – ultrasound, DXA – dual energy x-ray absorptiometry, CT – computed tomography, MRI – magnetic resonance imaging, ADL – activities of daily living, SPPB – short physical performance battery, TUG – timed up and go, 5STS – 5 sit to stand test, aLM – appendicular lean mass, BMI – body mass index, ht – height, wt – weight.

First Author and Publication year	Country of study	Study Design	Healthcare setting or clinical group	Sample size (both genders unless specified)	Average age (years)	Muscle mass or strength technique	Motor Outcome	Follow up time	Effect size (ES) (given as Standard mean difference)
Aarden 2019	Netherlands	Prospective	Inpatient	391	79	HGS	Mobility	3 months post discharge	HGS & Mobility: medium effect with mobility at 3 months post discharge (0.71)
Alqahtani 2017	USA	Cross-sectional	Care home	29	87	KES LLS	Mobility	n/a	KES & Mobility: strong (1.12) LLS & mobility: mixed results, dependent on which muscle group tested, strong effects with knee flexion and hip abduction but no effect with hip flexion or ankle plantarflexion.
Neira Alvarez 2016	Spain	Prospective	Hip fracture	127	85	HGS	ADL	3 months	HGS & ADL: strong effect with ADL ability at 3 months (1.12)
Aubertin- Leheudre 2019	France	Cross-sectional	Rehabilitation	44	82	HGS BIA USS	Mobility	n/a	HGS & mobility: moderate (0.71) BIA & mobility: no effect USS & mobility: strong effect (6.95)
Bachrach- Lindstrom 2000	Sweden	Cross-sectional	Hip fracture	142	84	BIA Anthro.	ADL	n/a	BIA & ADL: lower lean mass associated with pre-fracture ADL dependence, medium effect (0.51) Triceps skinfold thickness and arm circumference with ADL: no effect
Bahat 2010	Turkey	Cross-sectional	Care home	157 M	73	BIA	ADL	n/a	BIA & ADL: no effect
Bastone 2004	Brazil	Trials	Care home	37	78	KES	Mobility	Data from baseline	KES & mobility: strong effect for SPPB (0.90) and gait speed (1.20)

								measures	
Batista 2012	Brazil	Cross-sectional	Outpatient	150	77% of patients >70	HGS	Mobility	n/a	HGS & mobility: Low HGS, adjusted for BMI and gender, associated with longer chair stand time, medium ES (0.62)
Beloosesky 2010	Israel	Retrospective data analysis	Hip fracture	105	81	HGS	ADL	6 months	HGS & ADL: strong effect with ADL ability at 6 months (1.46)
Bergland 2010	Sweden, Norway and Denmark	Cross-sectional	Care home	322	85	HGS	Mobility Balance	n/a	HGS & Mobility: weak to medium (dominant side 5STS 0.41, gait speed 0.47; non- dominant side 5STS 0.56) HGS & balance: medium (dominant side 0.50; non-dominant side 0.53)
Bianchi 2017	Italy	Cross-sectional	Inpatient	655	81	BIA	Mobility	n/a	BIA & mobility: weak (0.34)
Bijlsma 2013	Netherlands	Cross-sectional	Outpatient	207	82	HGS KES BIA	Balance	n/a	HGS & balance: medium (0.57) KES & balance: medium (0.74) BIA & balance: no association
Bjorkman 2012	Finland	Prospective	Care home	106	84	BIA Anthro.	ADL	6 months	BIA & ADL: weak effect (0.49) with ADL ability at 6 months Calf circumference & ADL: no effect
Bodilsen 2016	Denmark	Prospective	Inpatient	369	78	HGS	Mobility	30 days after discharge	Low HGS on admission predicted low mobility 30 days after discharge. Medium effect (0.72)
Bruyneel 2018	Switzerland	Cross-sectional	Outpatient	32	83	LLS	Falls	n/a	LLS & falls in previous 1 year, moderate effect (0.73)
Buckinx 2018	Belgium	Prospective	Care home	565	83	HGS KES LLS Anthro.	Falls	1 year	HGS & falls: weak effect (0.33) for occurrence of falls in 1 year after adjustment for all variables associated with falls. KES and LLS with falls: association lost after adjustment for variables associated with falls Calf circumference & falls: weak effect (0.26) with falls in 1 year
Caballer 2015	Spain	Cross-sectional	Care home	71	84	HGS USS (rectus femoris CSA)	Mobility Balance	n/a	HGS & Mobility: strong (SPPB 0.94, gait speed 0.99, TUG 1.04) HGS & Balance: strong (0.82)

									USS & mobility: mixed, medium for gait
									speed (0.54), SPPB (0.68) and TUG (0.64), no
									effect with chair rises.
									USS & balance: no effect
Cardon-	France	Cross-sectional	Inpatient	157	84	HGS	Falls	n/a	HGS & falls: Low HGS associated with history
Verbecq 2017									of falls in previous year, weak ES (0.35)
Chang 2013	Taiwan	Cross-sectional	Outpatient	308	75	BIA	Mobility	n/a	BIA & mobility: no effect
Chen 2012	Taiwan	Cross-sectional	Care home	558	82	HGS	Mobility	n/a	HGS & mobility: Strong (0.92)
Chen 2015	Taiwan	Prospective	Outpatient	95	78	KES	Mobility	3 years	KES & mobility: over 3 years change in TUG
									score associated with change in KES, weak
									effect (0.47)
Cuesta 2015	Spain	Cross-sectional	Outpatient	298	83	HGS	Mobility	n/a	HGS & mobility: Strong for men (0.96),
						BIA			medium for women (0.56)
									BIA & mobility: no effect
Curcio 2016	Italy	Cross-sectional	Inpatient	337	77	HGS	Mobility	n/a	Low HGS, adjusted for BMI and gender
						BIA			correlates with mobility: Medium ES (0.56)
									BIA & mobility: medium (0.52)
Di Monaco	Italy	Prospective	Hip fracture	200 F	80	DXA	ADL	At discharge	DXA & ADL: no effect between muscle mass
2006									on admission and ADL ability at discharge.
Di Monaco	Italy	Prospective	Hip fracture	27 M	82	DXA	ADL	At discharge	DXA & ADL: strong effect with ADL ability at
2007									discharge (1.73)
Di Monaco	Italy	Prospective	Hip fracture	280 F	80	DXA	ADL	At discharge	DXA & ADL: No effect on discharge or with
2011									change in ADL ability during admission.
Di Monaco	Italy	Prospective	Hip fracture	123 F	79	HGS	Mobility	At discharge	HGS & mobility: HGS on admission strong
2014						DXA	ADL		effect size (0.8) with mobility on discharge.
									DXA & mobility: no effect between DXA on
									admission and mobility at discharge
									DXA & ADL: no effect between DXA on
									admission and ADL ability on discharge.
Di Monaco	Italy	Prospective	Hip fracture	193 F	80	HGS	ADL	On discharge	HGS & ADL: HGS on admission moderate
2015								and 6	association with ADL ability on discharge
								months	(0.51) and at 6 months (0.58).
Di Monaco	Italy	Prospective	Hip fracture	138 F	79	DXA	ADL	On discharge	DXA & ADL: no effect between low muscle
2017									mass on admission and ADL ability on
									discharge

Di Monaco 2018	Italy	Prospective	Hip fracture	80 M	81	DXA	ADL	On discharge	Muscle mass by DXA as aLM predicted recovery in ADLs but muscle mass by
Ertan 2014	Turkov	Cross costional	Outpatiant	22	75		Falls		aLM/BMI or aLM/ht² did not.
Ertan 2014	тигкеу	Cross-sectional	Outpatient	22	/5	поз	Falls	n/a	
Ertan 2015	Turkey	Cross-sectional	Innatient	23	75	HGS	Mobility	n/a	HGS & mobility: no effect
2013	runkey		inputient	25	15	KES	Falls	ii, a	KES had no association with mobility or falls.
Garia-Pena 2013	Mexico	Cross-sectional	Inpatient	223	73	HGS	ADL	n/a	HGS & ADL: moderate (0.53)
Gariballa 2017	UK	Prospective	Inpatient	432	79	HGS	ADL	6 weeks 6 months	HGS & ADL: Low HGS at admission, weakly predicted ADL disability at 6 weeks (0.43) and 6 months (0.46)
Giua 2014	Italy	Cross-sectional	Inpatient	68	78	LLS BIA	Mobility	n/a	LLS (hip flexion) & mobility: strong effect (0.80) BIA & mobility: no effect
Golder 2012	Canada	Cross-sectional	Rehabilitation	19	80	KES LLS	Mobility Balance	n/a	KES had no association with mobility or balance LLS had no association with mobility or balance
Guerreiro 2017	Brazil	Prospective	Inpatient	100	79	USS	Mobility ADL	3 months after discharge for ADL	USS quadriceps thickness & mobility at baseline: medium effect with gait speed (0.66) and TUG (0.62) USS quadriceps thickness & ADL decline after 3 months: no association
Hasselgren 2011	Sweden	Cross-sectional	Rehabilitation	50	80	LLS	Balance	n/a	LLS & balance: strong (1.15)
Hershkovitz 2019	Israel	Prospective	Hip fracture	373	83	HGS	ADL	On discharge	HGS & ADL: strong effect with ADL ability at discharge (0.80)
Ikezoe 2009	Japan	Cross-sectional	Care home	44 F	82	HGS KES	Falls	n/a	HGS & falls: falls in previous year, effect lost when adjusted for KES, and no effect with low HGS. KES & falls: Low KES predicted occurrence of falls in previous year, medium effect (0.76)
Ishiyama 2018	Japan	Cross-sectional	Inpatient	167	83	HGS KES	Mobility	n/a	HGS & mobility: Strong (1.07) KES & mobility: Strong (1.70)

Janssen 2004	Netherlands	Cross-sectional	Outpatient	70 F	81	KES	Mobility Falls	n/a	KES & mobility: strong effect with gait speed (2.6) and TUG (2.26), adjusted for BMI KES & falls: increased falls occurrence in previous 6 months with lower KES, medium effect (0.79)
Jeon 2019	Korea	Cross-sectional	Hip fracture	59	79	KES LLS	Mobility	n/a	KES & mobility: dependent on side tested, moderate effect (0.75) with fractured leg, strong effect (0.87) with non-fractured leg. LLS & mobility: dependent on muscle group tested, strong effect for knee flexion (0.90), moderate effect with hip abductor (0.52).
Kamo 2018	Japan	Cross-sectional	Care home	250	86	HGS Anthro.	ADL	n/a	HGS & ADL: strong (1.61) Calf circumference & ADL: strong (0.93)
Keevil 2013		Cross-sectional	Inpatient	80	81 M 78 F	HGS	Falls ADL	n/a	HGS & falls: No association with falls in previous year HGS & ADL: Strong (0.97)
Kristensen 2009	Denmark	Cross-sectional	Hip fracture	20	77	KES	Mobility	n/a	KES & mobility: strong effect with gait speed but no effect with TUG (all measures performed on day of discharge).
Laurentani 2018	Italy	Cross-sectional	Outpatient	263	81	HGS	Balance	n/a	HGS & balance: strong (0.73)
Lloyd 2009	Australia	Prospective	Hip fracture	193	81	HGS	Falls	1 year	HGS & falls: moderate effect (0.51) with >1 falls in 1 year.
Maeda 2017	Japan	Cross-sectional	Inpatient	778	83	HGS BIA	ADL	n/a	HGS & ADL: low HGS associated with ADL disability, strong effect (0.90) BIA & ADL: medium (0.55)
Mangione 2008	USA	Trial – publication of baseline data	Hip fracture	42	79	LLS	Mobility	Baseline data only in paper	LLS & mobility: Sum of LLS normalised to body weight associated with mobility, strong effect (2.1)
Martien 2015	Belgium	Cross-sectional	Care home	73	84	HGS KES	Mobility	n/a	HGS & mobility: Strong (1.46), adjusted for body weight. KES & mobility: Strong (1.54) adjusted for body weight
Martinikorena 2016	Spain	Cross-sectional	Care home	22	93	LLS CT	Mobility	n/a	LLS & mobility: no association CT thigh cross sectional area & mobility: no association

Meskers 2019	Netherlands	Prospective	Inpatients	378	80	HGS BIA	ADL	3 months post discharge	HGS & ADL: HGS associated with admission ADL ability in both sexes, moderate effect (0.50) but not with ADL ability at 3 months post discharge in men or women. BIA & ADL: SMI associated with admission ADL ability in men only, weak effect (0.33), but no association with ADL ability at 3 months in men or women.
Moen 2018	Norway	Prospective	Inpatients	115	86	HGS	ADL	3 weeks	HGS & ADL: no association at 3 weeks on multivariate analysis.
Moyer 2017	USA	Cross-sectional	Care home	17	84	KES LLS	Falls	n/a	Neither KES nor LLS associated with falls occurrence in previous 6 months
Nakamura 2006	Japan	Prospective	Care home	16	83	Anthro. MRI	ADL	3 years	Anthro & ADL: no association with anthropometric measures and low ADL ability at baseline or after 3 years. MRI & ADL: no association with low baseline ADL and low thigh muscle volume at baseline or with change in muscle volume over 3 years.
Rossi 2014	Italy	Cross-sectional	Inpatient	119	80	BIA	Mobility ADL	n/a	BIA & mobility: weak effect (0.44) BIA & ADL: no association
Sabol 2011	USA	Cross-sectional	Care home	108	84	HGS	Mobility	n/a	HGS & mobility: weak effect (0.4)
Savino 2013	Italy	Prospective study but only cross-sectional data used.	Hip fracture	504	85	HGS	ADL	Only baseline ADL data analysed in study.	HGS & ADL: Strong association with ADL ability 2 weeks before hip fracture (0.84).
Selakovic 2019	Serbia	Prospective	Hip fracture	191	80	HGS	ADL	3 months 6 months	HGS & ADL: HGS had moderate association with ADL ability at baseline (0.50), weak association at 3 (0.38) and 6 months (0.43).
Sipers 2016	Netherlands	Cross-sectional	Inpatient	96	85	HGS	Mobility ADL	n/a	HGS & mobility: medium (0.70) HGS & ADL: medium (0.75)
Soares 2017	Brazil	Cross-sectional	Care home	26	82	HGS LLS ULS	Mobility	n/a	HGS & mobility: Medium (0.70) LLS & mobility: strong (1.8) ULS & mobility: strong (1.35)
Soke 2018	Turkey	Cross-sectional	Care home	105	77	HGS	Balance	n/a	HGS & balance: Strong (0.94)
Stasi 2018	Greece	Cross-sectional	Hip fracture	96	76	LLS	Mobility		LLS & mobility: strong (0.88)

Steihaug 2018	Norway	Prospective	Hip fracture	282	79	HGS	ADL	1 year	HGS & ADL: no effect with change in ADL
						Anthro.			score at 1 year.
									Baseline calf circumference and triceps
									skinfold thickness no association of either
									with change in ADL 1 year after hip fracture.
Strasser 2018	Austria	Trial	Care home	54	82	DXA	Mobility	Baseline data	DXA & Mobility: no association of DXA with
								extracted	gait speed, chair rise test or 6 min walking
									test.
Suzuki 2009	Japan	Cross-sectional	Care home	60	87	KES	Mobility	n/a	KES & mobility: strong (1.28)
Suzuki 2012	Japan	Cross-sectional	Care home	54	87	KES	ADL	n/a	KES & ADL: strong (1.20)
Tarsuslu-	Turkey	Cross-sectional	Care home	111	77	LLS	ADL	n/a	LLS & ADL: no effect
Simsek 2017						ULS			ULS & ADL: medium (0.65)
Thingstad	Norway	Cross-sectional	Hip fracture	249	83	HGS	Mobility	n/a	HGS & mobility: Strong (0.8)
2015									
Uehara 2018	Japan	Prospective	Rehabilitation	137	82	KES	Mobility	On discharge	KES & mobility: baseline KES not associated
								from rehab	with mobility at discharge after adjustment
									for balance and functional ability.
Van Ancum	Netherlands	Prospective	Inpatient	297	80	HGS	Falls	3 months	HGS & falls: Combined men and women,
2018						BIA			weak effect (0.39) with history of falls 6
									months pre-admission, but no effect 3
									months post-discharge.
									BIA & falls: lower muscle mass weak effect
									(0.47) with falls over 3 months post-
									discharge but no effect with history of falls 6
									months pre-admission.
Van	Belgium	Prospective	Care home	276	83	BIA	Mobility	"duration of	Baseline BIA & baseline mobility: weak (0.30)
Puyenbroeck							Falls	study" for	Baseline BIA & Incident falls: no effect with
2012								falls but	falls
								study	
								duration not	
								specified	
Visser 2000	Netherlands	Prospective	Hip fracture	90	80	HGS	ADL	1 year	HGS & ADL: Over 1 year, loss of HGS
						LLS			associated with decline in ADL, weak effect
						DXA			(0.49)
									LLS & ADL: over 1 year, no effect

									DXA & ADL: over 1 year, decline in ADL ability
									at 6 and 12 months, no association with
									muscle mass changes by DXA.
Wilson 2011	Australia	Prospective	Care home	602	86	HGS	Falls	1 year	HGS & falls: no association with occurrence
									of falls over 1 year.
Wisniowska-	Poland	Cross-sectional	Care home	209	74	HGS	Mobility	n/a	HGS & mobility: weak effect (0.36-0.49)
Szurlej 2019							Balance		HGS & balance: weak effect (0.30)
Yamanouchi	Japan	Cross-sectional	Inpatient	79	81	HGS	ADL	n/a	HGS & ADL: medium (0.53)
2016						BIA			BIA & ADL: no effect
Yardimci 2016	Turkey	Prospective	Care home	89	76	HGS	Falls	1 year	HGS & Falls: no association with number of
						BIA			falls over 1 year.
						Anthro.			BIA & falls: no effect
									Triceps skinfold thickness and arm
									circumference with falls: no association
Yau 2013	Hong Kong	Prospective	Hip fracture	69	81	KES	Falls	6 months	KES & falls: falls over 6 months after fracture
						LLS			associated with baseline KES, strong effect
									(0.92)
									LLS & falls: not associated with falls over 6
									months.
Yeh 2017	Taiwan	Prospective	Hip fracture	171	78	KES	Falls	2 years	KES & falls: baseline KES associated with
									single fall in first year after fracture, medium
									effect (0.56), but no association in second
									year, or with number of falls over the 2
				4.62					years.
Yeung 2018	Netherlands	Cross-sectional	Outpatient	163	82	HGS	Mobility	n/a	HGS with mobility, falls and ADL: no effect,
						KES	Falls		any association lost when adjusted for KES.
							ADL		KES with mobility: weak effect with SPPB
									(0.26), no association with TUG.
				697					KES & ADL: weak effect (0.38)
Yoshimura	Japan	Cross-sectional	Rehabilitation	637	74	HGS	ADL	n/a	HGS & ADL: strong (0.90)
2017						BIA			BIA & ADL: weak (0.21)
Zarzeczny	Poland	Cross-sectional	Care home	26	86	KES	Mobility	n/a	KES & mobility: no effect
2017			1	1					

APPENDIX 4: Risk of bias assessment

Table 5 Summary of study appraisal using the AXIS appraisal tool for Cross-sectional Studies. Studies are listed with year of publication and sample size. The scores are given for the number of missing items in the study which might confer a risk of bias. Score of 0 - no items missing in that category, -1 - one item missing etc. Overall percentage is calculated from total score of items (usually 20, but in some there was uncertainty around items and they were excluded from the total). AXIS rating \geq 75% was considered good quality, low risk of bias; 50-74% moderate quality and moderate risk of bias; <50% poor quality and high risk of bias.

First Author and Publication year	Sample size (both genders unless specified)	Aims of study	Selection of participants	Measurement of variables	Attrition bias	Reporting bias & statistics	Conclusions and limitations	Funding and ethics	Overall percentage
Aarden 2019	391	0	-1	0	0	0	0	0	95%
Alqahtani 2017	29	-1	-2	-1	-3	-1	0	0	60%
Alvarez 2016	127	0	0	0	-3	0	0	0	85%
Aubertin-Lehaudre 2019	44	0	-1	0	-2	0	0	0	80%
Bachrach-Lindstrom 2000	142	0	-2	0	-2	0	0	0	75%
Bahat 2010	157 M	0	-2	-1	-3	0	-1	-1	61%
Bastone 2004	37	-1	-2	-1	-3	0	-1	0	55%
Batista 2012	150	0	-1	0	-3	0	0	0	80%
Beloosesky 2010	105	0	0	0	-3	-1	0	0	75%
Bergland 2010	322	0	0	0	0	0	0	0	95%
Bianchi 2017	655	0	0	0	0	-1	0	0	90%
Bijlsma 2013	207	-2	-1	0	-2	0	0	-1	65%
Bjorkman 2012	106	0	-3	-1	-3	-1	0	0	50%
Bodilsen 2016	369	0	0	0	0	0	0	-1	95%
Bruyneel 2018	32	-1	-2	0	-1	0	-1	0	65%
Buckinx 2018	565	0	-2	0	-2	0	0	-1	70%
Caballer 2015	71	-1	-1	0	-2	0	0	0	75%
Cardon-Verbecq 2017	157	0	0	-1	-2	0	-1	-1	70%
Chang 2013	308	0	-2	0	-3	-1	0	-1	60%
Chen 2012	558	0	0	0	-1	0	0	-1	79%
Chen 2015	95	-1	-1	0	-3	-1	-2	0	conference abstract
Cuesta 2015	298	0	-2	0	-3	-3	-1	0	58%
Curcio 2016	337	0	-2	0	-3	-1	0	0	72%
Di Monaco 2006	200 F	0	-2	0	-2	-1	0	-2	65%
Di Monaco 2007	27 M	-1	-1	0	-2	-1	0	-2	65%
Di Monaco 2011	280 F	0	-2	0	0	-1	0	-2	70%
Di Monaco 2014	123 F	0	-1	0	-1	-1	0	-2	70%
Di Monaco 2015	193 F	0	0	0	-3	-1	0	-2	66%
Di Monaco 2017	138 F	0	-1	0	-3	-1	0	-2	67%
Di Monaco 2018	80 M	-1	0	0	0	-1	0	-1	80%
Ertan 2014	23	-2	-3	-2	-3	-3	-2	-7	conference
Ertan 2015	22	-2		1		2	2	2	conference
Caria Dana 2012	222	0	-3	-1	-3	-5	-2	-2	abstract
Garibelle 2013	223	0	0	0	-5	-1	0	0	87%
Garibalia 2017	432	0	-1	0	-3	0	0	0	83%
Giua 2014	68	-1	0	-1	-3	-1	0	-1	61%
Golder 2012	19	-1	-1	0	-3	0	-1	-1	55%
Guerreiro 2017	100	0	-2	0	-1	0	0	0	75%
Hasselgren 2011	50	-1	-1	0	0	0	0	0	85%
Hershkovitz 2019	373	0	-2	0	-2	-1	0	-1	65%
Ikezoe 2009	44 F	-1	-2	-1	-2	0	0	-1	58%
Ishiyama 2018	167	0	-2	0	-3	0	0	-1	65%
Janssen 2004	70 F	-1	0	-1	-1	0	-1	0	75%
Jeon 2019	59	0	-1	0	-2	0	0	-1	75%
Kamo 2018	250	0	-1	0	-3	0	0	0	80%

Keevil 2013	80	-1	0	-1	-2	0	0	0	79%
Kristensen 2009	20	-1	0	0	-3	-1	-1	0	68%
Laurentani 2018	263	0	-2	0	-3	0	0	0	83%
Lloyd 2009	193	0	0	0	0	0	0	0	95%
Maeda 2017	778	0	0	-1	-3	0	0	-1	83%
Mangione 2008	42	-1	-2	-1	-3	0	0	-1	61%
Martien 2015	73	-1	-1	0	-3	0	0	0	74%
Martinikorena 2016	22	-1	-1	-1	-3	-1	-1	0	67%
Meskers 2019	378	0	0	0	-3	0	0	0	80%
Moen 2018	115	0	0	0	0	0	0	-2	90%
Moyer 2017	17	-1	-2	-1	-3	-1	-1	0	50%
Nakamura 2006	16	-1	-2	0	-3	0	0	-1	60%
Rossi 2014	119	0	0	0	0	-1	0	-1	95%
Sabol 2011	108	0	-1	0	0	0	0	-1	85%
Savino 2013	504	0	0	-1	-3	0	0	0	75%
Selakovic 2019	191	0	0	-1	-2	-1	0	0	75%
Sipers 2016	96	-1	0	0	-3	-1	-1	0	65%
Soares 2017	26	-1	-1	0	-3	-1	-1	0	60%
Soke 2018	105	0	-1	0	-3	0	0	0	75%
Stasi 2018	96	0	-1	0	-3	0	0	-1	70%
Steihaug 2018	282	0	0	-1	0	-1	-1	0	85%
Strasser 2018	54	-1	-1	0	-1	0	0	-1	75%
Suzuki 2009	60	-1	-1	0	-3	0	0	-1	68%
Suzuki 2012	54	-1	-2	0	-3	0	0	0	65%
Tarsuslu-Simsek 2017	111	0	-2	0	-3	0	-1	0	65%
Thingstad 2015	249	0	0	0	-3	-1	0	0	75%
Uehara 2018	137	0	0	0	-3	0	-1	0	75%
Van Ancum 2018	297	0	-1	0	0	0	0	0	90%
Van Puyenbroeck 2012	276	0	-1	0	-3	0	0	0	79%
Visser 2000	90	-2	-1	0	0	-1	-1	-1	65%
Wilson 2011	602	0	-1	0	-3	0	0	0	75%
Wisniowska-Szurlej 2019	209	0	0	0	-2	0	-1	-1	75%
Yamanouchi 2016	79	-1	-1	-2	-3	0	0	-1	57%
Yardimci 2016	89	-1	-1	0	-2	0	-1	-1	65%
Yau 2013	69	0	0	-1	-3	-3	0	-1	53%
Yeh 2017	171	0	-1	0	-1	0	0	0	85%
Yeung 2018	163	0	-1	-1	-1	0	0	0	78%
Yoshimura 2017	637	0	0	-1	-3	0	0	-1	83%
Zarzeczny 2017	26	-1	-1	0	-3	0	0	-1	68%