
ON PRIMAL-DUAL SCHEMA FOR THE MINIMUM SATISFIABILITY
PROBLEM

UMAIR MUHAMMAD ARIF
Bachelor of Engineering (Electronic)

NED University of Engineering and Technology, 2011

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Umair Muhammad Arif, 2016

ON PRIMAL-DUAL SCHEMA FOR THE MINIMUM SATISFIABILITY PROBLEM

UMAIR MUHAMMAD ARIF

Date of Defense: December 22, 2016

Dr. Daya Gaur
Co-supervisor Professor Ph.D.

Dr. Robert Benkoczi
Co-supervisor Associate Professor Ph.D.

Dr. Shahadat Hossain
Committee Member Professor Ph.D.

Dr. Saurya Das
Committee Member Professor Ph.D.

Dr. Howard Cheng
Chair, Thesis Examination Com-
mittee

Associate Professor Ph.D.

Dedication

I dedicate this thesis to my parents especially my mother whose uncountable prayers

made this possible.

iii

Abstract

Satisfiability problem is the first problem known to be NP-complete [8, 28]. In this thesis,

we have studied the minimization version of the satisfiability problem called the MINSAT.

Given a set of boolean variables and a set of clauses, such that each clause is a disjunction of

variables, the goal is to find the boolean values of the variables so that minimum number of

clauses are satisfied. We have used the concept of linear programming and the primal-dual

method to study the problem. We have constructed the Linear program of the MINSAT and

its restricted version. We have proposed two combinatorial methods to solve the dual of

the restricted primal of the MINSAT. Further to this, these two algorithms also obtain an

integral solution to the dual of the MINSAT problem. Lastly, we performed a comparison

analysis of our proposed algorithms with the simplex method.

iv

Acknowledgments

I would like to start my aknowledgement with two of the best people I found in Canada.

They are my supervisors Dr. Daya Gaur and Dr. Robert Benkoczi. Both of them were

like mentor to me. Their motivation, guidance, appreciation and time devotion at each and

every stage of my graduate studies was unforgettable. Without these two personalities, this

day would never be possible.

In addition to them, I would like to deeply thank my committee members Dr. Shahadat

Hossain and Dr. Saurya Das. They were always there whenever I need any precious advice

at every stage of this journey. Their comments and feedback were highly helpful. A special

thanks to Dr. Ramesh Krishnamurty for his valuable suggestions. I would also like to ex-

tend my thanks to Dr. Howard Cheng for being the Examination chair of my thesis defense.

I am highly grateful to my supervisors and SGS for the financial assistantships.

Last but not the least, a token of appreciation and thanks to all the people associated with

the Maths and Computer Science department. Be it the faculty members, fellow graduate

students or the ever-helpful Admin Assistant Barbara Hodgson, they all made my stay at

this department worthwhile. All the graduate students were close to me and I would like to

thank all of them. Some of the notable names (in random order) are Nabi, Sara, Kawsar,

Fariha , Arnab, Jayati, Ram, Mark, Anik, Marzia, Suny, Mithila, Parijat, Nurgul, Samanta,

Tafseer, Imtiaz, Lazima, Sharmin and Rafat. I am grateful to you guys for being a part of

my life at the University of Lethbridge.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Introduction . 1
1.2 Organization of the thesis . 2

2 Preliminaries and Related Research 3
2.1 Introduction . 3
2.2 Definitions of Important Terms . 3

2.2.1 Graph . 3
2.2.2 Decision Problems . 3
2.2.3 Optimization Problems . 4
2.2.4 Class P . 4
2.2.5 Class NP . 4
2.2.6 NP-complete and NP-hard . 5
2.2.7 Approximation Algorithms . 5

2.3 Linear Programming and Duality Theory 6
2.4 Methods for solving Linear Programs . 9
2.5 The Simplex method . 10

2.5.1 Simplex Algorithm in General form 13
2.5.2 Choosing the initial basic feasible solution 14

2.6 Primal Dual Method . 15
2.6.1 Duality Theory . 16
2.6.2 Complementary Slackness . 18
2.6.3 Primal-Dual Schema . 19

3 The Minimum Satisfiability problem 25
3.1 Introduction . 25
3.2 The Satisfiability Problem . 25

3.2.1 Definition . 25
3.2.2 Problem Definition . 26

3.3 The MINSAT Problem - Definition . 27
3.4 Previous Research Work . 27
3.5 MINSAT as an Integer Linear Program . 30

vi

CONTENTS

3.5.1 Primal Formulation . 31
3.5.2 Dual Formulation . 31

3.6 Primal-dual Schema for MINSAT . 32
3.6.1 Restricted Primal . 33
3.6.2 Dual of Restricted Primal . 33

3.7 Our Contributions . 35

4 Combinatorial Algorithms for the DRP, an Exploration 36
4.1 Introduction . 36
4.2 Algorithm 1: Finding a feasible path in a bipartite graph 36

4.2.1 Step 1: Formulation of DRP and construction of bipartite graph . . 38
4.2.2 Step 2: Finding a forward feasible path and DRP solution 39
4.2.3 Step 3: Finding the final DRP and Dual solution 43

4.3 Algorithm 2: Edge picking in a graph . 45
4.3.1 Step 1: Formulation of DRP and construction of bipartite graph . . 46
4.3.2 Step 2: Picking edges to solve DRP 46

4.4 Our Contributions . 48

5 Experiments and Results 50
5.1 Introduction . 50
5.2 MINSAT Instances . 50
5.3 Empirical Evaluation . 51

6 Conclusion 58
6.1 Summary . 58
6.2 Future Research . 58

Bibliography 59

vii

List of Tables

5.1 Experimental results on number of iterations for the three algorithms 53
5.2 Experimental results on the processing times of the two proposed algorithms 55
5.3 Experimental results on quality of solution (Approximation Ratio) for the

two algorithms . 56

viii

List of Figures

2.1 Flowchart for Primal Dual Schema . 20

4.1 An example of a graph having 8 vertices and 8 edges 38
4.2 An example of a bipartite graph . 39

5.1 A comparison of the number of iterations of the two algorithms with the
Simplex method . 54

5.2 A comparison of the number of iterations between the two proposed algo-
rithms . 54

5.3 A comparison of the processing times of the two proposed algorithms . . . 55

ix

Chapter 1

Introduction

1.1 Introduction

The field of Computer science is incomplete without the boolean values 0 and 1. These

two values were responsible for the introduction of logic theory and satisfiability. The

satisfiability problem aims at finding the boolean values of a set of variables such that these

values satisfy a given formula. We will formally define the satisfiability problem in Chapter

3. The satisfiability problem finds its applications in a number of areas which include but

not limited to artificial intelligence, formal verification, electronic design automation, etc.

A book by Biere et al [6] is fully dedicated on this problem. The book contains the history,

complexities, variants, practical solving and applications of the satisfiability problem.

There are two optimization versions of the satisfiability problem. We have consid-

ered the minimization version of the satisfiability problem in this thesis. The problem is

called the minimum satisfiability problem or MINSAT. The satisfiability problem is the

first known NP-complete [8, 28] problem. By the definition of NP-completeness [25], any

problem in NP can be reduced to the satisfiability problem in polynomial time. The pro-

cess is called SAT encoding. This serves as the motivation to design fast and efficient SAT

solvers.

We have modelled the MINSAT as an Integer linear program (ILP) and applied primal-

dual method to investigate the existence of an algorithm that solves the problem combi-

natorially instead of using the numerical simplex method. We have proposed two such

algorithms to solve the dual of the restricted version of the MINSAT LP. Although, our

1

1.2. ORGANIZATION OF THE THESIS

algorithms did not guarantee an optimal solution but gave an integral solution of the dual

LP unlike the fractional solution given by the simplex method.

1.2 Organization of the thesis

We start by defining the terminologies that will be used in this thesis in Chapter 2. We

also define the fundamentals of linear programming and the methods used to solve a linear

program in this chapter. We describe in detail two of such methods.

In Chapter 3, we formally define the satisfiability problem and the minimum satisfiabil-

ity problem. We also discuss the previous research work in the area. Then, we construct the

related linear programs for the MINSAT problem in the context of the primal-dual method.

In Chapter 4, we present the two approaches that we have investigated to solve the

Dual of the Restricted Primal (DRP) of the MINSAT combinatorially. We analyze both the

algorithms with reference to their implementation and running time complexities.

In Chapter 5, we give the empirical results obtained from the implementation of the

proposed algorithms. We also give a comparative analysis of the proposed algorithms with

the simplex method with the help of experimental results.

Finally, we conclude the thesis in Chapter 6 with listing the future research possibilities

and directions.

2

Chapter 2

Preliminaries and Related Concepts

2.1 Introduction

In this chapter, we will discuss the terminology and concepts used in this thesis. We

will start by discussing the definitions that will be used throughout this document in section

2.2. Later, in section 2.3, we will go through the basics of linear programming. We will

describe some methods for solving the linear programming problems in section 2.4. Then,

we will discuss in detail two of these methods in sections 2.5 and 2.6.

2.2 Definitions of Important Terms

These definitions are from the books by Cormen [9], Kleinberg and Tardos [25], Vazi-

rani [38] and Williamson and Shmoys [37].

2.2.1 Graph

A graph G is a pair of sets (V,E). V is a set of nodes (also called vertices) while E is

a set of edges, each of which joins two of the nodes. The edges can be directed from one

vertex to another, if such is the case then G is a directed graph. Similarly, each edge can

have a weight (usually a non-zero number) which makes G a weighted graph.

2.2.2 Decision Problems

A given problem is called a decision problem if it has a single possible answer which

can be either yes or no.

3

2.2. DEFINITIONS OF IMPORTANT TERMS

Example: Given an undirected unweighted graph G = (V,E), two vertices u,v ∈V and

a non-negative integer k. Is there a path [25] in G between u and v whose length is at most

k? So the answer to this problem is simply yes or no.

2.2.3 Optimization Problems

A given problem that asks us to find a solution out of numerous feasible solutions that

either maximizes or minimizes a given objective.

Example: Given an undirected unweighted graph G = (V,E) and two vertices u,v ∈V ,

find the shortest path between u and v. So the answer to this problem can be more than one,

i.e., there can be many paths between these two vertices but we have to find the shortest one

out of those available paths.

2.2.4 Class P

The problems that are solvable in polynomial time on a deterministic Turing machine

fall under this category. The term polynomial time refers to any algorithm that runs in time

O(nk) for some constant value of k where n is the size of the input.

Finding the shortest path between two vertices of a given graph is in class P.

2.2.5 Class NP

The decision problems which can be verified in polynomial time on a deterministic

Turing machine. For NP problems, we are given a certificate of the correctness of the

solution which can be verified in polynomial time of the input size. The term NP stands for

Non-deterministic polynomial time.

Example: Consider the vertex cover problem in which we are given a graph G = (V,E)

and an integer k. We are asked whether there is any subset C ⊆ V such that every edge

(u,v) ∈ E has at least one endpoint (u or v) in C and |C| = k? So, if someone claims that

C is a vertex cover, then we can easily check in polynomial time whether |C| = k and for

every edge, at least one of the endpoints is in set C or not.

4

2.2. DEFINITIONS OF IMPORTANT TERMS

2.2.6 NP-complete and NP-hard

First, we will define the term NP-complete. A problem X is said to be NP-complete, if

the following two conditions hold:

1. The problem belongs to the class NP i.e. X ∈ NP.

2. Every other NP problem Y is polynomially reducible to X i.e. Y ≤p X . Polynomial

reduction means every instance of the problem Y can be transformed to an instance of X

in polynomial time [25]. The transformation is such that answer of every instance of Y is

“yes” if and only if the answer of the mapped instance of X is “yes’.

If a problem satisfies the second condition and may not satisfy the first condition, then

it is called an NP-hard problem [9]. Till the writing of this thesis, no polynomial time algo-

rithm has been discovered to solve any NP-complete problem nor anyone proved that such

an algorithm doesn’t exist. This fact brings our attention to a middle approach. The ap-

proach is to design efficient approximation algorithms for NP-hard optimization problems.

2.2.7 Approximation Algorithms

Williamson and Shmoys [38] have referred to an old engineering slogan ”Fast, Cheap,

Reliable, Choose two“ to describe the term approximation algorithms. Whenever we are

dealing with an NP-hard optimization problem, ”Fast and Cheap“ implies an efficient algo-

rithm, while ”Reliable“ means it should give an optimal solution for every instance of input.

It is generally believed that we do not have polynomial time algorithms for NP-complete

problems so we have to compromise on one of these requirements which give birth to the

field of approximation algorithms.

One can relax any one of the three factors. The most common approach is to relax

the requirement of obtaining an optimal solution. We design polynomial time efficient

algorithms to obtain a ”good enough“ solution. Formally, an α-approximation algorithm

is a polynomial time algorithm designed to solve any instance of an optimization problem

such that the cost of its solution is bound within a multiplicative factor of α of the value of

5

2.3. LINEAR PROGRAMMING AND DUALITY THEORY

optimal solution. Where α is called the performance ratio and its value is:

α =
A(I)

OPT (I)
≥ 1 (for a minimization problem)

α =
A(I)

OPT (I)
≤ 1 (for a maximization problem)

where A(I) is the cost of the solution returned by approximation algorithm A on an input

instance I, and OPT (I) is the optimal cost.

2.3 Linear Programming

Linear programming is a very powerful technique for solving optimization problems.

This technique was first introduced by the Nobel-laureate Leonid Vitaliyevich Kantorovich

in 1939 [32]. It is considered to be a vital tool for solving real-life operations research and

planning problems. Due to its universality in modeling different optimization problems, it

is also used as a tool to solve combinatorial optimization problems in the field of computer

science.

The purpose of a linear program (LP) is to maximize or minimize a given linear func-

tion based on real-valued decision variables while satisfying a set or collection of linear

constraints. This function is termed as the objective function. A generalized form [36] of

this function looks like:

ζ = c1x1 + c2x2 + ...+ cnxn (2.1)

ζ is the objective function value. x1,x2, ...,xn and c1,c2, ...,cn are the decision variables

and their constant cost coeficients respectively. This optimization is done with some re-

strictions on the values of these decision variables. These restrictions are referred to as the

constraints. The constraints are in the form of either inequalities or equalities. The con-

straints are broadly defined into two sub-categories shown in 2.2 (technological constraints)

and 2.3 (non-negativity constraints).

6

2.3. LINEAR PROGRAMMING AND DUALITY THEORY

aix1 +aix2 + ...+aixn

{ ≤
=

≥

}
bi where i = 1,2, ...,m (2.2)

x j ≥ 0 where j = 1,2, ...,n (2.3)

An LP is a combination of an objective function that needs to be optimized with the

restriction that the given constraints must be satisfied. The number of decision variables

is usually represented by n while number of constraints, excluding the non-negativity con-

straints, is denoted by m. A general LP formulation [7] for a maximization and minimiza-

tion problem is shown in 2.4 and 2.5 respectively. It may be noted that when the objective

function is of type maximization then the inequality constraints are in the form of a less

than equal to inequality. On the other hand, for a minimization problem, the inequality

constraint is in the form of a greater than equals inequality. This type of formulation is

also called canonical form [34] of an LP. The canonical form is different from the standard

form in which the inequality constraints are replaced with equality constraints. As we will

discuss in later sections, a canonical form can easily be converted into a standard form by

using slack or surplus variables [36].

maximize
n

∑
j=1

c jx j (2.4)

subject to
n
∑
j=1

ai jx j ≤ bi i = 1,2, ...,m

x j ≥ 0 j = 1,2, ...,n

7

2.3. LINEAR PROGRAMMING AND DUALITY THEORY

minimize
n

∑
j=1

c jx j (2.5)

subject to
n
∑
j=1

ai jx j ≥ bi i = 1,2, ...,m

x j ≥ 0 j = 1,2, ...,n

The general form of an LP can also be written using a matrix representation. We have

shown the matrix formulation of both the LPs, maximization and minimization, in standard

form in equations 2.6 and 2.7.

maximize cx (2.6)

subject to Ax = b

x ≥ 0

minimize cx (2.7)

subject to Ax = b

x ≥ 0

cx is the objective function. c is a row vector of costs and x is a column vector of

decision variables. A is an m x n matrix called the coefficient matrix of the constraints

while b is a column vector that represents the right-hand side of the constraints. A solution

is an assignment of values to the variables x. A f easible solution to an LP is an assignment

of real values to the variables that satisfy all the constraints. If the objective function value

obtained is maximum possible, then the feasible solution is called the optimal solution for a

maximization problem. Alternatively, if the value is the minimum of all the possible values,

then it will be termed as an optimal solution for a minimization problem. Furthermore, if an

assignment does not satisfy all the constraints, the solution is called an in f easible solution.

8

2.5. THE SIMPLEX METHOD

A linear program with additional constraints that the decision variables must take inte-

ger values is called an integer linear program (abbreviated as ILP). Many combinatorial

problems can be expressed naturally as an ILP and usually serve as a first step to solve

that problem using polynomial time approximation algorithm. We remove the integrality

constraints on the variables and solve the relaxed LP. If an optimal solution is fractional for

the relaxed version, we perform a rounding to get an approximate and integral solution to

the ILP [35].

2.4 Methods for solving Linear Programs

There are numerous methods available to solve a linear program. The first and the most

commonly used algorithm that was developed by George B. Dantzig [10] is the Simplex

method. This method was based on finding the optimal solution iteratively by searching

the corner points of the constraint polytope termed as the feasible region. Another method

proposed by Kuhn [27] for solving the assignment problem which is a special LP is called

the primal-dual method. The primal-dual method works for general LPs as well.

Other methods include the first polynomial time algorithm due to Khachiyan [24] and

the interior-point method by Karmarkar [23]. The method proposed by Khachiyan was

derived from the ellipsoid method developed by Shor, Yudi, and Nemirovskii [1]. The main

idea behind the ellipsoid algorithm is to enclose the feasible solutions in an ellipse and then

check iteratively whether the center of the ellipse is feasible or not. This algorithm lacks

efficieny in practical scenarios compared to the simplex method. The interior point method

starts with an interior point of the polytope and then repeatedly moves inside this polytope

along some path to find an optimal solution. The interior point methods are practical in

comparison to the ellipsoid method. For this thesis, we will only discuss the simplex method

and the primal-dual method in detail.

9

2.5. THE SIMPLEX METHOD

2.5 The Simplex method

The simplex method is one of the most widely used iterative methods for solving a linear

program. It was designed by George B. Dantzig [10] in the 1940s. The simplex method

starts with an LP in standard form. As discussed previously, the standard form requires

all the constraints, except for the non-negativity constraints, to be in equality form. If any

constraint is an inequality, we add (or subtract) a slack variable. This slack (called surplus

if subtracted) variable w will also appear in the objective function but with a coefficient

cw = 0.

Next example shows how we convert a given LP to standard form by introducing slack

variables. The LP in 2.8 is in canonical form while the LP in 2.9 is in standard form. It can

be seen that we have introduced slack variables w1,w2,w3 and w4. The number of slack

variables introduced is at most the total number of constraint equations (referred as m). In

reference to simplex method, the LP in the form of equation 2.9 is called a dictionary. The

non-zero variables appearing on the left-hand side of the constraint equalities are called

basic variables while the ones on the right-hand side are called non -basic variables. In

other words, the basic variables are expressed as linear combination of the non-basic vari-

ables. Any solution x1,x2, ...,xn,w1,w2, ...,wm obtained when all the non-basic variables

are set to zero is called a basic f easible solution.

maximize 2x1 + x2 (2.8)

subject to 2x1 + x2 ≤ 4

2x1 +3x2 ≤ 3

4x1 + x2 ≤ 5

x1 +5x2 ≤ 1

x1,x2 ≥ 0

10

2.5. THE SIMPLEX METHOD

maximize Z = 2x1 + x2 (2.9)

subject to w1 = 4−2x1− x2

w2 = 3−2x1−3x2

w3 = 5−4x1− x2

w4 = 1− x1−5x2

x1,x2,w1,w2,w3,w4 ≥ 0

The simplex method is an iterative method that starts from an initial basic feasible so-

lution and then moves to a better solution that improves our objective function. Here, the

better value of the objective function for a minimization problem simply means a value

smaller than the one previously obtained. While for a maximization problem, the improved

value will usually be a value greater than its previous counterpart. We will illustrate the

simplex method on the example in 2.9 and then describe the algorithm in general terms.

To start with, we need an initial basic feasible solution (x1,x2,w1,w2,w3,w4). If the

right-hand side of all the constraints is non-negative then the initial basic feasible solu-

tion can be found by setting all the non-basic variables to zero. Thus, the solution is

(0,0,4,3,5,1). The value of objective function here is Z = 0.

The next step is to analyze how this objective function value can be increased. We

examine the coefficients in the objective function and pick the one with the largest non-

negative coefficient, other strategies also exist. In our example, we pick x1 as any value

greater than zero will increase our objective function by a factor of 2. We have to ensure

the new value of x1 does not violate non-negativity constraint for any variable. To achieve

this, we find the maximum permissible value of x1 in each constraint. We get the following

permissible values:

w1 = 4−2x1 and w1 ≥ 0 implies x1 ≤ 2

w2 = 3−2x1 and w2 ≥ 0 implies x1 ≤ 3/2

11

2.5. THE SIMPLEX METHOD

w3 = 5−4x1 and w3 ≥ 0 implies x1 ≤ 5/4

w4 = 1− x1 and w4 ≥ 0 implies x1 ≤ 1

We pick the minimum value of x1. This ensures that all the variables are non-negative.

The basic variable corresponding to this minimum value is w4. We get the solution as

(1,0,2,1,1,0). This solution is a basic feasible solution for this iteration with x2,w4 being

the non-basic variables while x1,w1,w2,w3 are the basic variables. Again, we have to make

sure that all the basic variables are represented in terms of the non-basic variables (x2 and

w4). To achieve this, the constraint equation w4 = 1− x1−5x2 is re-written in terms of x2

and w4, as x1 = 1−5x2−w4. Using this equation, we perform elementary row operations

on all other equations in the previous dictionary (2.9) to eliminate x1 and introduce w4. For

example, take the equation for Z and add two times the equation for w4 to it, to obtain:

Z = 2x1 + x2

2w4 = 2−2x1−10x2

Z = 2−9x2−2w4

Similarly, by performing the elementary row operations on all the other equations to

eliminate x1 and introduce w4, we get the dictionary in equation 2.10. It is noted that every

variable is constrained to take a non-negative value.

Z = 2−9x2−2w4 (2.10)

w1 = 2+9x2 +2w4

w2 = 1+7x2 +2w4

w3 = 1+19x2 +4w4

x1 = 1−5x2−w4

It can be observed that if we set all the non-basic variables to zero, we get the basic

feasible solution (1,0,2,1,1,0). The value of the objective function for this solution is Z = 2.

12

2.5. THE SIMPLEX METHOD

We repeat the same steps. We observe the equation for Z and select a non-basic variable

with a positive coefficient. Since, all the variables have negative coefficients so we cannot

select any variable. Therefore the solution (1,0,2,1,1,0) is an optimal solution. The optimal

value of Z is 2 which cannot be improved any further.

2.5.1 Simplex Algorithm in General form

Consider the maximization LP (equation 2.4) in the standard form after introducing the

slack variables as shown in equation 2.11. This will serve as the starting dictionary. The

simplex method applies to a maximization problem. If we want to solve a minimization

problem using this method, we convert a minimization problem into a maximization prob-

lem. We will discuss such conversion in the next section.

Z =
n

∑
j=1

c jx j (2.11)

wi = bi−
n
∑
j=1

ai jx j i = 1,2, ...,m

We move from one dictionary to another in search of an optimal solution by picking

exactly one variable that goes from non-basic to basic and exactly one variable that performs

a reverse transition. The variable that we pick to improve our objective function value is

called an entering variable, the one which goes from non-basic to basic. The variable that

is chosen to preserve the non-negativity of the current basic variables is called the leaving

variable. This variable goes from basic to non-basic. We define B as the set of indices

of the basic variables and N as the set of indices of the non-basic variables. So selecting

an entering variable (x j or w j) implies picking j from {i ∈ N|ci ≥ 0}. Once the entering

variable x j is selected, the leaving variable can be picked by finding the minimum value

from {bi/ai j | i ∈ B and ai j > 0}.

After picking both the entering and leaving variables, we perform elementary row op-

erations to sort the new dictionary in terms of basic and non-basic variables. This step of

13

2.5. THE SIMPLEX METHOD

going from current dictionary to the next one is called pivoting. Here, we used the natural

method of pivoting i.e., pick the entering variable with the maximum positive coefficient

and pick the leaving variable that gives the minimum ratio. This sometimes lead to two

scenarios:

1. Unboundedness: This situation occurs if all the ratios bi/ai j are negative or unde-

fined (when any ai j = 0) which means there is no upper bound on the value of the entering

variable. This leads to an infinitely large value of the objective function. Such an LP is

termed as an unbounded problem.

2. Degeneracy: This occurs when bi is zero and we have to choose the value of entering

variable to be zero. When we encounter a degenerate dictionary, there is no improvement

in the value of the objective function for the subsequent dictionary. Usually, after a few

degenerate dictionaries, we reach a non-degenerate dictionary that leads towards an optimal

solution. There is a possibility that degeneracy leads to a dictionary encountered previously.

This causes an infinite loop called cycling. To avoid this situation, we use two popular

pivoting methods namely the Perturbation method and Bland’s rule [36]. The first method

introduces small unique perturbations in every constraint so that bi’s are non-zero. The

second method picks the entering and the leaving variable with the smallest index if more

than one choices are available.

Any pivoting scheme can be used to efficiently implement the simplex method. A gen-

eral sketch of the steps involved in the simplex algorithm using Bland’s rule for pivoting is

shown in algorithm 1.

2.5.2 Choosing the initial basic feasible solution

The initial basic feasible solution can be obtained by setting all x j’s to zero if all bi’s are

non-negative. If this is not the case, we use the two-phase simplex method. In two-phase

simplex method, we first solve an auxiliary problem shown in 2.12 to get an initial feasible

14

2.6. PRIMAL DUAL METHOD

Algorithm 1: The Simplex Algorithm
Input : A standard maximization LP
Output: An optimal solution for given LP (if one exists)

1 opt solution← false
2 ubounded ← false
3 while opt solution = false and ubounded =false do
4 if c j ≤ 0 for all j then
5 opt solution← true
6 else
7 pick that variable with smallest index j such that c j > 0
8 if ai j ≤ 0 for all i ∈ B then
9 unbounded ← true

10 else
11 pick the index i such that ai j > 0 and bi/ai j is minimum. If there are

more than one such i, pick the one with smallest i.
12 perform the elementary row operations to obtain the new dictionary
13 end
14 end
15 end

solution. We introduce variable x0 in every constraint. The first step is to choose the variable

x0 as the entering variable and choose the most infeasible variable, having most negative

bi value, as the leaving variable. We perform the pivoting step until we find an objective

function value equal to zero [36]. The dictionary corresponding to this value will serve as

our initial feasible dictionary. This part is called phase 1 of the algorithm. Phase 2 is the

same as we have discussed in section 2.5.1.

maximize − x0 (2.12)

subject to
n
∑
j=1

ai jx j - x0 ≤ bi i = 1,2, ...,m

x j ≥ 0 j = 0,1, ...,n

2.6 Primal Dual Method

This section will describe the second method for solving a linear program. The primal-

dual method was introduced by Kuhn [27] for solving the assignment problem. This method

15

2.6. PRIMAL DUAL METHOD

is also known as the Hungarian method. This method was further polished into a linear pro-

gramming solver by Dantzig et al [14]. Though initially proposed as an algorithm to solve

linear programs, it became popular as a method to develop combinatorial algorithms. This

method was widely used to find polynomial-time approximation algorithms for NP-hard

problems [18]. Wolsey [39] gave the analysis of already known algorithms for problems

such as Travelling Salesman problem and the multi-dimensional Knapsack problem with

the use of the primal-dual method. Even the popular Dijkstra’s shortest path algorithm

[11] and Ford-Fulkerson algorithm for finding the maximum flow in a network [13] can be

explained as a primal-dual method. We will describe the method after going through two

important properties of linear programs which follow next.

2.6.1 Duality Theory

Every linear program termed as primal comes with a dual linear program. The two

problems are associated with each other via simple transformation. The primal LP can be

converted into the dual LP. Conversion of that dual LP into the dual further will result in the

original primal problem. Duality is an important property of linear programs which helps

us analyze the behavior of many real-world problems.

Let us consider the LP 2.4 which is the primal problem. The dual of this primal can be

formulated as 2.13. Here, the objective function is transformed from a maximation problem

to a minimization problem. The number of dual constraints are equal to the number of

primal variables (n) while the number of dual variables yi are equal to the number of primal

technological constraints (m).

16

2.6. PRIMAL DUAL METHOD

minimize
m

∑
i=1

biyi (2.13)

subject to
m
∑

i=1
yiai j ≥ c j j = 1,2, ...,n

yi ≥ 0 i = 1,2, ...,m

A feasible solution to the primal problem gives a lower bound to the primal objective

function. While a feasible solution to this dual problem will provide an upper bound to the

primal objective function value. The lower and upper bounds meet at a common optimal

point which is termed as the optimum solution. This characteristic of primal-dual LP pair

is known by the duality theorems. The weak duality and the strong duality theorems are

stated below.

Theorem 2.1 (Weak Duality Theorem). If x = (x1,x2, ...,xn) is a feasible solution of the

primal LP of (2.4) and y = (y1,y2, ...,ym) is a feasible solution to its dual (2.13) then

n

∑
j=1

c jx j ≤
m

∑
i=1

biyi

Proof. This can easily be verified by using known inequalities:

n
∑
j=1

c jx j ≤
n
∑
j=1

(
m
∑

i=1
yiai j

)
x j

Rearranging the summations give us:

n
∑
j=1

c jx j ≤
m
∑

i=1

(
n
∑
j=1

ai jx j

)
yi

Substituting the value of bi from (2.4) will complete the proof [36].

n
∑
j=1

c jx j ≤
m
∑

i=1
biyi

17

2.6. PRIMAL DUAL METHOD

On the other hand, the strong duality theorem deals with the optimality of the solution.

The theorem is stated below while its proof can be found in books of Vanderbei [36] and

Chvatal [7].

Theorem 2.2 (Strong Duality Theorem). If we have an optimal solution x = (x1,x2, ...,xn)

to the primal LP of (2.4) and y = (y1,y2, ...,ym) is an optimal solution to its dual (2.13) then

n

∑
j=1

c jx j =
m

∑
i=1

biyi

The above theorem certifies that the value of objective function of a primal problem and

its dual are equal provided we have found the optimal solution of the problem. This property

is very important when we are working with linear programs as it gives a certificate. These

theorems also help us in determining the solvability of the linear program in consideration.

We can come across two other cases. The first case is, if the primal (dual) problem is

infeasible then the dual (primal) will be unbounded. While in the second case, if we have a

feasible and bounded solution for the primal (dual) problem then there exist a feasible and

bounded solution for the dual (primal) too [35].

2.6.2 Complementary Slackness

In this section, we will describe another property associated with the linear programs

called complementary slackness. A tight constraint is the one which is satisfied at equality.

If we have an optimal solution to a linear program, be it a primal or a dual problem, it is not

necessary that all its constraints are tight. So, for every constraint, we have a corresponding

non-negative slack variable such that if the constraint is tight, the slack variable has a zero

value while for any non-tight constraint, it will have a positive value.

For the maximization problem described in (2.4), we introduce slack variables wi as

follows:

wi = bi −
n
∑
j=1

ai jx j i = 1,2, ...,m

18

2.6. PRIMAL DUAL METHOD

Similarly, for its dual in (2.13), the slack variables are:

z j =
m
∑

i=1
yiai j − c j j = 1,2, ...,n

Now we state the complementary slackness theorem.

Theorem 2.3 (Complementary Slackness Theorem). If we have an optimal solution x =

(x1,x2, ...,xn) to the primal LP of (2.4) and y = (y1,y2, ...,ym) is an optimal solution to

its dual (2.13). Further the primal slack variables are represented by (w1,w2, ...,wm) and

corresponding dual slack variables are (z1,z2, ...,zn) then

x jz j = 0 for j = 1,2, ...,n

wiyi = 0 for i = 1,2, ...,m

In other words, the product of the primal variable and the corresponding dual slack

variable is always zero and vice versa. The proof of this theorem can be found in Vanderbei

[36]. Complementary slackness is the basis of the primal-dual schema described next.

2.6.3 Primal-Dual Schema

The primal-dual schema is a general framework for solving Linear Programs [30].

This algorithm is based on Theorem 2.3. The general idea is to use the conditions to form

the restricted primal (RP) Problem and its dual called dual o f restricted primal (DRP).

The RP problem is formed by starting with a dual feasible solution, usually taking each

dual decision variable equal to zero, and forming a set of indices of the dual constraints that

are tight. Primal is assumed to be in standard form.

Theorem 2.3 states that whenever the dual constraints are not tight, the corresponding

primal variables are zero in any optimal solution. Therefore, we only need to find the values

of the primal decision variables that corresponds to the tight dual constraints. This is the

main idea behind transforming the original problem into its restricted version (RP). This RP

is further converted into its dual (DRP). We solve this DRP using a combinatorial algorithm

until we get the optimal solution. The overall approach is given in figure 2.1.

19

2.6. PRIMAL DUAL METHOD

Formulate the

Primal problem

Construct its Dual

Formulate Re-

stricted Primal

(RP) using set J

Update the solution

Construct Dual of RP

(DRP) and solve it

DRP

objective

function

value = 0?

Stop

No

Yes

Figure 2.1: Flowchart for Primal Dual Schema

We will now describe the primal-dual method. For details, see Papadimitriou and Stei-

glitz [30]. We start with a minimization problem in general form as mentioned in 2.14

which is the primal problem.

20

2.6. PRIMAL DUAL METHOD

minimize cx (2.14)

subject to Ax = b

x ≥ 0

The right-hand side column vector b is assumed to be non-negative. For cases where it

is less than zero, we can make it positive by multiplying -1 with the corresponding equality.

The dual formulation is shown in 2.15.

maximize πb (2.15)

subject to πA≤ c

π ≶ 0

Here it should be noted that we are using π as dual decision variable vector. The dual

variables are unconstrained due to the equality constraints in the primal problem, that is,

they can take both positive and negative values. If we write the complementary slackness

conditions for this pair of primal-dual linear programs, we have:

πi(Aix−bi) = 0 i = 1,2, ...,m (2.16)

(c j−πA j)x j = 0 j = 1,2, ...,n (2.17)

Where πi represents the ith dual variable, Ai is the ith row of matrix A and bi is the

right-hand side of ith constraint of primal. On the other hand, x j and c j are the jth primal

variable and the coefficient respectively. A j represents the jth column of A. As we start

with the standard formulation, the complementary slackness in 2.16 is always satisfied by

any feasible solution. The goal is to satisfy the equation 2.17 so as to find the optimal

solution (if one exists). To achieve this goal, we start with an initial feasible solution to

21

2.6. PRIMAL DUAL METHOD

the dual LP and modify it iteratively until we find an optimal primal solution. The initial

feasible solution π will obviously satisfy all the dual constraints. We are interested in tight

constraints of which we form a set J as follows:

J = { j|πA j = c j} (2.18)

All the constraints j 6∈ J that are not tight will have x j = 0 to satisfy optimality. For

the set of constraints j ∈ J, we need to find the corresponding x j that satisfy the condition

(2.16). To find these values, we form a new LP which is called the restricted primal (RP)

shown in equation 2.19. We have introduced an artificial variable wi for every constraint

i in the primal. This RP can be solved by using the ordinary simplex method defined in

section 2.5.1.

minimize
m

∑
i=1

wi (2.19)

subject to ∑
j∈J

ai jx j +wi = bi i = 1,2, ...,m

x j ≥ 0 j ∈ J

x j = 0 j 6∈ J

wi ≥ 0

We construct the dual of restricted primal (DRP) as shown in 2.20.

maximize πb (2.20)

subject to πA j ≤ 0 ∀ j ∈ J

πi ≤ 1 i = 1,2, ...,m

πi ≶ 0

The DRP is similar to the dual problem. It only includes the constraints which are in

set J and upper bounds on πi. This DRP is very important when it comes to designing

22

2.6. PRIMAL DUAL METHOD

combinatorial algorithms. Many combinatorial algorithms can be explained using the DRP

formulation. We can solve this DRP by using a combinatorial algorithm and denote its

optimal solution as π. If the optimal solution to the DRP is zero then we satisfy the com-

plementary slackness conditions of Theorem 2.3 and have an optimal primal solution. If

the DRP solution is of non-zero value, we improve our initial dual solution as follows:

πupt = π+θπ (2.21)

Where πupt is the updated dual solution and θ is the improvement factor by which the

current solution is to be increased. The value of θ should be selected in a way that πupt

will remain feasible in the dual and an improved objective function value is obtained. If we

introduce b in equation 2.21, we get:

πuptb = πb+θπb (2.22)

Here it can be seen clearly that to improve the new objective function value, we have

to choose θ > 0 as DRP objective function is already positive (π > 0). The question now

is what is the maximum value of θ we should choose. The answer to this can be found by

using the following equation:

πuptA j = πA j +θπA j (2.23)

Our DRP solution satisfies πA j ≤ 0 for all j ∈ J. So for all the tight constraints of dual,

there is no upper limit on θ to maintain feasibility. For the remaining non-tight constraints

of the dual (j 6∈ J), the LHS of equation 2.23 should obey:

πuptA j ≤ c j (2.24)

23

2.6. PRIMAL DUAL METHOD

Replacing the LHS with the equation 2.23, we get

πA j +θπA j ≤ c j (2.25)

So, for all the non-tight constraints j such that πA j > 0, we take the value of θ as:

θ = min
j 6∈J

such that
πA j>0

[
c j−πA j

πA j

]
(2.26)

We pick the minimum of all possible values of the ratio given above to ensure the

feasibility of each of the dual constraint. This process will continue until the termination

condition is reached i.e., the objective value of RP-DRP pair becomes zero.

If for any reason, πA j ≤ 0 for all constraints j 6∈ J, then there is no upper bound on the

θ value. In that case, the dual LP is unbounded and hence the primal is infeasible.

The interesting part typically is to derive a combinatorial algorithm for solving the DRP.

For instance, in the case of shortest path problem, the DRP reduces to a path problem [30].

In the next chapter, we will define the Satisfiability problem. We will also formulate the

LP models as described in this chapter for the minimum satisfiability problem.

24

Chapter 3

The Minimum Satisfiability problem

3.1 Introduction

One of the most studied problems in the field of computer science is the satisfiability

(SAT) problem. The applications of the problem are enormous . It has a long history

described in an extensive manner by Biere et al [6]. A lot of combinatorial problems in

different areas of computer science are reduced to satisfiability and solved using the SAT

solvers. Some notable application areas include planning in artificial intelligence [31],

Electronic design automation [33], sporting leagues scheduling problems [41, 19], software

verification [20], etc. A number of very effiecient SAT solvers exist now [6, 16].

In this chapter, we will give an overview of the satisfiability problem and then describe

in detail, the minimum satisfiability problem. After defining the problem, we will discuss

the research. Then we will formulate the problem as an ILP and described the primal-

dual formulation, discussed in Section 2.6, for solving the LP relaxation. For a deeper

understanding of linear programming, please refer to the excellent books [7, 36, 32].

3.2 The Satisfiability Problem

3.2.1 Definition

In mathematical logic, a boolean variable is a basic element that can either have a

TRUE value or a FALSE value. Three basic operations that can be performed on boolean

variables are negation(¬), dis junction(∨) and con junction(∧). The negation operation is

unary while the other two operations are binary.

25

3.3. THE MINSAT PROBLEM - DEFINITION

Literal

A literal is either a boolean variable x or its negation ¬x, also written as x.

Clause

A clause is a disjunction of literals. Given an assignment of values TRUE/FALSE to

variables, a clause is satis f ied if it evaluates to TRUE, that is, at least one of its literals is

assigned TRUE or FALSE. Otherwise, the clause is unsatisfied.

Conjunctive Normal Form (CNF)

A boolean statement which is a conjunction of clauses. A CNF formula is satisfied if

all of its clauses are satisfied, otherwise it is unsatisfied. A CNF with three clauses and four

variables is:

(x1∨ x2)∧ (¬x2∨ x4)∧ (x1∨¬x3∨¬x4)

3.2.2 Problem Definition

There are two versions of the satisfiability problem.

Decision Version

Given a formula in the conjunctive normal form, the goal is to find a truth assignment

to boolean variables that will satisfy the formula.

Optimization Versions

Maximum Satisfiability (MAXSAT) - Given a set of clauses and a set of boolean vari-

ables, the goal is to find a truth assignment that maximizes the number of satisfied clauses.

Minimum Satisfiability (MINSAT) - Given a set of clauses and a set of the boolean vari-

ables, the objective is to find a truth assignment that minimizes the number of satisfied

clauses.

26

3.4. PREVIOUS RESEARCH WORK

3.3 The MINSAT Problem - Definition

Given a set of boolean variables X and set of clauses C as follows:

X = {x1,x2, ...,xn}

C = {c1,c2, ...,cm}

where each clause ci ∈C is a disjunction of variables. Each x j is either in normal form

(x j) or negated form (x j). The two literals are also referred to as positive and negative

literals respectively.

The goal in the minimum satisfiability problem is to find a truth assignment of variables

in X so as to satisfy the minimum number of clauses in C. A clause is satisfied when at

least one of the positive literal in that clause is TRUE (boolean value 1) or at least one of

the negative literal is FALSE (boolean value 0). For the rest of the thesis, we will use the

binary values 1 and 0 for TRUE and FALSE respectively.

3.4 Previous Research Work

The satisfiability problem is considered to be one of the most important of all the prob-

lems in theoretical computer science with applications in a number of areas including graph

theory, logic, computer science, computer engineering and operations research. A detailed

history of the satisfiability problem is described by Biere et al [6]. The importance of the

satisfiability problem is also due to the fact that it is the first problem shown to be NP-

complete in the early 1970s by Cook [8] and Levin [28].

As we have already discussed in section 2.2.6, no polynomial time algorithms are known

for solving NP-complete problems, so our goal is to find efficient approximation algorithms

(section 2.2.7) with “good” performance ratio for such problems. The first of such approx-

imation algorithm for MAXSAT was proposed by Johnson [21] which has a performance

guarantee of 1
2 . This algorithm was based on a greedy approach for picking the literal that

is used in the most number of clauses. Its value is set such that the clauses will be satisfied.

We repeat until all the literals have been picked. This algorithm runs in polynomial time.

27

3.4. PREVIOUS RESEARCH WORK

The modification to this algorithm was given by Yannakakis [40] by introducing ran-

domization such that each literal is set to True with a probability of 1
2 which also gives

the same approximation ratio. Goemans and Williamson [15] improved this ratio to 3
4 by

using the technique of linear programming and randomized rounding. They used a relaxed

version of the integer program designed for the problem and then used the rounding tech-

nique to receive the performance guarantee of 3
4 . There are many other contributions having

somewhat same or better approximation guarantee but there is a limit on approximability

which is described by Hastad [17]. His paper proved that unless P = NP, it is not possi-

ble to get a better approximation ratio than 7
8 for MAXSAT including the MAX-3SAT, a

MAXSAT instance in which each clause has at most 3 literals in it. Confirming this lower

bound, Karloff and Zwick [22] gave an approximation algorithm with the guarantee of 7
8

for MAX-3SAT and also prove that this ratio is tight. Another approach which seems more

promising while considering the practical implications is the semi-definite programming. A

survey by Anjos [2] gives a detailed review of semi-definite programming based approach

for MAX-SAT.

Till now, we have discussed the previous work on the maximum satisfiability problem.

Now, we change our focus to the problem in consideration in this thesis which is the min-

imum satisfiability problem. The minimum satisfiability problem was first introduced by

Kohli et al [26]. The MINSAT problem is an NP-hard problem even if there are at most

two literals in any clause. Kohli et al [26] gave a proof that MIN-2SAT, MINSAT instance

when each clause contains at most 2 literals in it, and Horn-MINSAT, MINSAT instance

where each clause has at most one negative literal, are NP-hard. They used an instance

of 2-MAXSAT, MAXSAT instance where each clause contains exactly two literals, and

transform it into a 2-MINSAT instance. The authors also proposed two approximation al-

gorithms for solving the problem, one is a deterministic greedy algorithm while the other

uses probabilistic techniques.

The greedy heuristic proposed by Kohli et al [26] is similar to the one due to Johnson

28

3.4. PREVIOUS RESEARCH WORK

[41] for the MAXSAT problem. The proposed greedy heuristic has a worst case perfor-

mance ratio of s where s is the maximum number of literals in a clause. The performance

ratio for the probabilistic greedy algorithm is 2. The probabilistic greedy method uses a

simple randomization technique to pick a variable and assign a boolean value to it with

some probability value.

Marathe and Ravi [29] showed that MINSAT is equivalent to the vertex cover (VC)

problem in the sense of approximation. They gave an approximation preserving reduction

in both the directions. They also mention some of the known 2-approximation algorithms

for the VC problem that can also be used to solve the MINSAT with the same performance

guarantee. Dinur and Safra [12] showed that there is no approximation algorithm that can

guarantee a performance ratio better than (10
√

5− 21 w 1.3606) for the minimum VC

problem unless P = NP. This implies the same result for the MINSAT problem.

A lot of work has been done on MIN-kSAT problem, MINSAT instance where each

clause contain at most k literals. Notable work from Avidor and Zwick [3] gives better

approximation algorithms using the semi-definite programming technique. They showed

that MIN-2SAT and MIN-3SAT can be approximated within a factor of 1.1037 and 1.2136

respectively. Other notable results in their work are the inapproximability ratio for both the

problems. They showed that MIN-2SAT and MIN-3SAT cannot be approximated within 15
14

and 7
6 respectively unless P = NP.

Bertsimas et al [5] used the linear programming formulation for solving the MINSAT

problem. They gave an LP-based approximation algorithm for the MIN-kSAT problem with

a performance guarantee of 2− 1
2k−1 . They solved the LP and then rounded the fractional

solution by using a randomized rounding scheme.

Our work is different from Bertsimas et al. in the sense that we have investigated the

possibilities of finding approximation algorithm for MINSAT based on the primal-dual

schema which is a first. Primal-dual method transforms the MINSAT LP into a DRP as

discussed in Section 2.6. A combinatorial algorithm with performance ratio of 2 is known

29

3.5. MINSAT AS AN INTEGER LINEAR PROGRAM

for the vertex cover problem [4]. Such a combinatorial algorithm based on the primal-dual

schema is not known for the MINSAT problem. In this thesis, We investigate the existence

of such a primal-dual algorithm. In the following sections, we formulate the primal and

dual LPs for the MINSAT along with the restricted primal and the dual of the restricted

primal.

3.5 MINSAT as an Integer Linear Program

For transforming the MINSAT problem to a linear program, we associate a variable zi

with each clause ci ∈C. First, we develop the ILP then we drop the integrality constraints

to obtain the LP. This ILP formulation is due to Bertsimas [5]. The objective function of

this LP is to minimize the number of satisfied clauses. The values of the variables zi and x j

are restricted to be binary, i.e. either 0 or 1.

We define two sets of indices Pi and Ni for each ci ∈C. The set Pi contains the indices

of all the positive literals in clause ci while Ni is the set of all the negative literal indices.

The integer linear program (ILP) for MINSAT is given as:

minimize
m

∑
i=1

zi (3.1)

subject to: zi ≥ x j ∀ j ∈ Pi , i = 1,2, ...,m

zi ≥ (1− x j) ∀ j ∈ Ni , i = 1,2, ...,m

zi,x j ∈ {0,1}

Alternatively, we see that:

If x j = 1 then zi = 1 ∀ j ∈ Pi , i = 1,2, ...,m

If x j = 0 then zi = 1 ∀ j ∈ Ni , i = 1,2, ...,m

The above ILP has a single constraint for every literal in a clause zi which will ensure

that the clause is satisfied if the positive literal has value 1 or if the negative literal has a

30

3.5. MINSAT AS AN INTEGER LINEAR PROGRAM

value 0.

3.5.1 Primal Formulation

The ILP problems take much longer to solve than the corresponding linear programs

obtained by ignoring the integrality constraints [15]. It is common to solve the LP and then

perform rounding to obtain the integral values. The LP is called the relaxation of the ILP.

The relaxation of the above-mentioned ILP after introducing surplus variables to eliminate

inequality from constraints, wi j will become our primal problem as shown below:

minimize
m

∑
i=1

zi (3.2)

subject to: zi− x j−wi j = 0 ∀ j ∈ Pi , i = 1,2, ...,m

zi + x j−wi j = 1 ∀ j ∈ Ni , i = 1,2, ...,m

zi,x j,wi j ≥ 0

The LP formulation presented in 3.2 is equivalent to the standard form in [30]. The surplus

variable wi j is defined for each clause i with literal j in it.

3.5.2 Dual Formulation

The dual of the primal problem will use the variable πi j for every constraint in the

primal. The subscript i j in the dual variable stands for ith clause and the jth literal in it. The

corresponding dual problem is shown in 3.3.

maximize ∑
i

∑
j∈Ni

πi j (3.3)

subject to: ∑
j∈Pi∪Ni

πi j ≤ 1 ∀i = 1,2, ...m

− ∑
i| j∈Pi

πi j + ∑
i| j∈Ni

πi j ≤ 0 ∀ j = 1,2, ...n

−πi j ≤ 0 ∀i, j ∈ Pi∪Ni

31

3.6. PRIMAL-DUAL SCHEMA FOR MINSAT

Any feasible solution to the primal is represented as Z = (z1,z2, ...,zm,x1,x2, ...,xn).

While a dual feasible solution is π = (πi1 j1 ,πi2 j2...πim jn).

3.6 Primal-dual Schema for MINSAT

The primal-dual schema is one of the most used approaches in developing many com-

binatorial algorithms. The foremost step in executing the primal-dual algorithm is to form

the restricted primal (RP) of the original problem in hand.

For constructing the RP, we start with a feasible solution π of the dual in 3.3. The initial

solution is usually zero if the right-hand side for all the dual constraints is non-negative.

Using this feasible π, we check which constraints are tight, left-hand side of the constraint

equals right-hand side. We find set J which is the union of three sets J1, J2 and J3. These

sets are defined below:

J1 =
{

zi

∣∣∣ ∑
j∈Pi∪Ni

πi j = 1
}

(3.4)

J2 =
{

x j

∣∣∣− ∑
i| j∈Pi

πi j + ∑
i| j∈Ni

πi j = 0
}

(3.5)

J3 =
{

wi j

∣∣∣−πi j = 0
}

(3.6)

The purpose of set J is to utilize Theorem 2.3 to reduce our original problem to a

restricted version (RP). The complementary slackness condition states that at the point of

optimality, the product of primal variables and the corresponding dual slack variables is

zero and vice versa. So, if any dual constraint is not tight, then its corresponding primal

variable will be zero in any optimal solution. Therefore, all those primal variables zi, x j and

wi j which are not in set J will be set to zero in any optimal solution. The restricted version

of our primal problem given the set J is,

32

3.6. PRIMAL-DUAL SCHEMA FOR MINSAT

3.6.1 Restricted Primal

minimize ∑
i, j

xi j (3.7)

subject to: zi− x j−wi j + xi j = 0 ∀ j ∈ Pi , i = 1,2, ...,m

zi + x j−wi j + xi j = 1 ∀ j ∈ Ni , i = 1,2, ...,m

zi ≥ 0 ∀zi ∈ J1

x j ≥ 0 ∀x j ∈ J2

wi j ≥ 0 ∀wi j ∈ J3

zi = 0 ∀zi 6∈ J1

x j = 0 ∀x j 6∈ J2

wi j = 0 ∀wi j 6∈ J3

xi j ≥ 0 ∀i, j ∈ Pi∪Ni

The objective function value of the RP is denoted by ZRP and xi j is the artificial variable.

If ZRP = 0, the current dual solution is optimal and in turn the solution to the primal Z will

also be optimal as the complementary slackness conditions are satisfied. If ZRP > 0, then

we have to modify the dual solution by using a solution to the dual of the restricted primal.

Note that we do not compute ZRP by solving the RP but by solving the DRP.

3.6.2 Dual of Restricted Primal

The dual of the restricted primal (DRP) is similar to the dual problem. Only the tight

constraints, corresponding to set J, are included in it. This also imposes upper and lower

bounds on the dual variables. The objective function will remain same as of the dual, that

is,

33

3.6. PRIMAL-DUAL SCHEMA FOR MINSAT

maximize ∑
i

∑
j∈Ni

πi j (3.8)

subject to: ∑
j∈Pi∪Ni

πi j ≤ 0 ∀zi ∈ J1

− ∑
i| j∈Pi

πi j + ∑
i| j∈Ni

πi j ≤ 0 ∀x j ∈ J2

−πi j ≤ 0 ∀wi j ∈ J3

πi j ≤ 1 ∀i, j ∈ Pi∪Ni

The optimal solution to the DRP is represented by πDRP. To modify the initial solution

of the dual (π), we use πDRP in the following way to update the current dual solution π.

π
∗ = π+θπDRP (3.9)

where π∗ is the updated dual solution and θ is the factor by which we increase the dual

solution. The value of θ is chosen such that the updated π∗ will remain feasible with respect

to the original dual constraints. To find an appropriate value for the θ, we have to find

minimum of all the values that ensure feasibility of the corresponding dual constraints, thus

we have:

θ1 = min
zi 6∈J1

such that
∑

j∈Pi∪Ni
πi jDRP>0

[1− ∑
j∈Pi∪Ni

πi j

∑
j∈Pi∪Ni

πi jDRP

]
(3.10)

θ2 = min
x j 6∈J2

such that
− ∑

i| j∈Pi
πi jDRP+ ∑

i| j∈Ni
πi jDRP>0

[∑
i| j∈Pi

πi j− ∑
i| j∈Ni

πi j

− ∑
i| j∈Pi

πi jDRP + ∑
i| j∈Ni

πi jDRP

]
(3.11)

θ3 = min
wi j 6∈J3

such that
−πi jDRP>0

[
πi j

−πi jDRP

]
(3.12)

θ = min{θ1,θ2,θ3} (3.13)

34

3.7. OUR CONTRIBUTIONS

Using this updated dual solution, we again construct the sets J1, J2 and J3 corresponding

to the dual constraints that are tight. The restricted version of the primal is constructed

again. The process is repeated until ZRP is zero which ultimately gives the optimal solution

to our original primal.

The DRP can, of course, be solved by simplex or any other algorithm for linear program-

ming. Our interest is in avoiding the numerical instabilities associated with LP algorithms.

Moreover, we want our algorithm for solving the DRP to be strongly polynomial and fast.

Such combinatorial algorithm for solving the DRP are known for various problems [30]. No

such algorithm is known for the formulation that we have proposed here for the MINSAT

problem. Therefore, we would like to explore the existence of a combinatorial algorithm

for solving the DRP (3.8).

3.7 Our Contributions

The primal-dual formulation presented in this chapter is an original contribution in this

thesis. The ILP formulation used in this thesis is similar to Bertsimas et al [5]. The con-

struction of the primal-dual pair and their restricted versions for the MINSAT problem is

a first step to investigate the existence of a combinatorial algorithm for solving the DRP

which is the focal point of this thesis.

In the next chapter, we will analyze different combinatorial methods to solve this DRP.

35

Chapter 4

Combinatorial Algorithms for the DRP,
an Exploration

4.1 Introduction

This chapter will describe the solution strategies that we have investigated for solving

the DRP of the MINSAT problem. We will present a reduction for the DRP of the MINSAT

problem to a problem in bipartite graphs. We will also give two algorithms based on the

reduction to solve the DRP combinatorially.

4.2 Algorithm 1: Finding a feasible path in a bipartite graph

This section will reduce our DRP into an instance of finding a feasible path in a bipartite

graph. Before proceeding to the reduction, we recall from the previous chapter, the basic

idea of the primal-dual method is to solve the DRP at every step and update the dual solution

accordingly. Therefore, our goal is to solve the DRP combinatorially. This typically is

achieved by reducing the problem into a graph problem and applying techniques such as

maximum matching or maximum flow.

Let us rewrite the DRP in equation 4.1 which we have formulated in the last chapter

in a simpler way by using set J instead of J1,J2 and J3 and by using variable ci instead

of zi, as we will use ci in our algorithm. It can be seen that the DRP has three types of

tight constraints, first one corresponding to zi, second corresponding to x j and last one

corresponds to wi j. We will use ci to refer to zi in our reduction to be consistent with the

given MINSAT instance. The DRP is shown below:

36

4.2. ALGORITHM 1: FINDING A FEASIBLE PATH IN A BIPARTITE GRAPH

maximize ∑
i

∑
j∈Ni

πi j (4.1)

subject to: ∑
j∈Pi∪Ni

πi j ≤ 0 ∀ci ∈ J

− ∑
i| j∈Pi

πi j + ∑
i| j∈Ni

πi j ≤ 0 ∀x j ∈ J

−πi j ≤ 0 ∀wi j ∈ J

πi j ≤ 1 ∀i, j ∈ Pi∪Ni

The proposed reduction will transform our DRP into an instance of bipartite graph in

which we will find a f easible path.

Definition 4.1. A f easible path is any path in a given graph that is chosen such that it

satisfies the given constraints on vertices and edges.

The constraints can be restrictions on not including a particular set of edges or edges

incident on a set of vertices. Before we present the reduction, we define the following:

Path: Given a graph G = (V,E) with V being the set of vertices and E being the set of

edges. A path is a walk along that graph such that we start from a vertex v and travel via

edges to other vertices (other than v) such that no vertex is visited twice. For example, in

figure 4.1, there are several paths such as 1→ 2→ 3→ 8, 6→ 2→ 5→ 7, 1→ 2→ 6, etc.

Bipartite Graph: A graph G = (V,E) is called bipartite if its vertex set V can be

partitioned into two disjoint subsets V = X ∪C such that every edge (u,v) ∈ E has u ∈ X

and v∈C. An example is shown in figure 4.2 such that G=(X∪C,E) where X = {1,3,5,7}

and C = {2,4,6,8}.

The proposed reduction is divided into three steps. We will describe the steps in detail

in the subsequent subsections. The outline of the reduction is as follows:

• Step 1: Formulate the DRP given a basic feasible solution to the dual. Form a bipar-

tite graph.

37

4.2. ALGORITHM 1: FINDING A FEASIBLE PATH IN A BIPARTITE GRAPH

Figure 4.1: An example of a graph having 8 vertices and 8 edges

• Step 2: Find a forward feasible path (4.2) from the graph. Construct a feasible DRP

solution from the forward path and update the dual solution. Repeat until no forward

feasible path is available.

• Step 3: Find all the backward edges (defined in section 4.2.1) from the graph so that

the objective function is improved. Output the dual solution as the final.

4.2.1 Step 1: Formulation of DRP and construction of bipartite graph

The first step in the reduction is to construct a bipartite graph from the DRP instance.

This step is a one-time process such that the graph formulated will remain unchanged except

for the directions of some of the edges, as described in Step 3. The step-by-step formulation

is given below:

1. Start with an initial feasible dual solution π by setting all the dual variables (πi j) to

zero.

2. Form the set J of the primal variables whose corresponding dual constraints are tight.

3. Construct a bipartite graph G(V,E) with the node set V = X ∪C in the following

manner:

38

4.2. ALGORITHM 1: FINDING A FEASIBLE PATH IN A BIPARTITE GRAPH

Figure 4.2: An example of a bipartite graph

• The set X contains a node for every variable x j ∈ X while set C contains a node

for every clause ci ∈C.

• Now construct the edge set E by noting the type of literals in a clause ci as

follows:

– For each positive literal x j in clause ci, form a forward edge (x j,ci)

– For each negative literal x j in clause ci, form a backward edge (ci,x j)

– Label each edge with its corresponding DRP variable πi j. This can also be

termed as the weight of the edge.

This is the end of step 1 which will give us a bipartite graph. This step can be performed

in polynomial time. The running time of this step will depend upon the data structure used

(see Cormen [9] for different data sructures used for representing graphs). Now we describe

Step 2.

4.2.2 Step 2: Finding a forward feasible path and DRP solution

We now move to the second step for finding the forward feasible path in the bipartite

graph.

39

4.2. ALGORITHM 1: FINDING A FEASIBLE PATH IN A BIPARTITE GRAPH

Definition 4.2. In a forward feasible path, the term f orward is due to the fact that our path

starts from a forward edge (x j,ci) in the graph. The term f easible implies this path will

give us a feasible solution that will satisfy all constraints of the DRP.

The algorithm for finding a forward feasible path is shown in Algorithm 2. In Algorithm

2, we have used edges aug to represent the set of edges in the path. Initially, this set is

empty. The boolean variable path f ound is initialized to FALSE. It will be set to TRUE

when we find such a path. Upon finding such a path, we convert it into a feasible DRP

solution as below:

1. Given the set of edges in a forward feasible path, assign the value to each forward

edge (x j,ci) in the path as πi j = 1 and for each backward edge (ci,x j), set πi j =−1.

Rest of the edges not included in the path are assigned zero value. The values of πi j

will give us a feasible solution πDRP of the current DRP.

2. Find the appropriate value of θ such that the dual problem remains feasible and update

the dual solution (π∗ = π+θ.πDRP).

3. By using this new dual solution π∗, construct set J again and subsequently the DRP.

4. The graph will remain the same except the directions will be reversed of all the edges

for which the πi j =1 in current dual solution π∗

5. Repeat Algorithm 2 for finding another path until no forward path is available in the

graph.

6. Go to Step 3 of the reduction.

40

4.2. ALGORITHM 1: FINDING A FEASIBLE PATH IN A BIPARTITE GRAPH

Algorithm 2: Finding the augmenting path
Input : A bipartite graph G(X,C,E)
Output: A forward feasible path

1 j← 1
2 path f ound← FALSE
3 edges aug← /0

4 while (there is an unpicked edge (x j,ci)) ∧ (j ≤ n) ∧ (path f ound = FALSE) do
5 pick the edge (x j,ci)

6 if ci 6∈ J then
7 edges aug← edges aug

⋃
(x j,ci)

8 if (there is an outgoing edge (ci,xk)) ∧ (wik 6∈ J) then
9 edges aug← edges aug

⋃
(ci,xk)

10 j← k
11 goto step 4

12 else
13 path f ound← true
14 end
15 else if (there is an outgoing edge (ci,xk)) ∧ (wik 6∈ J) then
16 edges aug← edges aug

⋃
{(x j,ci),(ci,xk)}

17 if (xk has an outgoing edge (xk,cl)) ∧ (cl 6∈ J) then
18 j← k
19 goto step 4

20 else
21 path f ound← true

22 else if x j has another outgoing edge (x j,cl) then
23 pick that edge
24 goto step 4

25 else
26 j← j+1

27 end

28 return edges path

In Algorithm 2, we are looking for a path starting at x j such that it ends at any node

which is not constrained. While constructing the path, the algorithm will pick a forward

41

4.2. ALGORITHM 1: FINDING A FEASIBLE PATH IN A BIPARTITE GRAPH

edge only if the connected ci is not constrained. A node ci is constrained if it is present

in set J. So we can only pick a forward edge it is incident to a ci which is not present in

set J. After picking the forward edge, it picks a backward edge (ci,xk) from ci only if the

variable wik is not in set J. If wik is in set J then πik can only take a non-negative value. For

including the backward edge (ci,xk) in the forward feasible path, πik must take a value of

-1 to satisfy the constraint on node ci which we describe in the following paragraph.

If a node ci is constrained, then the sum of all the incident edges, incoming (πi j) and

outgoing (πik), is at most zero. So, we always pick a pair of edges, one incoming from x j

and other outgoing towards any xk such that we assign πi j = 1 and πik =−1 to satisfy this

constraint.

Note that the constraint on x j is always satisfied. At a given node x j, the constraint

states that sum of incoming edges (πi j due to negative literals) should be less than the sum

of outgoing edges (πi j due to positive literals). In any forward feasible path that we find

starting from node x j, the outgoing edge πi j value of +1 will always greater than other

incident edges not included in the path having value zero. Similarly, if an incoming edge

incident on x j is included in path, the πi j value of -1 will always be less than zero (sum of

other incident edges on x j).

In this way, the path we obtain will always satisfy all the constraints on DRP. The

algorithm is designed in a way that after each iteration, we do not need to compute θ. It

will always be equal to 1 as stated in Lemma 4.3. Step 2 will terminate after a finite number

of iterations which is polynomial in the number of forward edges in the graph G as stated

in Lemma 4.4

Lemma 4.3. The value of θ after each iteration of step 2 is equal to 1.

Proof. Each πi j can only take a value from 0,1 or -1. At each iteration of Step 2, we assign

either 1 or -1 to each edge πi j in the path to obtain the DRP solution. There are two cases:

Case 1: We assign 1 to πi j if it is a forward edge meaning its value was zero in the previous

iteration. So, the acceptable value we get for θ after using equation 3.9 is 1 which makes

42

4.2. ALGORITHM 1: FINDING A FEASIBLE PATH IN A BIPARTITE GRAPH

the new value feasible in dual.

Case 2: We assign -1 to πi j if it is a backward edge meaning its value was 1 in the previous

iteration. So, the value θ = 1 will actually convert it to zero so that it will not affect the

feasibility of dual.

Lemma 4.4. Step 2 of the Algorithm 1 terminates in polynomial time.

Proof. We know that the maximum number of forward edges in the bipartite graph G is

O(km) where k is the maximum number of positive literals in a clause and m is the number

of clauses. At each iteration of the algorithm 2, we are finding a forward feasible path

by picking an unpicked forward edge. Each forward feasible path will atleast make one

clause vertex unconstrained in the next iteration. A clause vertex once constrained will not

become unconstrained. In the worst case, the number of calls to algorithm 2 will be at most

the number of clauses in the bipartite graph having forward edges. Therefore, the total

number of iterations is O(km).

Now, we describe the final step of the algorithm.

4.2.3 Step 3: Finding the final DRP and Dual solution

The step 2 will give us a feasible DRP solution at each iteration until we find the last

forward feasible path. It is interesting to observe that the dual solution we get during each

iteration is different from the previous iteration in the sense that at least one dual variable

has been assigned a new value. But in terms of the dual objective function value which

contain only those πi j’s which are associated with backward edges, our dual solution is not

improving. The reason being the assignment of -1 values to all the πi j’s in the forward

feasible path which are associated with the backward edges in the graph. The dual objec-

tive function only contains these πi j’s, therefore, after each iteration, if any such backward

edge πi j is included in the feasible path, it will not increase the objective function due to its

negative value. If no backward edge is included in the path, the value it gets is zero which

43

4.2. ALGORITHM 1: FINDING A FEASIBLE PATH IN A BIPARTITE GRAPH

does not improve the value of objective function either.

This leads to the need of finding a backward feasible path that serves the purpose of

improving the objective function of the dual. Once we reach the point when no forward

feasible path is available, we use Algorithm 3 to find the final dual solution. This step

picks all the backward edges such that the πi j’s associated with them will get a value of 1.

This assignment improves our objective function in each iteration until we find no further

improvement. In step 6 of the Algorithm 3, we reverse the direction of the backward edge

once it is picked, so that in future iterations it will not be picked again as a backward edge.

This step will help us in determining the number of iterations of the algorithm in Lemma

4.5.

Algorithm 3: Backward path algorithm
Input : Dual solution π = (πi1 j1 ,πi2 j2...πim jn) and bipartite graph G(X ,C,E) from

Step 2

Output: Final feasible Dual solution

1 while there is a backward edge (ci,x j) in G such that ci,x j 6∈ J do

2 pick that edge

3 set corresponding πi j = 1 in πDRP

4 update the dual solution π using θ = 1 (Lemma 4.3)

5 find set J with the updated dual solution

6 Reverse the edge (ci,x j) in G(X ,C,E)

7 end

8 Output the dual solution π

The running time of step 3 is polynomial in the number of backward edges in the graph

G. This is stated in the following lemma,

44

4.3. ALGORITHM 2: EDGE PICKING IN A GRAPH

Lemma 4.5. Step 3 of the Algorithm 1 terminates in polynomial time.

Proof. We know that the maximum number of backward edges in the bipartite graph G is

O(lm) where l is the maximum number of negative literals in a clause and m is the number

of clauses. At each iteration, we pick a single backward edge. In the worst case, we pick all

the backward edges so after lm number of iterations, all the backward edges are converted

into forward edges which is one of the terminating conditions of the while loop in algorithm

3.

Combining lemma 4.4 and 4.5, we get the following result.

Lemma 4.6. The number of iterations in Algorithm 1 are polynomial in the number of

clauses and number of variables.

Proof. The Algorithm 1 has two major steps, finding a forward feasible path and finding

a backward path. For the forward feasible path, we use the result of Lemma 4.2 that the

number of iterations is bounded by number of forward edges that is O(km). For the back-

ward path, we use the result of Lemma 4.2 that the number of iterations are bounded by

the number of backward edges which is O(lm). Combining the two results, the number of

iterations performed by the Algorithm 1 are bounded by O(m(k+ l)).

4.3 Algorithm 2: Edge picking in a graph

This section describes a second algorithm that we have designed for solving the DRP

combinatorially. The algorithm is an extension of the previous algorithm that we have

discussed. This algorithm is simpler and faster than Algorithm 1. In the previous algorithm,

we look for all the feasible forward paths first and then we look for backward edges in order

to improve our objective function.

The motivation for this algorithm comes from the fact that the step for finding a forward

feasible path in algorithm 1 was expensive. It requires a good number of CPU processing

cycles to implement due to a number of condition checks while selecting an edge to be

45

4.3. ALGORITHM 2: EDGE PICKING IN A GRAPH

added in the path. In this algorithm, we have reduced many condition checks for picking

an edge in the path. Our objective now is to look for a single edge instead of finding a

path. Another modification we have performed in this algorithm is to combine the steps

for finding a backward edge and a forward edge. The algorithm has two steps which are

outlined below:

• Step 1: Formulate the DRP with initial feasible solution of Dual and construct an

equivalent instance of a bipartite graph.

• Step 2: Start by finding a forward edge and construct a feasible DRP solution and

update the dual. In the very next iteration, do the same with a backward edge. Repeat

until no forward and backward edges are available. Output the final solution.

4.3.1 Step 1: Formulation of DRP and construction of bipartite graph

This step is the same as Step 1 of the Algorithm 1. We follow the same construction of a

bipartite graph G(X ,C,E) from a given DRP instance. The number of nodes in the bipartite

graph are m+n where m and n are the number of clauses and variables respectively.

4.3.2 Step 2: Picking edges to solve DRP

This step is different from the Algorithm 1. Upon construction of the bipartite graph G,

we use Algorithm 4 to find the feasible DRP solution at each iteration and finally the dual

solution upon termination of the algorithm.

We start from any node x j which has a forward edge (x j,ci) such that ci is not in set J.

We pick that edge and set the value 1 to its associated variable πi j. This gives us a feasible

DRP solution with all other πi j’s being set to zero. Now, the ci node became constrained

due to πi j = 1. Therefore, we reverse the direction of this edge so that it will not be picked

again as a forward edge. We then update our dual solution by taking θ = 1 as per the

Lemma 4.7. We reset the DRP solution to zero. We construct set J again to get the new

DRP instance. The only change in graph G is to reverse the direction of the forward edge

46

4.3. ALGORITHM 2: EDGE PICKING IN A GRAPH

that was picked in the last iteration. The reason being it cannot be picked again as a forward

edge in future iterations, which will help us in proving Lemma 4.8.
Algorithm 4: Edge picking Algorithm

Input : Intial dual solution π = (πi1 j1,πi2 j2 ...πim jn) and bipartite graph G(X ,C,E)

Output: Final feasible Dual solution

1 while forward or backward edges exist do

2 if forward edge (x j,ci) has ci 6∈ J then

3 set corresponding πi j = 1 to get feasible DRP solution πDRP

4 update the dual solution π using θ = 1 (Lemma 4.7)

5 find set J with the updated dual solution

6 reverse the edge (x j,ci) to form new G and reset πDRP

7 else if backward edge (ci,x j) has ci,x j 6∈ J then

8 set corresponding πi j = 1 in πDRP

9 update the dual solution π using θ = 1

10 find set J with the updated dual solution

11 reverse the edge (ci,x j) to form new G and reset πDRP

12 else

13 output the dual solution π

14 end

In the next step, we consider the updated bipartite graph G and pick a node ci such that

it has a backward edge (ci,x j) with both ci and x j not in set J. We set the associated πi j to

value 1 and obtain a feasible DRP solution by setting all other πi j’s to zero. We repeat the

steps alternatively until there are no forward and backward edges available in the graph G.

This is the terminating condition of the while loop and finally we output the current dual

solution as the final solution.

Lemma 4.7. The value of θ after each iteration of Step 2 is equal to 1.

47

4.4. OUR CONTRIBUTIONS

Proof. At any given iteration, each πi j in DRP can only take either a value of 0 or 1. If

the current value of πi j in DRP is zero, θ = 1 will not change its updated dual value. On

the other hand, if πi j is picked as a forward edge, then its value in DRP is set to 1 from 0.

Value of 1 for θ will update its new dual value from previous dual value of 0 to 1. For all

the remaining iterations, its direction is reversed and the edge remains unpicked. This case

is also true for πi j if πi j is picked as a backward edge.

Algorithm 4 also runs in polynomial time. The time complexity of the algorithm 4 is in

O(km+ lm) as stated in Lemma 4.8. Step 1 is a one time step which constructs the initial

bipartite graph.

Lemma 4.8. The number of iterations of Algorithm 4 is polynomial in the number of clauses

and has time complexity O(km+ lm).

Proof. We know that the maximum number of forward edges in the bipartite graph G is

O(km) where k is the maximum number of positive literals in a clause and m is the number

of clauses. Similarly, the maximum number of backward edges in the bipartite graph G is

O(lm) where l is the maximum number of negative literals. At each iteration, we first pick

a forward edge and then a backward edge. So, in the worst case, the maximum number of

iterations we can encounter is O(km+ lm).

4.4 Our Contributions

This chapter described two of the combinatorial algorithms that we have designed to

solve the DRP of the MINSAT that we constructed in Chapter 3. We have designed and

analyzed around ten different strategies using the maximum flow problem, augmenting path

problem, maximum matching, etc. to come up with paths in the bipartite graph. Algorithm

2 is simplification to the Algorithm 1 obtained by combining the step 2 and step 3. It is

48

4.4. OUR CONTRIBUTIONS

simple in implementation and requires less processing times which will see in the next

chapter.

Note that these combinatorial algorithms may not return the optimal answer to the dual.

Our goal is to approximate the MINSAT problem, therefore an approximate dual solution

is of interest. At this point, we have not proved any bounds on the quality of approximation

for both the algorithms and we leave this an an open question for future work.

The next chapter will describe the experiments and results that we have obtained by

implementing these two algorithms on given MINSAT instances.

49

Chapter 5

Experiments and Results

5.1 Introduction

This chapter presents the experiments that we have performed for the two algorithms on

MINSAT instances from SATLIB. We start with discussing our test instances of MINSAT.

We then describe the empirical results. We compare the results obtained from the two

algorithms with the Simplex method.

We have used Octave 4.0.3 for conducting all the simulations presented in this chapter.

The machine has an Intel Core i5 dual-core processor with a clock speed of 2.67 GHz and

6GB of RAM.

5.2 MINSAT Instances

The test instances that we have used are from SATLIB (Satisfiability Library) which is

maintained by the department of Computer Science at the University of British Columbia.

Each input instance file is in DIMACS cnf format. The format of the file is:

1. The file usually starts with comments. Each line of comments begins with character

c.

2. After the comments end, the next line contains ’p cn f no o f var no o f clauses’

which indicates that the instance is in cnf format, no o f var is an integer specifying

the number of variables and no o f clauses is the exact number of clauses in it.

50

5.3. EMPIRICAL EVALUATION

3. The clauses are defined next. Each clause is written in a single line as a sequence of

distinct numbers separated by a space. A positive clause is represented by a positive

integer which is the index of the variable. A negative clause is written as a negative

number specifying the variable index. Each clause ends with an integer 0.

An example of a small input instance with 6 variables and 4 clauses in DIMACS cnf

format is shown below:

c all comments

c will be written

c here

p cnf 6 4

1 -6 4 0

-1 -3 0

2 -4 5 6 0

-3 -4 -6 -1 -5 0

We have used the instances labelled “Uniform Random-3-SAT” in the library. Each

instance has n variables and m clauses. The clauses are generated randomly by picking 3

literals from 2n possible literals (a variable and its negation).

5.3 Empirical Evaluation

We have implemented three algorithms for solving the DRP. These algorithms are the

Simplex method, the Algorithm 1 and Algorithm 2. For the simplex method, we have used

the GLPK (GNU Linear Programming Kit) library available for the Octave. Within this

library, we use the two-phase simplex method for solving the DRP. We start with formulat-

ing the primal and dual (3.2 and 3.3) from the given instance file in DIMACS cnf format.

We set all the dual variables to zero to obtain an initial feasible solution. We construct set

J to form the DRP. We call the glpk() function to solve this DRP and obtain an optimal

51

5.3. EMPIRICAL EVALUATION

solution. It is interesting to note that each glpk() call perform hundreds or thousands of

iterations depending upon the size of the input instance. Each iteration refers to a transition

from one dictionary to another, also termed as a pivoting operation. We can set the maxi-

mum limit to the number of iterations by the parameter param.itlim. Upon reaching the

final dictionary, we get an optimal solution. This DRP solution is used to update the dual

solution as in equation 3.9. We repeat the process of finding the DRP solution until the

optimal value of DRP objective function becomes zero. We are assuming that the number

of iterations performed by the simplex method is equal to the product of the number of

glpk() calls and the average number of pivot operations performed in a single call.

The algorithms 1 and 2 are implemented as described in Chapter 4. We have used the

following labels in Table 5.1:

instance is the name of the input instance

n is the number of variables in an input instance

m is the number of clauses in an input instance

n c glpk is the number of calls to glpk() function by the simplex method

avg piv glpk is the average number of pivot operations performed by a single glpk() call.

n it SIM is the total number of pivot operations perfomed by the simplex method. It is

equal to the the product of the total calls to glpk() function (n c glpk) and the average

number of pivot operations in a single glpk() call.

n it A1 is the total number of iterations of Algorithm 1 performed to get the final dual

solution. It is the sum of iterations required in finding a forward feasible path (Step 2) and

finding a backward feasible path (Step 3).

n it A2 is the total number of iterations of Algorithm 2 performed to get the final dual

solution. In other words, it is the total number of iterations performed by Step 2 of the

reduction algorithm 2.

In Table 5.1, we present the experimental results obtained by running the three algo-

rithms on different MINSAT input instances. Not that we are assuming the worst case

52

5.3. EMPIRICAL EVALUATION

performance of the simplex method in this comparison by using the average of worst and

best cases. On the other hand, the number of iterations of our proposed algorithms increases

somewhat linearly with the increase in the size of the input. The two plots shown in figure

5.1 and 5.2 gives a better idea of this increase in the number of iterations.

Table 5.1: Experimental results on number of iterations for the three algorithms

instance n m n c glpk avg piv glpk n it SIM n it A1 n it A2
Uf20-04 20 91 16 52 828 70 84
Uf20-05 20 91 13 55 714 74 86
Uf20-06 20 91 12 58 695 70 86
Uf50-01 50 172 17 80 1359 137 166
Uf50-01 50 218 27 89 2415 169 196
Uf75-01 75 161 17 84 1424 130 152
Uf75-01 75 325 25 109 2727 256 296

Uf100-01 100 430 25 136 3409 328 388
Uf125-03 125 538 35 154 5392 445 472

Uf150-013 150 645 39 162 6303 507 528
Uf175-04 175 753 36 191 6874 591 636
Uf200-02 200 860 37 206 7639 676 714

We are using the following labels in Table 5.2:

t A1 is the processing time of the Algorithm 1. This time is the total time required by

the algorithm including step 2 and step 3.

t A2 is the processing time of the Algorithm 2.

In Table 5.2, we list the experimental results obtained in terms of the processing times

of the two proposed algorithms. We have mentioned during the description of Algorithm

2 that it is somewhat faster in terms of CPU processing time. On the other hand, the

number of iterations taken by Algorithm 2 is large in comparison with the Algorithm 1.

The comparison plot shown in figure 5.3 will support our claim.

Although we were not able to prove a bound on the quality of the dual solution that we

obtain using the proposed algorithms, but we have calculated the approximation ratio for

53

5.3. EMPIRICAL EVALUATION

Figure 5.1: A comparison of the number of iterations of the two algorithms with the Sim-
plex method

Figure 5.2: A comparison of the number of iterations between the two proposed algorithms

54

5.3. EMPIRICAL EVALUATION

Table 5.2: Experimental results on the processing times of the two proposed algorithms

instance n m t A1 (sec) t A2 (sec)
Uf20-04 20 91 0.0671 0.0467
Uf20-05 20 91 0.0667 0.0458
Uf20-06 20 91 0.0654 0.0491
Uf50-01 50 172 0.3837 0.2145
Uf50-01 50 218 0.7292 0.6589
Uf75-01 75 161 0.3775 0.3114
Uf75-01 75 325 2.2259 1.9852

Uf100-01 100 430 8.9782 3.8951
Uf125-03 125 538 5.273 4.1748

Uf150-013 150 645 7.884 6.2653
Uf175-04 175 753 10.645 8.9562
Uf200-02 200 860 14.508 12.0123

Figure 5.3: A comparison of the processing times of the two proposed algorithms

55

5.3. EMPIRICAL EVALUATION

Table 5.3: Experimental results on quality of solution (Approximation Ratio) for the two
algorithms

instance n m obj SIM (OPT) obj A1 obj A2 AR A1 AR A2
Uf20-04 20 91 46.5 39 41 0.8387 0.8817
Uf20-05 20 91 49 42 42 0.8571 0.8571
Uf20-06 20 91 48 43 42 0.8958 0.875
Uf50-01 50 172 93 83 82 0.8924 0.8817
Uf50-01 50 218 112 101 97 0.9017 0.8660
Uf75-01 75 161 87 73 75 0.8390 0.8620
Uf75-01 75 325 167 145 147 0.8682 0.8802
Uf100-01 100 430 224 196 193 0.875 0.8616
Uf125-03 125 538 289 233 235 0.8062 0.8131

Uf150-013 150 645 332.5 278 263 0.8360 0.7909
Uf175-04 175 753 391.5 321 317 0.8199 0.8097
Uf200-02 200 860 453 378 356 0.8344 0.7858

the input instances by comparing it with the optimal solution obtained using the simplex

method. Table 5.3 will list the dual objective function value that we obtained using the algo-

rithm 1 and 2. We have used the simplex method directly on the dual formulation to verify

the optimal value of the dual objective function. Using optimal value as a denominator and

the value obtained by our algorithm as numerator, we get:

AR A1 =
ob j A1

ob j SIM
(5.1)

AR A2 =
ob j A2

ob j SIM
(5.2)

where,

AR A1 is the approximation ratio for the Algorithm 1

AR A2 is the approximation ratio for the Algorithm 2

ob j A1 is the dual objective function value obtained using Algorithm 1

ob j A2 is the dual objective function value obtained using Algorithm 2

ob j SIM= optimal value of the dual objective function obtained using the simplex method

56

5.3. EMPIRICAL EVALUATION

Table 5.3 lists the experimental results obtained with respect to the approximation ratio

of the two algorithms.

In the last chapter, we conclude the thesis with the summary and future research prospects.

57

Chapter 6

Conclusion

6.1 Summary

We have considered the minimization version of the satisfiability problem in this the-

sis. We have investigated the possibilities of solving the minimum satisfiability problem

(MINSAT) using the primal-dual method. We have described an integer linear program of

the MINSAT. We also constructed the primal, dual, restricted primal and its dual for the

MINSAT problem which is the original constribution of this thesis.

We also proposed two algorithms to solve the dual of the restricted primal combinato-

rially. Although the dual solution may not be optimal but it gives us a way forward for the

future work in this area. The algorithms we proposed are faster and requires less number of

iterations to execute in comparision with the simplex method as shown in Chapter 5. The

first algorithm may require less number of iterations in execution but it is somewhat slower

in processing time when compared with the second algorithm.

6.2 Future Research

• We did not prove any approximation guarantee of the dual solution obtained using

the two algorithms. Although we did show the value of the approximation ratio on

the input data that we analyzed. It will be interesting to prove some bound on the

quality of the dual solution.

• Once we prove a bound on the approximation ratio for the dual solution, we can prove

a bound for the MINSAT problem.

58

Bibliography

[1] M. Akgul. Chapter 3. In Topics in Relaxation and Ellipsoidal Methods, Research
Notes in Mathematics. Pitman Publishing Ltd., London, 1984.

[2] Miguel F Anjos. An improved semidefinite programming relaxation for the satisfia-
bility problem. Mathematical Programming, 102(3):589–608, 2005.

[3] Adi Avidor and Uri Zwick. Approximating min 2-sat and min 3-sat. Theory of Com-
puting Systems, 38(3):329–345, 2005.

[4] R Bar-Yehuda and S Even. A linear-time approximation algorithm for the weighted
vertex cover problem. Journal of Algorithms, 2(2):198 – 203, 1981.

[5] Dimitris Bertsimas, Chung-Piaw Teo, and Rakesh Vohra. On dependent randomized
rounding algorithms. In International Conference on Integer Programming and Com-
binatorial Optimization, pages 330–344. Springer, 1996.

[6] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability: Volume
185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, The
Netherlands, The Netherlands, 2009.

[7] Vasek Chvatal. Linear Programming. W. H. Freeman and Company, 1983.

[8] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM.

[9] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. In-
troduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[10] George B. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, NJ, 1963.

[11] E. W. Dijkstra. A note on two problems in connexion with graphs. NUMERISCHE
MATHEMATIK, 1(1):269–271, 1959.

[12] Irit Dinur and Shmuel Safra. The importance of being biased. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pages 33–42. ACM,
2002.

[13] L. R. Ford and D. R. Fulkerson. Maximal Flow Through a Network, pages 243–248.
Birkhäuser Boston, Boston, MA, 1987.

59

BIBLIOGRAPHY

[14] L. R. Ford G. B. Dantzig and D. R. Fulkerson. A primal-dual algorithm for linear
programs. In H. W. Kuhn and A. W. Tucker, editors, Linear Inequalities and Related
Systems, pages 171–181. Princeton University Press, Princeton, NJ, 1956.

[15] Michel X. Goemans and David P. Williamson. New 3
4 -approximation algorithms

for the maximum satisfiability problem. SIAM Journal on Discrete Mathematics,
7(4):656–666, 1994.

[16] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algorithms for the
satisfiability (SAT) problem: A survey. In Satisfiability Problem: Theory and Appli-
cations, Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA, March
11-13, 1996, pages 19–152, 1996.

[17] Johan Håstad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001.

[18] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS
Publishing Co., Boston, MA, USA, 1997.

[19] Andrei Horbach, Thomas Bartsch, and Dirk Briskorn. Using a sat-solver to schedule
sports leagues. J. Scheduling, 15(1):117–125, 2012.

[20] Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. SIGSOFT
Softw. Eng. Notes, 25(5):14–25, August 2000.

[21] David S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9(3):256 – 278, 1974.

[22] Howard Karloff and Uri Zwick. A 7/8-approximation algorithm for max 3sat? In
Foundations of Computer Science, 1997. Proceedings., 38th Annual Symposium on,
pages 406–415. IEEE, 1997.

[23] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combina-
torica, 4(4):373–395, December 1984.

[24] Leonid G. Khachiyan. A polynomial algorithm in linear programming. Soviet Math.
Dokl. 20, pages 1093–1096, 1979.

[25] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2005.

[26] Rajeev Kohli, Ramesh Krishnamurti, and Prakash Mirchandani. The minimum satis-
fiability problem. SIAM J. Discret. Math., 7(2):275–283, May 1994.

[27] Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

[28] L. A. Levin. Universal enumeration problems. Problemy Peredachi Informatsii,
9(3):115–116, 1973.

60

BIBLIOGRAPHY

[29] M.V. Marathe and S.S. Ravi. On approximation algorithms for the minimum satisfia-
bility problem. Information Processing Letters, 58(1):23 – 29, 1996.

[30] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.

[31] Jussi Rintanen. Planning as satisfiability: Heuristics. Artif. Intell., 193:45–86, De-
cember 2012.

[32] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley and Sons,
1998.

[33] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combinational test
generation using satisfiability. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 15(9):1167–1176, Sep 1996.

[34] James K. Strayer. Linear Programming and Its Applications. Springer, 1989.

[35] Luca Trevisan. Combinatorial Optimization: Exact and Approximate Algorithms.
Stanford University, San Francisco, CA, 2011.

[36] Robert J. Vanderbei. Linear Programming: Foundations and Extensions. 1996.

[37] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New
York, NY, USA, 2001.

[38] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, New York, NY, USA, 1st edition, 2011.

[39] Laurence A. Wolsey. Heuristic analysis, linear programming and branch and bound,
pages 121–134. Springer Berlin Heidelberg, Berlin, Heidelberg, 1980.

[40] Mihalis Yannakakis. On the approximation of maximum satisfiability. In Proceedings
of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’92, pages
1–9, Philadelphia, PA, USA, 1992. Society for Industrial and Applied Mathematics.

[41] Hantao Zhang, Dapeng Li, and Haiou Shen. A sat based scheduler for tournament
schedules. In Theory and Applications of Satisfiability Testing, 7th International Con-
ference, SAT2004, pages 10–13, 2004.

61

