
 

 

A generalised model for generalised transduction: 

the importance of co-evolution and stochasticity in 

phage mediated antimicrobial resistance transfer 

 Sankalp Arya1, Henry Todman2, Michelle Baker1,2, Steven Hooton3, Andrew Millard4, Jan-Ulrich Kreft5, 

Jon L. Hobman3, Dov J. Stekel1 

 

1Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, 

Sutton Bonington Campus, Loughborough, LE12 5RD, UK 

2School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK 

3Division of Food Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, 

Loughborough, LE12 5RD, UK 

4Dept of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK 

5School of Biosciences & Institute of Microbiology and Infection & Centre for Computational Biology, 

University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK 

Abstract 

Antimicrobial resistance is a major global challenge. Of particular concern are mobilizable elements that 

can transfer resistance genes between bacteria, leading to pathogens with new combinations of 

resistance. To date, mathematical models have largely focussed on transfer of resistance by plasmids, 

with fewer studies on transfer by bacteriophages. We aim to understand how best to model transfer of 
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resistance by transduction by lytic phages. We show that models of lytic bacteriophage infection with 

empirically derived realistic phage parameters lead to low numbers of bacteria, which, in low population 

or localized environments, lead to extinction of bacteria and phage. Models that include antagonistic 

co-evolution of phage and bacteria produce more realistic results. Furthermore, because of these low 

numbers, stochastic dynamics are shown to be important, especially to spread of resistance. When 

resistance is introduced, resistance can sometimes be fixed, and at other times die out, with the 

probability of each outcome sensitive to bacterial and phage parameters. Specifically, that outcome 

most strongly depends on the baseline death rate of bacteria, with phage-mediated spread favoured in 

benign environments with low mortality over more hostile environments. We conclude that larger-scale 

models should consider spatial compartmentalisation and heterogeneous microenviroments, while 

encompassing stochasticity and co-evolution.  

 

Introduction 

Antimicrobial resistance (AMR) is a major global health threat; at least 700,000 deaths per year are 

attributed to bacterial infections by drug-resistant strains globally (O’Neill 2016). Of particular concern 

are mobilisable elements, which are important in the spread of resistance genes between bacteria 

through horizontal gene transfer (HGT), as reviewed by Partridge et al. (2018). This is one of the salient 

factors responsible for rapid global spread of infections carrying resistance genes, e.g. NDM-1 (Dortet, 

Poirel and Nordmann 2014). Much research on spread of resistance, both empirical and modelling, has 

focussed on spread by conjugation, i.e. plasmids (Levin and Stewart 1980; Volkova et al. 2012; Volkova 

et al. 2013; Baker et al. 2016). However, very few models have considered gene mobilization by 

bacteriophage transduction, despite being the most abundant biological entities on the planet, with an 

estimated 1023 bacteriophage infections occurring every second (Pawluk 2017). Bacteriophage can 
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acquire gene segments from bacteria they infect and pass them on to other bacteria upon further 

infection (Snyder et al. 2013). Transduction can be primarily classified as specialised or generalised 

transduction. Specialised transduction results from the imprecise excision of a prophage in temperate 

phages, causing accidental packaging of the regions flanking the prophage insertion site in bacterial 

chromosome (Kwoh and Kemper 1978), while generalised transduction is the erroneous packaging of a 

random piece of bacterial DNA only. Thus, generalised transduction causes the formation of transducing 

particles, which may carry any genes including resistance genes. Phage communities are prevalent in 

environments important for spread of antimicrobial resistance, including human and animal intestines 

(Dhillon et al. 1976; Dhillon et al. 1980; Clokie et al. 2011; Caporaso, Knight and Kelley 2011) and 

consequently faecal waste and waste streams (Smith et al. 2018). Most of these phages are capable of 

generalised transduction in vitro (Schicklmaier and Schmieger 1995; Schicklmaier et al. 1998). Thus there 

is growing evidence provided by the metagenomic data to suggest that phages could play a vital role in 

the acquisition of resistance genes (Balcazar et. 2014; Moon et al. 2015; Haaber et al. 2016; Lekunberri 

et al. 2017; Keen et al. 2017; Lood, Ertürk and Mattiasson 2017), whether by generalised or specialised 

transduction or releasing transformable DNA on cell lysis (Keen et al. 2017). Prophages are capable of 

carrying resistance genes (Moon et al. 2015; Haaber et al. 2016), as are environmental bacteriophages 

(Balcazar et. 2014; Lekunberri et al. 2017), but resistance load in bacteriophages associated with 

bacterial communities is often neglected (Lood, Ertürk and Mattiasson 2017). However, the information 

that phages carry resistance genes was previously contested by Enault et al. (2017), where they use 

bioinformatic tools to evaluate relevant metagenome data for identifying known antibiotic resistance 

genes (ARGs) and determine that recent virome data suggesting greater role of phages in ARG carrying 

and transfer is due to high bacterial DNA or contains false positives due to relaxed thresholds of e-value 

in database searches. Thus, the study concludes that the growing concern might not be as vital as 

reported. 
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Mathematical modelling has been helpful in understanding factors associated with AMR 

emergence and spread (Gerrish and García-Lerma 2003; Murphy, Walshe and Devocelle 2008; Ayscue et 

al. 2009; Bell et al. 2014) and has brought to light the importance of HGT in the spread of AMR (Gehring 

et al. 2010; Baker et al. 2016). Most of these studies focused on conjugation as a means of HGT with 

only a few models on transduction as a means of HGT (Volkova et al. 2014; Tazzyman and Hall 2015; 

Moura De Sousa and Rocha 2019). Volkova et al. (2014) provide a good theoretical understanding of the 

roles of specialised and generalised transduction, and suggests that transduction contributes to HGT on 

the order of a thousand times less than conjugation. However, the study assumed a high density of 

enteric bacteria in a well-mixed system with continuous inflow and outflow of biomass, since the aim 

was to understand the dynamics in intestines of cattle. In contrast, in many environments, bacteria 

occur at lower densities and may live in spatially structured local communities for long periods of time. 

In these communities, phages co-exist with these bacteria, infecting and lysing the bacteria in their host 

range. Even in a gut, local biodiversity providing a wide host range for many phages and rapid viral 

turnover suggest that local dynamics might be important. Tazzyman and Hall (2015) focus on 

determining the long-term persistence of antibiotic resistance dependant on fitness cost and mutation 

rates, but ignores other parameters such as the adsorption, desorption and DNA injection rates. Moura 

de Sousa and Rocha (2015) discuss the affects of environmental structure on the resistance against 

antibiotics and phages, utilising an individual based model (eVIVALDI) to understand how environmental 

structure might have an effect on bacterial populations of different types. There is a clear difference in 

resistance fixation between well-mixed and spatially structured environments. Fixation refers to 

resistance persisting and spreading throughout the whole bacterial community instead of being lost 

after first few generations due to death of resistant bacteria before spread. Their results show that 

spatial structure plays a major role in phage-bacteria interactions, thus affecting long-term resistance 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article-abstract/doi/10.1093/fem
sec/fiaa100/5850753 by U

niversity of N
ottingham

 user on 08 June 2020



 

 

persistence, although the affects of other parameters are presented as part of a model for lysogenic 

phages but not for lytic phages. 

We develop mathematical models for the spread of resistance by generalised transduction, which we 

have analysed specifically within a small volume compartment, in order to consider local effects. We 

focus specifically on lytic phages. Strictly lytic bacteriophages are not able to access the lysogenic life 

cycle and therefore can only transfer genes via generalised transduction, rather than specialised and/or 

lateral transduction of temperate phages, thus allowing for a model specifically focused on generalized 

transduction. However, while lytic phages are capable of generalised transduction, how important this is 

remains largely unknown and no models currently exist to predicts its role in the transfer of ARGs. 

A bacterial community could be divided into sub-communities through physical 

compartmentalisation, or through characteristics of interest, such as strain, host range, phage immunity 

or antibiotic resistance. These bacteria of interest may be present in one location but not another. We 

compare output of deterministic versions (applicable to large well-mixed populations) with stochastic 

versions of the models (applicable to small populations where random events may be significant). While 

the aim of this work is to model the spread of resistance by lytic phages, purposefully start with a 

deterministic base model of phage infection without resistance. This model is defined by a set of 

Ordinary Differential Equations (ODE), similar to models used to understand and develop phage therapy 

(Cairns et al. 2009), but with separate adsorption and phage DNA injection terms as described by Smith 

and Trevino for multiple host binding sites in phage infection (Smith and Trevino 2009). We show that 

such a model predicts total extinction of bacterial and phage population for a wide and realistic range of 

parameter values, rather than the co-existence of phage and bacteria seen in the environment. Previous 

studies into well-mixed host phage systems corroborate this lack of stable co-existence (Levin, Stewart 

and Chao 1997). Antagonistic co-evolution – evolution of predator and prey species to adapt against 
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each other – of phages and bacteria (Luria and Delbrück 1943; Buckling and Rainey 2002; Gómez and 

Buckling 2011; Koskella and Brockhurst 2014) has been long-established as a mechanism to stabilize 

host-phage ecology, whether this co-evolution is mutational (Chaudhry et al. 2018; Pagliarini and 

Korobeinikov 2018), through CRISPR-Cas systems (Childs et al. 2012; Iranzo et al. 2013;, or through 

phase variation (Aidley et al. 2017). Therefore, we extend the simple model by introducing a stability 

mechanism in the form of a fluctuating mutational host immunity and susceptibility via “leaky (phage) 

resistance” (Chaudhry et al. 2018) – a general term to categorise the process of bacteria losing their 

phage immunity. We do not model the conditions behind this fluctuating immunity in bacteria so as to 

let the model be applicable to wide range of mechanisms. Thus, this model can be considered as a 

simplified representation of antagonistic co-evolution, where the host mutation for immunity 

corresponds to the evolution of bacteria whereas host mutation for susceptibility corresponds to phage 

evolution or it could even represent the phenotypic changes in immunity due to CRISPR-Cas systems 

(although again highly simplified). This formulation has the advantage of avoiding complicated systems 

of equations, for example for open-ended populations of phage and bacterial strains as a continous 

evolutionary process, and so is particularly useful for model analysis, e.g. through sensitivity analysis. 

We show that such mutational changes facilitate stable co-existence of host and phage populations, 

even in small compartments. We then use this phage dynamics model as a base to develop and analyze 

the model for phage-mediated spread of antimicrobial resistance, which shows the importance of 

stochastic affects for proliferation of resistance. 

Methods 

We used the R deSolve package’s LSODA algorithm (Soetaert, Petzoldt and Setzer 2010) to solve 

the differential equations and the rootSolve, doParallel and foreach packages for sensitivity analysis. For 

the stochastic model we used COPASI (Hoops et al. 2006) to implement the Gibson-Bruck next reaction 
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algorithm (Gibson and Bruck 2000) and created shell scripts to run each model one thousand times. The 

output of each run was then imported in R and the graphs were created with the average of all the runs 

for comparison with the ODE model output. For creating the heatmap for sensitivity analysis, the 

ggplot2 (Wickham 2009) package of R was used. 

Model description 

 We model a scenario with a predominant antimicrobial sensitive population in which a single 

resistant cell was introduced. The modelled volume is small (2.5 µL), such that the maximal carrying 

capacity is only 168 CFU (        (
   

 
)             ). A schematic representation of the three 

models is provided in Fig. 1, with the base model represented in red, addition of phage immunity in blue 

and the transduction process in presence of antibiotic in green. 

The latter two models build on the base model with further additions. Each circle represents the 

different populations of bacteria (S, Sinf, SV, Simm, SVR
, R, Rinf, RV and Rimm), phages (V) and transducing 

particles (VR) whose concentrations are governed by kinetic processes denoted by arrows. The bacterial 

population sensitive to antimicrobial are denoted by ‘S’ and those resistant by ‘R’. Bacteria with phage 

infected (inf), immune (imm) and with adsorped phage (V) or transducing particles (VR) are denoted by 

the relevant subscripts. The base model defines the process of phage infection, with the kinetic 

processes of phage adsorption, desorption and infection separated. The second model builds on this by 

including equations for a phage immune bacterial population. Phage immunity can be gained (and lost) 

due to a range of possible mechanisms; as such the phage immune population is tied to the phage 

susceptible population by the mutational rates towards susceptibility and immunity. The third model – 

for transduction – builds on the second model by including equations for the corresponding 

antimicrobial resistant populations of bacteria along with the transducing particle adsorbed population 

as an intermediary population between antimicrobial resistant and susceptible bacteria. 
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The model equations can be found in Supplementary File 1; model parameters are given in Table 

1. We use the logistic growth model for bacterial growth, i.e., bacteria will grow to a maximal carrying 

capacity (Nmax), but have included a separate term for the baseline death rate of bacteria (   and   ). 

The interaction between bacteria (S and R) and phage (V) or transducing particles (VR), which 

determines the rate at which the phages and transducing particles adsorb ( ) to bacteria, follows the 

classic predator-prey interaction model defined by Lotka-Volterra equations as well as other phage 

infection dynamics models (Beretta and Kuang 1998). Bacteria with adsorbed phages (SV and RV) can 

either lose the phages via desorption (   ) to revert to their native state (S and R) or become infected 

(Sinf and Rinf) dependent on phage DNA injection rate ( ). Bacteria with adsorbed transducing particles 

(SVR
) become uninfected resistant bacteria (R) on DNA injection. The processes of phage DNA injection 

or desorption are much faster than phage adsorption on the bacterial cell surface, therefore we do not 

include the growth of bacteria with adsorbed phages in our equations. 

 

Parameters used in the models 

Table 1: All parameters used in the full model, some of which are also used in the simpler 

model variants, see equations (1)-(50). This table provides all the parameters used in the 

equations that are described here. All of the parameters define some process in the transduction 

model but only a few of them are used in the equations for the phage infection dynamics and 

antagonistic co-evolution models. Note that we explore the full range of fitness costs for the sake 

of complete model analysis, recognizing that fitness costs above 0.3 are unlikely to persist in 

nature, although could arise through spontaneous mutation. Note also that the mutation rate is 

given in units per hour rather than per cell division; for any given values of growth rate r and 

mutation rate MB the per division mutation probability could be thought of as being 1-2-MB/r. 
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Parameter Description Value (Range) Source 

  Specific growth rate 0.5 (0.17-0.9) h-1 

Curds 1971; 

Godwin and Slater 

1979; Levin, 

Stewart and Rice 

1979.  

     Carrying capacity of liquid slurry          CFU/L Ibrahim et al. 2016. 

   Natural death rate of bacteria 0.025 (0.0125-0.336) h-1 
Kudva, Blanch and 

Hovde 1998. 

   
Death rate of antibiotic sensitive 

bacteria 
0.025 (0.0125-0.336) h-1 

Kudva, Blanch and 

Hovde 1998. 

  Phage adsorption rate constant 
           (     

     -          ) L h    

Moldovan, 

Chapman-McQuisto

n and Wu 2007. 

    Phage desorption rate constant 3.06 (1.368-19.44) h    

Moldovan, 

Chapman-McQuisto

n and Wu 2007. 

  Phage DNA injection rate constant 2.88 (0.72-6.12) h    

Moldovan, 

Chapman-McQuisto

n and Wu 2007. 

   Death rate due to phage infection 1 (1-2.86) h    
Unpublished 

empirical data 

  

Burst size of bacteriophage i.e., 

number of phage progeny from 

infected cell on its lysis. 

200 (16-200) 
Unpublished 

empirical data 

   Degradation rate of phages and 0.003 (0.0015-0.0121) h    De Paepe and 
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transducing particles taddei 2006. 

  
Fitness cost for antibiotic 

resistance 
0.1 (0-0.99) 

Godwin and Slater 

1979; McDermott, 

Gowland and 

Gowland 1993; 

Subbiah et al. 2011.  

  Fitness cost for phage immunity 0.05 (0-0.99) Volkova et al. 2014. 

  

Fraction of transducing particles in 

total phages from burst cell – 

equal to probability of accidentally 

packaging antibiotic resistance 

genes by phage. 

0.02 Volkova et al. 2014. 

   
Mutation rate of phage susceptible 

bacteria to phage immune bacteria 
0.2 (0-0.99) h    Assumed 

   
Mutation rate of phages turning 

immune bacteria to susceptible 
0.1 (0-0.99) h    Assumed 

     
Maximum effect of antibiotics on 

bacterial growth 
2 Volkova et al. 2012. 

  Hill coefficient in      model 2 Volkova et al. 2012. 

     MIC for sensitive bacteria 8  g L    VMD DEFRA (2012) 

     MIC for resistant bacteria 2000  g L    VMD DEFRA (2012) 

  
Antibiotic concentration in 

microcosm 
5.6  g L    Baker et al. 2016. 
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The default parameter values are, where possible, taken from measurements for E. coli and 

coliphages isolated from slurry (Smith et al. 2015; Sazinas et al. 2018) and antibiotic related data for 

cefquinome, as an environmental example, with parameter values from other sources marked in Table 1; 

however, the sensitivity analyses test broad ranges of parameter values (Table 1) and so the results are 

applicable to a much wider range of environments and bacteria. The E. coli genome size is about 5,000 kbp 

(http://www.ncbi.nlm.nih.gov/). A transducing phage particle is assumed to carry 100 kbp of packaged 

DNA (based on available estimates of E. coli phages
8
), which amounts to approximately 2 percent of the 

total bacterial genome. We assume that if the transducing particle injects the DNA, the resistance carrying 

gene will always be incorporated in the recipient’s genome (Fig 1). 

The antibiotic concentration is necessarily kept constant in the model at a value lower than the MIC 

(sub-inhibitory) of sensitive bacteria to allow for the growth of bacteria, as well as match the observed 

values modelled by Baker et al (1996). Modelling antibiotic concentrations above the MIC would not 

provide meaningful results on spread of resistance as the bacterial populations would die out. Moreover, 

sub-inhibitory concentrations of bacteria are known to promote horizontal gene transfer, as well as provide 

selective pressure for resistant bacteria (Andersson and Hughes 2014). 

Morris method and samples 

 A global sensitivity analysis was performed using the Morris sampling method (Morris 1991; 

Sin, Gernaey and Lantz 2009), as this method can be used for both deterministic and stochastic models; 

methods that rely on small perturbations (Baker et al. 2016) are not suitable for stochastic models. The 

method estimates the elementary effects of each input parameter on the desired model outcome. The 

elementary effect of each is calculated using Eq. (1) and then sigma-scaled (i.e., scaled by standard 

deviation of inputs and outputs) for standardized comparison of the elementary effects of different 

parameters. 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article-abstract/doi/10.1093/fem
sec/fiaa100/5850753 by U

niversity of N
ottingham

 user on 08 June 2020

http://www.ncbi.nlm.nih.gov/)


 

 

     
                                       

 
 (1) 

Where Y(x1,x2,xj,...,xm) is the model output at input parameters x1, x2, xj, ..., xm and 

Y(x1,x2,xj+ ,...,xm) is the output corresponding to a specific change ( ) in input parameter xj. The range 

for each parameter xj is divided into p=20 levels and each perturbation of the input parameter chooses a 

value corresponding to this level.   is set as   
 

      
     . Calculation of k elementary effects 

requires k+1 simulations, with a number of repetitions (r) for each giving a total of         

simulations. 

The elementary effect of a parameter can be negligible, a constant or a non-constant function of 

factor xi or a non-constant function of more than one factor. The analysis is done using the mean and 

standard deviation of the scaled elementary effects. Parameters with linear effects will have a standard 

deviation of zero with non-zero mean. Parameters with a mean less than the standard error of the mean 

can be considered to have a negligible effect. 

Results 

Base model without phage immunity predicts host and phage extinction 

The base model describes the rate of change of the populations of uninfected bacteria (S), 

bacteria with adsorbed phages (SV), infected bacteria (Sinf) and free phages (V) (Fig. 1 in red). We 

represent these biological processes in two related models: a deterministic ODE model and a stochastic 

model. A detailed description of each is given in the supplementary file. 

Steady-state analysis of the ODE model gives conditions for the stable existence of the three 

steady-states: extinction of both bacterial host population and phage (both populations are zero), phage 

extinction (phage population is zero, thus no infection, while the bacterial population is non-zero) and 
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co-existence (in which both populations are non-zero; see Supplementary Information for detailed 

mathematical analysis). Total extinction in the ODE model only occurs when the bacterial death rate is 

greater than the growth rate, as would be expected. However, model simulations (Fig 2) show that even 

in the co-existent state, bacterial numbers can be very low (< 3 CFU). These low numbers motivate the 

use of a stochastic model, because in stochastic models with random processes, bacterial or phage 

extinction might be a likely outcome. In the stochastic model, the biological processes shown in Fig. 1 

are represented as a set of discrete events happening within the microcosm (see Supplementary Table 

S1 for details of the stochastic reaction scheme), and so it is possible to investigate whether the small 

numbers of bacteria lead to bacterial or phage extinction. 

Simulating both the ODE and stochastic models for 100 days shows a clear difference between 

the two types of models (Fig 2) under the default parameter values. The stochastic model predicts 

extinction of the bacterial and phage populations, whereas the ODE model predicts coexistence 

between the bacterial and phage populations, albeit with low bacterial numbers (< 3 CFU in total). 

Therefore, it can be surmised that inclusion of stochastic effects can lead to extinction (zero individuals) 

in small populations even when the parameter values lie outside of the conditions for extinction of both 

bacterial host population and phage derived from the ODE model. This highlights the importance of 

including random events into these models. 

 

Extinction is a dominant outcome in the base model for a wide range of realistic bacteriophage 

parameters 

In order to demonstrate that the base model is inadequate, we simulate the base model not just for the 

default parameter values, but also for a wide range of realistic parameter values (Table 1). We focus on 

phage parameters because the size of the bacterial population in the co-existent steady state is sensitive 
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to all five phage parameters (burst size, adsorption, desorption, DNA injection and degradation rates), 

but not to bacterial parameters (see Supplementary Figure S1). To set up the simulations, we have taken 

realistic sets of 22 parameter values for phage adsorption, desorption and phage DNA injection rate 

(Supplementary Table S7) under varied growth conditions (including temperature and nutrient 

availability) (Moldovan, Chapman-McQuiston and Wu 2007), treating the three phage infection 

parameters as correlated, while allowing the phage degradation rate and burst size to vary 

independently (Table 1). This provides a sensitivity analysis of the outcome of stochastic simulation 

(extinction of bacteria and phage; phage extinction; co-existence) across all five parameters to which the 

outcome could be sensitive. For each parameter variation, 1000 simulations were performed. Fig 3 

shows the outcomes for 9 of the 22 different cases, that between them cover the full range of 

parameter values investigated. The full set of 22 cases are provided in Supplementary Figure S3. 

The simulations show a clear change in the output scenarios with increasing adsorption rate, 

with little change due to phage DNA injection rate (Figure 3). Out of the 22 cases in Supplementary 

Table S7, only one case (1°C in maltose media) does not result in extinction of both bacterial host 

population and phage. In all other cases, higher burst size and lower degradation rate cause extinction, 

whereas co-existence is seen only at low burst size and high degradation rate. This result is telling, 

because such coexistence may be evolutionarily unstable as a case of a “tragedy of the commons” 

(Hardin 1968; Kreft 2004; Kerr et al. 2006; MacLean and Gudelk 2006; Rankin et al. 2007), in which the 

shared resource are the bacteria (prey): the system would be driven to extinction because phages with 

higher burst size and lower degradation rate would outcompete phages with low burst size and high 

degradation rate. These results suggest that the base model cannot explain the environmental 

co-existence of bacteria and phage, because it provides unrealistic outcomes for all realistic values of 

phage parameters, and so is not a good starting point for modelling phage-mediated spread of 

resistance. This limitation can be overcome by introducing fluctuating host immunity into the model. 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article-abstract/doi/10.1093/fem
sec/fiaa100/5850753 by U

niversity of N
ottingham

 user on 08 June 2020



 

 

Co-existence requires antagonistic stable host immunity 

It is long established that bacteria and phages are constantly co-evolving: the bacteria evolve to 

become immune to phage infection, then phages evolve to be able to infect the evolved bacteria (Luria 

and Delbrück 1943; Buckling and Rainey 2002; Gómez and Buckling 2011; Koskella and Brockhurst 2014). 

We introduce a minimal co-evolution model, in which phage susceptible bacteria evolve to become 

immune, while phage evolution is represented indirectly by phage immune bacteria evolving to become 

phage susceptible again, at a rate of mutation corresponding to the rate of mutation of phages (Fig. 

1:Phage immunity model, blue outline). This gives a modified set of equations (Supplementary File 1) 

including a new population of phage immune bacteria (    ) and corresponding new terms which 

define the process of evolution from phage susceptible to phage immune bacteria and reversed 

evolution from phage immune back to phage susceptible. 

The co-evolution model is deliberately as simple and general as possible: these processes could 

be seen as mutational (in which phage mutation is represented by a change in the bacterial population), 

or associated with phase variation (with only two variants) or a simple CRISPR-Cas system (noting that it 

is an extreme simplification). Phage immunity causes a fitness cost for the bacteria, reducing their 

growth rate. In view of the above differences between deterministic and stochastic simulations, we 

define an equivalent set of discrete events for the stochastic simulation algorithm (Table S6). Fig 4 

shows the concentrations of different bacterial and phage populations. In contrast to the base model 

without co-evolution, these simulations consistently show co-existence of bacteria and phages, with full 

agreement between the deterministic and stochastic versions of the model. The phage immune bacteria 

buffer the bacterial population from which new phage sensitive variants continuously emerge. 

Therefore, bacterial phage immunity benefits both bacterial and phage populations. 
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Sensitivity analysis of co-evolution model highlight the importance of phage and host factors 

To determine the sensitivity of the outcomes of the stochastic version of the co-evolution model 

to its 11 different parameters, we used the Morris method (Morris 1991) for sensitivity analysis, as 

described in the Methods. The parameter with the strongest effect on outcomes across all three 

scenarios is the adsorption rate,  : increased adsorption increases the probability of extinction of both 

bacterial host population and phage while decreased adsorption increases the probability of 

co-existence or phage extinction (Fig 5). The death rates of sensitive cells (  ), and fitness cost of phage 

immunity ( ), show a similar pattern – increasing the values of these parameters increases chances of 

extinction of both bacterial host population and phage, and decreases the chances of co-existence. For 

the third scenario of phage extinction, both these parameters are not sensitive. The bacterial growth 

rate,  , shows the reverse pattern, with increased growth rate leading to increased co-existence. Phage 

extinction and extinction of both bacterial host population and phage are also sensitive to the phage 

decay rate (  ) and desorption rate (   ), whose increase leads to increased probability of phage 

extinction, and whose decrease leads to increased probability of extinction of both bacterial host 

population and phage. It should be noted that none of the parameters have zero standard deviation 

with non-zero mean, indicating that all inputs either have a non-linear effect or are involved in 

interactions with other inputs. 

Stochastic transduction model with antagonistic co-evolution facilitates quantification of risk of resistance 

gene spread 

We now consider the impact of the transfer of antibiotic resistance genes in an environment 

containing an antibiotic by extending the antagonistic co-evolution model. In this model, spread of 

resistance occurs when lytic phages can pick up random gene segments from the host genome, whether 
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present on chromosome or plasmid, and transduce them into other cells rather than infect them. Details 

of this full model are given in Fig 1 (Transduction model, green outline). 

Fig 6 shows that the deterministic model (blue lines), with default parameters as described in 

Table 1, predicts a phage-mediated spread of resistance through the bacterial population. In contrast, 

the stochastic simulations (red lines) predict two different outcomes, with transfer of resistance, also 

predicted by the ODE model, being somewhat more frequent (54.2%) (Fig 6(a)) than loss of resistance 

(Fig 6(b)) for these parameter values. This suggests that random events may have a considerable impact 

on whether phage mediated resistance will spread locally, even in the presence of antibiotic selection. 

In order to assess the sensitivity of the spread of resistance to these parameters, we again use 

the Morris method on the stochastic model, to calculate elementary effects of 12 parameters, each 

parameter perturbed 50 times, giving a total of               input case scenarios. Again, each 

scenario is simulated 1,000 times and classified into two categories: no resistance spread and resistance 

spread. The mean of all outputs of a particular category gives the overall output for that input scenario. 

The most striking result is that the no-resistance steady state is most sensitive to the baseline bacterial 

death rate (Fig 7): increased death rate reduces spread of resistance. Similarly, increased fitness cost for 

carrying the resistance genes, and, to a lesser extent, increased fitness cost of phage immunity also 

promotes the no resistance steady state. Increasing bacterial growth rate has a much smaller, positive 

effect on resistance spread. 

Discussion 

In order to model the spread of ARGs through transduction by obligate lytic bacteriophages, we 

started with a base model of phage infection that describes the dynamics between phage and bacterial 

populations, and which includes phage adsorption, resorption and phage DNA injection terms. While we 
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used default parameter values for E. coli, where possible, and relevant phage populations, the model 

itself is quite flexible, and can easily be applied to other bacterial or phage populations by changing the 

parameter values. Using a realistic range of phage related parameter values, specifically, phage 

adsorption, resorption, DNA injection rates, burst size and phage degradation rate, we found that for 

most cases, the model predicts extinction of both bacteria and phage population, for continued 

co-existence, phages need to have a low burst size and high degradation rate to avoid over-exploiting 

their resource of host bacteria. Such restraint from over-exploitation is not an evolutionarily stable 

strategy (Smith and Price 1973) as mutant phage with higher burst size or lower degradation rate are 

likely to outcompete phage with lower burst size or higher degradation rate. This leads to a “tragedy of 

the commons” situation (Hardy 1968), in which selfish interest to increase exploitation of a resource 

(the bacterial host), would lead to selection for phages that exploit their host population more 

effectively, leading to over-exploitation of the resource; ultimately the resource can no longer support 

the population, to the detriment of all sharing the resource (Kreft 2004; Kerr et al. 2006; MacLean and 

Gudelj 2006; Rankin et al. 2007). In this case, due to a trade-off between latent period and burst size (it 

takes longer to make more phage), mutant phage that are less economical in their resource use 

outcompete the wild type at higher host densities (Abedon, Hyman and Thomas 2003). A similar 

trade-off between growth rate and growth yield of microorganisms means that a less resource 

consuming strategy with a higher growth yield but a lower growth rate is replaced in chemostat 

environments by the resource over-exploiting strategy of fast but inefficient growth. In biofilms, where 

spatial structure is important, the economical strategy is advantageous (Kreft 2004). We concluded that 

the simple base model is not sufficient to describe phage dynamics, and so not suitable for study of 

phage-mediated spread of resistance, which led us to includes host phage immunity, and phage evasion 

of immunity, into the model. The way we have modelled phage evasion of immunity is better explained 
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as loss of immunity. Another modeling study has shown that a CRISPR-Cas model of coevolution as well 

as loss of immunity is better suited to explain coexistence in certain cases (Weissman et al. 2018). 

The second model includes antagonistic co-evolution between phage and bacterial host, and the 

results match the environmentally observed dynamics of continued co-existence. Because the second 

model explicitly includes mechanisms of phage-host interaction, we were able to use sensitivity analysis 

to identify those parameters to which continued coexistence are most sensitive. Adsorption rate to be 

the most sensitive parameter for co-existence, but it is not just the phage parameters which affect the 

output - bacterial growth rate also has an effect on chances of co-existence. Thus, bacteria in a resource 

rich environment with slow acting phages will survive longer than they would with fast acting phages. 

The other two scenarios for this model – phage extinction or extinction of both bacterial host population 

and phage are sensitive to more parameters than the co-existence scenario.  

Having established a suitable modelling approach for phage-host interactions, we introduced 

antimicrobial resistant strains of bacteria to understand the dynamics of resistance spread via 

generalised transduction. We showed that stochasticity can play an important role in spread of 

resistance at low numbers of initial population, as resistance bacteria and/or transducing particles may 

die before transferring resistance carrying genes. Again, having a detailed phage model allowed us to 

use sensitivity analysis to identify whether spread of resistance is more sensitive to bacterial or phage 

parameters: spread is most sensitive to the environmental death rate of bacteria, the fitness cost for 

carrying the resistance genes, and the fitness costs for phage immunity. Thus, factors hampering the 

growth of resistant, phage immune bacteria and their rate of death have the most positive affect 

towards curbing resistance transfer, while other factors are less important.  

Antagonistic co-evolution between bacteria and phage has long been known to occur (Luria and 

Delbrück 1943), and is easily studied in laboratory conditions (Luria and Delbrück 1943; Buckling and 
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Rainey 2002). However, there are many ways in which co-evolution could occur. We have chosen a 

minimal model, that treats viral evolution as equivalent (if faster) to bacterial evolution, and that could 

be interpreted as mutational, phase variational or CRISPR-Cas driven co-evolution. A more realistic 

model would consider multiple strains of bacteria and phage, with each new strain immune to the 

previous strains of phages but susceptible to the future strains of phages, essentially in an open ended 

way; such models have been used to model evolution of viral infections (Nowak et al. 1991), and can be 

readily analysed with some simplifying assumptions (May, Stekel and Nowak 1997). Another approach 

would be to consider strain type as a continuous variable, in a way that can demonstrate continuous 

evolution, at the expense of some realism (Pagliarini and Korobeinikov 2018). In principle, the model will 

assume continuous bacterial and phage evolution as suggested for an open-ended model, but drastically 

limit the number of equations by treating the strain types as continuous variables in an unbounded 

space instead of discrete variables. It is also possible to be more explicit about phase variation loci for 

bacterial escape from phage; this leads to bounded models (Aidley et al. 2017) - with only one particular 

strain of bacteria producing different proteins to confer immunity, hence no need for open-ended 

models or unbounded space considerations. Such a model would be easier to analyse and have a lower 

cost to simulate. Another possible biological mechanism for phage susceptibility would be a CRISPR-Cas 

system as modelled by Iranzo et al. (2013). With the growing knowledge of the CRISPR-Cas systems, 

their importance in different biological functions is also being discovered and when considering 

resistance spread due to phages it would be necessary to take into account not only the phage immunity 

provided but also the effect this will have on resistance transfer via transduction (Watson, Staals and 

Fineran 2018). 

Our model considers a single environmental microcosm, in contrast to the Volkova model for 

phage-mediated resistance transfer, which considers a larger volume (Volkova et al. 2014) that, for 

microorganisms, is equivalent to a landscape scale (Battin et al. 2007) There is obviously a need for such 
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large-scale models for spread of resistance, whether in a mammalian gut, soil, slurry or other relevant 

environment. However, we would argue that none of these environments are well-mixed: they will all 

contain sub-compartments, either imposed by physical boundaries, or as a consequence of bacterial 

diversity interacting with phage host range. The extinction probabilities we have observed in the 

stochastic base model are likely to depend on the initial population of resistant cells in the environment. 

However, the key point we wish to make is that local extinction is often likely, especially with exchange 

of phages or resistant bacteria from nearby locales. For example, a completely sensitive bacterial 

population might be invaded by a single resistant cell or a number of resistant cells from neighbouring 

micro-populations. Our simulations demonstrate that these small-scale environmental considerations 

are likely to be important, and that larger models consisting of connected communities, e.g. a 

metacommunity model (Hanski 1998), are more likely to be realistic than homogeneous models 

described by ODEs. Moreover, the stochastic outcomes of our model, in particular that resistance might 

be fixed or eliminated from a microcosm, also suggest that the dynamics on larger spatial scales are 

likely to be spatially heterogeneous. 

The probability of loss of resistance was found to be particularly sensitive to four parameters: 

bacterial death rate, fitness cost of carrying resistance genes, fitness cost of phage immunity, and 

(inversely) to the bacterial growth rate. Fitness costs are under evolutionary pressure, so we would 

expect to find that fitness costs of phage and antibiotic resistance would tend to decrease over time, 

and this would lead to increased phage-mediated spread of resistance. However, antibiotic or phage 

resistance mechanisms might have intrinsic costs that cannot be alleviated. The death and growth rate 

sensitivities suggest that phage-mediated spread of resistance will increase with decreased death rate 

and increased growth rate. This suggests that phage-mediated spread of resistance is more likely in 

favourable environments, for example the gut lumen, with high levels of nutrients, or sub-lethal 

concentrations of antimicrobials (Andersson and Hughes 2014). Phage mediated spread is less likely in 
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hostile environments, with low nutrient and high antimicrobial concentrations, for example in a slurry 

tank. Nonetheless, lytic phages bearing resistance genes have been identified in slurry (Smith et al. 

2015), although these may have originated in mammalian guts. 

In conclusion, we have shown that to model spread of resistance by transduction, it is necessary 

to consider antagonistic co-evolution, stochastic and local effects. Sensitivity analysis suggests that 

phage-mediated transfer of resistance is decreased in a more toxic environment, or when fitness costs 

of resistance or phage immunity are higher. Other factors have less effect on preventing spread of 

resistance by transduction. 
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Fig. 1: Schematic representation of the base model (red), phage immunity model (blue) and 

transduction model (green). Each circle represents the different populations of bacteria (S, Sinf, 

SV, Simm, SVR, R, Rinf, RV and Rimm), phages (V) and transducing particles (VR) whose 
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concentrations are governed by kinetic processes denoted by arrows. The model equations can 

be found in Supplementary File 1; model parameters are given in Table 1. We use the logistic 

growth term for bacterial growth, i.e., bacteria will grow to a maximal carrying capacity (Nmax), 

but have included a separate term for the baseline death rate of bacteria (   and   ). The 

interaction between bacteria (S and R) and phage (V) or transducing particles (VR), which 

determines the rate at which the phages and transducing particles adsorb ( ) to bacteria, 

follows the classic predator-prey interaction term used in Lotka-Volterra equations64,65 as well 

as other phage models66. Bacteria with adsorbed phages (SV and RV) can either lose the phages 

via desorption (   ) or become infected (Sinf and Rinf) on phage DNA injection ( ). Bacteria with 

adsorbed transducing particles (SVR) become uninfected resistant bacteria (R) on DNA injection. 

The processes of phage DNA injection or desorption are much faster than phage adsorption on 

the bacterial cell surface, therefore we do not include the growth of bacteria with adsorbed 

phages in our equations. 
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Fig. 2: The ODE model (blue) predicts co-existence while the stochastic model (red) predicts 

extinction. The blue lines represent the output from the solution of the differential equations 

whereas the red lines represent the arithmetic mean of the outputs from 1000 runs of the 

stochastic simulation using the Gibson-Bruck method. While the ODE model predicts 

co-existence (damped oscillations leading into a stable steady state), albeit at low bacterial 

numbers, the stochastic model shows that these low numbers are not sustainable, with the 

bacterial populations and then the phage populations becoming extinct. Thus, extinction is due 

to low abundance. 
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Fig. 3: The outcome of simulating the stochastic version of the base model depends on phage 

degradation rate, burst size, phage DNA injection rate and phage adsorption rate. The 

percentages of times the three different outcomes occurred at the same parameter setting are 

visualized as the intensity of the green (phage and bacterial host extinction), red (phage 

extinction) and blue (co-existence) channel of each pixel. Here we show a representative 

subgroup of the results arranged as a scatter plot for phage DNA injection rate vs adsorption 

rate. Each point of the scatter plot depicts the different cases with adsorption, desorption and 

degradation rates from Supplementary Table S7 with the degradation rate (mini y-axis) and 
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burst size (mini x-axis) varying over their respective ranges in each case. Note that there are 

two red regions of phage loss surrounding the coexistence region. The results suggest that a 

phage with low burst size and high degradation rate has an ecological advantage, quite contrary 

to what is observed in the environment. A complete result for all 22 cases is provided in 

Supplementary Figure S3. 
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Fig. 4: Co-existence of phage and bacteria in both the ODE version (blue line) and stochastic 

version (red line) versions of the co-evolution model. The blue lines depict the output from the 

solution of the differential equations whereas the red lines show the arithmetic mean of the 

output of 1000 stochastic simulations run using the Gibson-Bruck method. Panel (b) also has a 

zoomed in view of the last 50 days of the stochastic simulation, showing a continuously 

fluctuating population. The parameter values are given in Table 1. These simulations show that 

the deterministic and stochastic versions of this model agree, indicating stable co-existence. 
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Fig. 5: Parameter sensitivity of the stochastic version of the co-evolution model. Standard 

deviation against mean of the sigma-scaled elementary effects of the input parameters on the 

different outcomes of the model. The lines forming the wedge correspond to         

     
  

√  
. There are three panels for the three different outcomes predicted, (a) for phage 

extinction, (b) for complete extinction and (c) for co-existence. Outcomes are most sensitive to 

those parameters that lie outside the wedge, in order from top to bottom. None of the 

parameters have zero standard deviation with non-zero mean, indicating that all significant 

parameters are involved in non-linear interactions. 
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Fig. 6: Stochastic simulations of the full model (red lines) show that spread of resistance is 

uncertain. With the default parameter values, there is a (i) 46% chance of the resistant bacteria 

dying out before fixation of resistance but a (ii) 54% chance of fixation of resistance as also 

predicted by the deterministic model (blue lines). This motivates the application of sensitivity 

analysis to identify those parameters that most influence the spread of resistance.  
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Fig. 7: Parameter sensitivity for the loss of resistance outcome in the stochastic version of the 

full model. Standard deviation against mean of the elementary effects of the input parameters 

on the percentage of No Resistance scenario predicted by the model simulated for 100 days. 

The line corresponds to              
  

√  
. 
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