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A HOMOGENIZATION APPROACH FOR THE ROASTING OF AN
ARRAY OF COFFEE BEANS∗

RAHIL SACHAK-PATWA† , NABIL FADAI‡ , AND ROBERT A. VAN GORDER§

Abstract. While the processes underlying the roasting of a single coffee bean have been the
focus of a number of recent studies, the more industrially relevant problem of roasting an array
of coffee beans has not been well studied from a modeling standpoint. Starting with a microscale
model for the heat and mass transfer processes within a single bean during roasting, we apply
homogenization theory to upscale this model to an effective macroscale model for the roasting of
an array of coffee beans. We then numerically simulate this effective model for two caricatures
of roasting configurations which are of great importance to industrial scale coffee bean roasting:
namely, drum roasters (where the beans are placed in a rotating drum) and fluidized bed roasters
(where hot air is blown through the beans). The derivation of the homogenization problem has
been carried out in a three-dimensional rectangular geometry. Simulations are presented both for
simplified one-dimensional arrays of three-dimensional beans (as these are easier to visualize), as
well as cross sections of full three-dimensional arrays of beans (for the sake of verification). We
also verify our simulation results against experimental data from the literature. Among the findings
is that increasing the air-to-bean volume fraction ratio decreases the drying time for the array of
beans in a linear manner. We also find that, in the case of a fluidized bed, an increase in the hot
air inflow velocity will decrease the drying time in a nonlinear manner, with diminishing returns
observed beyond some point for large enough air inflow velocities.
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1. Introduction. The coffee industry has grown to be worth over $100 billion
worldwide, with over 2.25 billion cups of coffee being consumed each day and a myriad
of related socioeconomic implications [30, 41, 49]. Although the methods of production
of coffee have remained similar for decades, manufacturers are constantly looking to
improve and optimize the process, requiring ongoing fundamental research [31, 34, 43].
The coffee production process starts with removing the pulp of the coffee cherry,
leaving the green coffee bean, which is then dried [12]. These beans are then roasted,
usually for between 8 and 15 minutes. Coffee bean roasting is a dry heat treatment
process, in which the flavor, color, and both physical and chemical structures of coffee
beans are modified [9, 19, 65]. During the roasting process, heat, water, and various
gases are transported, chemical reactions occur, and the geometry and mechanical
properties of the beans also evolve over time [15, 29, 37, 55, 60, 61].

There have been a variety of modeling studies on various aspects of coffee man-
ufacturing, such as the brewing process [39, 46, 47, 48]. Although understanding
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the coffee roasting process is fundamental to manufacturers being able to produce
a better product, much of the research into understanding the roasting process has
involved using experimentation or statistical analysis to obtain simple empirical mod-
els [3, 59, 63]. However, there have been recent efforts in the literature to formulate
mathematical models of the coffee bean roasting process [23, 24]. A system of partial
differential equations was derived in [22] to describe the evolution of heat and moisture
within a bean, although any explicit phase changes between water and water vapor
were neglected, and moisture was treated in the bulk. The authors in [26, 27] derived
a mathematical model using conservation equations, considering three distinct phases
within a bean and including the effects of multiphase flow and water evaporation.
This work was extended in [25], with a more involved model being proposed to better
describe the phase change between water and water vapor. The model of [25] also
accounts for sucrose, reducing sugars, and other organic compounds, which are vital
to the quality of the final product.

While the processes underlying the roasting of a single bean have been the focus
of recent modeling efforts [22, 25, 26, 27], the roasting of an array of beans has not
been well studied from a modeling standpoint. The roasting of beans is a many-body
process with heat transfer occurring during bean-bean collisions, collisions with the
walls of the roaster, and via the air flow. There are two common types of roasting
processes used in industrial scale coffee roasting: drum roasting and fluidized bed
roasting [4]. In drum roasting [1, 44], the beans are placed in a rotating drum. In
fluidized bed roasting [10, 33, 45], hot air is blown through the beans. Figure 1
highlights the geometric differences between these two types of roasters. Although
there may be motion of the beans, due to either the inlet flow or motion of the roaster,
for our study we assume that the array of beans is fixed and that the volume fractions
for both configurations are similar in size and static in time.

Fig. 1. Diagram of a drum roaster (left) and a fluidized bed roaster (right).

In the present paper, we shall focus on the roasting of a static array of beans,
under the assumption that the airflow is the dominant heat transfer mechanism via
conduction between air and beans or convection due to the applied inlet flow. We
shall use the behavior on the microscale of the roasting of a single coffee bean to
derive effective equations on the macroscale of the roasting of an array of beans by
way of homogenization theory. The remainder of this paper is organized as follows.
We first extend the model of [26] and derive equations for the heat and mass transfer
during the roasting of a single bean, the air surrounding it, and the flow of air through
a roaster in section 2. This will constitute the microscale model. In section 3, we
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use homogenization theory to derive macroscopic effective equations for air flow and
heat and mass transfer in an array of roasting beans, obtaining the upscaled model
for an array of beans. We discuss the numerical approach for solving the cell and
macroscopic problems in section 4. We next use the upscaled model to study specific
roasting configurations in section 5, where we also give a qualitative comparison of
our results with data from experiments and carry out a sensitivity analysis on relevant
parameters. We discuss our findings and possible avenues for future work in section 6.

2. Model description. We model the roaster as containing a uniform array of
beans with air in between. Through conservation laws, we shall formulate a system of
partial differential equations for the heat and mass transfer within the roaster, as well
as consider the boundary conditions at the air-bean interface. We first list several
caveats.

Although real coffee beans are not perfect spheres, and have a degree of anisotropy
[28], we consider the idealized situation where all beans are spherical, of the same
radius rb, and that the bean material is isotropic. Furthermore, we assume that all
beans are static (they do not move) and remain in a periodic array configuration for
all time. Therefore, the drum roaster motion is neglected, whereas simulations will
preserve lengthscales and hot air inflow properties of the drum roaster. For both the
drum roaster and the fluidized bed roaster, we assume no motion of the beans with
the flow. Rather, the beans remain fixed, with the hot air flowing through the array
of beans.

We neglect energy exchange between beans and the energy exchange on the walls
of the drum or the fluidized bed roaster. We permit convection and conduction
of heat through bean-air interactions, which are likely the dominant heat transport
mechanisms on the timescales we consider. Convection appears to be the primary
heat transfer mechanism, due to the fairly rapid timescale on which the beans are
heated, dried, and roasted. Once the surrounding air is hot enough, conduction due
to air-bean interactions is also present, but it is hard to distinguish the influence of
conduction from convection, as the former relies on the latter first transporting heat
from the external environment. Bean-bean convection is likely negligible compared
to these other heat transfer mechanisms, and so is neglected, although one could
certainly generalize the models we study to account for this additional heat transfer
mechanism.

2.1. Multiphase heat and mass transfer model. We consider a roasting
chamber which is a composite medium Ω ⊂ R3 that consists of a periodic array of
beans surrounded by air, where the bean centers are located a distance δ` apart.
Here, ` is the characteristic length of the roasting chamber, and δ � 1 is a small
dimensionless parameter. Given rb as the characteristic radius of each bean, we must
have δ ≥ 2rb

` and hence rb � ` to permit δ � 1 (the characteristic lengthscale of a
bean must be much smaller than the characteristic lengthscale of the roaster). We
define the air phase of the medium by Ωa, the bean phase by Ωb, such that Ω = Ωa∪Ωb,
and the interface between each bean and the air surrounding it by ∂Ωb. We define
x̃ ∈ R3 to be the spatial variable of the system. A full list of dimensional parameters
is provided in Table 1.

Following from the modeling performed in [25, 26], we consider a representative
small volume within the bean with three phases present: solid, liquid, and gas. The
solid phase consists of cellulose and other organic molecules, we assume that the
liquid phase consists of only water, and the gas phase consists of only water vapor. We
neglect the production of CO2 and the presence of other gases, since vapor production
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Table 1
Description and typical values of dimensional parameters used in the model. ETB refers to the

online Engineering ToolBox (https:// www.engineeringtoolbox.com - Accessed 01 June 2018) and
JDE to internal communications with Jacobs Douwe Egberts.

Parameter Description Typical value Reference
Ka Thermal conductivity of air 0.0259 J/(s m K) ETB
Kw Thermal conductivity of water 0.6 J/(s m K) ETB
Ks Thermal conductivity of solid bean phase 0.037 J/(s m K) [26]
Dva Binary diffusivity of water vapor 2.42× 10−5 m2/(s Pa) ETB

in air per unit pressure
Iv0 Vapor evaporation constant 2.2× 107 kg/(m3 s) [26]
Cpw Specific heat capacity of water 4200 J/(kg K) ETB
Cps Specific heat capacity of solid bean phase 450 J/(kg K) [26]
Cpa Specific heat capacity of air 1006 J/(kg K) ETB
kb Permeability of gas within bean 2.5× 10−14 m2 [38]
µb Dynamic viscosity of gas within bean 1.2× 10−5 kg/(s m) [26]
µa Dynamic viscosity of air 1.81× 10−5 kg/(s m) ETB
` Characteristic length scale of roaster 1 m JDE
rb Radius of idealized spherical bean 0.004 m JDE
mv Molar mass of water 0.018 kg/mol ETB
p0 Atmospheric pressure 101325 Pa ETB
R Universal gas constant 8.134 J/(mol K) ETB
T0 Roaster room temperature 293.15 K (20◦C) JDE
T∞ Roaster air inlet temperature 473.15 (200◦C) K JDE
λv Latent heat of vaporization of water 2.3× 106 J/kg [22]
ρs Density of the solid bean phase 850 kg/m3 [11]
ρw Density of water 1000 kg/m3 ETB
A1 Steam table parameter 133.3 Pa [20]
A2 Steam table parameter 20.39 [20]
A3 Steam table parameter 5132 K [20]
C1 Dimensionless steam table parameter 0.41 [14]
C2 Dimensionless steam table parameter 6.1× 10−3 [14]
ρa Density of air 1.204 kg/m3 ETB
σ Initial water saturation in bean 0 ≤ σ ≤ 1 -
φ Constant porosity of bean 0.5 [26]
U Inlet air velocity 0.1 m/s JDE

is assumed to dominate gas kinetics at early stages of roasting [25] and there is large
uncertainty in model parameters and kinetics associated with the production of other
gas species [25]. As we will be incorporating an airflow model for the exterior of the
roasting beans, we omit the boundary conditions presented in [25, 26].

We define the constant porosity, φ, to be the volume fraction that the liquid
and gas phases occupy, and the saturation, S̃b, to be the volume fraction of liquid
water divided by the total volume of liquid water and water vapor. Thus, the volume
fractions of the solid, liquid, and gas phases are given by 1 − φ, φS̃b, and φ(1 − S̃b),
respectively. Throughout this paper, we refer to quantities within the air by subscript
a and quantities within the bean by subscript b. We denote the vapor pressure and
temperature within the air and bean by P̃a, P̃b and T̃a, T̃b, respectively. We assume
that the mass flux of water is negligible due to the low permeability and small effective
water diffusivity within the bean. Hence, the loss of liquid water is a function of the
evaporation rate Ĩv only, and the conservation equation is given by

∂

∂t̃
(φS̃bρw) = −Ĩv, x̃ ∈ Ωb, where Ĩv = 3φ2S̃b(1− S̃b)

(
P̃ ∗v − P̃b

rb

)√
mv

2πRT̃b
.

(1)

https://www.engineeringtoolbox.com
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The kinetics of this evaporation rate is motivated by the Langmuir evaporation equa-
tion [40]. The equilibrium vapor pressure P̃ ∗v , also known as the sorption isotherm, is
defined as the product of the water activity and the steam table of pure water [25]:

(2) P̃ ∗v =
(φS̃b)

C1

(φS̃b)C1 + C2σC1(1− φ)C1
·A1 exp

(
A2 −

A3

T̃b

)
.

Here, σ is the initial water saturation of the bean, the parameters A1, A2, A3 are
linked to the steam table of pure water, and C1 and C2 are associated with the choice
of sorption isotherm employed (cf. [20, 25, 52]); see Table 1. From the assumption
that the surface of the bean is dry and that the air contains no water, we prescribe the
saturation to be zero on the surface between the bean and the air. We note that this
is not a boundary condition, as S̃b is governed by the ordinary differential equation
(1).

We assume that the mass flux of water vapor in both the air and bean is due to
the pressure gradient of the vapor [50]. We also assume that water vapor is advected
by the flow within the air (which we assume is independent of the vapor pressure in
the air) and that the evaporation of water only takes place within the bean. Hence,
using the ideal gas law to define the densities ρvi = P̃imv/RT̃i for i = a, b, we derive
the equations governing the pressures Pa and Pb, which come from conservation of
water vapor:

∂

∂t̃

(
φ(1− S̃b)

P̃bmv

RT̃b

)
= ∇ ·

(
P̃bmvkb

RT̃bµb
∇P̃b

)
+ Ĩv, x̃ ∈ Ωb,(3a)

∂

∂t̃

(
P̃amv

RT̃a

)
+∇ ·

(
ũ
P̃amv

RT̃a

)
= ∇ ·

(
P̃amvDva

RT̃b
∇P̃a

)
, x̃ ∈ Ωa.(3b)

As suggested in [25], we take the permeability of gas within the bean, kb, to be of
similar magnitude to the longitudinal permeability of gas within wood (as studied in
[13]), since both wood and coffee beans principally consist of cellulose and exhibit
similar timescales in the diffusion of their gas species [2]. We assume the binary
diffusivity of water vapor in air per unit pressure, Dva, to be constant.

We now consider conservation of energy within the bean and air phases, relating
the rate of change of enthalpy to divergence of the advective and diffusive heat fluxes.
As described in [26], we need not consider the enthalpy of the gas phase within the
bean, and we can neglect the advection of heat within the beans. Within the air
outside of the beans, heat is transferred by diffusion and is advected by the airflow.
Hence, we obtain the following conservation of energy equations:

∂

∂t̃

(
[ρsCps(1− φ) + ρwCpwφS̃b]T̃b

)
(4a)

= ∇ ·
( [
Ks(1− φ) +KwφS̃b +Kvφ(1− S̃b)

]
∇T̃b

)
− λv Ĩv, x̃ ∈ Ωb,

(4b)
∂

∂t̃

(
ρaCpaT̃a

)
+∇ ·

(
ũρaCpaT̃a

)
= ∇ · (Ka∇T̃b), x̃ ∈ Ωa,

where λv Ĩv is the energy required to evaporate the water. Note that terms involving
ũ are responsible for convection of heat, through the flow problem for ũ.
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At each air-bean interface, we assume continuity of temperature and heat flux, as
well as continuity of vapor pressure and vapor mass flux. This is a different boundary
condition than the one used in [27], as we are now modeling an array of beans rather
than just a single bean suspended in air. Hence, the boundary conditions within the
domain Ω are given by
(5)

T̃b = T̃a, Kb∇T̃b·n = Ka∇T̃a·n, P̃b = P̃a,
P̃bmv

RT̃b

kb
µa
∇P̃b·n =

P̃amv

RT̃a
Dva∇P̃a·n, x̃ ∈ ∂Ωb,

where n is the unit normal vector pointing from the bean to the air. The air-bean
interface conditions on the temperature are responsible for the transfer of heat from
the air to the beans by conduction, as they allow the two distinct heat conduction
problems (for air and beans, respectively) to interact. The relevant dimensional pa-
rameters in this model are again listed in Table 1.

2.2. Flow model. As well as the heat and mass transfer model, we need to
describe the flow of air within the roaster. We assume that the air is an incompressible
Newtonian fluid which rapidly tends to its steady state (i.e., quasi-static), and that
the air cannot flow through the surface of the bean.

Assuming an air temperature at 200◦C, based on the size of rb and U given in
Table 1, the Reynolds number is Re = O(10). This is around the upper bound for the
validity of Stokes flow, but well below large Reynolds numbers resulting in turbulent
flows. For faster velocities U , full Navier–Stokes would be required to accurately
model the laminar flow, but we feel as though Stokes flow is sufficient to understand
the problem we consider in a qualitative sense. As such, we employ Stokes flow in
constructing our effective model. Hence, the governing air flow equations are given
by the Stokes equations

(6a)
−∇P̃T+µa∇2ũ = 0, x̃ ∈ Ωa,

(6b)
∇ · ũ = 0, x̃ ∈ Ωa,

(6c)
ũ · n = 0, x̃ ∈ ∂Ωb.

Here, µa is the viscosity of the air, which we assume to be constant, and P̃T is
the total pressure of the mixture of gases in the air and is assumed to be independent
of P̃a. Due to the incompressibility assumption, the temperature and vapor pressure
within the air do not influence the air flow, with the primary role of the airflow being
to deliver heat to the beans via convection. Of course, one could consider compressible
flows governed by Navier–Stokes or more complicated turbulence models. However,
as a first theoretical study on multibean coffee roasting, we aim to keep the fluid
mechanics problem as simple yet physically relevant as possible.

2.3. Nondimensionalization. We nondimensionalize the multiphase heat and
mass transfer model (1)–(5) and the flow model (6a)–(6c) using the scalings in Table 2.
We focus on the characteristic timescale where vapor diffusion via Darcy’s law occurs.

To do this, we nondimensionalize time by t̃ = `2µbφ
kbp0P t, where p0P is the steam table

pressure at roasting temperature (T∞) and all other dimensional quantities are listed
in Table 1. Furthermore, we nondimensionalize the air temperature Ta to be on the
unit interval using T̃a = T0 + (T∞− T0)Ta, where T0 is the roaster room temperature
and T∞ is the temperature of the hot air which enters the roaster through the inlet;
a similar nondimensionalization is performed for the bean temperature, Tb.

Using notation similar to that in [27], we give the heat and mass transfer model
for the time evolution of the primary solution variables Sb, Pb, Tb, Pa, and Ta in
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Table 2
Description of variables and their nondimensionalizations as motivated by [26]. The dimen-

sional variables are represented with a tilde and the dimensionless variables without.

Variable Description Nondimensionalization

t Time variable t̃ =
`2µbφ

kbp0P
t

x Spatial variable x̃ = `x

Ta Temperature of the air T̃a = T0 + (T∞ − T0)Ta
Tb Temperature of the bean T̃b = T0 + (T∞ − T0)Tb
Pa Vapor partial pressure in air P̃a = p0PPa
Pb Vapor partial pressure in bean P̃b = p0PPb
Sb Water saturation in bean S̃b = σSb
u Air flow velocity ũ = Uu

PT Total gas pressure in air P̃T =
µaU
δ2`

PT

nondimensional form:

∂Sb
∂t

= − 1

ε21
Iv, x ∈ Ωb,(7a)

∂

∂t

[
Pb(1− σSb)

1 + T Tb

]
= − 1

ε2

∂Sb
∂t

+∇ ·
[
Pb∇Pb

1 + T Tb

]
, x ∈ Ωb,(7b)

∂Tb
∂t

+A1
∂

∂t
[Sb(1 + T Tb)] = A2

∂Sb
∂t

+A3∇ · [(1 +A4Sb)∇Tb], x ∈ Ωb,(7c)

∂

∂t

[
Pa

1 + T Ta

]
+A5∇ ·

(
uPa

1 + T Ta

)
= A6∇ ·

[
Pa∇Pa

1 + T Ta

]
, x ∈ Ωa,(7d)

∂Ta
∂t

+A5∇ · (uTa) = A7∇2Ta, x ∈ Ωa.(7e)

The nondimensional evaporation rate, Iv, and sorption isotherm, P ∗v (Tb, Sb), are given
(as in [25]) by

Iv = Sb(1− σSb)(P ∗v (Tb, Sb)− Pb)

√
1 + T

1 + T Tb
, P ∗v (Tb, Sb) =

SC1

b exp
(
C3(Tb−1)
1+T Tb

)
SC1

b + C2( 1−φ
φ )C1

.

(8)

The boundary conditions are given in dimensionless form by

(9) Tb = Ta, ∇Tb · n = B1∇Ta · n, Pb = Pa, ∇Pb · n = B2∇Pa · n, x ∈ ∂Ωb.

All relevant dimensionless groupings are listed in Table 3. The equations (7a)–(7c)
governing the saturation, temperature, and vapor pressure inside the bean have been
taken directly from [27]. However, as shown in Table 2, we have nondimensionalized
the spatial variable with respect to the characteristic length of the roaster, `, rather
than the radius of an idealized spherical bean as in [26].

We nondimensionalize the total pressure by P̃T = (µaU/δ2`)PT as in [16]. This
pressure scaling is chosen to balance the pressure gradient over the macroscale (the
roaster) with viscous forces over the microscale (each single bean). The dimensionless
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Table 3
Description and typical values of dimensionless parameters used in the model.

Dimensionless Relationship to Typical value
parameter dimensional parameters of parameter

A1
σφ

α1β(1− φ)T
1.75

A2 γA1 3.33

A3
φ(ζ1(1− φ) + ζ3φ)

ψPα1β(1− φ)
1.98× 10−5

A4
φσ(ζ2 − ζ3)

ζ1(1− φ) + ζ3φ
1.06

A5
φU`
Pp0

·
µb

kb
14.7

A6 φB2 6432

A7
φKaµb

ρaCpaPp0kb
0.314

B1
Ka

Ks
0.7

B2
µb

kb
·Dva 12865

P
A1

p0
exp

(
A2 − A3

T∞

)
17.87

C3 Parameter in (8) 6.66

T
T∞

T0
− 1 0.61

α1
ρs

ρw
0.85

α2
p0mv

ρwRT0
7.5× 10−4

β
Cps

Cpw
0.11

γ
λv

T0Cpw
1.9

ε1

√
ψ
√

1 + T

φ
2.10× 10−4

ε2
Pα2

σ
0.134

ψ
kbp0

µb
·
ρw

`2Iv0
8.66× 10−9

ζ1
Ks

ρwCpw
·
ρw

`2Iv0
4.00× 10−13

ζ2
Kw

ρwCpw
·
ρw

`2Iv0
6.28× 10−12

ζ3
Kv

ρwCpw
·
ρw

`2Iv0
1.73× 10−13

flow equations are thus given by

(10a)
−∇PT+δ2∇2u = 0, x ∈ Ωa,

(10b)
∇ · u = 0, x ∈ Ωa,

(10c)
u · n = 0, x ∈ ∂Ωb.

We also assume constant homogeneous initial conditions in both the air and bean
phases,

(11) Sb = 1, Ta = Tin, Pa = Pin, Tb = Tin, Pb = Pin at t = 0.

3. Homogenization. Although we have formulated governing equations for the
heat and mass transfer within a single bean and the air surrounding it, we wish
to understand how the roasting process occurs within an array of beans within a
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Fig. 2. Macroscale (left) and microscale (right) problem geometry.

roasting chamber. Hence, we upscale our model, going from the microscale model
of an individual bean surrounded by air to a macroscale model for the entire air-
bean medium within a roasting chamber. The formulation of a macroscopic model is
achieved via homogenization, the process of deriving macroscopic equations for sys-
tems with fine microscopic structures. For general texts on homogenization theory,
see [6, 18, 35, 42, 53]. Homogenization theory has been applied to a variety of mul-
tiscale heat and mass transfer systems in order to obtain effective macroscale models
[5, 7, 21, 54, 56, 58, 64]. While there are a number of references available, we shall
most closely follow the framework of the recent work in [8, 17, 16, 62].

We assume that the beans are arranged in a cubic lattice structure, where the
centers of each bean are located strictly δ` apart. We divide the air-bean medium into
periodic cells, each containing a single bean surrounded by air. We introduce y = x/δ
as the microscale variable, treating x and y as independent. We define ω to be the
unit cell, and the air and bean phases of the unit cell by ωa and ωb, respectively, such
that ω = ωa ∪ ωb. The air-bean interface is defined by ∂ωb and the boundary of the
cell by ∂ωa. The macroscale and microscale problem geometry are shown in Figure 2.

As we have introduced two spatial scales, the spatial derivatives vary according
to

(12) ∇ → ∇x +
1

δ
∇y.

We denote the volume of the air and bean phases in each cell by θa and θb, with
θ = θa+θb denoting the total volume of a cell. We define each cell to be the unit cube
[0, 1]3. Since ∂ω denotes the boundary of the cell, we have θ = |ω| =

∫
ω
dω = 1. We

then have θb = |ωb| =
∫
ωb
dω and θa = |ωa| =

∫
ω
dω −

∫
ωb
dω = 1 −

∫
ωb
dω. We then

write the bean volume fraction as simply θb = 1− θa and need only to prescribe the
value of θa henceforth. As we do not incorporate bean-bean interactions, for spherical
beans we require that θa > 1−π/6 ≈ 0.47639, where θa = 1−π/6 corresponds to the
case where the surface of the bean touches the boundary of the cell (and hence the
neighboring beans). Therefore, we treat θa as a control parameter, which falls within
the range 1− π/6 < θa < 1.

3.1. Homogenized flow model. We consider the air flow first of all as it is
assumed to be independent of the heat and mass transfer problem. The approach for
the flow problem will be the same as in [17], and hence we omit details and give the
cell problem and results.
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We proceed with the asymptotic expansion of the flow velocity and pressure in
powers of δ:

u = u(0)(x,y, t) + δu(1)(x,y, t) + δ2u(2)(x,y, t) +O(δ3),(13a)

PT = P
(0)
T (x,y, t) + δP

(1)
T (x,y, t) + δ2P

(2)
T (x,y, t) +O(δ3).(13b)

At leading order, the pressure is found to be independent of the microscopic variable

y, i.e., P
(0)
T = P

(0)
T (x, t). At the next order, O(1), we obtain a solution taking the

form

u(0) = −K(y, t)∇xP
(0)
T ,(14a)

P
(1)
T = −Π(y, t)∇xP

(0)
T + P̂T (x, t),(14b)

where P̂T is a function which is constant in y, and the matrix function K and vector
function Π satisfy the cell problem
(15)
I−∇yΠ+∇2

yK = 0, y ∈ ωa, ∇y·K = 0, y ∈ ωa, K = 0, y ∈ ∂ωb, K,Π periodic, y ∈ ∂ωa.

Integrating (14a) over the unit cell air domain ωa yields the homogenized Darcy
relation

(16) u∗ = −K∇xP
∗
T ,

where P ∗T = P
(0)
T , u∗ is the volumetric average fluid velocity defined by u∗ =∫

ωa
u(0)(x,y, t) dω, and K is a matrix containing information on the microscopic

fluid flow,

(17) K =

∫
ωa

K(y, t) dω.

To close the homogenized system, we consider O(δ) terms to find the macroscopic
incompressibility equation

(18) ∇x · u∗ = 0.

Equation (16) is known as Darcy’s law [36], which describes fluid flow through porous
media, stating that the velocity of the fluid is proportional to its pressure gradient.

Under the assumption of spherical beans, the isotropy of the cell problem implies
that the matrix K given in (17) may be written as [17] K = κI, where κ is a scalar
quantity. We refer to the function κ as the effective permeability, and we have

(19) κ =

∫
ωa

N∑
j=1

Kjj dω,

where N is the space dimension of the cell problem. For all simulations we choose
N = 3, although we take N = 2 when plotting solutions to cell problems in section 4
as this is easier to display graphically.

3.2. Homogenized heat and mass transfer model. We now return to the
heat and mass transfer model, employing the same homogenization techniques to
formulate effective governing equations for the entire air-bean medium. Full details
are given in Appendix A.



1560 R. SACHAK-PATWA, N. FADAI, AND R. A. VAN GORDER

We consider the asymptotic expansions in powers of δ:

Ti = T
(0)
i (x,y, t) + δT

(1)
i (x,y, t) + δ2T

(2)
i (x,y, t) +O(δ3) , i = a, b,(20a)

Pi = P
(0)
i (x,y, t) + δP

(1)
i (x,y, t) + δ2P

(2)
i (x,y, t) +O(δ3) , i = a, b,(20b)

Sb = S
(0)
b (x,y, t) + δS

(1)
b (x,y, t) + δ2S

(2)
b (x,y, t) +O(δ3) ,(20c)

u = u(0)(x,y, t) + δu(1)(x,y, t) + δ2u(2)(x,y, t) +O(δ3).(20d)

At O(1), we deduce that T
(0)
b = T

(0)
a = T (0)(x, t) and P

(0)
b = P

(0)
a = P (0)(t,x),

meaning that at leading order, the temperature and pressure in the bean are both
independent of the microscopic variable y and are homogeneous in the air and bean

phases. Similarly, we find that S
(0)
b = S

(0)
b (x, t).

At O(δ), due to linearity of the problem, search for a solution taking the form

(21) T
(1)
i = −∇xT

(0)
i · Γ1

i , P
(1)
i = −∇xP

(0)
i · Γ2

i , i = a, b,

which involves a temperature cell problem for the components of the vector functions
Γ1
a and Γ1

b , namely Γ1
aj and Γ1

bj , respectively. The temperature cell problem is given
by

∇2
yΓ1

bj = 0, y ∈ ωb,(22a)

∇2
yΓ1

aj = 0, y ∈ ωa,(22b)

Γ1
bj = Γ1

aj , (∇yΓ1
bj · n− nj) = B1(∇yΓ1

aj · n− nj), y ∈ ∂ω,(22c)

Γ1
aj periodic, y ∈ ∂ωa,(22d)

for j = 1, 2, 3. Similarly, the pressure cell problem for Γ2
aj and Γ2

bj is given by

∇2
yΓ2

bj = 0, y ∈ ωb,(23a)

∇2
yΓ2

aj = 0, y ∈ ωa,(23b)

Γ2
bj = Γ2

aj , (∇yΓ2
bj · n− nj) = B2(∇yΓ2

aj · n− nj), y ∈ ∂ω,(23c)

Γ2
aj periodic, y ∈ ∂ωa,(23d)

for j = 1, 2, 3.
We use O(δ2) equations to obtain the effective equations; again, see Appendix

A for details. We wish to obtain a homogenized closed system of equations for the
temperature, vapor pressure, and saturation of the air-bean medium which is valid as

δ → 0. Let us now denote T ∗ = T (0), P ∗ = P (0), and S∗ = S
(0)
b , recalling also that

T
(0)
a = T

(0)
b = T (0) and P

(0)
a = P

(0)
b = P (0).

Using the new scalings outlined in Table 4, we write the homogenized conservation
equations as
(24)

[H1 +H2(1 +A4S
∗)]

∂T ∗

∂t
+H3

∂

∂t
[S∗(1 + T T ∗)] +H4(1 +A4S

∗)∇x · (u∗T ∗)

= H5
∂S∗

∂t
+∇x · D̂1[(1 +A4S

∗)∇xT
∗]

and
(25)
∂

∂t

[
P ∗ (θb(1− σS∗) +H6)

1 + T T ∗

]
+H7∇x·

(
u∗P ∗

1 + T T ∗

)
= −H8

∂S∗

∂t
+∇x·D̂2

(
P ∗∇xP

∗

1 + T T ∗

)
.
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Table 4
Parameters used in the system (24)–(31) which differ between the two roasting configurations.

Parameter values valid for the fluidized bed roaster and the drum roaster are provided. Other pa-
rameters which are the same in both roasting configurations are given in Table 3. Differences in
most model parameters are due to the value of `, the lengthscale of the roasting environment. For
the drum roaster, this is ` = 0.2m, whereas for the fluidized bed, this is ` = 1.0m, and so this will
modify some parameters between the two roasting configurations by a factor of five.

Dimensionless Fluidized Drum
parameter bed roaster roaster
θa 0.9 0.875
` 1.0 m 0.2 m
σ 0.1 0.0826
A4 1.06 0.879

H1 =
θb

A3
=

(1− θa)ψPα1β(1− φ)

φ(ζ1(1− φ) + ζ3φ)
5051 6313

H2 =
θaB1

A7
=
θaρaCpaPp0kb

Ksφµb
2.006 1.951

H3 =
θbA1

A3
=

(1− θa)σψPβ
βT (ζ1(1− φ) + ζ3φ)

3009 2485

H4 =
B1A5

A7
=
U`ρaCpa
Ks

3274 655

H5 =
θbA2

A3
= γH3 5717 4722

H6 =
θaB2

A6
= θa

φ
1.8 1.75

H7 =
B2A5

A6
=
U`µb
Pp0kb

29.4 5.87

H8 =
θb

ε2
=

(1− θa)σ

Pα2
7.21 5.95

D1 = D1(B1, θa) 0.7260 0.7238
D2 = D2(B2, θa) 12151 11950

Here, the effective macroscopic temperature diffusivity coefficient is given by

(26) D̂1 =

∫
ωb

(I − JTΓ1
b
) dω + B1

∫
ωa

(I − JTΓ1
a
) dω,

while the effective macroscopic vapor pressure diffusivity coefficient is given by

(27) D̂2 =

∫
ωb

(I − JTΓ2
b
) dω + B2

∫
ωa

(I − JTΓ2
a
) dω.

As was true for the effective permeability, under the assumption of symmetry
due to spherical beans, the diffusivities D̂1 and D̂2 reduce to scalar multiples of the
identity matrix I, say D̂j = DjI, where Dj is a scalar function, for j = 1, 2. Due to
this symmetry, we have that

(28) λka =

∫
ωa

N∑
j=1

∂Γkaj
∂yj

dω and λkb =

∫
ωb

N∑
j=1

∂Γkbj
∂yj

dω for k = 1, 2,

where λka and λkb are constants, and N = 1, 2, 3. We may then write the scalar
quantities Dj as

(29) D1 = (θb − λ1
b) + B1(θa − λ1

a) and D2 = (θb − λ2
b) + B2(θa − λ2

a).

To complete our homogenized system, we have the conservation of water equation,
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which we write as

(30)
∂S∗

∂t
= − 1

ε21

S∗(1− σS∗)
S∗C1

exp
(
C3(T∗−1)
1+T T∗

)
S∗

C1 + C2( 1−φ
φ )C1

− P ∗
√ 1 + T

1 + T T ∗

 .
The initial conditions of the system are given by

(31) S∗ = 1, T ∗ = Tin, P ∗ = Pin at t = 0.

The full list of parameters of the homogenized system (24), (25), (30), (31) (along
with their reference values) can be found in Table 4.

4. Numerical approach. In this section, we discuss the approach taken for
numerical simulations of the flow, temperature, and pressure cell problems, which are
in turn used in the heat and mass transfer model simulations. We carry out all our
simulations using the finite-element software package COMSOL Multiphysics version
5.3. We define the cells to be the unit cube [0, 1]3, containing a spherical bean at their
centre. As we do not incorporate bean-bean interactions, we impose that θa > 1−π/6,
where θa = 1−π/6 corresponds to the case where the surface of the bean touches the
boundary of the cell corresponding to δ = 2rb

` .
We solve the flow cell problem (15) and calculate the effective permeability, κ,

as defined in (19), for different values of the air fraction θa. The results are shown
in Figure 3a for the N = 3 dimension case to represent the cell structure for a
three-dimensional bean. We observe that κ → ∞ as θa → 1, which is also seen in
[17]. We solve the temperature cell problem (22) with the typical parameter value
B1 = 0.7 for different values of θa. The results in Figure 3b show that D1 → B1 as
θa → 1, as expected from (29). Similarly, we solve the pressure cell problem (23)
with B2 = 12865. Again, as expected from (29), we see in Figure 3c that D2 → B2

as θa → 1. So as the air fraction tends to 1, the effective thermal and vapor pressure
diffusivities tend to the relative thermal and vapor pressure diffusivities of the air
phase.

Once we have solved the cell problems to determine the effective parameters κ, D1,
and D2, along with the homogenized flow model (16) and (18), we are able to carry out
simulations of the homogenized heat and mass transfer model (24), (25), (30), (31).
However, we must first define the geometry and boundary conditions for this system.
We predominantly consider a one-dimensional roaster, assuming hot, dry air flowing
in from the left-hand side of the roaster and out through the right-hand side. Higher-
dimensional geometries, such as a three-dimensional roaster, are briefly considered in
section 5.2; we will show here that a one-dimensional geometry faithfully represents
more realistic three-dimensional geometries. Hence, our boundary conditions are given
by

T ∗ = 1, P ∗ = 0 at x = 0,(32a)

∇T ∗ · n = 0, ∇P ∗ · n = 0 at x = 1.(32b)

From (16) and (18), we deduce that the air flow is constant. Hence, we set u∗ = 1,
as we have already nondimensionalized with respect to the inlet air velocity U (which
in our case is the air velocity throughout the roaster).

We assume that the medium is initially at room temperature, and the vapor
pressure is at its equilibrium level, given the saturation and temperature. Our initial
conditions are therefore given by

(33) S∗(x, 0) = 1, T ∗(x, 0) = 0, P ∗(x, 0) = P ∗v (S∗ = 1, T ∗ = 0),
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(a) Effective permeability κ (b) Thermal diffusivity D1

(c) Vapor pressure diffusivity D2

Fig. 3. Plots of the effective permeability, κ, thermal diffusivity, D1, and vapor pressure diffu-
sivity, D2, as functions of the air volume fraction, θa. We have taken B1 = 0.7 and B2 = 12865,
and note that D1 → B1 and D2 → B2 as θa → 1.

where we recall that S∗ is scaled by the initial saturation, σ ∈ [0, 1].

5. Comparisons of roasting environments. Having outlined the homoge-
nization approach in section 3 and the numerical solution of the cell problems and
upscaled macroscopic problems in section 4, we are now prepared to obtain results rel-
evant to industrial coffee roasting configurations. As mentioned in section 1, there are
two primary roasting configurations: the drum roaster and the fluidized bed roaster.
We shall apply the results of previous sections to determine how an array of coffee
beans will roast in each configuration. In the case of a drum roaster, there exist
experimental results [22], and we shall compare our simulations to these.

5.1. Simulation of a drum roaster and model validation. We first carry
out a simulation which is representative of a drum roaster, to qualitatively validate our
model with the experimental data from [22], in which samples of 3 g of Arabica green
coffee beans were roasted at 200 ◦C in a drum roaster (EXPO 500/E, STA impianti,
Bologna, Italy) for 14 minutes. The moisture concentration was determined at the 2,
4, 6, 8, 10, and 14 minute marks. The air speed was measured to be 0.02 m/s. As in
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(a) Temperature (b) Saturation

(c) Vapor pressure

Fig. 4. Simulation of the homogenized model (24), (25), (30), (31) in a one-dimensional
geometry representing a drum roaster, with parameters as in Tables 3–4. We plot the dimensional
temperature T̃ , saturation S̃, and pressure P̃ .

Fig. 5. Comparison of the water concentration from both the simulation of the homogenized
model (24), (25), (30), (31) (with saturation as seen in Figure 4b) and experimental data from [22].

[26], we can relate the water saturation, S∗, to the moisture concentration, c, by

(34) c =
φS∗ρ2

w

(1− φ)ρsmw
.

To compare this to the experiential data, we take a spatial average of the moisture
concentration, which we denote by cav = 1

|Ω|
∫

Ω
cdΩ. From this, the initial saturation

is σ = 0.0826, given that the initial moisture concentration in the experiment was
5400 mol/m3.

To represent the drum roaster (EXPO 500/E, STA impianti, Bologna, Italy), we
take our one-dimensional macroscopic geometry to be of length 0.2 m. We fit our
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(a) Temperature (b) Saturation

(c) Vapor pressure

Fig. 6. Simulation of the homogenized model (24), (25), (30), (31) in a one-dimensional geom-
etry representing a fluidized bed roaster, with parameters as in Tables 3–4. We plot the dimensional
temperature T̃ , saturation S̃, and pressure P̃ .

model to the data with only one fitting parameter, θa, the air fraction, as this is an
unknown. The parameters changed for use in these simulations are shown in Tables 3–
4. We assume that our geometry of a static array of beans which have air being blown
through them approximates a drum roaster, in which beans move through relatively
slow-moving air.

The results of the simulation are shown in Figure 4, where the dimensional tem-
perature, saturation, and vapor pressure are plotted against the spatial dimension
and time. Initially, the air-bean medium starts off cool, with the beans containing
water. As hot air is blown in from the left-hand side, a sharp heat and drying front
propagates through the roaster from left to right, until the whole medium is dry and
at the air inlet temperature, a result of the assumption that the beans within the
roaster were fixed in a static periodic lattice. The vapor pressure reaches its peak
on the right-hand side of the roaster, just before the medium becomes fully dry and
heated to the air inlet temperature, at which the pressure falls rapidly to zero.

In Figure 5, we plot the simulation of the average moisture concentration cav from
our model (24), (25), (30), (31), as derived from Figure 4b, against the experimental
data from [22]. We observe a good qualitative fit, which suggests that the model does
indeed describe the roasting process well, especially as only one fitting parameter was
used. Note that the air fraction used to fit our model to the data is θa = 0.875. We
selected this value in consultation with Jacobs Douwe Egberts (JDE), and in order to
show agreement with the results of [22], which were obtained using a drum roaster.
As conversations with JDE suggested that θa should be less than that for a fluidized
bed, we considered θa < 0.9. A value of θa = 0.875 provided the best fit to [22],
without having to artificially adjust other parameters.



1566 R. SACHAK-PATWA, N. FADAI, AND R. A. VAN GORDER

5.2. Simulation of a fluidized bed roaster. We now consider the parameter
regime in which the model (24), (25), (30), (31) represents the heat and mass transfer
within a fluidized bed roaster. We assume that our static array of beans approxi-
mates the dynamic movement of beans within a fluidized bed roaster. For this set of
simulations, we consider a one-dimensional macroscopic geometry of length 1 m and
an air inlet velocity of 0.1 m/s. Parameters are again as listed in Tables 3–4.

We see the results in Figure 6, observing behavior similar to that in Figure 4. We
note that the increased air flow speed causes the heat and drying front to propagate
more quickly through the roaster, even though the roaster domain is five times larger
than the drum roaster domain used in Figure 4. There is also a notable increase in
saturation before the beans are dried and a significantly greater vapor pressure.

5.3. Verification with 3D simulations. In the previous subsections, we con-
sidered simplified one-dimensional geometries and claimed that these were representa-
tive of the full three-dimensional roasting chamber. To verify this, we now consider a
three-dimensional macroscopic geometry of length 1 m in the x-direction and 0.2 m ×
0.2 m cross-section which models a fluidized bed configuration. In addition to condi-
tions already discussed for the one-dimensional configurations, the three-dimensional
geometry employs no-flux boundary conditions along the cross-section edges. The
simulation was carried out in slightly lower resolution than the one-dimensional sim-
ulations, and we focus on the first half of the simulation time to display our results.

In order to generate plots, we fix a line at the center of the domain (yc = 0.1, zc =
0.1) and a line near the external boundary of the cross section (ys = 0.01, zs = 0.1).
We plot the temperature profiles for each in Figure 7. We find that there is very little
difference between the temperature profiles near the center of the roaster and the
boundary of its cross-section (the maximal difference, found within the drying zone,
is half a degree Celsius, whereas outside the drying zone the difference is negligi-
ble). This implies that a one-dimensional macroscopic geometry faithfully represents
a more realistic three-dimensional version, while having the additional advantage of
significant computational efficiency. Similar agreement is found for vapor and pres-
sure plots, and similar results are obtained for the drum roaster configuration, so we
do not show those plots here.

We find that the drying front propagates through the roaster in a planar config-
uration, with the heat and mass transfer uniform in the coordinates orthogonal to
this drying front. Of course, one should note that this will change if the walls of the
roasting chamber are cooled, but as previously mentioned, with the exception of the
hot inlet air, we neglect external thermal transport (say, from the atmosphere outside
the roaster) in this study. In future work, it may be prudent to consider conduction
boundary conditions, rather than no-flux boundary conditions, for the thermal field at
the exterior boundaries orthogonal to the direction of heat convection. Furthermore,
inclusion of more realistic curved geometry, rather than rectangular geometry, may
influence the propagation of the drying front within the drum roaster. Still, we feel
our one-dimensional results are qualitatively useful, particularly as effective models
capturing the averaged roasting behavior of the beans.

5.4. Sensitivity analysis. The homogenized heat and mass transfer model (24),
(25), (30), (31) is dependent on many parameters, some of which coffee manufacturers
are able to control to some extent—in particular the air inlet velocity, U , and the
air fraction, θa. Two of the key properties of the model that manufacturers are
interested in are the drying time and the maximum vapor pressure. Hence, it would
be instructive to see how varying U and θa affect these two properties within the
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(a) Side roaster temperature

0 0.2 0.4 0.6 0.8 1

Length (m)

0

100

200

300

400

T
im

e 
(s

)

Temperature T(x,y
c
,z

c
,t), °C

20

40

60

80

100

120

140

160

180

200

(b) Center roaster temperature

0 0.2 0.4 0.6 0.8 1

Length (m)

0

100

200

300

400

T
im

e 
(s

)

Absolute error, |T(x,y
c
,z

c
,t)-T(x,y

s
,z

s
,t)|, 

°
C

0

0.1

0.2

0.3

0.4

0.5

(c) Absolute difference (temperature)

Fig. 7. Simulation of the homogenized model (24), (25), (30), (31) in a three-dimensional rec-
tangular geometry representing a fluidized bed roaster, with parameters as in Tables 3–4 on the
domain [0, 1] × [0, 0.2]2. The (dimensional) side roaster temperature plots T̃ (x, ys, zs, t), where
(ys, zs) = (0.01, 0.1); the (dimensional) center roaster temperature plots T̃ (x, yc, zc, t), where
(yc, zc) = (0.1, 0.1). The absolute difference between these two temperature profiles is also shown,
with the maximal difference found to be only half a degree Celsius. Similar small differences are
likewise noted for the vapor pressure and water saturation solutions at each location.

fluidized bed roaster. We define the drying time to be the time it takes for the
saturation at the right boundary to reach 1% of its initial value.

In Figure 8, we plot the drying time and the maximum vapor pressure as the air
volume fraction, θa, varies. Apart from parameters which are dependent on either θa
or U , the parameters used are those in Tables 3–4 (with the exception that ε1 = 10−2

was used to reduce computation time), with a one-dimensional geometry of length
` = 1 m and boundary and initial conditions as previously stated. We observe that
as θa increases, the drying time decreases in a linear fashion, and that the maximum
vapor pressure increases at a growing rate. This can be explained due to the fact
that a greater air fraction increases the rate of heat transfer, which in turn causes the
medium to dry more quickly, and a larger build-up in vapor pressure. At the same
time, as θa increases, there is less coffee per unit cell, and hence less mass to dry. It
is sensible, then, that the beans roast slightly faster in the fluidized bed than in the
drum roaster, since there is 25% more bean volume per unit cell in the drum roaster
configuration.

We show the effects of varying the hot air inflow velocity, U , in Figure 9. We see
that as U increases, the drying time decreases rapidly, and that the maximum vapor
pressure increases at a steady rate. Again, these can be explained by an increased
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(a) Total drying time (b) Maximum vapor pressure

Fig. 8. Sensitivity of total drying time and maximum vapor pressure to the air volume fraction,
θa, for the fluidized bed roaster. We carry out a simulation using a one-dimensional macroscopic
geometry of length ` = 1m, with inlet air velocity U = 0.1m/s, and other parameters as in Tables
3-4, except ε1 = 10−2.

(a) Total drying time (b) Maximum vapor pressure

Fig. 9. Sensitivity of total drying time and maximum vapor pressure to the air inlet velocity,
U , for the fluidized bed roaster. We carry out a simulation using a one-dimensional macroscopic
geometry of length ` = 1m, with air volume fraction, θa = 0.9, and other parameters as in Tables
3-4, except ε1 = 10−2.

air flow driving the heat transfer within the medium. For larger velocities, there are
diminishing returns, and this is perhaps due to the decrease in residence time, t ∼ θa`

U ,
since for large U , the residence time may no longer be rate-limiting relative to the heat
and mass transfer processes occurring within the bean. Additionally, the assumption
of a Stokes flow is most reasonable for U = O(10−1). Near and above U = O(1),
the Reynolds number, Re, becomes too large to justify the assumption of Stokes flow,
with full Navier–Stokes required for accurate resolution of the fluid problem once
Re = O(102). While U = O(10−1) is close to operational inflow velocities in real
roasters and is within the regime where the assumption of Stokes flow is reasonable,
one should be careful when extrapolating our results for U = O(1) in the design of
new roasters if the goal is to use faster inflow velocities to more rapidly roast coffee
beans. Still, for U = O(10−1), there are very clear improvements in drying time given
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a relatively small increase in the inflow velocity U .
It is natural to wonder if there is a correspondence between U and θa, since for

large U one might expect that the beans will move in some manner. In order to
perform the homogenization procedure, we have assumed that the array of beans is
static and hence cannot move with the flow. As such, the individual beans remain fixed
in location, and the value of θa is similarly fixed, regardless of the velocity. As such, U
and θa are independent parameters in our study. If the beans were allowed to move in
a nonuniform manner (which is more realistic, but beyond what our homogenization
approach permits, due to the need for spatial periodicity), then U may indeed have
an influence over θa and would further result in θa becoming a function of time. This
may be a topic to consider in future work, but as it would require direct simulation of
a many-body problem for the beans, rather than homogenization, we do not explore
this point further here.

5.5. Qualitative behaviors and dominant balances. Having carried out a
variety of simulations for both roasting configurations, we note that both temperature
and water saturation vary rapidly near a localized drying front, which appears to
correspond to the convection of enough hot air over the array of beans. On the other
hand, the vapor pressure changes far more gradually, and globally rather than locally.
To better appreciate why these behaviors are observed, we return to the effective
equations (24)–(25).

As can be seen in Table 4, the dominant parameter groups include H1,H3,H4,H5

= O(103). Additionally, observe that the effective diffusivity for the energy equation
(24) is D1 = O(1). This suggests that the effective thermal Péclet number, Peeff,
satisfies Peeff = H4

D1
= O(103). Therefore, the dominant transport mechanism will be

convection with the flow of hot air, with conduction due to diffusion highly localized
within the narrow drying region. Away from the drying region, there is negligible
change in S∗ and negligible influence from the diffusivity; hence the air temperature
will at leading order be governed by a transport equation of the form

(35)
∂T ∗

∂t
+ η∇x · (u∗T ∗) = 0,

where η = H4(1+A4S
∗)

H1+H3T S∗ . In the case of a fluidized bed, for small time and before the

drying front arrives, S∗ ≈ 1, and therefore η = H4(1+A4)
H1+H3T = 0.980. After the drying

front passes, S∗ ≈ 0, and η = H4

H1
= 0.648. As such, there is more rapid convective

transport of heat into the roaster ahead of the drying region. Behind the drying
region, the temperature of the effective air-bean medium rapidly tends to the steady
state temperature corresponding to the inlet boundary condition. Upon reaching
this thermal equilibrium, the terms in the transport equation tend to zero, and heat
remains uniform (until the roasting apparatus is turned off). The drying region in the
effective model appears then as a narrow boundary layer between the cool and hot
beans, behaving in a manner akin to the drying front previously studied for a single
isotropic bean [27], with the primary difference being that this narrow layer acts on
the effective air-bean medium. In the case of a drum roaster, we have η = 0.157 ahead
of the drying region, and η = 0.104 behind it, so the relative qualitative discussion
carries over from the fluidized bed, with the difference being that transport is slower
for the drum roaster. That said, the drum roaster is smaller by a factor of five, and
so these numbers are roughly in alignment with the fact that both roasters will roast
their respective beans in a similar amount of time.
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Parameter values in Table 4 imply Peeff = 4510 for the fluidized bed, whereas
for the drum roaster we find Peeff = 902. Therefore, while thermal convection is
dominant in both configurations, it is even stronger in the fluidized bed. Indeed,
when comparing the narrow drying regions in Figures 4a and 6a, we see that the
transition region from cold to hot beans is even more narrow for the fluidized bed,
due to the relatively larger effective thermal Péclet number.

On the other hand, for the effective vapor pressure equation (25), we see that
the effective diffusivity parameter satisfies D2 = O(104), which is by far the most
dominant term. The nearest term which balances this will depend on the roaster
configurations. In the case of a fluidized bed, H7 = 29.4, and this results in a dominant
balance

(36) H7∇x ·
(

u∗P ∗

1 + T T ∗

)
= ∇x · D2

(
P ∗∇xP

∗

1 + T T ∗

)
.

Therefore, diffusion of water vapor pressure is by far the dominant term, advection
of water vapor is the second strongest term, and other terms are negligible. On the
other hand, in the case of the drum roaster, H7 = 5.87 and H8 = 5.95 are of the same
size, and hence the dominant balance in the effective vapor pressure equation (25) is

(37) H7∇x ·
(

u∗P ∗

1 + T T ∗

)
+H8

∂S∗

∂t
= ∇x · D2

(
P ∗∇xP

∗

1 + T T ∗

)
,

with local saturation playing a larger role. For both cases, the diffusion term is still
dominant, and this results in the more gradual change of water vapor in Figures 4c
and 6c.

6. Discussion. We have formulated a heat and mass transfer model within a
single bean and the air surrounding it, incorporating the single bean dynamics for an
array of beans in a roaster. Using homogenization theory, we have derived a macro-
scopic model for the air-bean medium in order to model the effective properties of
an array of coffee beans during the roasting process. We solved the system numer-
ically, using parameter values which represent either a drum roaster or a fluidized
bed roaster, and validated the model with experimental data for water concentration
obtained in [22]. We find that temperature transport is primarily convective, except
for within a narrow drying region where convection of hot air and air-bean conduction
balance. Meanwhile, the build-up of water vapor pressure is dominated by diffusion,
resulting in a more gradual build-up of pressure over time (until all beans are roasted,
at which point the pressure is released).

Our results point to some key similarities and differences between the idealized
drum and fluidized bed roasters we have considered and bring to light additional
phenomena not seen in the single bean models. For both roasting configurations,
there is a relatively sharp thermal gradient, with the temperature going rapidly from
the initial (cool) temperature to the final (hot) temperature. Likewise, there is a
relatively sharp drying front which propagates through the array of beans, analogous
to the sharp drying front which was previously seen in the roasting of a single bean [27].
In both configurations, there is also a gradual vapor pressure build-up, which continues
to grow until the beans reach terminal low water saturation. We note that this vapor
pressure build-up is much less than what was found in the roasting problem for single
beans with smaller gas permeability values [25, 26]. Our configuration permits a larger
gas permeability within the bean (which we take to be O(10−14) m2), as we model
the air-bean interface more accurately than is possible when considering a single bean
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in isolation. The relatively small pressure build-up we observe is therefore consistent
with maximal pressure predicted in Figure 4 of [25]. The sudden drop in pressure
that we observe once the beans have dried is also consistent with Figure 3 of [25], and
as discussed in [25], this is due to the inclusion of the sorption isotherm in our model.

A primary difference between the multibean roasting configurations is the time
taken to dry all beans. Although the fluidized bed roaster is five times the size of the
drum roaster, the array of coffee beans dries more quickly in the fluidized bed. This is
seen when comparing Figures 4a and 6a, where the drum roaster has dried the beans
within 800 s, yet the fluidized bed has dried the beans within 700 s, despite the much
larger domain size. There are two sensible reasons for this. First, each unit cell in the
drum roaster has 25% more bean volume than does a corresponding unit cell in the
fluidized bed configuration; hence it takes slightly longer to dry this extra bean mass.
Second, while convective heat transfer is dominant in both roasting configurations, it
is largest within the fluidized bed, allowing for heat to more rapidly become available
for the drying process.

Regarding industrial recommendations, we observe a decrease in the total drying
time as the volume fraction of air increases, suggesting that configurations such as the
fluidized bed will dry (and therefore roast) beans faster when there is sufficient hot
air between beans. More generally, the lower the density of beans, the faster drying
will occur. Of course, there is a trade-off here; one will want to roast as many beans
as possible simultaneously, and due to the linear decrease of roasting time with air
volume fraction seen in Figure 8a, finding a reasonable balance between the quantity
of beans roasted and the time taken to dry all beans is seemingly feasible. There
is a far more rapid decrease in roasting time with the inflow velocity of hot air, as
seen in Figure 9a. This suggests that most of the decrease in roasting time happens
before a velocity of around U = 0.2 m/s to U = 0.4 m/s, with only marginal decreases
in roasting time after that. Therefore, expending effort on designing fluidized beds
with much more rapid inflow velocities is likely to yield diminishing returns, beyond
a point. That said, for larger values of U ∼ 1 m/s, we recall that the assumptions
underpinning the choice of Stokes flow break down. Therefore, if higher velocities are
to be considered in practice, they should be supported by simulations which utilize
full Navier–Stokes flow valid for Reynolds numbers Re = O(102). Additionally, for
faster flow, the assumption that beans remain stationary becomes less reasonable.

There are many additional features in the roasting process that have not yet
been considered. For instance, in reality, beans are in constant motion, colliding
with each other and the walls of the roaster chamber. Therefore, it may be more
instructive to consider the spatial average values of the dependent variables in our
model, as we did when comparing the simulations of our model to experimental data.
We assumed that the temperature and vapor pressure within the beans and in the
air were the same. Future models might relax this assumption, and thus we would
be able to model a roaster where the temperature and vapor pressure within the air
and beans influence each other, but evolve independently of one another. This would
better describe the roasting environment, where the beans and air initially start off
at different temperatures. If the flow is rapid enough so that the beans are suspended
in air, then one could consider the problem of particles immersed in a flow. For finite
domains, this may result in the formation of turbulent eddies, due to the geometric
structure of the roaster. One might also consider more complicated fluid dynamics
within the air—in particular the effect of turbulence on the heat and mass transfer
within the roaster in the case where the fluid problem is in the high Reynolds number
regime. Another option to obtain a more realistic model within a drum roaster,
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or other configurations where beans are in close proximity (or even touching), is to
consider a bulk granular flow model. In addition to this, it would be beneficial to take
into consideration the energy exchange on the walls of the roasting chamber.

We should finally note that similar modeling efforts to those applied to the roast-
ing of a single coffee bean have been directed at understanding applications such as
bread baking [66], carbon paste baking [57], wood drying [51], and popcorn popping
[32]. While our motivating application has been to coffee bean roasting, the approach
that we have taken may be adapted to the study of the roasting, baking, or drying of
periodic arrays of material arising in these and other applications.

Appendix A. Homogenization of heat and mass transfer model. We now
obtain the effective form of the heat and mass transfer model. Using (12), equations
(7a)–(7e) become

(38a)
∂Sb
∂t

= − 1

ε21
Iv,

δ2 ∂

∂t

[
Pb(1− σSb)

1 + T Tb

]
= −δ

2

ε2

∂Sb
∂t

+∇y ·
[
Pb∇yPb
1 + T Tb

]
+ δ∇y ·

[
Pb∇xPb
1 + T Tb

]
+ δ∇x ·

[
Pb∇yPb
1 + T Tb

](38b)

+ δ2∇x ·
[
Pb∇xPb
1 + T Tb

]
,

(38c)

δ2 ∂Tb
∂t

+ δ2A1
∂

∂t
[Sb(1 + T Tb)] = δ2A2

∂Sb
∂t

+A3∇y · [(1 +A4Sb)∇yTb]

+ δA3∇y · [(1 +A4Sb)∇xTb] + δA3∇x · [(1 +A4Sb)∇yTb] + δ2A3∇x · [(1 +A4Sb)∇xTb]

for y ∈ ωb, and
(38d)

δ2 ∂

∂t

[
Pa

1 + T Ta

]
+ δA5∇y ·

[
uPa

1 + T Ta

]
+ δ2A5∇x ·

[
uPa

1 + T Ta

]
= A6∇y ·

[
Pa∇yPa
1 + T Ta

]
+ δA6∇y ·

[
Pa∇xPa
1 + T Ta

]
+A6δ∇x ·

[
Pa∇yPa
1 + T Ta

]
+ δ2A6∇x ·

[
Pa∇xPa
1 + T Ta

]
,

(38e)

δ2 ∂Ta
∂t

+δA5∇y ·(uTa)+δ2A5∇x ·(uTa) = A7∇2
yTa+δA7∇y ·∇xTa+δA7∇x ·∇yTa+δ2∇2

xTa

for y ∈ ωa. The boundary conditions (9) become

Tb = Ta, (∇yTb + δ∇xTb) · n = B1(∇yTa + δ∇xTa) · n, y ∈ ∂ωa,(39a)

Pb = Pa, (∇yPb + δ∇xPb) · n = B2(∇yPa + δ∇xPa) · n, y ∈ ∂ωa,(39b)

along with the periodicity conditions

(39c) Ta, Pa periodic, y ∈ ∂ωa.

We consider the asymptotic expansions in powers of δ:

Ti = T
(0)
i (x,y, t) + δT

(1)
i (x,y, t) + δ2T

(2)
i (x,y, t) +O(δ3) , i = a, b,(40a)

Pi = P
(0)
i (x,y, t) + δP

(1)
i (x,y, t) + δ2P

(2)
i (x,y, t) +O(δ3) , i = a, b,(40b)

Sb = S
(0)
b (x,y, t) + δS

(1)
b (x,y, t) + δ2S

(2)
b (x,y, t) +O(δ3) ,(40c)

u = u(0)(x,y, t) + δu(1)(x,y, t) + δ2u(2)(x,y, t) +O(δ3).(40d)
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We shall also use the following two expansions which will become relevant when
expanding (38a) and (38b), respectively. First,

(41) Iv = I(0)
v + δI(1)

v +O(δ2),

where

(42) I(0)
v = S

(0)
b (1− σS(0)

b )

 (S
(0)
b )C1 exp

(
C3(T

(0)
b −1)

1+T T
(0)
b

)
(S

(0)
b )C1 + C2

− P (0)
b


√

1 + T

1 + T T
(0)
b

,

and it suffices to state that

(43) I(1)
v

∣∣∣
S

(1)
b =0

= 0.

Second, we make use of the expansion

1

1 + T Tb
=

1

1 + T T
(0)
b

− δ

[
T

(1)
b

(1 + T T
(0)
b )2

]
+O(δ2).(44)

At O(1), we obtain the system

∂S
(0)
b

∂t
= − 1

ε21
I(0)
v , ∇y ·

[
P

(0)
b ∇yP

(0)
b

1 + T T
(0)
b

]
= 0, ∇y · [(1 +A4S

(0)
b )∇yT

(0)
b ] = 0, y ∈ ωb,(45a)

∇y ·

[
P

(0)
a ∇yP

(0)
a

1 + T T
(0)
a

]
= 0, ∇2

yT
(0)
a = 0, y ∈ ωa,(45b)

T
(0)
b = T (0)

a , ∇yT
(0)
b · n = B1∇yT

(0)
a · n, P (0)

b = P (0)
a , ∇yP

(0)
b · n = B2∇yP

(0)
a · n, y ∈ ∂ωb,

(45c)

T (0)
a , P (0)

a periodic, y ∈ ∂ωa.(45d)

From (45a)–(45d), we deduce that T
(0)
b = T

(0)
a = T (0)(x, t) and P

(0)
b = P

(0)
a =

P (0)(t,x), meaning that at leading order, the temperature and pressure in the bean
are both independent of the microscopic variable y and are homogeneous in the air

and bean phases. Similarly, from (45a), we can deduce that S
(0)
b = S

(0)
b (x, t) due to

the constant initial conditions (11).
At O(δ), we obtain

∂S
(1)
b

∂t
= − 1

ε21
I(1)
v , ∇2

yP
(1)
b = 0, ∇2

yT
(1)
b = 0, y ∈ ωb,(46a)

∇2
yP

(1)
a = 0, ∇2

yT
(1)
a = 0, y ∈ ωa,(46b)

T
(1)
b = T (1)

a , (∇yT
(1)
b +∇xT

(0)
b ) · n = B1(∇yT

(1)
a +∇xT

(0)
a ) · n, y ∈ ∂ωb,(46c)

P
(1)
b = P (1)

a , (∇yP
(1)
b +∇xP

(0)
b ) · n = B2(∇yP

(1)
a +∇xP

(0)
a ) · n, y ∈ ∂ωb,

(46d)

T (0)
a , P (0)

a periodic, y ∈ ∂ωa.(46e)

Due to linearity of the problem, we may write the solutions as

(47) T
(1)
i = −∇xT

(0)
i · Γ1

i , P
(1)
i = −∇xP

(0)
i · Γ2

i , i = a, b.
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We can now formulate the temperature cell problem for the components of the vector
functions Γ1

a and Γ1
b , namely Γ1

aj and Γ1
bj , respectively. The temperature cell problem

then reads

∇2
yΓ1

bj = 0, y ∈ ωb,(48a)

∇2
yΓ1

aj = 0, y ∈ ωa,(48b)

Γ1
bj = Γ1

aj , (∇yΓ1
bj · n− nj) = B1(∇yΓ1

aj · n− nj), y ∈ ∂ω,(48c)

Γ1
aj periodic, y ∈ ∂ωa,(48d)

for j = 1, 2, 3. Similarly, the pressure cell problem for Γ2
aj and Γ2

bj is given by

∇2
yΓ2

bj = 0, y ∈ ωb,(49a)

∇2
yΓ2

aj = 0, y ∈ ωa,(49b)

Γ2
bj = Γ2

aj , (∇yΓ2
bj · n− nj) = B2(∇yΓ2

aj · n− nj), y ∈ ∂ω,(49c)

Γ2
aj periodic, y ∈ ∂ωa,(49d)

for j = 1, 2, 3.
From (47), we write

(50) ∇yT
(1)
i = −JTΓ1

i
∇xT

(0)
i , ∇yP

(1)
i = −JTΓ2

i
∇xP

(0)
i , i = a, b,

where

(51) (JΓ1
i
)jk =

∂Γ1
ij

∂yk
and (JΓ2

i
)jk =

∂Γ2
ij

∂yk
.

The O(δ2) terms in (38b)–(38e), (39a) become
(52a)

∂

∂t

[
P

(0)
b (1− σS(0)

b )

1 + T T
(0)
b

]
= − 1

ε2

∂S
(0)
b

∂t
+∇x ·

[
P

(0)
b

1 + T T
(0)
b

]
(∇xP

(0)
b +∇yP

(1)
b )

+∇y ·

[
P

(0)
b

1 + T T
(0)
b

]
(∇xP

(1)
b +∇yP

(2)
b ) +∇y ·

[
P

(1)
b

1 + T T
(0)
b

]
(∇xP

(0)
b +∇yP

(1)
b )

−∇y ·

[
T T

(1)
b P

(0)
b

(1 + T T
(0)
b )2

]
(∇xP

(0)
b +∇yP

(1)
b ), y ∈ ωb,

(52b)

∂T
(0)
b

∂t
+A1

∂

∂t
[S

(0)
b (1 + T T

(0)
b )] = A2

∂S
(0)
b

∂t
+∇x · A3(1 +A4S

(0)
b )(∇xT

(0)
b +∇yT

(1)
b )

+∇y · A3(1 +A4S
(0)
b )(∇xT

(1)
b +∇yT

(2)
b ) +∇y · A3A4S

(1)
b (∇xT

(0)
b +∇yT

(1)
b ), y ∈ ωb,

(52c)

∂

∂t

[
P

(0)
a

1 + T T
(0)
a

]
+∇x · A5

[
u(0)P

(0)
a

1 + T T
(0)
a

]
+∇y · A5

[
u(0)P

(1)
a + u(1)P

(0)
a

1 + T T
(0)
a

]
−∇y · A5

[
T

(1)
a u(0)P

(0)
a

(1 + T T
(0)
a )2

]

= ∇x ·
[
A6P

(0)
a

1 + T T
(0)
a

]
(∇xP

(0)
a +∇yP

(1)
a ) +∇y ·

[
A6P

(0)
a

1 + T T
(0)
a

]
(∇xP

(1)
a +∇yP

(2)
a )

+∇y ·
[
A6P

(1)
a

1 + T T
(0)
a

]
(∇xP

(0)
a +∇yP

(1)
a )−∇y ·

[
A6T T

(1)
a P

(0)
a

(1 + T T
(0)
a )2

]
(∇xP

(0)
a +∇yP

(1)
a ), y ∈ ωa,
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(52d)

∂T
(0)
a

∂t
+∇x · A5(u(0)T (0)

a ) +∇y · A5(u(0)T (1)
a + u(1)T (0)

a )

= ∇x · A7(∇xT
(0)
a +∇yT

(1)
a ) +∇y · A7(∇xT

(1)
a +∇yT

(2)
a ), y ∈ ωa,

(52e) (∇yT
(2)
b +∇xT

(1)
b ) · n = B1(∇yT

(2)
a +∇xT

(1)
a ) · n, y ∈ ∂ωb,

(52f) (∇yP
(2)
b +∇xP

(1)
b ) · n = B2(∇yP

(2)
a +∇xP

(1)
a ) · n, y ∈ ∂ωb.

We now integrate (52a)–(52d) over the respective domains in which they are
defined, the purpose being to use the divergence theorem to simplify the equations.
We shall define dS as being the differential element of the bean surface ∂ωb. Any
integrals evaluated on the boundary of the unit cell ∂ωa are zero, due to periodicity.
First, integrating (52a) over ωb, and then using the divergence theorem and (50), we
obtain
(53)

θb
∂

∂t

[
P

(0)
b (1− σS(0)

b )

1 + T T
(0)
b

]
= −θb

ε2

∂S
(0)
b

∂t
+∇x ·

(∫
ωb

(I − JTΓ2
b
) dω

)[
P

(0)
b ∇xP

(0)
b

1 + T T
(0)
b

]

+

[
P

(0)
b

1 + T T
(0)
b

](∫
∂ω

(∇xP
(1)
b +∇yP

(2)
b ) · n dS

)

+

[
1

1 + T T
(0)
b

](∫
∂ω

P
(1)
b (∇xP

(0)
b +∇yP

(1)
b ) · n dS

)

+

[
T P

(0)
b

(1 + T T
(0)
b )2

](∫
∂ω

T
(1)
b (∇xP

(0)
b +∇yP

(1)
b ) · n dS

)
.

Similarly, integrating (52c) over ωa, using the divergence theorem and (50), we obtain
(54)

θa
∂

∂t

[
P

(0)
a

1 + T T
(0)
a

]
+A5

(
∇x ·

[
u∗P

(0)
a

1 + T T
(0)
a

]
+

∫
ωa

[
u(0)P

(1)
a + u(1)P

(0)
a

1 + T T
(0)
a

−
u(0)P

(0)
a

(1 + T T
(0)
a )2

]
· n dS

)

= ∇x ·
(∫

ωa

(I − JT
Γ2
a

) dω

)[
A6P

(0)
a ∇xP

(0)
a

1 + T T
(0)
a

]
−
[
A6P

(0)
a

1 + T T
(0)
a

](∫
∂ω

(∇xP
(1)
a +∇yP

(2)
a ) · n dS

)

−
[

A6

1 + T T
(0)
a

](∫
∂ω

P
(1)
a (∇xP

(0)
a +∇yP

(1)
a ) · n dS

)

−
[
A6T P

(0)
a

(1 + T T
(0)
a )2

](∫
∂ω

T
(1)
a (∇xP

(0)
a +∇yP

(1)
a ) · n dS

)
.

The minus signs on the right-hand side arise because n is defined as the unit normal
pointing outward from the bean to the air. The third and fourth terms on the left-
hand side disappear as u(0) · n = u(1) · n = 0.
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Integrating (52b) over ωb, using the divergence theorem and (50), gives
(55)

θb
∂T

(0)
b

∂t
+ θbA1

∂

∂t
[S

(0)
b (1 + T T

(0)
b )] = θbA2

∂S
(0)
b

∂t
+∇x

·
(
A3

∫
ωb

(I − JTΓ1
b
) dω

)[
(1 +A4S

(0)
b )∇xT

(0)
b

]
+A3(1 +A4S

(0)
b )

∫
∂ω

(∇xT
(1)
b +∇yT

(2)
b ) · n dS

+A3A4

(∫
ωb

∇y · S(1)
b (∇xT

(0)
b +∇yT

(1)
b ) dω

)
.

Using (43) in (46a), we have
∂S

(1)
b

∂t = 0, and from the initial condition (11) which

gives S
(1)
b (x,y, 0) = 0, we deduce that S

(1)
b (x,y, t) = 0 for all t; hence the last term

on the right-hand side of (55) is zero. Finally, integrating (52d) over ωa, using the
divergence theorem, (50), and the volumetric average fluid velocity u∗ (as defined in
section 3.1), we find

(56)

θa
∂T

(0)
a

∂t
+ θaA5∇x · (u∗T (0)

a ) +A5

∫
ωa

(u(0)T (1)
a + u(1)T (0)

a ) · n dS

= ∇x ·
(
A7

∫
ωa

(I − JTΓ1
a
) dω

)
∇xT

(0)
a −A7

∫
ωa

(∇xT
(1)
a +∇yT

(2)
a ) · n dS.

We wish to obtain a homogenized closed system of equations for the temperature,
vapor pressure, and saturation of the air-bean medium which is valid as δ → 0. Let

us now denote T ∗ = T (0), P ∗ = P (0), and S∗ = S
(0)
b , recalling also that T

(0)
a = T

(0)
b =

T (0) and P
(0)
a = P

(0)
b = P (0) . To obtain a system of homogenized equations, we must

eliminate any higher order terms. We first formulate a homogenized conservation
of energy equation. Taking the linear combination of A7 multiplied by (55) added

to A3B1(1 + A4S
(0)
b ) multiplied by (56), and using (52e), we eliminate higher order

terms, and find

(57)

[A7θb +A3B1θa(1 +A4S
∗)]

∂T ∗

∂t
+ θbA1A7

∂

∂t
[S∗(1 + T T ∗)]

+A3A5B1θa(1 +A4S
∗)∇x · (u∗T ∗)

= θbA2A7
∂S∗

∂t
+∇x · D̂1[A3A7(1 +A4S

∗)∇xT
∗].

Here, the effective macroscopic temperature diffusivity coefficient is given by

(58) D̂1 =

∫
ωb

(I − JTΓ1
b
) dω + B1

∫
ωa

(I − JTΓ1
a
) dω.

Similarly, to formulate a homogenized conservation of vapor pressure, we consider the
linear combination of A6 multiplied by (53) added to B2 multiplied by (54), and using
(46c), (46d), and (52f), we eliminate higher order terms, and find

∂

∂t

[
P ∗ (A6θb(1− σS∗) + B2θa)

1 + T T ∗

]
+ B2A5∇x ·

(
u∗P ∗

1 + T T ∗

)
(59)

= −θbA6

ε2

∂S∗

∂t
+∇x · D̂2

[
A6P

∗∇xP
∗

1 + T T ∗

]
,
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where the effective macroscopic vapor pressure diffusivity coefficient is given by

(60) D̂2 =

∫
ωb

(I − JTΓ2
b
) dω + B2

∫
ωa

(I − JTΓ2
a
) dω.

Using the new scalings outlined in Table 4, we simplify the homogenized equations,
writing (57) as
(61)

[H1 +H2(1 +A4S
∗)]

∂T ∗

∂t
+H3

∂

∂t
[S∗(1 + T T ∗)] +H4(1 +A4S

∗)∇x · (u∗T ∗)

= H5
∂S∗

∂t
+∇x · D̂1[(1 +A4S

∗)∇xT
∗]

and (59) as
(62)
∂

∂t

[
P ∗ (θb(1− σS∗) +H6)

1 + T T ∗

]
+H7∇x·

(
u∗P ∗

1 + T T ∗

)
= −H8

∂S∗

∂t
+∇x·D̂2

(
P ∗∇xP

∗

1 + T T ∗

)
.

To complete our homogenized system, we have the conservation of water equation,
which we write as

(63)
∂S∗

∂t
= − 1

ε21

S∗(1− σS∗)
S∗C1

exp
(
C3(T∗−1)
1+T T∗

)
S∗

C1 + C2( 1−φ
φ )C1

− P ∗
√ 1 + T

1 + T T ∗

 .
The full list of parameters of the homogenized system (61)–(63) (along with their
reference values) can be found in Table 4. The initial conditions of the system are
given by

(64) S∗ = 1, T ∗ = Tin, P ∗ = Pin at t = 0.
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