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Abstract: Multiple sclerosis (MS) is an immune inflammatory disease, where the underlying 

etiological cause remains elusive. Multiple triggering factors have been suggested including 

environmental, genetic and gender components. However underlying infectious triggers to the 

disease are also suspected. There is an increasing abundance of evidence supporting a viral etiology 

to MS, including the efficacy of interferon therapy and over detection of viral antibodies and nucleic 

acids when compared with healthy patients. Several viruses have been proposed as potential 

triggering agents, including Epstein-Barr virus, Human herpesvirus 6, Varicella-zoster virus, 

Cytomegalovirus, John Cunningham virus and Human endogenous retroviruses. These viruses are 

all near ubiquitous and have a high prevalence in adult populations (or in the case of the 

retroviruses are actually part of the genome). They can establish lifelong infections with periods of 

reactivation, which may be linked to the relapsing nature of MS. In this review, the evidence for a 

role for viral infection in MS will be discussed with an emphasis on immune system activation 

related to MS disease pathogenesis.   
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1. Introduction 

Multiple sclerosis (MS) is a severely debilitating progressive inflammatory disease of the central 

nervous system (CNS) [1].The basic pathology is thought to be auto-immune mediated damage to the 

myelin sheaths of central nerves [2]. This is supported by the finding of plaques, areas of the damage, 

particularly within the white matter around the lateral ventricles of the brain and optic nerves [3,4]. 

Demyelination of the white mater in MS is routinely demonstrated by conventional MRI techniques 

[5]; however, lesions in the grey mater are also demonstrated [6]. It appears that the degree of cortical 

demyelization reflects the clinical progression of MS with demyelination of the grey matter associated 

with the progressive form of the disease along with neuronal loss, while myelin destruction is 

detected in relapsing-remitting MS [7,8]. Cortical lesions can also be detected at the early stages and 

they correlate with the disease severity [9].  

The clinical course of the disease varies greatly from relapsing remitting, where patients have 

periods of remission, to progressive forms. There are four clinical forms of MS: primary progressive 

MS (PPMS), secondary progressive MS (SPMS), relapsing remitting MS (RRMS) and progressive 

relapsing (PRMS) all of which are characterized by periods of active disease with evidence of new 

pathology interspersed with inactive periods [10] (Figure 1). RRMS is the most common form of the 

disease, which is characterized by worsening of clinical symptoms followed by periods of partial or 

complete recovery [11]. RRMS often transitions into a secondary progressive course with worsening 

and steady progression of symptoms [12], which is referred to as SPMS. A small group of patients 
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will develop PPMS with steady progression of neurological symptoms without periods of remission 

[13-15]. PRMS is somewhat similar to PPMS, but these patients have periods of recovery characterized 

by concomitant progression of MS symptoms [15]. The remitting phase of the disease, where the 

periods of remission are followed by worsening of symptoms, closely resembles the progression of 

some viral infections, herpes viruses, in particular. Although, permanent tissue destruction and loss 

of function is not common for reactivation of most of herpesviruses, still, neurological complications 

have shown in some chronic herpesviruses infections [16].  

 

Figure 1. Clinical presentation of MS. RRMS- has worsening of clinical symptoms followed by periods 

of recovery; PPMS - has steady progression of clinical symptoms; SPMS – initial relapsing-remitting 

course followed by steady progression of symptoms; PRMS - steadily progression of clinical 

symptoms with occasional relapses. 

Myelin is the multilamellar sheath formed around the neurons and axons by neuroglial cells [17]. 

Myelin formation is complex process requiring expression of several myelin‐specific proteins: myelin 

basic protein (MBP), myelin‐associated glycoprotein and proteolipid protein [18]. Additionally, 

several minor glycoproteins are present in the myelin sheath including myelin oligodendrocyte 

glycoprotein (MOG) (Figure 2). MOG is expressed on the surface of the myelin, covering the neurons 

and axons [19]. While the function of MOG remains largely unknown, it is believed that this protein 

serves as an adhesion molecule or cellular receptor.  

 

Figure 2.  Myelin-associated glycoprotein (MOG) expression on the surface of the myelin, covering the 

axon. The myelin sheets are held together with Myelin basic protein (MBP) , while MOG is located on 

the surface and exposed to the autoreactive leukocytes. 

A number of risk factors including ethnicity, particular HLA loci, gender (it is more common in 

women), latitude (and therefore sunlight and vitamin D levels) and viral infections have been 

identified as risk factors of MS [20]. A variety of immune modulatory treatments are used with none 

fully able to halt or reverse disease progression. Nevertheless, the effectiveness of interferon beta 

(IFNβ) treatment of MS suggests that antiviral immunity plays a role in the etiology of MS, as this 

cytokine has a potent anti-viral activity [21]. A role in MS pathogenesis  has been suggested for many 

viruses including Epstein-Barr virus (EBV), Human herpesvirus 6 (HHV-6), Varicella-zoster virus 



Viruses 2020, 12, x FOR PEER REVIEW 3 of 20 

 

(VZV), Cytomegalovirus (CMV), John Cunningham virus (JCV) and Human endogenous retroviruses 

(HERVs)[22-26] 

The association between viral infection and MS is a complex. Although belonging to different 

families, these viruses have in common an ability to manipulate host gene expression, potentially 

leading to immune dysregulation, myelin destruction and inflammation. These are all viruses with 

either a DNA phase or DNA viruses, can cross the blood brain barrier (BBB) and can all establish 

lifelong chronic infection [27]. In this review, the role of several viruses in MS pathogenesis will be 

discussed.  

 

2. Herpesviruses 

 There is an established epidemiological link between herpesvirus infection status and the risk of MS . 

Herpesviruses have a near ubiquitous prevalence in adult populations and are usually contracted in 

the early childhood with little overt disease [28]. There are several herpes virus types known to be 

human pathogens: alpha, beta and gamma [29]. Members of each group, alpha (varicella zoster virus, 

VZV), beta (cytomegalovirus CMV and human herpesvirus 6 HHV-6) and gamma (Epstein Barr virus 

EBV) are all suspected of having potential role in MS. Herpesviruses can establish two replication 

cycles: latency and reactivation. Herpesviruses have multiple targets including neuronal (alpha-

herpesviruses) and non-neuronal (beta and gamma herpesviruses), macrophages and B cells [30,31]. 

Herpesviruses targeting neurons directly or indirectly, via immune response, could contribute to the 

tissue damage found in MS. 

Herpes viruses share many features in their structure including the capsid and tegument 

proteins as well as the envelope (Figure 4). Typically, virus genome is covered by the nucleocapsid 

[32], which is surrounded by the tegument protein [33] [34]. The envelope containing glycoprotein 

spikes wraps the virus outside [35]. The envelop glycoproteins bind to the cell receptors and assist 

with penetration of the target cell [36]. Virus DNA replication, transcription and encapsidation take 

place in the nucleus of infected cells [37,38]. In immunocompetent hosts infection is usually 

asymptomatic, followed by lifelong latency and reactivation [36] [39]. Virus can reactivate, resulting 

in the initiation of a replication cycle and cytopathic effect in infected cell [40]. 

 

Figure 4. Structure of Herpesviruses. The viral DNA is packed inside the capsid, which is wrapped by 

the tegument. The envelope, the outer layer of the virion, is composed by the phospholipids bilayer 

embedded with glycoproteins. 

2.1 Alphaherpesviruses (VZV, HSV-1 and 2)  

VZV reactivation is a recognized complication of the immunosuppressive therapies used in MS 

treatment, in particular Fingolomid (a sphingosine-1-phosphate receptor modulator that acts by 

sequestering lymphocytes in lymph nodes). [41]A history of VZV and an increased antibody response 

to it is more common in MS patients than the general population[41,42]. VZV is also frequently 

detected during active disease phases of MS[43]. It is not clear however whether this detection has 
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any connection to a role in pathogenesis in MS or is an incidental escape of VZV from immune control 

due to MS treatment or disease[44].  

Similarly for HSV-1 and 2 viral encephalitis as complication of the various immunosuppressive 

drugs used in MS therapy is seen [45-47] and there has been some suggestion of increased antibody 

prevalence of HSV-1 and or 2 in MS patients (though potentially only in some cohorts of patients 

[48,49] and this is not repeatable across different cohorts of patients [50]. HSV-1 in rats and mice can 

induce demyelinating encephalitis but it is not clear that this cross species transmission event 

pathology is relevant in humans [51,52].  

2.2 Beta-herpesviruses. CMV. 

The association of CMV and MS pathogenesis remains inconclusive. In two studies higher loads 

of CMV DNA were demonstrated in an Iranian cohort of MS patients when compared to controls 

[53,54]. Corroborating these data were findings that  opportunistic reactivation of CMV infection can 

also occur in MS patients with this  reactivation potentially exacerbating existing MS [55,56]. In 

contrast, multiple other studies have demonstrated a negative correlation between CMV 

seropositivity and MS diagnosis [25,57-60] [61]. A large meta-analysis including 1341 MS and 2042 

controls however failed to conclusively define the relationship between CMV infection and the 

disease [62] These differences may potentially be explained by an effect similar to that described for 

Epstein Barr virus whereby the small number of people who have never been infected with CMV 

have a decreased risk of MS in contrast with reactivation of latent CMV in the active disease phase of 

MS potentially exacerbating existing damage   

 

 Evidence from the two murine models of MS is also conflicting with Pirko et al 2012 , a 

protective effect of the murine version of CMV, MCMV infection in the Theiler’s murine encephalitis 

virus (TMEV) model MS [63]. Wheres Vanheusden et al demonstrated expansion of CD4+CD28null T 

cells in MCMV infection in mice with these cells associated with  

 

, aggravation of  the inflammation, demyelination and worsening symptoms of experimental 

autoimmune encephalomyletis (EAE), a mouse model of MS induced by the injection of myelin 

antigens with adjuvantEAE  [64]. These authors identified circulating CD4+CD28null T cells as the 

leading pathogenic lymphocytes in mice, as their counts correlated with demyelination and disease 

severity. These T cells lack to CD28 co-stimulation factor necessary for activation of T cells and are 

typically expanded in chronic inflammation [65].. The EAE model in mice is not however a perfect 

mirror of MS disease in humans Although a strong correlation between CD4+CD28null T lymphocytes 

and EAE progression has been demonstrated in mice, these cells were expanded only in a small 

group of MS patients and demonstrated  limited autoreactivity [66].Alternative work in the non-

human primate model (the marmoset) with a closer pathology to the human disease has also 

highlighted that the T-cell driven responses in the murine models may not be as important in 

primates and humans [23].   

2.2 Beta-herpesviruses HHV6.  

There are a number of studies linking HHV6 with MS pathogenesis [67]. Strong evidence of the 

role of HHV6 in MS pathogenesis includes an increased prevalence of viral DNA and proteins within 

MS plaques and CSF as compared to healthy patients indicating HHV6 neurotropism [68,69]. Also, 

expression of viral RNA and proteins in periventricular lesions, which are commonly found in MS, 

supports the involvement of HHV6 in MS pathogenesis [70,71]. These findings have been countered 

by other studies failing to report HHV6 detection in MS [72]. However, a recent systematic review 

and Meta-analysis supports an association between HHV-6 antibody and DNA positivity and MS 

[73]. There is also some suggestion of HHV-6 proteins having cross reactivity with myelin basic 
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protein, an essential component of the myelin sheath, which could contribute to CD8+ T cell mediated 

oligodendrocyte death [72].  

 

2.3Gamma Herpesviruses EBV.  

Gamma-herpesvirus EBV association with MS is complex. It appears that EBV seronegative 

status correlates with a decreased risk of MS [74]. Accordingly, patients with infectious 

mononucleosis (IM), have an increased risk of MS as compared to those who are seropositive but with 

no history of IM [75]. Whether the presence of EBV DNA is more likely in MS than “healthy” patients 

is more controversial and remains unproven [75,76] [77]. Also virus detection in the periphery, may 

not correlate with its presence in the CNS [76]. Therefore, some authors hypothesize that EBV 

invasion of the CNS before adaptive immune responses have developed is a crucial factor in MS 

pathogenesis [78]. Multiple mechanisms of EBV MS pathogenesis are currently proposed including 

cross reactivity between virus and myelin epitopes [79], auto-immune responses against alpha-β-

crystallin (a stress protein expressed in lymphoid cells and oligodendrocytes)[80], antibody-

dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity [81]. Despite its’ well-

established role as one of the triggers of the disease, shedding or detection of EBV in either the blood 

or CNS does not appear to be related to relapses or progression of MS [82,83].  

Intriguingly there is also an increasing body of evidence pointing at the role of Epstein-Barr 

Nuclear antigen 2 (EBNA2) in the pathogenesis of MS. EBNA2 can upregulate host gene expression 

and recruit transcription activation factors [84-87]. Interestingly EBNA2 binding in the host cells 

occurs within the known genetic loci associated with MS susceptibility [88]. In this respect, two 

binding sites appear to be most interesting: Recombination signal binding protein for 

immunoglobulin kappa J region (RBPJ) and the vitamin D receptor (VDR). It has been shown that 

EBNA2 can convert resting B cells into immortal cells by engaging the transcription factor RBPJ [89]. 

These immortal B cells could maintain pathogenic autoreactive leukocytes in MS circulatory and 

brain tissue. The EBNA2 overlap with VDR [88] is also of importance as vitamin D deficiency as a 

predisposing factor in MS is well established [90]. Many of the same sites are also implicated in 

systemic lupus erythematosus (SLE), another disease with strong epidemiological links to EBV 

infection [88,91]. These associations are particularly marked in B cells and it would seem that there is 

a competitive interaction for transcription binding sites between EBNA2, promoting B cell 

proliferation, and Vitamin D which down regulates B cell function.  

Further more complicated evidence for a direct role of EBV in MS pathology is provided by the 

marmoset model of MS, which closely mimics the human immune response to EBV [92]. In this 

model, the role of Calithricine herpesvirus 3 (CalHV3) in pathogenesis of MS-like disease was 

explained by direct infection of B cells [93]. Therefore, it appears that the therapeutic efficacy of 

marmoset treatment with anti CD20 monoclonal antibodies (anti B cell antibodies) was associated 

with the depletion of CalHV3 infected B cells [94]. An important aspect of this is the antigen 

presenting capacity of CalHV3 infected B cells is affected resulting in the presentation of citrulinated 

epitopes of MOG, which is resistant to degradation [95]. It was suggested that these epitopes can 

stimulate autoreactive cytotoxic T cells, which can escape thymic deletion.  

The evidence for EBV involvement in MS pathogenesis has been compelling enough for at least 

one trial of EBV specific autologous T cell therapy with in-vitro expanded T cells stimulated to target 

EBV nuclear antigen 1 (EBNA1), latent membrane proteins 1 and 2A (LMP1, LMP2A) and reinfused 

in the donor patient. Seven of the 10 patients treated showed clinical and neurological improvement, 

though it is important to note that this was primarily a safety trial with no control arm[96] 

  

3. Non-herpes viruses associated with MS.  

3.1 JCV  
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JCV (human polyomavirus 2 or John Cunningham Virus) is another near ubiquitous DNA viral 

infection acquired in childhood [97]. JCV is a non-enveloped double-stranded DNA virus which 

associates with cellular histones to form minichromosomes in infected cells [98,99] (Figure 5). It is 

believed that JCV infection occurs during childhood and remains dormant in the stage of latency in 

most individuals [100]. This explains the fact that up to 90% of adults are seropositive for the virus, 

with about 20% shedding it in urine [101,102]. JCV infection does not cause overt disease in 

individuals with functional immune systems [103]. However, in immunocompromised individuals, 

the virus can trigger progressive multifocal encephalopathy (PML), characterized by lytic JCV 

infection of oligodendrocytes and astrocytes in the CNS [104]. It appears that the virus has to undergo 

several mutations to enable it to cross the BBB and replicate in the CNS [105,106].  

 

Figure 5. Structure of JCV. The viral DNA is packed around the Histones in a chromatin-like complex. 

Covered by viral structural proteins VP1, forming the capsid with VP2 and VP3 proteins incorporated. 

Although JCV targets oligodendrocytes and demyelinization, it is not thought to have any role in  

triggering MS pathogenesis. An increased risk of development of PML in MS patients treated with 

natalizumab (a monoclonal antibody targeting alpha integrin and therefore inhibiting all white blood 

cell migration) is a known risk factor of this treatment regime [107]. Currently, the use of this drug is 

therefore limited to only highly active RRMS and patients with tolerance to first-line treatments such 

as IFN β [108]. Why this syndrome should be prevalent with natalizumab and not with other MS 

treatments is not clear; however, it is thought to be related to the induction of increased B cell 

numbers alongside reduced immune surveillance of the CNS [109]. Withdrawal of treatment can 

exacerbate the condition as the influx of suddenly reconstituted immune cells can worsen the 

inflammation caused by JCV, which is often fatal [110]. Hence despite its effectiveness in RRMS, risk 

assessment and monitoring of patients based on JCV seropositivity and antibody titer is necessary in 

treatment decisions with this drug in MS [24]. 

 

3.2 HERVs   

 

HERVs are replication defective retroviral proviruses integrated into the human genome and 

comprising up to 8% of it [111]. Over the millennia, HERV proviral sequences have been integrated 

into the human genome regulatory machinery by functioning as promoters, repressors, poly(A) 

signals, enhancers and alternative splicing sites for many non-viral genes [112,113]. Along with 

beneficial effects, inappropriate expression of HERVs has been shown to cause inflammation, 

aberrant immune reaction and dysregulated gene expression [114-116]. HERVs can be grouped into 

three main classes: class I Gammaretrovirus- and Epsilonretrovirus-like HERVs; class II 
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Betaretrovirus-like HERVs; and class III HERV-L [117]. Expression of Gammaretrovirus HERV family 

members, HERVs-H and W has been shown to be associated with MS diagnosis [118,119] . Although 

not capable of completing a full replication cycle, transcription and translation of individual HERV 

proteins, particularly the HERV-W Env protein syncytin in the human placenta, does occur and has 

been demonstrated in the CNS in MS cases and in some healthy individuals [120-122]. There are 

substantial variations in the proportion of MS patients that test positive for HERV-W viral RNA in the 

serum, which can vary between 50 to 100% and in the viral load detected [123-125]  with our systemic 

Meta-analysis confirming the association between MS and HERV-W expression [22].. The wide 

variation in HERV detection is potentially  explained by population differences in HERV expression 

as well as the differing detection methods used in each study. It appears that the detection of HERV-

W products in the blood of MS patients is associated with a poor prognosis and could serve as a 

predictive marker for conversion of optic neuritis into MS [126,127]. HERV load also correlates 

positively with Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Severity Score (MSSS) 

ratings [128]. The higher HERV-Wexpression in female as compared to male patients, corresponds to 

the gender differences within MS [127]. Further evidence of HERV association with MS pathogenesis 

isprovided bythe detection of HERV-W particles in CSF, changing with the disease progression: 

increasing in relapse and decreasing during remission [129]. HERV antigens can be immunogenic and 

higher antibody reactivity against HERV-W and HERV-H Env epitopes was demonstrated in MS 

patients during relapse [130]. These data suggest that HERV antigens could trigger auto-immune 

responses, leading to systemic activation of T cell-mediated neuropathology and brain tissue damage 

as shown in a SCID mouse model [131]. 
  There is an increasing body of data demonstrating that HERV-W protein expression leads to immune activation 

and inflammation. HERV-W proteins display cross reactivity with MOG and have been demonstrated to bind 

with the HLA DR2 locus implicated in genetic susceptibility to MS [132,133] [134] [135-137]. HERV-W env 

proteins bind to CD14 and TLR4 triggering pro-inflammatory cytokines IL-1β, IL-6, or TNF-α [138-140]. The 

HERV-W Env derived protein syncytin is expressed, specifically in monocytes, T and B lymphocytes and NK 

cells displaying an activated phenotype with expression increasing when these cells were stimulated with LPS. In 

addition binding of syncytin activated monocytes, increased the proportion of the type of non-classical monocyte 

(CD14lowCD16+) associated with MS [141]. Both HERV-W and HERV-H are overexpressed in these non-classical 

monocytes in MS patients [142,143]. Intriguingly the use of HERV driven enhancers (the LTR regions in HERVs 

can turn on nearby genes) is increased in T cells from MS patients specifically activating the immune genes 

CCL20 and IL1R2[144]. While there is argument over whether peripheral immune responses in PBMC can 

induce CNS disease it is also clear that a leaky blood brain barrier in MS can allow the migration of blood borne 

monocytes to the CNS triggering inflammation and myelin damage [145].  

HERV-W or syncytin (there is some argument over whether HERV-W env proteins, can be 

reliably distinguished from each other[146]) have also been shown to inhibit oligodendrocyte 

precursor cell formation and remyelination, an effect that can be blocked by the anti-HERV 

monoclonal antibody GNbAC1 [147] This antibody despite a disappointing lack of effect on clinical 

disease scores in treatment trials with patients did more promisingly demonstrate a reduction in new 

lesions as measured by MRI in treated patients compared with placebo [148]. Recent work has in 

addition demonstrated that HERV-W is present in microglia (brain resident myeloid cells) associated 

with axons in MS patients and that expression of HERV-W in myeloid cells induces a degenerative 

phenotype resulting in damage to myelinated axons [149]  

 

 

 

An interesting cooperation between EBV and HERVs has also been demonstrated in MS patients. 

Irizar et al have shown that EBV reactivates in B cells of female RRMS patients during relapse [150]. It 

appears that EBV-encoded glycoprotein 350 expression stimulates the expression of  the syncytin-1, 

HERV-W coded protein in B cells as well as in astrocytes and monocytes [150]. We have also shown a 

similar effect with EBV infection of B cells triggering increased expression of HERV-W RNA and 

protein [151]. This effect is also seen in young adults with infectious mononucleosis (EBV induced 
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disease) [152] It could be suggested that EBV infection or reactivation could serve as a trigger for 

HERV reactivation, which acting as antigens, could induce an auto-immune response targeting neural 

tissue.  

A similar effect has been recently reported with HHV-6 infection of PBMC and 

astroglyoblastoma cell lines where viral infection or activation of its receptor CD46 triggers HERV-W 

expression and TLR4 activation[153] Similarly HSV-1 infection in neuroepithelioma cell lines with 

HSV-1 also activated HERV-W transcription and protein expression in neuronal and brain endothelial 

cells in culture [154] [155], the activation potentially mediated by HSV-1 intermediate early protein 

(IE1) binding to the HERV-W LTR [156]. Interestingly there is also work showing that the addition of 

both herpesviral and HERV-H antigens to PBMC triggered enhanced cellular immune responses [157] 

4. Antiviral effects of MS treatment   

 The treatments available for MS are all variants of immunomodulatory therapies, most of 

which produce their primary effect via induction of lymphopaenia or a shift to a more TH2 driven 

phenotype [158]. Many of them are also used in cancer therapy and common side effects include an 

increased incidence of opportunistic infections or reactivation of latent infections. Interestingly the 

first drug successfully used in MS is IFNβ, which is also one of the principal antiviral cytokines 

produced by virus infected fibroblasts [159]. It may seem a counterintuitive use of an antiviral 

cytokine to treat an inflammatory disorder but the feedback loops induced by IFNβ inhibit many T 

cell functions [158] 

The more recent MS treatments include humanized monoclonal antibodies against lymphocyte 

surface antigens [160].These include Natalizumab which targets VLA4 (very late antigen 4) which is 

expressed on various leukocytes [161,162]. This is thought to  inhibit the interaction between VLA-4 

and vascular cell adhesion molecule-1 (VCAM-1) which facilitates leukocyte migration across the BBB 

[163-165]. The success of the Natalizumab as MS therapeutic has however hindered by PML 

developing in some patients [166,167]. Another humanized antibody MS therapeutic is Alemtuzumab 

which targets CD52 expressing lymphocytes, monocytes and dendritic cells [168]. It appears that the 

mechanism of Alemtuzumab action is associated with depletion of circulating T and B lymphocytes 

via antibody-dependent and complement-dependent cytolysis [168,169]. Post Alemtuzumab hyper-

rebounding of the B cell population can, however, result in a variety of other autoimmune diseases, a 

common side effect of this treatment [170]. The most recently introduced drug of this class 

Ocrelizumab, and its predecessor Rituxizimab, targets the B cell surface protein CD20, resulting in 

selective depletion of this lymphocyte population [171].  In the context of this review all of these 

therapies, which have been quite successful in MS therapy target immune cells in which EBV or 

HERV expression has been demonstrated and part of the effect of these monoclonal antibody 

therapies may be in reducing the EBV and HERV-W autoreactive cells and antigen load.   

6. Conclusions 

There is increasingly solid evidence for a pathogenic role in the triggering of MS auto-immune 

responses by a failure to control chronic viral infections. Evidence for the herpesviruses EBV and 

CMV points towards patients who have never been infected with these viruses having a decreased 

risk of disease, whereas virus activation and the immune responses associated with this are linked to 

MS pathology. Similarly EBV infection appears to trigger expression of the HERVs that have been 

associated with MS pathogenesis and for both HERVs and Herpesviruses significant cross reactivity 

between viral protein epitopes and the MOG (myelin oligodendrocyte protein) and myelin basic 

proteins that are major targets in MS autoimmunity are evident. Directly opposing effects of vitamin 

D (protective) and EBV EBNA2 (associated with disease) at a molecular level are also apparent. 

Significantly a number of the most commonly used and effective MS treatments also directly induce 

antiviral responses or remove the cells that these herpesviruses (and subsequently retroviruses) 

replicate and are expressed in adding further evidence to a role for these viral infections in MS 

pathogenesis.  
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