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Abstract

Estimation of large sparse Jacobian matrix is a prerequisite for many scientific and engi-

neering problems. It is known that determining the nonzero entries of a sparse matrix can

be modeled as a graph coloring problem. To find out the optimal partitioning, we have

proposed a new algorithm that combines existing exact and heuristic algorithms. We have

introduced degeneracy and maximum k-core for sparse matrices to solve the problem in

stages. Our combined approach produce better results in terms of partitioning than DSJM

and for some test instances, we report optimal partitioning for the first time.
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Chapter 1

Introduction

In many scientific and engineering problems, repeated evaluation of Jacobian matrices i.e.

first order partial derivatives is a common subproblem. For large-scale problems, the Jaco-

bian matrix is often sparse i.e. most of the matrix entries are zero. To obtain the Jacobian

matrix, exploitation of prior known sparsity is often needed to avoid the computation in-

volving known zero entries. Exploiting sparsity in computing the Jacobian matrix can be

viewed as a partitioning problem [9]. With the known sparsity structure of the given sparse

matrix A∈ℜm×n, we can partition the columns (rows) of A into p (q) groups such that each

column (row) belongs to exactly one group and the columns (rows) in the same group are

structurally orthogonal i.e. no two columns (rows) have nonzero entries in the same row

(column) position. This type of partitioning is known as unidirectional partitioning. Then,

the nonzeroes in each column group can be determined from finite difference approxima-

tion or forward mode of automatic differentiation and the nonzeroes in the row groups can

be determined by the reverse mode of automatic differentiation [17]. Unidirectional parti-

tioning may not be able to exploit the sparsity effectively if the matrix has both dense rows

and dense columns. In this case bi-directional partitioning, i.e. row partitioning and column

partitioning together is preferable [13]. In this thesis, we are considering unidirectional par-

titioning only. Both of the above partitioning problems can be formulated as graph coloring

problems [7, 15, 22].

1



1.1. MOTIVATION

1.1 Motivation

The graph coloring problem deals with the assignment of minimum number of positive

integers (colors) to the vertices of a graph such that colors on adjacent vertices are different.

The graph coloring problem has applications in scheduling [25], timetabling [10], register

allocation [5], train platforming [4], frequency assignment [11] and communication net-

works [34]. The graph coloring problem is known to be NP-hard [12] and has received

much attention in the literature, not only for its real world applications but also for its com-

putational difficulty. Exact algorithms [3, 30, 19] proposed for graph coloring are able to

solve a problem when the problem instance is small. On the other hand, real-world ap-

plications usually deal with graphs of thousands and in recent years millions of vertices.

Standard benchmark instances are solved using different heuristics [25, 8]. In this thesis,

we are interested in the performance of available heuristics. Since we don’t know the op-

timal coloring, it is really difficult to establish the effectiveness of the coloring algorithms.

The following approaches can be used to find an optimal coloring:

1. Use a Set Covering (SC) formulation [30]. In the SC formulation, corresponding

to each independent set, there is a decision variable. The objective is to minimize

the number of independent sets that satisfies the coloring constraints by ensuring

that each vertex belongs to at least one independent set. The decision variables are

constrained to be 0− 1 variables. Using a column generation technique the method

solves a relaxed problem for a subset of variables (columns). The “generation of new

column” can be facilitated by solving a weighted independent set problem which

is also an NP-hard problem. Gaur et al. [14] proposed a star bi-coloring column

generation formulation for bi-directional determination of sparse Jacobian matrices.

2. Solve the problem in stages using a combined approach i.e. exact and heuristic algo-

rithms together. The central idea in our combined approach is to identify a suitable

submatrix of the given Jacobian sparsity pattern, find a structurally orthogonal parti-

tioning of the columns of the submatrix and then extend the submatrix partitioning to

2



1.3. THESIS ORGANIZATION

the given Jacobian sparsity pattern. All of these steps can also be described in terms

of the recently proposed unified model called pattern graph [24]. In this thesis, we

have used the combined approach.

1.2 Our Contribution

Specific contributions are given below.

1. We present a combined exact and heuristic algorithm for the determination of large

sparse Jacobian matrices.

2. We have settled the coloring complexity of a number of benchmark problems from

the literature. For those problems until now the optimal coloring was not verified.

3. Our combined approach is especially suitable for very large-scale problems. To the

best of our knowledge, this is the first time that a combined approach has been pro-

posed to very large and sparse Jacobian determination problem.

4. We give matrix interpretation of degeneracy and maximum k-core in relation to the

structural orthogonal partitioning of columns.

1.3 Thesis organization

Including this chapter, there are four more chapters in this thesis organized as follows:

In Chapter 2, we introduce sparse Jacobian matrix followed by the description of New-

ton’s method to solve systems of nonlinear equations. We then describe Finite Differencing

(FD) and Automatic Differentiation (AD) along with forward mode and reverse mode. We

also describe matrix partitioning techniques in this chapter. Finally, we provide basic graph

concepts including graph coloring methods.

In Chapter 3, we present our combined approach for finding structurally orthogonal

partitioning of columns. We describe the central ideas in our algorithm by using the duality

3



1.3. THESIS ORGANIZATION

between matrices and graphs. Column intersection graph, smallest last ordering, degener-

acy and maximum k-core are also covered in this chapter.

In Chapter 4, we describe our test data sets along with the data structures. Then we

provide experimental results that demonstrate the efficacy of our algorithms.

Finally, we provide concluding remarks and directions for future research in this area

in Chapter 5.

4



Chapter 2

Notations and Mathematical
Preliminaries

In this chapter, we introduce basic notations, the problem of determination of sparse Ja-

cobian matrices and review mathematical preliminaries necessary for this thesis. We also

discuss finite differencing and algorithmic differentiation techniques in this chapter. Finally,

we introduce basic graph concepts including vertex coloring.

2.1 Sparse Matrix

A matrix is called sparse if it is computationally advantageous to utilize the knowledge

that many of its entries are zero. On the other hand, if most of the entries are nonzero then

the matrix is called dense. In the Figure 2.1, the sparse matrix contains only 9 nonzero

entries with 16 zero entries and the Figure 2.2 shows the sparsity structure of matrix ibm32.


4 5 0 0 0
0 5 6 0 0
0 0 7 9 0
0 0 0 6 5
0 0 0 0 5


Figure 2.1: A sparse matrix

5



2.3. NEWTON’S METHOD

Figure 2.2: Sparsity structure. Matrix name: ibm32, Dimensions: 32× 32, 126 nonzero
elements are shown in black. Source: [1]

2.2 Jacobian Matrix

The matrix of all first-order partial derivatives of a vector-valued function is known

as the Jacobian matrix. Let F = ( f1, f2, ..., fm)
T be a mapping F : ℜn → ℜm . If F is

continuously differentiable then the Jacobian matrix J of F at a given vector x is given by

J(x) = F ′(x) =


∂

∂x1
f1(x) · · ·

∂

∂xn
f1(x)

... . . . ...

∂

∂x1
fm(x) · · ·

∂

∂xn
fm(x)

 (2.1)

Derivative information is often needed, for example in order to find the numerical solution

of a system of nonlinear equations or to minimize a non-linear function of a large number

of variables.

2.3 Newton’s Method

Newton’s methods are one of the classical methods to solve the systems of nonlinear

equations. Newton’s method iteratively finds the root of a real-valued function specified by

F(x) = 0, where F = ( f1, f2, ..., fm)
T is a mapping F : ℜn→ℜm . The steps for solving a

nonlinear system are as follows:

6



2.3. NEWTON’S METHOD

Algorithm: Newton’s Method for systems of nonlinear equations
Input: Given an initial approximation x ∈ℜn

1 for j← 0 to convergence do
2 Evaluate b = F(x);
3 Determine J = F ′(x) ;
4 Solve Js =−b for s;
5 Update x← x+ s;

The following example demonstrates the algorithm of Newton’s method. Given a vector

function

F(x) =

x1 + x2−3

x2
1 + x2

2−5

 (2.2)

We consider solving F(x) = 0. The roots are
[

1 2

]T

and
[

2 1

]T

which can be

verified directly. The Jacobian matrix is as follows

J(x) =

 1 1

2x1 2x2


Let x =

[
0 3

]T

be an initial approximation. For the first iteration of Newton’s method

we have,

F(y)≡ b =

 0

4

 and J(x)≡ J =

 1 1

0 6


The value of s is then found by solving

Js =−b

=⇒

 1 1

0 6

 s =−

 0

4



=⇒ s =

 0.667

−0.667


7



2.4. FINITE DIFFERENCE APPROXIMATION

The updated value of x is
[

0.667 2.333

]T

. For the second iteration

b =

 0

.889

 and J =

 1 1

1.333 4.667


Hence

s =

 0.267

−0.267


Therefore new value of x will be

[
0.934 2.066

]T
∼=
[

1 2

]T

, which is closer to the

original root of the function. From the algorithm, we can see that in each iteration we need

to evaluate first order derivative matrix. So the computation of first order derivative i.e.

the Jacobian matrix is an important step in finding the solutions of systems of nonlinear

equations.

2.4 Finite Difference Approximation

The Jacobian matrix can be obtained by approximating it using a finite difference (FD)

formula. Let A denote the Jacobian matrix J(x) of a continuously differentiable mapping

F : ℜn→ ℜm. An approximation to the jth column of A, denoted by a j, can be obtained

from

a j =
∂

∂xi
F(x)≈

F(x+ εe j)−F(x)
ε

,1≤ j ≤ n (2.3)

where e j is the jth unit coordinate vector and ε is a positive increment. If F(x) has already

been evaluated, then we can estimate the partial derivatives in the jth column of matrix A

through the additional function evaluation F(x+ εe j). If the sparsity information is not

known then we will need n extra function evaluations to determine A. Consider a vector

function

F(x) =

x1 + x2−5

x2
1− x2

2−5

 (2.4)

8



2.5. AUTOMATIC DIFFERENTIATION

The Jacobian matrix is

J(x) = F ′(x) =

 1 1

2x1 −2x2


At some point x =

[
1 2

]T

, the value of F(x) will be

F =

 −2

−8


and the value of J(x) will be

J =

 1 1

2 −4


The two unit coordinate vectors needed for this calculation are e1 =

[
1 0

]T

and e2 =

[
0 1

]T

. Considering ε= 0.1, we get the first order derivative of F(x) as

 1 1

2.1 −4.1

.

The main advantage of using finite difference approximation is that it is easy to imple-

ment, but if ε is too large, then approximation may not be accurate due to truncation error.

Also if ε is too small, then F(x+εe j)−F(x) may cause loss of precision to round-off errors

associated with finite precision calculations [31].

2.5 Automatic Differentiation

Automatic differentiation (AD), also called algorithmic differentiation is a chain rule

based technique used for evaluating the derivatives of functions defined by computer pro-

grams [17]. Automatic differentiation uses exact formulas along with floating point values.

Unlike finite difference approximation, the derivatives computed by using automatic differ-

entiation are free from truncation errors. Let f be a function of the vector y ∈ℜm, which in

turn a function of the vector x ∈ℜn. Using chain rule the derivative of f with respect to x

9



2.5. AUTOMATIC DIFFERENTIATION

is then

∇x f (y(x)) =
m

∑
i=1

∂ f
∂yi

∇yi(x) (2.5)

where ∇ indicates the gradient. Automatic differentiation is evaluated by performing a se-

quence of operations involving just one or two arguments at a time. Consider the following

function of two variables

f (x1,x2) = x2
1 sin(x2)+ ex1 (2.6)

The steps involved in a computation of f is given as a sequence of arithmetic operations

x3 = x1 ∗ x1

x4 = sin(x2)

x5 = v3 ∗ v4

x6 = ex1

x7 = x5 + x6

Here, (x3,x4, ...,x6) are intermediate variables and (x1,x2) are independent variables. If we

have the values of x1 and x2, then the result of computation is obtained in f (x1,x2) = x7. It

is possible to form different sequence of operations for the same function f . After forming

a sequence, we can apply rules of differentiation to compute derivative of a function with

respect to the independent variables x1 and x2. Automatic differentiation has two basic

modes of operation known as forward mode and reverse mode.

2.5.1 Forward Mode

In the forward mode, also called forward accumulation, intermediate partial derivatives

are obtained in the same order as the function values are determined. The computation

of matrix-vector product Jv is done in the forward pass, where v is a n-vector and J is a

Jacobian matrix. By initializing v to be unit coordinate vector ei, where i = 1,2..,n all the

10



2.6. MATRIX PARTITIONING

columns of J can be determined by n forward passes.

2.5.2 Reverse Mode

In the reverse mode, also called reverse accumulation, the intermediate partial deriva-

tives are obtained in reverse order of function evaluation. The computation of JwT is done

in the reverse pass, where w is a m-vector. By initializing w to be unit coordinate vector ei,

where i = 1,2..,m all the columns of J can be determined by m reverse passes.

Forward mode is more efficient than the reverse mode for function f : ℜn→ℜm with

m� n as only n passes are required, whereas reverse mode is more efficient than forward

mode when m� n as only m passes are necessary.

2.6 Matrix Partitioning

Let A ∈ℜm×n be a matrix whose sparsity pattern is given. The problem we address in

this thesis is to determine sparse Jacobian matrices efficiently by exploiting known spar-

sity information. Matrix partitioning is to obtain vectors s1,s2, ...,sp so that the nonzero

elements of the given matrix A are uniquely determined from the products As1,As2, ...,Asp

with p as small as possible. Curtis, Powell, and Reid [9] noted that sparsity of the Jacobian

matrices can be exploited by partitioning the columns of the matrix into groups in such a

way that columns in each group are structurally orthogonal. Then, the nonzero elements

in each group can be determined through the forward mode of automatic differentiation or

finite differencing. The concept of structurally orthogonal partitioning is illustrated using

examples in the remainder of this chapter.

2.6.1 Unidirectional Partitioning

In unidirectional partitioning scheme, either the columns or the rows are partitioned into

structurally orthogonal groups. Let us illustrates unidirectional partitioning with examples.

Consider a sparse matrix

11



2.6. MATRIX PARTITIONING

A =



a11 0 0 0

a21 a22 0 0

0 0 a33 0

0 0 0 a44


and a seed matrix

S =



1 0

0 1

1 0

0 1


Each column of S corresponds to a group of structurally orthogonal columns. Then the

product of sparse matrix and seed matrix will be

AS =



a11 0

a21 a22

a33 0

0 a44


From the product AS, we can determine all the nonzero entries of A. Hence matrix A can

be partitioned into two column groups. This is known as column partitioning.

In row partitioning, A sparse matrix is partitioned into row groups. Consider a sparse

matrix

A =



a11 a12 0 0

0 a22 0 0

0 0 a33 0

0 0 0 a44


and a seed matrix

12



2.6. MATRIX PARTITIONING

W T =

 1 0 1 0

0 1 0 1


The product AW from which the nonzeroes of A can be recovered is

AW =



a11 a21

0 a22

a33 0

0 a44


2.6.2 Bidirectional Partitioning

If seed matrices S ∈ ℜn×p and W ∈ ℜm×q can be obtained such that all the nonzero

elements of a given sparse matrix A ∈ℜm×n can be determined uniquely from the products

B = AS and CT = AW T , then the resulting partitioning is called as bidirectional partitioning.

The following example will demonstrate bidirectional partitioning method. Let

A =



a11 a12 a13 a14

a21 a22 0 0

a31 0 a33 0

a41 0 0 a44


, S =



1 0

0 1

0 1

0 1


and W T =

[
1 0 0 0

]

Now from the product AS we get

B = AS =



a11 a12 +a13 +a14

a21 a22

a31 a33

a41 a44


and from the product AW T we get

CT = AW T =

[
a11 a12 a13 a14

]
Hence from matrices B and CT , all the nonzero elements of sparse matrix A are recovered.

13
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2.6.3 Direct Determination

In direct determination method, all the nonzero elements of a sparse matrix A can be

read-off from the matrices B = AS and CT = AW T without any further arithmetic operation.

Let us interpret the direct determination method with an example. Consider

A =



a11 a12 a13 a14 a15

a21 a22 0 0 0

a31 0 a33 0 0

a41 0 0 a44 0

a51 0 0 0 a55


, S =



1 0

0 1

0 1

0 1

0 1


and W T =

[
1 0 0 0 0

]

We can obtain the matrix B and matrix CT from the products AS and W T A respectively.

B = AS =



a11 a12 +a13 +a14 +a15

a21 a22

a31 a33

a41 a44

a51 a55


and CT = AW T =

[
a11 a12 a13 a14 a15

]

The nonzero elements of A can thus be read off from B and CT without any further arith-

metic operation.

2.6.4 Substitution Determination

In a substitution method, the nonzero elements of the matrix A are calculated by solving

a triangular system of equations i.e. the ordering of the nonzero elements of A is such that

every nonzero is determined using previously computed values. Let us demonstrate the

substitution method with the help of an example from [21]. Consider

A =


a11 0 a13

a21 a22 0

0 a32 a33

 and S =


1 0

1 1

0 1


14
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Using the following reduced system the second row of A can be determined by solving for

a21 and a22

[
a21 a22 0

]


1 0

1 1

0 1

 =
[

b21 b22

]

Eliminating row 3 of S and transposing the system, we get 1 1

0 1


 a21

a22

 =

 b21

b22


which is an upper triangular system. Using the similar way, the nonzeroes of the other two

rows of A can be obtained. For the above example, direct determination method will require

three function evaluations, whereas substitution method will need two function evaluations.

2.7 Graph Concepts

A graph G is an ordered pair (V,E) where V is a finite and nonempty set called vertices

or nodes and E is a set of unordered pairs of distinct vertices called edges. Two vertices u

and v are adjacent vertices if and only if {u,v} ∈ E. The degree of a vertex u denoted by

deg(u), is the number of vertices adjacent to u. The smallest degree among the vertices of

G is called the minimum degree of G, and is denoted by δ(G).

1 2

3 4

Figure 2.3: An undirected graph where the vertex set {1,2,3,4} and edge set {{1,2},{1,3},
{2,4},{3,4}}. Vertices are shown in circles and edges are represented as lines
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2.8 Clique

A complete graph is a simple undirected graph in which every pair of distinct vertices

is connected by a unique edge. The Figure (2.4) is an example of a complete graph. A

subgraph G′ = (V ′,E ′) of a graph G = (V,E) is a graph whose set of vertices and set of

edges are all subsets of G i.e V ′ ⊆ V and E ′ ⊆ E. A clique of graph G is a complete

subgraph of G. Clique size is the number of vertices that form the clique. The clique with

the maximum number of vertices is defined as maximum clique. The size of a maximum

clique in G is known as the clique number of G, and denoted by ω(G). The Figure 2.4

shows a graph of clique of size four.

1 2

3 4

Figure 2.4: A clique of size 4

2.9 Graph Coloring

Graph coloring is a classical combinatorial optimization problem. Graph coloring refers

to an assignment of a color to each vertex in such a way that no two adjacent vertices have

the same color. A p-coloring of a graph G = (V,E) is a function Φ : V 7→ {1,2, .., p} such

that Φ(u) 6= Φ(v), if {u,v} ∈ E. The chromatic number χ(G) is the smallest p for which

G has a p-coloring. A coloring that uses χ(G) colors is known as optimal coloring. The

Figure 2.4 illustrates p-coloring of a graph G using p = 4.
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1 2

3 4

Figure 2.5: A 4-coloring graph

2.10 Graph Coloring Methods

The graph coloring problem is a well known NP-complete problem [12]. In this thesis,

we have applied heuristic techniques to solve the partitioning problem because they are

solvable in polynomial time and give good solutions but we want to know how good are the

heuristics doing and this has motivated us to investigate exact coloring techniques. We will

give a short description of both the techniques below.

2.10.1 Heuristic Methods

A heuristic is a technique to produce a solution of a problem in a reasonable time frame

that is good enough for solving the problem at hand. A Heuristic does not guarantee that

the solution is optimal. The heuristic method that we have used in this thesis is based

on a greedy constructive algorithm [28]. The simplest greedy constructive algorithm is

the greedy sequential algorithm (SEQ), where each vertex vi (i = 1,2, ..,n) is assigned the

lowest indexed color class which contains no vertices adjacent to vi. Usually, the greedy

algorithm is very fast, but the results produced by greedy can be very sensitive to some

input parameter, like the input ordering of the vertices. It has been shown that pre-ordered

sequence of vertices to SEQ algorithm can obtain better coloring [7].

2.10.2 Exact Methods

Exact methods are those methods that give an optimal solution for the given problem.

Exact methods give upper and lower bounds of the problem and confirm that no better

17



2.10. GRAPH COLORING METHODS

solution could be found. Exact methods are “hard” and often not solvable in polynomial

time. In graph coloring, exact coloring refers to coloring the graph such that the number of

colors needed to color the graph is minimum. In our thesis, we have used Randall-Brown’s

modified algorithm [3] as an exact method.

18



Chapter 3

Partitioning via Degeneracy

In this chapter, we describe our new algorithm that combines exact and heuristics ap-

proaches for finding structurally orthogonal partitioning of columns. First, we describe the

central ideas in our algorithm informally in matrix notation. Following this, we introduce

the notion of column intersection graph. Using the equivalence of structurally orthogonal

column partitioning and vertex coloring of the column intersection graph [23], the new al-

gorithm is introduced. The notion of “graph degeneracy” [26] is central to our algorithm.

The Smallest Last Vertex Ordering described by Matula et al. [29] is used to compute the

degeneracy.

The notion of “well-connectedness” in a graph or network is of fundamental interest

in diverse areas, for example social, technological, biological. The pattern of nontrivial

interactions expressed by the edges in a complex network is of practical interest when

analyzing, for example, a large network of genomic quantities in a cell [18]. Structural

measures such as cliques, degeneracy, ranking of nodes, etc have been developed and inter-

preted, apparently independently, in natural and social sciences to characterize the pattern

of interactions. In the field of sociometry, the notion of “maximally cohesive subnetwork”

which is precisely the notion of a clique is an important structural property of a network.

A formal definition of a clique is given by Luce et al. [27]. Interestingly, the paper uses

linear algebraic operations to compute shortest paths in a graph. Several recent works in

complex networks use scale reduction methodology to maximum clique and coloring prob-

lem [32, 33]. In this thesis, we use degeneracy of a graph to handle very large instances of
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3.1. COLUMN PARTITIONING AND COLORING

partitioning problems.

3.1 Column Partitioning and Coloring

3.1.1 Column Partitioning

Given a sparse matrix A ∈ℜm×n.

Definition 3.1. Columns i and j of matrix A are called structurally orthogonal if there is no

index l such that

ali 6= 0 and al j 6= 0

We use the notation i⊥ j when column i is structurally orthogonal to column j. For

example, consider the following sparse matrix.

x 0 x 0

0 x 0 x

x 0 x 0

0 x 0 x


Here column 1 and column 2 are structurally orthogonal but column 1 and column 3 are

not structurally orthogonal. A structurally orthogonal k-partitioning of columns of a sparse

matrix A is the grouping of columns into k groups such that columns in the same group are

mutually structurally orthogonal; k is the size of the partition. A structurally orthogonal k-

partitioning where k is minimized is called a minimum or optimum structurally orthogonal

partitioning.

Definition 3.2. Columns i and j are structurally dependent if they are not structurally or-

thogonal. In this case we use the notation i 6⊥ j.

Definition 3.3. The degree of structural dependency of a column j denoted by d( j), is the

number of columns i 6= j such that j 6⊥ i.
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Definition 3.4. A set of columns S is said to be mutually structurally dependent if for each

pair columns i 6= j, where i, j ∈ S and i 6⊥ j.

Figure 3.1 displays a sparse matrix pattern. In Table 3.1, for each column, its degree of

structural dependence and the columns that are structurally dependent on it are listed.

A =



x x x
x x x

x x
x x

x x
x x

x x
x x
x x


Figure 3.1: A sparse matrix pattern

Table 3.1: Degree of structural dependency and structurally dependent columns

Column Degree of structural dependency Structurally dependent columns
1 2 { 4, 8 }
2 3 { 3, 4, 9 }
3 3 { 2, 4, 9 }
4 3 { 2, 3, 9 }
5 2 { 7, 9 }
6 2 { 7, 8 }
7 2 { 5, 6 }
8 2 { 1, 6 }
9 3 { 2, 3, 4 }

A Jacobian matrix with sparsity pattern identical to matrix A can be determined with

four extra function evaluations in FD or four forward passes in AD. To show that this is

minimum possible, just observe that the columns 2,3,4 and 9 are mutually structurally

dependent. An optimal partitioning of the columns is:

{1,2,5,6},{3},{4,7,8},{9}
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It has been shown that the unidirectional determination where the number of extra

function evaluations or the number of AD forward passes are minimized is NP-hard [7,

23]. For matrices with many columns obtaining a minimum structurally orthogonal column

partitioning is computationally impractical and therefore, heuristic algorithms are applied

to solve the partitioning problem. If there is an effective procedure for finding the set of

mutually structurally dependent columns of largest cardinality then these columns can be

trivially partitioned and the partitioning can be extended to include the remaining columns

while minimizing the size of the partition. Unfortunately, no such effective procedure exists

for finding a maximum mutually structurally dependent set of columns [23].

Let ρi denote the number of nonzero entries in row i of the sparse matrix A. Then

ρ = maximum of ρi is a lower bound on the number of groups in a structurally orthogonal

column partition. However, such a bound can be arbitrarily poor [23]. In our work, we

consider a relaxation of mutual structural dependency of the columns. Specifically, we are

interested in a sub-matrix A′ of matrix A such that

• If S is a maximum mutually structurally dependent set of columns of A, then S is

included in A′.

• A′ is computationally easy to find.

If A′ is small, then an algorithm for finding a minimum structurally orthogonal partitioning

of columns can be specified by finding an optimum partitioning of the columns of A′ and

then extending the partition to matrix A. In Figure 3.1, the submatrix consisting of columns

2,3,4 and 9 and rows 1,2 and 3 defines the maximum cardinality structurally dependent

set of columns for matrix A. Now consider a column with a minimum degree in matrix A.

Let us arbitrarily pick column 6. Removing column 6 reduces the degree of columns 7 and

8 by one. The degree of other columns is not affected. Again, we arbitrarily pick one of

the minimum degree columns in the resulting matrix. Let the column be column number

7. In Table 3.2, the degree of the minimum degree column that has been removed from the

matrix are listed.
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Table 3.2: Steps of removing columns

Step Column removed Minimum degree
1 6 2
2 8 1
3 1 1
4 7 1
5 5 1
6 3 3
7 9 2
8 2 1
9 4 0

We have found the maximum of minimum degree 3 at step 6. This implies that in

the submatrix of the remaining columns each column must have a degree at least 3. In

the current example, the number of columns remaining is exactly equal to 1+minimum

degree = 1+3 = 4. In general, the number of columns remaining will be equal to or larger

than 1+minimum degree. In graph terminology, the quantity minimum degree where min-

imum degree is the maximum of minimum degree over all columns is termed “degeneracy

number”. In the next section, we use a graph formulation of the above procedure for finding

a structurally orthogonal column partitioning. However, we emphasize that in a computer

implementation a sparse matrix is preferable as many of the combinatorial tasks can be

expressed as fundamental sparse matrix kernel operation such as sparse matrix-vector mul-

tiplication or sparse matrix-matrix multiplication [16, 23].

3.1.2 Coloring of Column Intersection Graph

Given a sparse matrix A ∈ℜm×n, the column intersection graph of A is a graph G(A) =

(V,E) where for each unique column v j, j = 1,2, ..,n of matrix A there is a vertex v j ∈ V

and {vk,vl} ∈ E if and only if columns k and l share at least one nonzero in the same row.

For example, consider the following sparse matrix.
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

1 0 1 1

0 0 1 1

0 1 0 1

1 1 0 0


The corresponding column intersection graph is shown in Figure 3.2.

1 2

3 4

Figure 3.2: Column intersection graph

The mapping Φ : {1,2, ..,n} 7→ {1,2, .., p} is a p-coloring of the column intersection

graph G(A) = (V,E) if for each edge {vi,v j} ∈ E, Φ(vi) 6= Φ(v j). Coleman and Moré [7]

showed that structurally orthogonal partitioning of columns of matrix A is equivalent to the

coloring of the graph G(A). Hossain and Steihaug [23] proved that the general problem

of direct determination of a sparse Jacobian matrix is equivalent to the coloring of element

isolation graph associated with the matrix and that the column intersection graph coloring

is a special case. We now introduce the notions of degeneracy and core as they apply to the

column column intersection graph G ≡ G(A) = (V,E). In Figure 3.3, we have showed the

column intersection graph for the sparse matrix displayed in Figure 3.1.

In this thesis we have used Smallest Last Ordering (SLO) for calculating the degeneracy.

Assume the vertices V ′ = {vn,vn−1, ..,vi+1} have already been ordered. The ith vertex in

SLO is an unordered vertex u such that deg(u) is minimum in G[V \V ′] where, G[V \V ′] is

the graph obtained from G by removing the vertices of set V ′ from V . Let us demonstrate

the SLO ordering for the column intersection graph shown in Figure 3.3. In the column

intersection graph, we find minimum degree is 2 in vertices 1,5,6,7 and 8. Let us arbitrarily
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1

2

3

4

5

6

7

8

9

Figure 3.3: Column intersection graph of sparse matrix shown in Figure 3.1

select vertex 6 for SLO and remove vertex 6 from the column intersection graph. Now in

the remaining column intersection graph, we find the minimum degree is 1 in vertices 7

and 8. Again, we arbitrarily pick vertex 8 for SLO and remove vertex 8 from the column

intersection graph. By continuing those steps until all the vertices are ordered, we get the

ordering of vertices {4,2,9,3,5,7,1,8,6}. Steps of smallest last ordering for the column

intersection graph displayed in Figure 3.3 are shown in Table 3.3.

Table 3.3: Steps of SLO

Step Column removed Minimum degree SLO ordering
1 6 2 {6}
2 8 1 {8, 6}
3 1 1 {1, 8, 6}
4 7 1 {7, 1, 8, 6}
5 5 1 {5, 7, 1, 8, 6}
6 3 3 {3, 5, 7, 1, 8, 6}
7 9 2 {9, 3, 5, 7, 1, 8, 6}
8 2 1 {2, 9, 3, 5, 7, 1, 8, 6}
9 4 0 {4, 2, 9, 3, 5, 7, 1, 8, 6}

Let G = (V,E) be a simple undirected graph, and let V ′ ⊆V be a subset of vertices of G.

The subgraph induced by V ′ is denoted by G[V ′] and let δ(G) denote the minimum degree
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of G.

Definition 3.5. A subset V ′ ⊆ V of vertices is said to be a k-core if δ(G[V ′]) ≥ k, and the

degeneracy of G is the largest k for which G has a k-core.

In Table 3.3, we have found the maximum of minimum degree 3 at step 6 of SLO

ordering and the number of remaining columns at step 6 is 4. Hence the degeneracy of the

graph shown in Figure 3.3 is 3(= k). The subgraph induced by vertices 2,3,4 and 9 is the

k-core where k(= 3) is maximized is shown in Figure 3.4.

2

3

4

9

Figure 3.4: Induced subgraph of Column intersection graph shown in Figure 3.3

We emphasize that in a SLO ordered vertices it is possible that there are indices l′ < l

such that

v1,v2, ....,vl′, ....,vl, ....,vn

k = δ(G[{v1,v2, ....,vl′}]) = δ(G[{v1,v2, ....,vl′, ....,vl}])

and that k is maximized. In this case the k-core is defined to be the subgraph G[{v1,v2, ....,vl′

, ....,vl}] where index l is maximized. In can be shown that the SLO ordering yields the k-

core for graph G(A) [29, 24]. We make the following observations on degeneracy and the

associated subgraph in relation to the derivation of our algorithm for column partitioning of

large sparse matrix A. Most of these observations follows from the definition of degeneracy,

maximum k-core and smallest last ordering. Details can be found in [24].

1. If C ⊆ V , for G(A) = (V,E) induces a maximum clique in G(A), then C induces a

maximum clique in the maximum k-core of G(A). As a consequence, a lower bound
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on the number of colors in an optimal coloring of G(A) can be obtained from a lower

bound for the maximum k-core.

2. A coloring for G(A) can be obtained by coloring the maximum k-core first and then

extending the coloring to the uncolored vertices. Since A is large and sparse, it is

computationally infeasible to use an exact method to optimally color G(A). On the

other hand, if the maximum k-core is sufficiently small it may be possible to opti-

mally color it and then extending this coloring to the vertices that are outside of the

maximum k-core. Consequently, if the optimal coloring of the maximum k-core uses

χk colors and if this coloring can be extended to all other vertices of G(A) without

increasing the number of colors then we have an optimal coloring of graph G(A) [24].

3.2 Combined Coloring

3.2.1 Degeneracy and Core

Let G(A) be the column intersection graph for a sparse matrix A and H be the induced

subgraph such that H ⊆ G(A). The following algorithm shows the major computational

steps of finding k-core and degeneracy. The algorithm we have used here is based on

smallest last ordering algorithm.

We have implemented the the algorithm using the compressed data structure used in

DSJM [20]. The SLO ordering in our implementation uses bucket heap data structure of

DSJM. Details of bucket heap data structure can be found in the user manual of DSJM. The

overall computational complexity of this algorithm is O(
n

∑
i=1

ρ
2
i ) [20, 24].

3.2.2 Greedy Coloring

Let G(A) be the column intersection graph for a sparse matrix A. After the vertices have

been ordered using Compute Degeneracy algorithm, the sequential algorithm will access

the vertices in the given order and will assign the smallest available color to the vertices. A

greedy partitioning heuristic to find a structurally orthogonal mapping was proposed in [9].
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Algorithm: Compute Degeneracy
Input : G(A) = (V,E) and

degree array such that degree[ j] is the degree of vertex corresponding to
column j of matrix A

Output: order array such that jth column in SLO order is order[ j];
k, the degeneracy of G(A) i.e. k = max{δ(H)}, H ⊆ G(A) and
c index, the maximum k-core is the subgraph induced columns order[1] ...
order[c index]

1 Set V ′ to /0 ;
2 slo order← |V | ;
3 k deg← 0 ;
4 Construct a min heap Q of degree information from degree array ;
5 H← G ;
6 while Q is not empty do
7 Let j be the column such that its degree k is minimum in the induced graph H ;
8 order[slo order]← j;
9 k deg[slo order]← k;

10 slo order← slo order−1;
11 Remove column j from Q;
12 H← H \{ j};
13 Update the degree of the neighbors of column j in H;

14 Let l be the largest index such that k deg[l] is maximum;
15 k← k deg[l];
16 c index← l;
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Our algorithm for finding structurally orthogonal partitioning is an adaption of sequential

greedy color implementation of DSJM. Major computational steps of finding structurally

orthogonal partitioning are given below:

Algorithm: Sequential Greedy Coloring
Input : order array containing a permutation of columns 1... n
Output: color array defining an assignment of colors to columns such that

color[ j] 6= color[l] if columns j and l are structurally dependent
1 for i← 1 to n do
2 color[i]← n

3 for j← 1 to n do
4 colm← order[ j] ;
5 Let neighbors be the set of columns such that l ∈ neighbors implies l 6⊥ colm and

let c be the smallest color index that has not been assigned to any column in
neighbors;

6 Assign color index c to column colm;

We have used the package DSJM for implementing Sequential Greedy Coloring. The

major computational cost of the Sequential Greedy Coloring algorithm is O( ∑
{i|ai j 6=0}

ρi)

to find the neighbors of colm. For all columns in order array the cost is proportional to

O(
n

∑
i=1

∑
{i|ai j 6=0}

ρi) = O(
n

∑
i=1

ρ
2
i ). So, the total computational cost of Sequential Greedy Coloring

is O(
m

∑
i=1

ρ
2
i ) [20]. The following Figure 3.5 shows the column intersection graph G(B) of

matrix B where columns (1,2,3,4,5) are grouped into two groups {{1,4,5}, {2, 3}} by

using the Sequential Greedy Coloring algorithm.

B =


a11 a12 0 0 0
a21 0 a23 0 0
0 0 a33 a34 0
0 a42 0 a44 0
0 a52 0 0 a55


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1 2

3 4

5

Figure 3.5: Sequential coloring example

3.2.3 Exact Coloring

For exact coloring, we have used the Randall-Brown’s modified algorithm (RB) by

Brélaz [3] which used DSATUR heuristics. The algorithm divides the graph coloring in-

stance into a series of subproblems. Each subproblem corresponds to a partial coloring of

the graph. At each step, there is an upper bound (UB) on the number of colors needed to

color the graph. If the subproblem uses p colors such that p <UB, then a better coloring is

found and UB is set to p. If the graph is not completely colored and the number of colors

used is less than UB, then new subproblems are created. An uncolored vertex vi is selected

for branching and for each feasible color out of p colors a subproblem is created to assign

that color to vi. Then another subproblem is created to assign color p+1 to vi. The choice

of branch node i is critical, Brélaz suggested to choose the vertex adjacent to the largest

number of differently colored nodes.

In this thesis, we have used the Randall-Brown’s modified algorithm implemented by

Mehrotra and Trick [30]. They implemented the algorithm by finding the maximum clique

in the graph using the unweighted clique finding algorithm. They generated 10,000 sub-

problems and the remaining vertices were dynamically ordered in terms of the number of

adjacent colors. The subproblems were created as in the basic DASTUR algorithm and

solved by using depth-first search.
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3.2. COMBINED COLORING

3.2.4 Combined Coloring

Heuristic algorithms are frequently used for graph coloring problem but they do not

provide any guarantee of the quality of the optimal solution. Again exact algorithms can

not be applicable when the graph is large due to their higher computation cost. In this thesis,

we have proposed a new approach which combines the sequential greedy coloring and RB.

The algorithm of our combined approach is given below:

Algorithm: Combined Coloring
Input : order array such that jth column in SLO order is order[ j] and

c index, the maximum k-core is the subgraph induced columns order[1] ...
order[c index]

Output: color array containing the color of columns 1...n
1 Apply RB to color the k-core of graph G(A);
2 Update the color array with color assignment of columns in the k-core;
3 Apply Sequential Greedy Coloring to color the remaining vertices;
4 Return the color array;

In our combined approach, we solve the problem in stages. First, we apply RB algo-

rithm to color the maximum k-core graph. Maximum k-core graph is obtained by applying

the Compute Degeneracy algorithm. Figure 3.6 shows the coloring of maximum k-core

graph using RB algorithm on it. Maximum k-core graph requires at least four colors ac-

cording to RB algorithm.

2

3

4

9

Figure 3.6: Coloring of maximum k-core graph using RB. Maximum k-core graph is ob-
tained by using the Compute Degeneracy on Figure 3.3

Then we extend the coloring information of maximum k-core to the uncolored vertices

by using Sequential Greedy Coloring algorithm. Figure 3.7 shows the coloring of using

31



3.2. COMBINED COLORING

Sequential Greedy Coloring algorithm. In this case, we get four colors. So in this example,

the number of colors is equal to be the number of colors needed in RB. Hence we get an

optimal partitioning of columns

{1,2,5,6},{3},{4,7,8},{9}

1

2

3

4

5

6

7

8

9

Figure 3.7: Combined coloring result of sparse matrix shown in Figure 3.1
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Chapter 4

Numerical Experiments

In this chapter, we present numerical results of applying algorithms proposed in this thesis

on practical instances. In Section 4.1, we give details of test data sets that we have used

in our experiments. The data structures used in this thesis are briefly covered in Section

4.2. Finally, we describe numerical experiments and summary of experimental results in

Section 4.4.

4.1 Test Data Sets

In this section, we discuss two different sets of sparse matrices for our experimental

results. Table 4.1 and Table 4.2 lists matrices along with their structural properties. The

data set in Table 4.1 is obtained from University of Florida Sparse Matrix Collection [2] and

the data set in Table 4.2 is collected from Matrix Market Collection [1]. In tables, Table

4.1 and Table 4.2, columns labelled m, n, nnz are used to represent the number of rows,

columns and total number of nonzeroes in the matrix respectively. Columns ρmax and ρmin

represent maximum and minimum number of nonzeroes in any row of the matrix and ρ

denotes the arithmetic mean of nonzeroes in each row of the matrix.

Table 4.1: Matrix Data Set - 1

Matrix Name m n nnz ρmax ρ ρmin

cage11 39082 39082 559722 31 14 3

Continued on next page
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4.1. TEST DATA SETS

Table 4.1 – continued from previous page

Matrix Name m n nnz ρmax ρ ρmin

cage12 130228 130228 2032536 33 15 5

fidap002 441 441 26831 125 60 28

fidap003 1821 1821 52659 62 28 8

fidap005 27 27 279 15 10 6

fidap015 6867 6867 96421 18 14 4

fidap018 5773 5773 69335 18 12 1

fidap022 839 839 22613 62 26 8

fidap029 2870 2870 23754 9 8 1

fidap031 3909 3909 115299 75 29 9

fidap033 1733 1733 20315 18 11 4

fidap035 19716 19716 218308 18 11 1

fidapm05 42 42 520 21 12 6

Table 4.2: Matrix Data Set - 2

Matrix Name m n nnz ρmax ρ ρmin

arc130 130 130 1282 124 9 1

can1054 1054 1054 12196 35 11 6

can1072 1072 1072 12444 35 11 6

can634 634 634 7228 28 11 2

dwt1007 1007 1007 8575 10 8 3

dwt1242 1242 1242 10426 12 8 2

Continued on next page
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4.2. DATA STRUCTURE

Table 4.2 – continued from previous page

Matrix Name m n nnz ρmax ρ ρmin

dwt2680 2680 2680 25026 19 9 4

dwt162 162 162 1182 9 7 2

dwt193 193 193 3493 30 18 8

dwt221 221 221 1629 12 7 4

dwt307 307 307 2523 9 8 6

dwt361 361 361 2953 9 8 4

dwt59 59 59 267 6 4 2

e20r0000 4241 4241 131556 62 31 8

e20r0100 4241 4241 131556 62 31 8

e30r0000 9661 9661 306356 62 31 8

e30r0100 9661 9661 306356 62 31 8

fs5411 541 541 4285 11 7 1

fs5412 541 541 4285 11 7 1

ibm32 32 32 126 3 2 8

impcolb 59 59 312 5 2 7

impcolc 137 137 411 3 1 8

impcold 425 425 1339 10 3 1

lunda 147 147 2449 21 16 5

lundb 147 147 2441 21 16 5

west0067 67 67 294 4 1 6

west0381 381 381 2157 5 1 25
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4.2 Data Structure

Generally, a matrix is stored using a two-dimensional array but it is slow and inefficient

for large sparse matrices as the processing and memory are wasted on the zero entries. So

it is beneficial to use specialized algorithms and data structures to take advantage of sparse

structure for storing and manipulating sparse matrices on a computer. In this thesis, we have

used a data structure proposed in [20]. This data structure takes only 3× nnz+m+ n+ 2

memory locations where nnz is the total number of nonzeroes, m is the number of rows and

n is the number of columns of a sparse matrix. The total data structure is divided into two

parts: Compressed Column Storage and Compressed Row Storage.

4.2.1 Compressed Column Storage

The compressed Column Storage (CCS) format represents a matrix by three one di-

mensional arrays, named as row ind, col ptr and value. Row indices of nonzero ele-

ments of each column are stored into row ind array. The starting index of each column

is stored in col ptr array and nonzero elements are stored into value array. Row in-

dices of nonzero elements in column j can be found in between row ind[col ptr[ j]] and

row ind[col ptr[ j+ 1]− 1]. Therefore for a sparse matrix A ∈ ℜm×n, the total amount of

memory required to store compressed column storage is 2nnz+n+1.

4.2.2 Compressed Row Storage

In Compressed Row Storage (CRS), column indices of nonzero elements of each row

are stored in col ind and the starting index of each row is stored in row ptr. Like CCS,

CRS also uses value array to store nonzero elements. Column indices of each row i can be

found in between col ind[row ptr[i]] and col ind[row ptr[i+1]−1]. Hence the CRS uses

2nnz+m+ 1 memory locations to store a sparse matrix. Following example demonstrate

the CCS and CRS data structures. Let
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4.4. TEST RESULTS

A =



a11 0 a13 a14 0 0

0 a22 0 0 0 a26

a31 0 a33 0 a35 0

0 a42 0 a44 0 0

a51 0 a53 0 a55 0

0 a62 0 a64 0 a66


The corresponding data structure of the matrix A is as follows:

value
a11 a13 a14 a22 a26 a31 a33 a35 a42 a44 a51 a53 a55 a62 a64 a66

col ind
1 3 4 2 6 1 3 5 2 4 1 3 5 2 4 6

row ptr
1 4 6 9 11 14 17

row ind
1 3 5 2 4 6 1 3 5 1 4 6 3 3 2 6

col ptr
1 4 7 10 13 15 17

Figure 4.1: CRS and CCS data structures

4.3 Test Environment

All the experiments were done on a 64 bit Ubuntu 16.04 with 2.6 GHz Intel Core i5-

3230M, 4 GB RAM, and 3072K L3 cache.

4.4 Test Results

Our implementation depends heavily on the use of efficient sparse data structures and

operations on sparse matrices. We have used C++ for implementing our algorithms and

we compare our results with DSJM [20]. Our test results are shown in Table 4.3 and 4.4.
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In both tables, matrices are listed under Matrix Name, ρmax column represents maximum

number of nonzeroes in any row of the matrix, degeneracy number is shown in Degeneracy

column and Core Size denotes the number of columns in the maximum k-core. Entries

in column labelled DSJM denotes the number of colors required using SLO in DSJM. The

number of colors required to color the maximum k-core by using Randall-Brown’s modified

algorithm is presented in the RB column. Column CM is used to represent the total number

of colors required using our combined approach. The number in boldface represents the

optimal coloring (partitioning) for the respective problem instance.

4.4.1 Numerical Experiments

Table 4.3: Coloring results for data set - 1

Matrix Name ρmax Degeneracy Core Size DSJM RB CM

cage11 31 141 832 62 56∗ 60

cage12 33 162 1710 68 61∗ 65

fidap002 125 129 275 125 125 125

fidap003 62 65 482 62 54 62

fidap005 15 14 21 15 15 15

fidap015 18 25 4482 22 18 18

fidap018 18 25 2710 22 18 18

fidap022 62 70 155 64 62 64

fidap029 9 12 2643 12 9 9

fidap031 75 107 2322 93 90∗ 90

fidap033 18 23 1054 21 18 18

fidap035 18 25 7252 22 18 18

Continued on next page

38



4.4. TEST RESULTS

Table 4.3 – continued from previous page

Matrix Name ρmax Degeneracy Core Size DSJM RB CM

fidapm05 21 20 30 21 21 21

* - Terminated after 1 hour

Table 4.4: Coloring results for data set - 2

Matrix Name ρmax Degeneracy Core Size DSJM RB CM

arc130 124 123 124 124 124 124

can1054 35 36 223 35 35 35

can1072 35 36 220 35 35 35

can634 28 28 92 28 27 28

dwt1007 10 12 893 11 10 11

dwt1242 12 15 322 14 12 13

dwt2680 19 21 89 19 18 19

dwt162 9 10 59 10 9 9

dwt193 30 34 81 31 30 30

dwt221 12 12 173 13 12 12

dwt307 9 14 144 12 9 9

dwt361 9 12 277 10 9 9

dwt59 6 6 54 7 6 6

e20r0000 62 80 3302 70 67∗ 67

e20r0100 62 80 3302 71 67∗ 67

e30r0000 62 80 8442 70 68∗ 68

e30r0100 62 80 8442 71 68∗ 68

Continued on next page
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Table 4.4 – continued from previous page

Matrix Name ρmax Degeneracy Core Size DSJM RB CM

fs5411 11 14 541 13 12∗ 12

fs5412 11 14 541 13 12∗ 12

ibm32 8 8 22 8 7 8

impcolb 7 10 15 11 10 10

impcolc 8 8 63 8 7 8

impcold 10 10 193 11 10 10

lunda 21 26 90 24 21 21

lundb 21 26 90 24 21 21

west0067 6 9 54 9 8 8

west0381 25 31 105 30 28 29

* - Terminated after 1 hour

4.4.2 Summary of Experimental Results

ρmax is shown to be a lower bound on the number of groups in a structurally orthogonal

partition of the columns [6]. We found ρmax to be equal to the chromatic number for 9

matrices out of 13 matrices in data set 1 and in data set 2, it is true for 16 matrices out of 27

matrices.

We observe that our combined approach is more efficient than DSJM in terms of num-

bers of partitions (colors). In data set 1, we found fewer number of colors than DSJM in 8

matrices and for 5 matrices, we found the equal number of colors as in DSJM. In data set

2, our combined approach obtained fewer number of colors in 19 matrices while 9 matrices

received the same number of colors as in DSJM.

We note that it may be possible to obtain multiple k-core of a column intersection
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4.4. TEST RESULTS

graph. For example, consider the matrix ibm32. Its degeneracy number is 8. In Figure

4.2, we see that maximum of minimum degree (degeneracy) is found at positions where the

total number of columns is 11,21 and 22. So we found three different sizes of k-core but

we select the core size to be 22 since it has maximum number of columns. Therefore, we

can say that maximum k-core is unique.

Figure 4.2: Finding degeneracy and core size of ibm32

From Tables 4.3 and 4.4, we found optimal coloring equal to be ρmax for 25 matrices

by applying the RB algorithm on the maximum k-core and out of these 24 matrices, 20

matrices receive the equal number of colors as in RB when extended to the whole matrix

(CM). Consider a matrix f idap035. The Figure 4.3 shows the maximum core region in

red color for the f idap035 matrix. Core region contains only 7252 columns whereas the

total number of columns in f idap035 is 19716. In this case, using maximum k core half of

the problem size is reduced. Hence by using the maximum core graph we can significantly

reduce the size of the problem.

One of the central contributions of our work is that we have solved a number of pre-

viously unsolved instances by showing optimal partitioning. For instances fidap015, fi-

dap018, fidap029, fidap033, fidap035 of Table 4.3 and instances dwt162, dwt193, dwt221,
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Figure 4.3: Finding degeneracy and core size of fidap035

dwt307, dwt361, dwt59, impcolb, impcold, lunda, lundb, west0067 of Table 4.4 optimal

partitioning were not known. We report optimal partitioning of those instances for the first

time. Specifically, on problem west0067 of Table 5.4, ρmax = 6 while the optimal partition-

ing is confirmed by having the maximum k-core partitioning (RB) extended to the whole

matrix without the addition of groups.

Table 4.5: Timing results

Matrix Name RD Time CM Time

cage11 - 0.324

cage12 - 1.203

fidap002 0.05 0.026

fidap003 0.983 0.116

fidap005 0.00001 0.00001

fidap015 4.966 2.812

Continued on next page
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Table 4.5 – continued from previous page

Matrix Name RD Time CM Time

fidap018 4.03 1.584

fidap022 123.6 0.01

fidap029 1.55 1.11

fidap031 - 1.3

fidap033 0.917 0.44

fidap035 - 4.5

fidapm05 0.00001 0.00001

arc130 0.00001 0.00001

can1054 0.34 0.003

can1072 0.34 0.002

can634 0.00001 0.00001

dwt1007 0.216 .002

dwt1242 15.788 .003

dwt2680 0.00001 0.00001

dwt162 0.00001 0.00001

dwt193 0.00001 0.00001

dwt221 0.00001 0.00001

dwt307 0.00001 0.00001

dwt361 0.166 0.001

dwt59 0.00001 0.00001

e20r0000 - 1.99

Continued on next page
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Table 4.5 – continued from previous page

Matrix Name RD Time CM Time

e20r0100 - 2.1

e30r0000 - 5.3

e30r0100 - 5.5

fs5411 - 0.1

fs5412 - 0.1

ibm32 0.00001 0.00001

impcolb 0.00001 0.00001

impcolc 0.00001 0.00001

impcold 0.00001 0.00001

lunda 0.00001 0.00001

lundb 0.00001 0.00001

west0067 0.00001 0.00001

west0381 0.00001 0.00001

- Represents that no result was found in 1 hours

Table 4.5 lists a comparison for running time for RD and proposed combined method.

The running time for both the algorithms is given in seconds. Reported time discards the

running time for I/O operations (e.g reading the matrix description from file). Table 4.5

clearly shows that our combined method is efficient in terms of running time, as it is sev-

eral order of magnitude of faster than RD. We also observe that Randall-Brown’s algorithm

can not solve all test matrices. For matrices cage11, cage12, fidap031, fidap035, e20r0000,

e20r0100, e30r0000, e30r0100, fs5411 and fs5412, RD can not able to solve them. Those

problems are solved in a reasonable amount of time by our proposed combined method.
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Chapter 5

Conclusion and Future works

5.1 Conclusion

Finding optimal coloring on large instances is hard to approximate. This thesis has

been an effort to provide optimal coloring for large sparse instances. Using the concept

of degeneracy and maximum k-core, we propose a new algorithm by combing existing

exact and heuristic algorithms. Our exact algorithm is based on Randall-Brown’s modified

algorithm and greedy coloring is used as a heuristic algorithm. In this thesis,

• We have presented a combined algorithm to find optimal coloring on large instances.

• We have shown optimal coloring for some test problems that were not known.

• We have shown better coloring for some test problems than the existing known col-

oring results.

5.2 Future works

Work presented in this thesis deserve further study and extension. There are many op-

portunities for extending the scope of this thesis. A natural extension involves a generaliza-

tion of maximum k-core and degeneracy to Hessian matrix determination and row-column

compression [13] for Jacobian’s. Extension to distance coloring of a general graph is inter-

esting in its own right.
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