
ON THE EFFICIENT DETERMINATION OF HESSIAN MATRIX SPARSITY
PATTERN - ALGORITHMS AND DATA STRUCTURES

MARZIA SULTANA
Bachelor of Science, Military Institute of Science and Technology, 2010

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c©Marzia Sultana, 2016

ON THE EFFICIENT DETERMINATION OF HESSIAN MATRIX SPARSITY
PATTERN - ALGORITHMS AND DATA STRUCTURES

MARZIA SULTANA

Date of Defence: August 11, 2016

Dr. Shahadat Hossain
Supervisor Professor Ph.D.

Dr. Daya Gaur
Committee Member Professor Ph.D.

Dr. Robert Benkoczi
Committee Member Associate Professor Ph.D.

Dr. Howard Cheng
Chair, Thesis Examination Com-
mittee

Associate Professor Ph.D.

Dedication

To

My Parents.

iii

Abstract

Evaluation of the Hessian matrix of a scalar function is a subproblem in many numerical

optimization algorithms. For large-scale problems often the Hessian matrix is sparse and

structured, and it is preferable to exploit such information when available. Using symmetry

in the second derivative values of the components it is possible to detect the sparsity pattern

of the Hessian via products of the Hessian matrix with specially chosen direction vectors.

We use graph coloring methods and employ efficient sparse data structures to implement

the sparsity pattern detection algorithms.

iv

Acknowledgments

I would like to express my full gratitude to everyone who encouraged and supported me

throughout this thesis work.

First and foremost, I would like to render my utmost thanks and appreciation to my

supervisor, Dr. Shahadat Hossain, for his continuous guidance, support, cooperation, and

persistent encouragement throughout the journey of my MSc program. His direction, valu-

able opinion and effort have led me on the path of my thesis.

I wish to express my thanks to my supervisory committee members, Dr. Daya Gaur and

Dr. Robert Benkoczi for there encouragement and insightful advice.

I am grateful to my parents, friends and fellow graduate students for their inspiration

and support to made this path easier for me. Finally, I would like to give a special thanks to

my sister for her unwavering encouragement.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

List of Notations x

List of Symbols x

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 3
1.3 Thesis organization . 4

2 Problem Definition and Background Study 5
2.1 Problem Definition . 5
2.2 Preliminaries . 6

2.2.1 Gradient . 7
2.2.2 Hessian . 7
2.2.3 Finite Difference Approximation 9
2.2.4 Approximating the Hessian . 9
2.2.5 Algorithmic Differentiation . 10
2.2.6 Forward Accumulation . 11
2.2.7 Reverse Accumulation . 12

2.3 Determination of Sparse Derivative Matrices 14
2.3.1 The CPR Algorithm . 15

3 Flaw Computation 18
3.1 Sparse Matrix . 18
3.2 Data Structure for Sparse Matrix . 19

3.2.1 Coordinate Storage . 20
3.2.2 Compressed Storage . 21
3.2.3 Cache Complexity of Sparse Matrix Access 22

3.3 Detection of Missing Elements . 23
3.3.1 Determination of Flaw Locations 27
3.3.2 Asymptotic Analysis . 32

3.4 Data Structure for Flaws . 32

vi

CONTENTS

4 Detection of Hessian Matrix Sparsity Pattern 35
4.1 DSJM toolkit . 35

4.1.1 Greedy coloring method . 36
4.1.2 Smallest-Last Ordering . 37

4.2 The Multilevel Algorithm . 38
4.2.1 Voting between Levels . 40
4.2.2 Asymptotic Analysis . 41
4.2.3 Multilevel Algorithm to Determine the Sparsity Structure of Hes-

sian Matrix H . 43
4.2.4 Asymptotic Analysis . 45

5 Numerical Experiments 46
5.1 Test Data Sets . 46
5.2 Test Environment . 50
5.3 Test Results . 50

5.3.1 Numerical Experiments . 50
5.3.2 Summary of Experimental Results 53

6 Conclusion and Future works 56
6.1 Conclusion . 56
6.2 Future works . 56

Bibliography 58

vii

List of Tables

2.1 Code List of function f . 11
2.2 Evaluation Procedure for Forward Mode 12
2.3 Evaluation Procedure for Reverse Mode 13

3.1 Data structure for type 1 flaw . 32
3.2 Data structure for type 2 flaw . 32

5.1 Matrix Data Sets-1 . 46
5.2 Matrix Data Sets-2 . 48
5.3 Computational Cost for Sparsity Detection for data set 1 50
5.4 Computational Cost for Sparsity Detection for data set 2 52

viii

List of Figures

2.1 Evaluation Procedure of function f in Computational Graph 11
2.2 Matrix A with its structurally orthogonal mapping Φ. 16

3.1 Example of Sparse Matrix (Power Network Pattern, the non-zero elements
are shown in black) Name: bcspwr03, Dimensions: 118×118, 476 nonzero
elements, Source: [4] . 18

3.2 Sparse Matrix, Name: bcsstk01, Dimensions: 48× 48, 400 nonzero ele-
ments are shown in blue, Source: [2] . 19

3.3 Compressed Matrix bcsstk01, Dimention: 48×16 19
3.4 Coordinate storage data structure of sparse matrix 20
3.5 CRS data structure of sparse matrix . 21
3.6 CCS data structure of sparse matrix . 22
3.7 Hessian matrix A and a guessed pattern S0 24
3.8 Matrix S . 25
3.9 Compressed matrix B = AS . 26
3.10 Matrix B0 with flaws . 30
3.11 Location of flaws in matrix A0 . 30
3.12 Data structure of flaws in CRS format . 33
3.13 flaw matrix F . 33
3.14 Updated sparsity pattern S1 . 34

4.1 Graph G(H) representing the column partition of matrix H. 37

ix

List of Symbols

The next list describes several symbols that will be later used within the body of this thesis.

H,A,S An uppercase letter is used to denote a matrix.

A> Transpose of a matrix.

F The flaw matrix.

Φ Structurally orthogonal column partition of a matrix.

ai j,A(i, j) The (i, j) entry of A matrix.

A(i, :) The ith row of H matrix for A ∈ Rm×n.

A(:, j) The jth column of H matrix For A ∈ Rm×n.

S(A) Sparsity pattern of matrix A.

nnz Number of nonzero elements in a matrix.

ρi Number of nonzeroes in row i of a matrix.

ρmax Maximum number of nonzeroes in any row.

(.) A zero entry in matrix and any other symbol in a matrix denotes a nonzero
entry.

v(i) The ith element of vector v ∈ Rn.

A(:,v) Submatrix comprised of columns whose indices are contained in vector v.

A(u, :) Submatrix comprised of rows whose indices are contained in vector u.

x

Chapter 1

Introduction

In many scientific computing algorithms, repeated evaluation of Jacobian or Hessian ma-

trices is a common subproblem. With a prior known sparsity and structure information,

storage of and computation with the matrix can be made highly efficient. Exploitation of

sparsity and structure is especially critical for applications such as large-scale scientific

simulations (CM5 Weather Model, circuit simulation, finite-element methods etc) where

a single simulation run can take hours on modern super computers. Taking the effective

advantage of the structure of a sparse matrix requires a combination of numerical and com-

binatorial methods (graph algorithms and related data structures).

1.1 Motivation

Matrix sparsity can be exploited in two different ways. First, elements that are known

to be zero are not stored explicitly. This can yield significant saving in computer storage

of data. For example, the WWW webgraph is established to have 3.5 billion webpages and

128.7 billion hyperlinks resulting the graph being extremely sparse. Secondly, operations

involving known zero are avoided. On the other hand, sparse matrix computations are more

challenging than their dense counterparts. The computational complexity of sparse matrix

operations is affected by factors such as memory traffic, size, and organization of cache

memory, in addition to the number of floating point operations.

In this thesis, we investigate the problem of detection of sparsity pattern of large sparse

Hessian matrices. There are efficient computational methods that exploit known sparsity

1

1.2. OUR CONTRIBUTION

to determine sparse Hessian matrices [34, 18, 36, 21, 39]. Many of these determination

methods partition the columns into groups such that the nonzero unknowns in each group

can be determined uniquely by a matrix-vector product of the form Hd, where H is the

matrix to be determined and d is a direction determined by the columns in a group.

For a once continuously differentiable function F : Rn 7→ Rn in some neighborhood of

x ∈ Rn we can write

∂F(x+ ts)
∂t

∣∣∣∣
t=0

= F ′(x)s≡ As≈ 1
ε
[F(x+ εs)−F(x)]≡ b, (1.1)

where ε > 0 is a small increment and s ∈ Rn is a given direction. By taking s to be unit

coordinate vectors ei, i = 1, . . . ,n the nonzero elements of F ′(x) can be approximated with

n extra function evaluations (assuming that F(x) has been evaluated already). In this the-

sis we are concerned with the detection of zero-nonzero structure of symmetric Hessian

matrices F ′(x) i.e., where F is the gradient of a twice continuously differentiable function

f : Rn 7→ R. Great savings in computation can be achieved if the sparsity structure of the

Hessian is known a priori and remain constant in the region of interest. Unfortunately,

determining the sparsity structure by hand, even when the source code for the function

evaluation program is available, can be tedious and highly error-prone. Algorithmic Dif-

ferentiation (AD) tools such as ADOL-C [37], ADMAT [1], MAD [16] provide facilities

for sparsity calculation from the given function evaluation code. These AD tools use the

underlying computational graph to accumulate and propagate the dependencies that exist

between intermediate quantities. In essence, the sparsity information is obtained as the

bipartite graph that results from the computational graph. If the source code for function

evaluation is unavailable or if the function is provided as a black-box (as in numerical sim-

ulation) alternative techniques are needed. Griewank and Mitev [22] propose a probing

method to determine the sparsity pattern of a Jacobian matrix using AD. Walther [35] pro-

posed a new algorithm for obtaining Hessian sparsity patterns which is essentially a forward

mode AD procedure and was implemented in ADOL-C.

2

1.2. OUR CONTRIBUTION

1.2 Our Contribution

In this thesis, we assume that the Hessian matrix is available only as a black box in

that given a direction d as input, an approximation to the Hessian times the direction d

can be obtained at a cost proportional to an extra gradient evaluation. Further, we assume

that there is an evaluation procedure for gradients at a given point. Using symmetry in the

second derivative values of the components it is possible to determine the sparsity pattern

of the Hessian via products of the Hessian matrix with specially chosen direction vectors.

We employ graph coloring methods and give efficient sparse data structures to implement

the sparsity pattern detection algorithms. Results from numerical testing confirm the effec-

tiveness of our method. Specific contributions are given below.

1. We propose sparse data structures, extend the multilevel algorithm of [7], and present

an efficient implementation of Hessian matrix sparsity detection.

2. We employ ordering methods [24] to improve column coloring over the greedy method

suggested by Carter in [7].

3. The seed matrix and the compressed Hessian are expanded to full matrix to identify

“flawed entries” in [7]. Our implementation uses sparse data structures and avoids

expansion to full matrix.

4. The set of possibilities for the identification of possible flawed entries are only im-

plicitly generated; the pattern matrix is never generated explicitly. This is in contrast

to the proposal in [7].

5. We present results of numerical testing using a suite of large-scale practical problem

instance to validate our approach.

Parts of the work contained in this thesis,

• has been accepted to appear in the ACM Communications in Computer Algebra

(CCA) [9].

3

1.3. THESIS ORGANIZATION

• will be presented as a refereed poster paper at the 41st International Symposium on

Symbolic and Algebraic Computation (ISSAC) to be held in Waterloo, Ontario, July

19-22, 2016 [8].

• was presented as a refereed poster paper at the workshop on Nonlinear Optimization

Algorithms and Industrial Applications that celebrated the 70th birthday of Andrew

R. Conn, held in the Fields Institute, Toronto, Ontario, June 2-4, 2016 [30].

1.3 Thesis organization

Including this chapter, there are five more chapters in this thesis organized as follows.

In Chapter 2, we review some basic concepts used in this thesis and a finite difference

approximation scheme that is suitable for exploiting known sparsity is introduced. For

completeness we also describe Algorithmic Differentiation (AD), which can easily apply

to our method to avoid truncation error.

In Chapter 3, we describe efficient data structures to store a sparse matrix in computer

memory and extend the same to enable operations on sparse matrices that we have used for

our algorithms.

In Chapter 4, we describe the voting scheme to determine the missing pattern elements

and the multilevel algorithm to determine the sparsity pattern of Hessian matrix.

In Chapter 5, we provide experimental results that demonstrate the efficacy of our

algorithms.

Finally in Chapter 6, we provide concluding remarks and directions for future research

in this area.

4

Chapter 2

Problem Definition and Background
Study

In this chapter, we introduce our problem more technically and review mathematical pre-

liminaries and definitions necessary for this thesis. We also discuss about the partitioning

algorithms to determine the sparse Hessian matrices.

2.1 Problem Definition

To introduce the problem considered in this thesis, we consider the unconstrained min-

imization problem

min
xεRn

f (x)

Assuming that f (x) is twice continuously differentiable, let the first derivative (the gradient

vector) of f (x) be denoted by g(x) = ∇ f (x) and the second derivative (the Hessian matrix)

of f (x) be denoted by H(x) = ∇2 f (x). A quadratic approximation to the nonlinear function

f (x) can be written as,

q(x) = x0 +gT x+
1
2

xT Hx (2.1)

where, x0 is a constant. The unique minimizer to the quadratic q(x) can be found by taking

the derivative of q(x) with respect to x and solving the resulting equation,

∇ f (x) = g+Hx = 0 (2.2)

5

2.2. PRELIMINARIES

Rewriting equation (2.2),

Hx =−g (2.3)

which is a system of linear equations that can be solved for the unknown vector x. Equa-

tion (2.3) is commonly called the Newton equation. The key idea is to use the solution to

the linear system to obtain a ‘step’ such that a new approximate ‘solution’ to the original

minimization problem is “better” than the current approximation. This observation leads to

the following algorithm for Newton’s method.

Algorithm: Newton’s Method
Input: Given an initial approximation x0 and a convergence tolerance t0

1 for k← 0 to max iter do
2 Evaluate: g(xk) and H(xk) ;
3 Solve for Sk: H(xk)Sk =−g(xk) ;
4 Update: xk+1← xk +Sk ;
5 Check for Convergence:
6 if ||g(xk+1)|| ≤ t0 then
7 break;

One of the main advantages of Newton’s method is its fast rate of convergence (quadratic

under some favorable assumptions) and a well-developed convergence theory. For a de-

tailed description of the convergence theory and variants of Newton’s method we refer

to [15].

One of the main difficulties in using Newton’s method on practical problems is the need

for derivative information at each iteration. Fortunately in many large-scale problems, the

Hessian matrix is sparse or structured.

2.2 Preliminaries

In this section, we introduce some basic terminologies related to this thesis and discuss

different methods for obtaining derivative information.

6

2.2. PRELIMINARIES

2.2.1 Gradient

Let f :Rn 7→R be a twice continuously differentiable function. The gradient of function

f (x1,x2,x3, ...,xn) is denoted by,

∇ f =
∂ f
∂x1

e1 + · · ·+
∂ f
∂xn

en =

∂ f
∂x1

...

∂ f
∂xn

 (2.4)

whose components ∂ f
∂xi

are the partial derivatives of f and the ei are the orthogonal unit

vectors pointing in the coordinate directions.

2.2.2 Hessian

The Hessian matrix is a square matrix of second order partial derivatives of a scalar-

valued function f .

H =

∂ f
∂x1

(
∂ f
∂x1

)
· · · ∂ f

∂x1

(
∂ f
∂xn

)
...

∂ f
∂xn

(
∂ f
∂x1

)
· · · ∂ f

∂xn

(
∂ f
∂xn

)

=

∂2 f
∂x2

1
· · · ∂2 f

∂x1xn
...

∂2 f
∂xnx1

· · · ∂2 f
∂x2

n

 (2.5)

The second-derivative is independent of the order in which derivatives are taken. Hence,

H(i, j) = H(j, i) for every pair (i, j) and the Hessian is a symmetric matrix.

For example, let f (x1,x2) = x3
1 + x2

1x2− x2
2−4x2

The gradient is,

∇ f (x1,x2) =

3x2
1 +2x1x2

x2
1−2x2−4

7

2.2. PRELIMINARIES

The Hessian matrix is

H(x1,x2) =

6x1 +2x2 2x1

2x1 −2

Definition 2.1. The Sparsity Pattern or Sparsity Structure of matrix A ∈ Rm×n is a specifi-

cation of A’s nonzero entries.

In this thesis matrix A’s sparsity pattern is denoted as S(A)=
{
(i, j) | ai j 6= 0, i, j = 1,2, . . . ,n

}
where A ∈Rn×n. A sparsity pattern is symmetric if (j, i) is in the sparsity pattern whenever

(i, j) is in the sparsity pattern. The entries of the matrix outside the sparsity pattern are

allowed to be zero.

The problem of determination of a Hessian matrix H can be formulated as follows:

• Given the sparsity structure of a symmetric matrix H of order n.

• Obtain vectors d1,d2, . . . ,dp such that Hd1,Hd2, ...,Hdp and determine H uniquely.

We will assume that the diagonal elements of H are non zero (since in a minimization

problem the Hessian is usually positive definite at a minimizer). The interesting part is

obtaining difference vectors d1,d2, ...,dp with p as small as possible, since the evaluation

of the gradient can be expensive.

Several methods have been proposed to estimate the derivative information of a Hessian

matrix. Curtis, Powell, and Reid [14] observed that the elements of H can be determined

directly if the directions partition the columns into groups such that columns in the same

group do not have a nonzero element in the same row position. Coleman and More [12]

used the partition problem with a certain graph coloring problem and their numerical results

show that the improved algorithms are nearly optimal or optimal for practical problems.

They also showed that at least ρmax directions are required to determine a general matrix

H uniquely, where ρmax is the maximum number of non zeroes in any row. Powell and

Toint [34] were the first to show that exploiting symmetry can result in significant benefits

8

2.2. PRELIMINARIES

for many sparsity structures and proposed several algorithm which exploits symmetry.

Automatic differentiation (AD) can be used to accurately determine these matrices and can

also determine the sparsity pattern of these matrices. In order to obtain the entire Hessian

matrix, the graph coloring techniques explore sparsity patterns of the matrix and also reduce

the cost of matrix-vector products.

2.2.3 Finite Difference Approximation

Finite differencing is an approach to the calculation of approximate derivatives whose

motivation comes from Taylor’s theorem. For instance, we can get an approximation of the

partial derivative of f by evaluating the objective with respect to the ith variable xi using the

forward difference formula,
∂ f
∂xi
≈ f (x+ εei)− f (x)

ε
(2.6)

where i= 1,2, ...,n, ei is the ith unit vector that is, the vector whose elements are all 0 except

for a 1 in the ith position and ε > 0 is small.

2.2.4 Approximating the Hessian

It is possible to obtain the Hessian matrix by using finite difference approximation.

By using the graph coloring techniques sparse Hessians often can be approximated in this

manner by using considerably fewer than n direction vectors. Many important algorithms

do not require knowledge of the full Hessian, instead each iteration requires the Hessian-

vector product ∇2 f (x)p, for a given vector p. We can obtain an approximation to this

matrix-vector product by Taylor’s theorem. When second derivatives of f exist and are

Lipschitz continuous near x, we have

∇
2 f (x)p≈ ∇ f (x+ εp)−∇ f (x)

ε
(2.7)

For the case in which even gradients are not available, we can use Taylor’s theorem once

again for approximating the Hessian that use only function values [33]. When the Hessian

9

2.2. PRELIMINARIES

is sparse the key observation is that, because of symmetry, any estimate of the element

∇2 f (xi, j) =
∂2 f (x)
∂xi∂x j

is also an estimate of its symmetric counter part ∇2 f (x j,i). By exploiting

symmetry, it is possible to estimate the entire Hessian by evaluating ∇ f and using the

formula 2.7.

2.2.5 Algorithmic Differentiation

Algorithmic Differentiation (AD), also called computational differentiation is a novel

way to differentiate a function f to compute derivative matrices, where f is given by a

computer program. AD uses exact formulas along with floating-point values and it involves

no approximation error as in finite difference. This is done in such a way that the function

computed by the computer program is simply a composition of these elementary functions

(sin,cos,exp, log,... denoted by Φ) and operations (+,−,x/, ...).

For a function f : Rn 7→ Rm the evaluation procedure is a sequence of scalar assignments,

vi−n = xi or vi = Φi(v j) for i = 1, ...,n

where, xi are independent variables, vi are internal variables and obtain values vi by applying

elemental function Φi to some set of arguments v j(j < i). Finally the output variables for

the function are extracted from the final intermediate variables.

As an example, consider the function f = x2
1 + sin(x3)− (2x2)

2

Here the graph on above figure called computational graph (a directed acyclic graph to

visualize the evaluation procedure of AD). The sequence of elementary operations is known

as code list, where x1,x2 and x3 are independent variables, vi =−2,−1, ...,6 are called the

adjoint variables and f is the output variable [23]. It is possible to generate different code

list for the same function. After forming a code list, we can apply rules of differentiation to

compute the derivative of function f with respect to the independent variables (x1,x2 and

x3).

Usually, two distinct modes of AD are presented, forward accumulation (or forward mode)

and reverse accumulation (or reverse mode).

10

2.2. PRELIMINARIES

2

*

+

−

sqr

sqr sin

x1 x3 x2

Figure 2.1: Evaluation Procedure of function f in Computational Graph

Table 2.1: Code List of function f

v−2 = x1

v−1 = x3

v0 = x2

v1 = v2
−2

v2 = sin(v−1)

v3 = v0 ∗2

v4 = v2
3

v5 = v1 + v2

v6 = v5− v4

f = v6

2.2.6 Forward Accumulation

In forward accumulation AD, we need to identify the independent variable to which

differentiation is performed and computed the derivative of each sub-expression recursively.

11

2.2. PRELIMINARIES

One simply augments each variable v with its derivative v̇ = ∂v
∂x . For example, we are

calculating the derivative of above function f with respect to independent variable x1 in

forward mode. The function evaluation procedure for forward mode is,

Table 2.2: Evaluation Procedure for Forward Mode

vi−n = xi for i= 1,...,n
vi = Φi(v j) where j < i for i=1,...,l
fm−i = vl−i for i= m-1,...,0

˙v−2 = 1

˙v−1 = 0

v̇0 = 0

v̇1 = 2∗ v−2

v̇2 = 0

v̇3 = 0

v̇4 = 0

v̇5 = 2∗ v1 +0

v̇6 = 2∗ v1−0

f = 2x1

As the derivatives are then computed in the evaluation steps in forward accumulation and

combined with other derivatives via the chain rule, the computational complexity of one

pass is proportional to the complexity of the original code.

2.2.7 Reverse Accumulation

In reverse accumulation AD, we need the dependent variable to be differentiated and

computes the derivative with respect to each sub-expression recursively by using the chain

12

2.3. DETERMINATION OF SPARSE DERIVATIVE MATRICES

rule. Derivative of a chosen dependent variable f with respect to a sub expression v is,

v = ∂ f
∂v . For example, the function evaluation procedure of calculating the derivative of

above function f in reverse mode is,

Table 2.3: Evaluation Procedure for Reverse Mode

vl−i = fm−i for i= 0,...,m-1
v j = viΦi(vi) where j < i, for i=l,...,1
xi = vi−n for i= n,...,1

f = v6

v6 = 1

v5 = v6 = 1

v4 =−v6 =−1

v3 = 2∗ v3 ∗ v4 =−4x2

v2 = v5 = 1

v1 = v5 = 1

v0 = 2∗ v3 =−8x2

v−1 = cos(v−1)∗ v2 = cos(x3)

v−2 = 2∗ v−2 ∗ v1 = 2x1

The accumulation of adjoint derivatives are computed in reverse order as the function values

are computed. Forward accumulation is more efficient than reverse accumulation for func-

tions f : Rn→ Rm with m� n as only n passes are necessary, where reverse accumulation

is more efficient than forward accumulation with m� n as only m passes are necessary.

13

2.3. DETERMINATION OF SPARSE DERIVATIVE MATRICES

2.3 Determination of Sparse Derivative Matrices

Curtis, Powell and Reid proposed an algorithm to estimate the sparse Jacobian matrix

called CPR algorithm [14], which is based on the partitioning of columns of the Jacobian.

The CPR method uses a greedy technique to partition columns of a matrix A into struc-

turally orthogonal groups. They observed that if the directions partition the columns into

structurally orthogonal groups, then the elements of A can be determined directly.

Definition 2.2. Structurally Orthogonal Partitioning of the columns of a matrix A is the

partition of the columns of A into groups in which no two columns in a group have the

nonzero elements in the same row position. In other words, columns A(:, j) and A(:,k) are

structurally orthogonal if there is no such row index i for which ai j 6= 0 and aik 6= 0.

Coleman and Moré [12] further analyze the column partitioning problem and suggest

partitioning algorithm based on graph coloring heuristics. They showed that the problem of

finding a minimum cardinality column partitioning consistent with direct determination is

equivalent to a vertex coloring problem of an associated graph and that the problem is NP-

Hard. On the other hand, efficient coloring heuristics developed over the years have been

found to yield nearly optimum coloring. Goldfarb and Toint [20] studied such optimal esti-

mation of Jacobians and Hessians arising in the finite difference approximations of partial

differential equations. Gebremedhin, Manne, and Pothen [19] presented a comprehensive

overview of graph coloring methods for sparse Jacobian and Hessian matrix determination.

They developed uniform graph-theoretic framework for studying the matrix partitioning

problems. Powell and Toint [34] extended the CPR method to compute sparse Hessians

by taking the advantage of sparsity structure and symmetry of the second derivative ma-

trix. McCormick [32] introduced a distance-2 graph coloring model for the computation of

Hessians and proposed two new ways of classifying direct methods for this problem.

14

2.3. DETERMINATION OF SPARSE DERIVATIVE MATRICES

2.3.1 The CPR Algorithm

If a group of columns of matrix A, say columns j and l, are structurally orthogonal,

i.e., no two columns have nonzero entries in the same row position, only one extra function

evaluation,

F ′j +F ′l = A(:, j)+A(:, l)≈ 1
ε
[F(x+ ε(e j + el))−F(x)], (2.8)

is sufficient to read-off the nonzero entries from the product b = As, with s = e j + el . The

key observation here is that if the sparsity pattern of a group of columns is such that for

every pair of column indices j 6= l in the group S(A(:, j))
⋂

S(A(:, l)) is empty, then only

one extra function evaluation will suffice to determine the nonzero entries in those columns.

In other words, columns A(:, j) and A(:, l) are structurally orthogonal.

Let the sparsity pattern S(A) of A ∈ Rn×n where A = A> be given. Let Φ be a mapping

Φ : {1,2, . . . ,n} 7→ {1,2, . . . , p} such that Φ(i) = Φ(j) implies columns A(:, i) and A(:, j)

are structurally orthogonal where p is the total number of groups in Φ, i.e. |Φ|= p. With Φ

and an appropriately chosen ε in Equation (2.8) for direction vectors S(:,k),k = 1,2, . . . , p

the following matrix equation,

AS = B (2.9)

can be solved to recover the nonzero entries. The nonzero entries are simply identified in

the compressed matrix B, where matrix B is obtained via FD (or AD forward accumulation).

Thus, the columns of matrix B correspond to the directional derivatives of function F in the

directions S(:,k), j = 1, . . . , p; with FD each directional derivative costs one extra evaluation

of function F while with AD it is a small multiple (usually 2-3) of the cost of evaluating the

function F [29]. It is important to notice that in a CPR-compression the number of nonzero

elements in any row is preserved. Then to determine the nonzero entries uniquely at least

ρmax products are needed in any method based on matrix-vector product calculation, where

ρmax is the maximum number of nonzero elements in any row of A [26]. The following

algorithm can be used to compute matrix B.

15

2.3. DETERMINATION OF SPARSE DERIVATIVE MATRICES

Algorithm 1: Computing B matrix
Input : The matrix A

function Φ

Output: Matrix B = AS , where S ∈ Rn×p

1 for k=1 to p do
2 construct S(: k) ;
3 compute B(:,k)← AS(:,k) ;

We illustrate Algorithm 1 with a small example. Let the matrix A in Figure (2.2) be the

Hessian matrix of some function F at x. There are three structurally orthogonal column

A =

a11 . a13 . .

. a22 . . a25

a31 . a33 . a35

. . . a44 .

. a52 a53 . a55

Φ→ 1 1 2 1 3

Figure 2.2: Matrix A with its structurally orthogonal mapping Φ.

groups in matrix A, i.e. p = 3. Therefore matrix A can be approximated with three extra

function evaluations of the form in Equation (2.8) for direction set to e1+e2+e4, e3 and e5

in addition to evaluating F at x. The nonzero entries of matrix A can be determined using

Equation (2.9) with,

S = [e1 + e2 + e4 e3 e5] and

B =

a′11 a′13 .

a′22 . a′25

a′31 a′33 a′35

a′44 .

a′52 a′53 a′55

16

2.3. DETERMINATION OF SPARSE DERIVATIVE MATRICES

Where (′) indicates that the entry in matrix B is an small approximation to the true value.

The values in matrix B are computed by using AD forward mode, thus free of truncation

error and are obtained at a small constant multiple of the cost of evaluating the function

F [23]. The columns of matrix B correspond to the directional derivatives of function F in

the directions S(:, j), j = 1,2 and 3. For a given index pairs (i, j), A(i, j) will be found in

B(i,k) where k = Φ(j). It can be verified that the partitioning Φ is optimal for the given

example, which means every other partition Φ must have at least 3 groups.

17

Chapter 3

Flaw Computation

In this chapter, we describe the efficient data structures to store a sparse matrix in computer

memory and a method for the detection of mislabelled entries in sparsity patterns. We also

introduce an efficient sparse data structure for ‘flaw’ calculations.

3.1 Sparse Matrix

A definition of Sparse matrix by Wilkinson [38] is that, a matrix is called sparse if it is

computationally advantageous to utilize the knowledge that many of its entries are zero. We

can define sparsity as the fraction of nonzero elements over the total number of elements.

Figure 3.1: Example of Sparse Matrix (Power Network Pattern, the non-zero elements
are shown in black) Name: bcspwr03, Dimensions: 118× 118, 476 nonzero elements,
Source: [4]

18

3.2. DATA STRUCTURE FOR SPARSE MATRIX

3.2 Data Structure for Sparse Matrix

It is beneficial to use specialized algorithms and data structures to take advantage of

sparse structure for storing and manipulating sparse matrices on a computer. A matrix is

usually stored using two-dimensional array but it is slow and inefficient for large sparse

matrices as the processing and memory are wasted on the zeroes. Sparse data is by nature

more easily compressed and thus require significantly less storage.

For example, the bcsstk0 matrix in Figure (3.2) is a small test problem of dimension 48×48

from BCS Structural Engineering matrices.

Figure 3.2: Sparse Matrix, Name: bcsstk01, Dimensions: 48× 48, 400 nonzero elements
are shown in blue, Source: [2]

Figure 3.3: Compressed Matrix bcsstk01, Dimention: 48×16

There are 16 structurally orthogonal column groups in a structurally orthogonal partition

19

3.2. DATA STRUCTURE FOR SPARSE MATRIX

of matrix bcsstk0. So it is possible to compress the matrix columns into 16 from 48. The

matrix in Figure (3.3) is a compressed form of matrix bcsstk01 where the dimension is now

48×16.

Depending on the number and distribution of the nonzero entries, different data structures

can be used. We are discussing the following data structures:

3.2.1 Coordinate Storage

In coordinate storage format the sparse matrix A is stored as a collection of 3-tuples

(i, j,ai j) which representing only nonzero entries, where i denotes the row index, j the

column index and ai j the nonzero entry. Assume we have a matrix Am×n with nnz number

of nonzero elements. The corresponding coordinate storage data structure of matrix A is

presented in Figure (3.4),

A =

a11 . a13 . . .

a21

. a32 . . . a36

. . . a44 . .

. . a53 . . a56

. a62 . . a65 .

value

a11 a21 a32 a36 a13 a44 a53 a62 a65 a56

row
1 2 3 3 1 4 5 6 6 5

col
1 1 2 6 3 4 3 2 5 6

Figure 3.4: Coordinate storage data structure of sparse matrix

where the nonzero values are stored in the memory with no specific order, so accessing

the matrix elements by row or column is equally costly. The coordinate storage requires

nnz+nnz+nnz = 3nnz(H) units of storage.

20

3.2. DATA STRUCTURE FOR SPARSE MATRIX

3.2.2 Compressed Storage

The compressed Row Storage (CRS) or Compressed Column Storage (CCS) format rep-

resents a matrix by three one dimensional arrays, that contain nonzero values, the extents

of rows, and column indices. The CRS format allows fast row access and matrix-vector

multiplications, thus a suitable choice for our method.

The storage format of sparse matrix we used in the thesis is Compressed Row Storage.

CRS uses array row ptr to represent starting index of each row and array col ind to store

column indices of each row. Column indices of each row i can be found in between

col ind[row ptr[i]] and col ind[row ptr[i + 1]− 1]. CRS uses 2nnz(A) + n + 1 memory

locations. For example, consider the matrix A and corresponding CRS data structure in the

following Figure (3.5).

A =

a11 . a13 . . .

a21

. a32 . . . a36

. . . a44 . .

. . a53 . . a56

. a62 . . a65 .

value

a11 a13 a21 a32 a36 a44 a53 a56 a62 a65

col ind
1 3 1 2 6 4 3 6 2 5

row ptr
1 3 4 6 7 9 11

Figure 3.5: CRS data structure of sparse matrix

CCS is similar to CSR except that values are read first by column, a row index is stored

for each value in array row ind, and column pointers are stored in col ptr. Row indices of

each column j can be found in between row ind[col ptr[j]] and row ind[col ptr[j+1]−1].

21

3.2. DATA STRUCTURE FOR SPARSE MATRIX

Hence CCS uses 2nnz(H)+m+1 memory locations. The following Figure (3.6) shows the

CCS data structure of above matrix A.

row ind
1 2 3 6 1 5 4 6 3 5

col ptr
1 3 5 7 8 9 11

Figure 3.6: CCS data structure of sparse matrix

3.2.3 Cache Complexity of Sparse Matrix Access

In addition to the number of floating point operations, the computational complexity

of sparse matrix operations are dependent on memory traffic and the size and organization

of cache memory. Cash memories are used to improve the performance by minimizing

data movement between main memory and CPU (Central Processing Unit). In general, the

closer the cache to the CPU, the faster the time to access and transfer data to the CPU. The

cache keeps a copy of most frequently used data and supplies them to the CPU whenever

requested. When a piece of data is requested by CPU, the cache memory is searched by

level. A hit in cache happens if the CPU gets the requested data from the cache. Otherwise

it is called a miss. The effectiveness of a cache system depends on hit rate and miss rate

which are measured by the ratio of total number of hits or misses and the total number of

accesses in cache. An empty cache is refereed as cold cache and misses in empty cache are

called compulsory misses.

The access pattern of data in a hierarchical memory computing system is called locality of

reference. The principle of data locality states that, recently accessed data (temporal) and

sequential data (spatial) are likely to be accessed in the near future. When a miss occurs, a

data block of consecutive memory locations from main memory or another cache is copied

into the cache which follows the principle of spatial locality. In general, the better spatial

locality reduces the cache misses and improves the cache performance [6].

22

3.3. DETECTION OF MISSING ELEMENTS

If the elements are accessed in arbitrary order for each row of the sparse matrix A, then the

number of cache misses can be as high as O(nnz). The elements in sparse matrix in CRS or

CCS format are stored in order of increasing index. Therefore, if the elements in each row

in CRS (or column in CCS) of a sparse matrix A are accessed in the order they are stored

in the data structure, then it is expected to achieve full spatial locality in accessing matrix

A. So only the compulsory misses can happen caused by the first reference to a location in

memory.

3.3 Detection of Missing Elements

In this section, to identify the missing nonzero elements of a Hessian matrix we,

• describe a procedure for locating missing nonzero elements with respect to a given

trial pattern,

• define the notion of “flaw”, and

• propose data structures to implement flaw localization and storage.

For ease of explanation we sketch the overall algorithm for sparsity detection and use an

example to illustrate the main points. Our main assumptions are, (a) the gradient evaluation

is available as a black box and (b) an analytical expression for the diagonal of Hessian is

available (this condition is not strictly necessary and will be relaxed later). let S(A) denote

the true sparsity pattern of a Hessian matrix A.

Algorithm: An algorithm for sparsity detection
Input: Guess an initial pattern S0 for A.

1 while true sparsity pattern S(A) is not determined do
2 Compute a structurally orthogonal partition Φ of the guessed pattern S0 ;
3 Define the direction matrix S ;
4 Compute the compressed matrix B0 using Algorithm 1 ;
5 Identify the possible flaw locations using value symmetry ;
6 Calculate the flaw matrix F using pattern symmetry ;
7 Update sparsity pattern of S0 ;

23

3.3. DETECTION OF MISSING ELEMENTS

Example: Determination of Sparsity Pattern with a guess pattern S0

To illustrate the above algorithm consider the following example of a 10× 10 Sparse

Hessian matrix A in Figure (3.7). S0 is a initial guess pattern of A and partitioned into three

column coloring groups 1, 2 and 3 [R(ed), B(lue) and G(reen)]. The elements in position

(1,5), (5,1) and (3,9), (9,3) (X and Z) of matrix A are missing in the guess pattern S0.

A =

R . G . X

. B . R

R . G . B . . . Z .

. B . R . G

X . G . B . R . . .

. . . R . G . B . .

. . . . B . R . G .

. G . B . R

. . Z . . . R . G .

. B . R

S0 =

R . G

. B . R

R . G . B

. B . R . G

. . G . B . R . . .

. . . R . G . B . .

. . . . B . R . R .

. G . B . R

. R . G .

. B . R

Figure 3.7: Hessian matrix A and a guessed pattern S0

A structurally orthogonal column partition Φ of guessed pattern S0 is,

Φ→ 1 2 3 1 2 3 1 2 3 1

24

3.3. DETECTION OF MISSING ELEMENTS

The direction Matrix S can be defined as,

S(j,k) =

 δ j 6= 0, if Φ(j) = k

0 otherwise
, k = 1, . . . , p

Where δ is an array of size n where, δi > 0 is small and represents ε in Equation (2.8).

δ1 . .

. δ2 .

. . δ3

δ4 . .

. δ5 .

. . δ6

δ7 . .

. δ8 .

. . δ9

δ10 . .

Figure 3.8: Matrix S

Here we never construct matrix S explicitly. We construct one column of S at a time and

compute the product AS inside Algorithm 1 (described in chapter 2) for computing matrix

B. Constructing S can be accomplished as follows where s is a vector represents one column

of S.

Algorithm 1.1: Constructing S(:,k) = s
Input: Array Φ, that gives the partitioning

Array δ of size n
1 let s be the vector of all zeros ;
2 for each j where Φ(j) = k do
3 s(j) = δ(k) ;

If we apply CPR algorithm using trial pattern S0 by Equation (2.9) then we have matrix B

as in Figure (3.9). In many cases B will be dense i.e. most of its entries are not identically

zero. So it is reasonable to use a two dimensional array for B. This will allows us to locate

25

3.3. DETECTION OF MISSING ELEMENTS

entry ai, j (or δia j,i) in B efficiently. We can express Equation 2.9 as,

ai jδ j = bik (3.1)

R . G . X

. B . R

R . G . B . . . Z .

. B . R . G

X . G . B . R . . .

. . . R . G . B . .

. . . . B . R . G .

. G . B . R

. . Z . . . R . G .

. B . R

δ1 . .

. δ2 .

. . δ3

δ4 . .

. δ5 .

. . δ6

δ7 . .

. δ8 .

. . δ9

δ10 . .

=

R∗δ1 X ∗δ5 G∗δ3

R∗δ4 B∗δ2 .

R∗δ1 B∗δ5 G∗δ3 +Z ∗δ9

R∗δ4 B∗δ2 G∗δ6

R∗δ7 +X ∗δ1 B∗δ5 G∗δ3

R∗δ4 B∗δ8 G∗δ6

R∗δ7 B∗δ5 G∗δ9

R∗δ10 B∗δ8 G∗δ6

R∗δ7 . G∗δ9 +Z ∗δ3

R∗δ10 B∗δ8 .

Figure 3.9: Compressed matrix B = AS

Now we can compute the missing entries in A by using value symmetry and the sparsity

structure of S0 and matrix B. Let A0 be the Hessian approximation by the CPR method

which have “incorrect” entries.

Definition 3.1. If A0(i, j) 6= A0(j, i), then the element at location (i, j) is called type 1 flaw.

Definition 3.2. If A0(i, j) = 0 but B(i, l) 6= 0 where Φ(j) = l, then the element at location

(i, l) of matrix B is called type 2 flaw.

26

3.3. DETECTION OF MISSING ELEMENTS

“type 1” and “type 2” flaws are what Carter calls “H flaws” and “Y flaws”, respectively.

To avoid ambiguity we do not associate the flaws name to specific matrix.

3.3.1 Determination of Flaw Locations

Let S0 ≈ S(A) be an approximation to the true sparsity pattern S(A) of the Hessian

matrix A. By approximation we mean that some of the entries (zero/nonzero) of A are

mislabelled (i.e., zero labelled nonzero and nonzero labelled zero). The resulting Hessian

approximation A0 by the CPR method will have “incorrect” entries. Suppose the entry

A(i, j) 6= 0 has been mislabelled as zero in the pattern S0 and let B0 be the corresponding

compressed Hessian obtained via the CPR method. There are two cases to consider.

1. There is an index j′ 6= j such that S0(i, j′) 6= 0 and Φ(j) = Φ(j′).

2. There does not exist an index j′ 6= j such that S0(i, j′) 6= 0 and Φ(j) = Φ(j′).

From the compressed matrix B0, we identify missing entries and entries that do not satisfy

symmetry and mark both the entries as “flawed”. There are two types of flaws:

For case (1), we have A0(i, j′) 6= A0(j′, i) thus violating the symmetry of the Hessian.

We term elements at location (i, j) and (j, i) flawed (of type 1) if |A0(i, j)−A0(j, i)|> η1,

where η1 is a positive threshold.

For case (2), A0(i, j) = 0 but B0(i, l) 6= 0 where Φ(j) = l. We term element at location

(i, l) of matrix B0 to be flawed (of type 2) if |B0(i, l)|> ε η2, where η2 is a positive threshold.

In the above η1 and η2 are user adjustable tolerance to account for errors during floating

point operations. As we have already observed, a ‘flaw’ is an entry (i, j) such that A0(i, j) 6=

A0(j, i). Science it is not known which of the two is actually flawed, we mark both of

them to be “flawed”. Moreover a flawed entry A0(i, j) (and A0(j, i)) implies that there are

nonzero entries:

• A0(i, j) : A0(i, l) 6= 0 such that, Φ(j) = Φ(l) is not included in the current sparsity

pattern of the symmetric matrix.

27

3.3. DETECTION OF MISSING ELEMENTS

• A0(j, i) : A0(j,k) 6= 0 such that Φ(i) = Φ(k) is not included in the current sparsity

pattern of the symmetric matrix.

The discussion above leads to the following propositions,

Proposition 1. If A0(i, j) is a type 1 flaw where Φ(j) = l, then the set possible locations

for missing elements is (i,k) where Φ(k) = l for k = 1 to n.

Proposition 2. If B0(i, l) is a type 2 flaw, then the set possible locations for missing ele-

ments is (i,k) where Φ(k) = l for k = 1 to n.

Once all the flaw locations have been identified, we define a flaw matrix F ∈ {0,1}n×n

such that F (i, j) = 1 and F (i, j) = 0 imply, respectively, flaw and no flaw at location (i, j).

Let the entries of F be initialized to 0.

• For each type 1 flaw (i, j), set F (i, j′) = 1 where j′ 6= j and Φ(j) = Φ(j′) and

F (j, i′) = 1 where i′ 6= i and Φ(i) = Φ(i′).

• For each type 2 flaw (i, l), set F (i, j) = 1 where Φ(j) = l.

From our above example, the col ind , row ptr and coloring information Φ of trial pattern

S0 are following.

col ind

1 3 2 4 1 3 5 2 4 6 3 5 7 4 6 8 5 7 9 6 8 10 7 9 8 10

row ptr

1 3 5 8 11 14 17 20 23 25

Φ

1 2 3 1 2 3 1 2 3 1

grpind

1 4 7 10 2 5 8 3 6 9

28

3.3. DETECTION OF MISSING ELEMENTS

The array Φ indicates the group number or color number for each column. k = Φ(j) indi-

cates that column j is in group k. Array grpind contains the number of columns of each

color in partition Φ.

Now we can access the nonzero elements of A through matrix B in the following way. We

Algorithm 2: Accessing nonzeros of matrix A through matrix B
1 for i = 1 to n do
2 index = row ptr(i) . . .row ptr(i+1)−1 ;
3 j← col ind(index) ;
4 k←Φ(j) ;
5 ai, j ≡ bi,k/δ j ;

have sparsity pattern for A, we know where ai j 6= 0 is mapped to in matrix B [A(i, j) maps

to B(i,Φ(j))]. After we have iterated over all rows of the pattern for matrix A, we have

identified all flaws of types 1 and any unmarked entry in matrix B0 must be flaw type 2.

A simple implementation of the marking scheme is to use an array of size n (number of

rows). From the sparsity pattern for A, we can compute the number of nonzero entries in

each row. For our example the array is,

count

2 2 3 3 3 3 3 3 2 2

Each time a nonzero entry ai j (and a ji) is identified with the corresponding entries in matrix

B0, the count array for the respective rows are decreased by one(1). If the condition of the

entry identification for some row index i, count(i) =−l, then the ith row of B0 has l entries

are not in matrix A but are nonzero in B0. Those entries are type 2 flaws.

Example:

From our example matrix B0, we can determine the location of flaws in A0. In the

following Figure (3.10) we can see that, out of 10 rows, rows 3, 5 and 9 contain type 1 flaw

(marked in light-gray) and only row 1 contains type 2 flaw (marked in dark-gray).

In type 1 flaw column 3 and 9 overlap in row 3 (group 3), 1 and 7 in row 5 (group 1)

29

3.3. DETECTION OF MISSING ELEMENTS

B0→

R∗δ1 X ∗δ5 G∗δ3

R∗δ4 B∗δ2 .

R∗δ1 B∗δ5 G∗δ3 +Z ∗δ9

R∗δ4 B∗δ2 G∗δ6

X ∗δ1 +R∗δ7 B∗δ5 G∗δ3

R∗δ4 B∗δ8 G∗δ6

R∗δ7 B∗δ5 G∗δ9

R∗δ10 B∗δ8 G∗δ6

R∗δ7 . G∗δ9 +Z ∗δ3

R∗δ10 B∗δ8 .

Figure 3.10: Matrix B0 with flaws

and 9 and 3 in row 9 (group 3)of true sparsity pattern.

In type 2 flaw the (1,2) element of column 2 does not overlap with any other column

in group 2.

Figure (3.11) shows the location of type 1 and type 2 flaws in matrix A0 by using Algorithm

2. Then, the pattern S0 can be augmented as S1 = S0
⋃

S
(
F

⋂
F >
)

and the CPR estimation

. f

.

. . f

.

. f . . .

.

. . . . f

.

. f .

.

Figure 3.11: Location of flaws in matrix A0

of the Hessian with the structurally orthogonal partitioning based on S1 will yield matrix

B1. In the pattern matrix S1 some zero entries of the true Hessian matrix may have been

mislabelled as nonzero. Such entries will vanish in B1 and can be easily be identified using

the pattern S1. Removing these spurious entries from S1 yields the true sparsity pattern

30

3.3. DETECTION OF MISSING ELEMENTS

of the Hessian. We now formally defined operations on patterns. Let P ∈ {0,1}n×n and

Q ∈ {0,1}n×n be binary matrices.

Definition 3.3. The intersection W = P
⋂

Q

W (i, j) =

 1 if P(i, j) = Q(i, j) = 1

0 otherwise

Definition 3.4. The union V = P
⋃

Q

V (i, j) =

 0 if P(i, j) = Q(i, j) = 0

1 otherwise

Thus we obtain the following algorithm to calculate flaws locations where, matrix A0

Algorithm 3: Compute flaw locations
Input : The matrix S0

Array Φ that gives the column partitioning of symmetric trial pattern S0
The matrix B0

Output: Set of flaws locations
1 for each A0(i, j) 6= A0(j, i) with J ≥ i do // computing type 1 flaw
2 if |A0(i, j)−A0(j, i)|> η1 then
3 if i=j then
4 add (i, i) to the set of flaw type 1

5 if i 6= j then
6 add (i, j) and (j, i) to the set of type 1 flaw

7 for each B0(i,k) 6= 0 do // computing type 2 flaw
8 for each A0(i, j) = 0 do
9 if Φ(j) = k and |B0(i,k)|> ε η2 then

10 add (i, j) to the set of type 2 flaw

referred in Algorithm 3 is implicitly obtained via Algorithm 2.

31

3.4. DATA STRUCTURE FOR FLAWS

3.3.2 Asymptotic Analysis

In Algorithm 3, lines (1− 6) require O(np) time to calculate type 1 flaw. The time

for calculating type 2 flaw (lines (7− 10)) is also O(np). The resulting computational

complexity of Algorithm 3 for calculating flaw locations is O(np).

3.4 Data Structure for Flaws

Our implementation relies heavily on the use of efficient sparse data structures and op-

erations on sparse matrices. The implementation of union and intersection operations as

well as the flaw calculations use sparse data structures based on compressed sparse row

(CSR) and compressed sparse column (CSC) representations which allow a cache-friendly

performance to minimize cache misses. The flaw matrix need not be stored explicitly; it

can be generated as needed. It is also possible to have one or more flaws in row i. We

have a data structure similar to our row-oriented sparsity pattern data structure (CRS). To

explain the data structure we consider the previous example where, n=10 and |Φ|= 3. The

Table 3.1: Data structure for type 1 flaw

row flaw groups
3 3
5 1
7 2
9 3

g index f law ptr f law row
3 1 2 3 1 2 3 4 3 5 7 9

Table 3.2: Data structure for type 2 flaw

row flaw groups
1 2

g index f law ptr f law row
2 1 2 1

32

3.4. DATA STRUCTURE FOR FLAWS

column labeled flaw groups in Table (3.1) and Table (3.2) denote the group number (Φ(j))

of the “flawed” entry in each row i where j is the column index as described in Algorithm

2. The array f law row contains indices of rows that has at least one flaw. Here the row

indices are stored in sorted order (increasing). The array f law ptr contains indices of array

g index such that, g index(k), k = f law ptr(i) . . . f law ptr(i+ 1)− 1, gives the group or

color index of each flaw in row f law row(i). The data structure for all flaws F in CRS

format as follows,

f col index
2 5 8 3 9 1 4 10 2 8 3 6

f row ptr
1 4 6 9 11

Figure 3.12: Data structure of flaws in CRS format

In Figure (3.12), f row ptr represents the starting index of each row and f col ind represents

the column indices of each row.

The flaws sparsity pattern S
(
F

⋂
F >
)

in matrix form is presented in the following Figure

(3.13) where the F
⋂

F > operation eliminates all the nonsymmetry entries from the flaw

matrix F .

F →

. f . . f . . f . .

.

. . f f .

.

f . . f f
.

. f f . .

.

. . f . . f

.

F
⋂

F >−−−−→

. . . . f

.

. f .

.

f

.

.

.

. . f

.

Figure 3.13: flaw matrix F

33

3.4. DATA STRUCTURE FOR FLAWS

Finally, the pattern S0 can be augmented as S1 = S0
⋃

S
(
F

⋂
F >
)

to updated the sparsity

pattern.

R . G . f

. B . R

R . G . B . . . f .

. B . R . G

f . G . B . R . . .

. . . R . G . B . .

. . . . B . R . G .

. G . B . R

. . f . . . R . G .

. B . R

Figure 3.14: Updated sparsity pattern S1

Figure (3.14) shows the updated sparsity pattern S1 where all the missing elements from

matrix A are located. In the absence of a “good” start pattern S0, we use a multilevel heuris-

tic with randomly generated sparsity patterns and iterate until the true pattern is detected.

34

Chapter 4

Detection of Hessian Matrix Sparsity
Pattern

In this chapter, we first briefly describe a greedy partitioning algorithm which finds a struc-

turally orthogonal partitioning of the columns of an input sparse matrix. The columns are

preprocessed with the ordering algorithm Smallest-Last Ordering (SLO). Empirical evi-

dence [25, 31, 27, 28] suggest that the greedy algorithm yields better partitions (with fewer

groups) when the columns are processed in certain order. The SLO appears to give good

results [10, 11, 13, 17]. In the second part of the chapter we adopt a multilevel algorithm

from [7] to detect the true sparsity pattern of Hessian matrices.

4.1 DSJM toolkit

DSJM is a software toolkit for direct determination of sparse Jacobian matrices and can

also be used to find consistent partitions of large sparse matrices [24]. The toolkit is writ-

ten in C++. DSJM uses efficient sparse data structures (variants of Compressed Row and

Compressed Column) to implement the ordering and coloring algorithms which allow the

kernel operations to perform in a cache-friendly way to minimize cache misses due to irreg-

ular data access. DSJM applies greedy coloring to the vertices in some chosen order which

is more efficient. The ordering methods used in DSJM are: Largest-First Ordering (LFO),

Smallest-Last Ordering (SLO), Incidence-Degree Ordering (IDO), Saturation-Degree Or-

dering (SDO), Recursive-Largest-First (RLF) and a hybrid approach MRLF-SLO based on

RLF and SLO. In our implementation we use the Smallest-Last Greedy Coloring (SLO) for

35

4.1. DSJM TOOLKIT

partitioning the columns into structurally orthogonal groups.

4.1.1 Greedy coloring method

Curtis, Powell and Reid proposed, a greedy partitioning heuristic to find a structurally

orthogonal mapping Φ [14]. Let G(H) = (V,E) be the graph representing matrix H where,

• V = {v1,v2, . . . ,vn} is the set of vertices corresponding to columns and e = {vi,v j} ∈

E if H(:, i) and H(:, j) are structurally dependent, i.e. there is an index k such that

H(k, i) 6= 0 and H(k, j) 6= 0.

Let N(v) be the set of neighbors of vertex v ∈ V in G = (V,E), i.e. N(v) = {u ∈ V |u 6=

v,{u,v} ∈ E}. The degree of v in G is denoted by deg(v) = |N(v)|. A greedy sequential

coloring algorithm as follows.

Algorithm: Sequential Coloring
Input : order array containing a permutation of columns 1...n
Output: color array containing the color of columns 1...n

1 for i = 1 to n do
2 color(i) = n

3 for j = 1 to n do
4 col← order(j) ;
5 Find N(col) and mark their colors ;
6 Let c be the smallest color index that has not been assigned to any column in

N(col), assign color index c to column col ;

The major computational cost of the above algorithm is O(∑
{i|ai j 6=0}

ρi) to find N(col). For

all columns in order array the cost is proportional to O(
n

∑
i=1

∑
{i|ai j 6=0}

ρi) = O(
n

∑
i=1

ρ
2
i). The

total time complexity of sequential coloring algorithm is O(
m

∑
i=1

ρ
2
i) [24].

The following Figure (4.1) shows the structurally orthogonal coloring graph G(H) of matrix

H where columns (v1, ...,v6) are grouped into three colors (1, 2 and 3).

36

4.1. DSJM TOOLKIT

H =

h11 . h13 . . .

. . . . h25 .

h31 . h33 . . h36

. . . h44 . h46

. h52 . . . h56

. . h63 h64 h65 .

Figure 4.1: Graph G(H) representing the column partition of matrix H.

4.1.2 Smallest-Last Ordering

Let the vertices V ′ = {vn,vn−1, ...,vi+1} be already ordered. The ith vertex in SLO is an

unordered vertex u such that deg(u) is minimum in G[V \V ′] where, G[V \V ′] is the graph

obtained from G by deleting the vertices of set V ′ from V . Following algorithm shows the

major computational steps of Smallest-Last ordering.

Algorithm: SLO
Input : degree array containing the degree information for columns 1...n
Output: order array containing the ordered columns 1...n

1 Construct a priority queue from degree information ;
2 while the priority queue is not empty do
3 Select column j from the priority queue with the minimal degree in G[V \V ′] ;
4 Place j in the order array ;
5 Remove column j from priority queue ;
6 Compute N(j) for column j ;
7 Update the degree for the neighbors of column j;

In SLO the major computational steps are:

1. Find a column j with the minimal degree in G[V \V ′] at a cost of O(log j).

37

4.2. THE MULTILEVEL ALGORITHM

2. N(j) computation at a cost of O(∑
{i|ai j 6=0}

ρi).

Over all columns step 1 becomes O(
n

∑
i=1

log j) which is O(n logn) and step 2 becomes

O(
n

∑
i=1

∑
{i|ai j 6=0}

ρi) = O(
n

∑
i=1

ρ
2
i). Updating are done along with the same loop, so the com-

putational complexity of SLO algorithm is also O(
n

∑
i=1

ρ
2
i) [24].

4.2 The Multilevel Algorithm

In our research, we investigate a multilevel algorithm for automatic detection of sparsity

pattern of sparse Hessian matrices. The following problems will be considered:

1. Given a starting guess, investigate algorithms to determine the sparsity pattern while

minimizing the number of matrix-vector products (gradient evaluation with FD cal-

culation).

2. Given certain known numerical/structural properties on the Hessian entries investi-

gate algorithms to determine the sparsity pattern while minimizing the number of

matrix-vector products.

3. Implement the algorithms on serial computers.

In chapter 3, we observed that with a “good guess” on the true sparsity pattern the true

pattern can be detected using two CPR applications: one corresponding to the guess S0 and

one corresponding to the augmented pattern S1. By a “good guess” we mean that only a very

small fraction of nonzero elements are missing from the guess. We also have assumed that

the diagonal elements of the Hessian can be computed by alternative means. In this chapter

we address these drawbacks. The methods we describe here draws heavily from [7]. In

absence of a ‘guess’ one can use a random sparsity pattern for S0 and apply the method of

chapter 3. One problem with this approach is that the augmented pattern S1 may become so

dense that all advantage of using the CPR is lost. A key observation is that the partitioning

38

4.2. THE MULTILEVEL ALGORITHM

algorithm is very efficient when applied to sparse patterns. Also, the main computational

operation is the evaluation of the gradient. A suitable strategy to minimize the number of

gradient evaluations could be:

a) Use a small number of random sparsity patterns and use the CPR method to determine

the set of flaws for each pattern. We then take intersection of all such flaws to yield the

location of missing elements. Then augment the guess S0 with the missing elements as

computed. To avoid dense patterns one can terminate the flaw computation when the

number of possible flaw locations determined so far exceeds a predetermined thresh-

old. The algorithm can now restart with a different set of randomly generated sparsity

pattern. The number of times this algorithm is repeated before a reasonably sparse aug-

menting pattern has been determined must be very small. We call each application of

the algorithm as “level”.

To summarize, each level corresponds to a small set of randomly generated sparsity

pattern. The intersection of the corresponding flaws gives the augmenting pattern. The

algorithm is terminated for the current level if the augmenting pattern is unacceptably

dense.

b) When the diagonal of the Hessian matrix can not be computed directly, one can use

simple “voting” strategy. To clarify, diagonal entries at each level are noted and the

determination of whether the entry is a zero or nonzero is settled by a simple majority

assumed over all the levels.

In our implementation we adapt the multilevel heuristic of [7] whereby the initial pattern is

augmented with a small number (say k) of random patterns and using the CPR method a flaw

matrix is defined as the intersection of the flaw matrices obtained for each of k patterns. It is

expected that the flaw matrix thus obtained will be sufficiently sparse such that the pattern

S1 is a good approximation of the true pattern and a superset of the true sparsity pattern.

Finally, with one more CPR calculation the spurious flaws elements are removed to reveal

the true pattern.

39

4.2. THE MULTILEVEL ALGORITHM

4.2.1 Voting between Levels

In the multilevel algorithm, we can find the flaw locations by comparing individual

elements of trial matrix Sk from level to level and using a voting scheme to decide which

diagonal entries are probably flawed [7].

At each of the k levels of multilevel algorithm, we record the value of B(i, l) where

Φ(i) = l for i = 1,2, . . . ,n. Whether the diagonal element at location (i, i) is a zero or not

is decided by the value (with a given tolerance) taken by the majority of elements across k

levels. If the majority of the elements Sl(i, i), l = 0,1,,k take the same value within a

threshold, we can assume with some certainty that the value is the correct value for H(i, i).

The voting scheme becomes better as more levels are utilized. The algorithm to calculate

flaws locations using voting between levels is given below.

Algorithm 4: Compute flaw locations using voting between levels
Input : The trial pattern Sk

Array Φk that gives the partitioning of symmetric trial pattern Sk
The compressed matrix Bk

Output: Set of all flaws locations
1 for i = 1,n do // computing type 1 flaw
2 if |Al(i, i)−Al−1(i, i)|< η3(|Al(i, i)|+ |Al−1(i, i)|) for majority of the elements

where, l=0,1,....,k then
3 for l = 0, ...,k do
4 if |Al(i, i)−Al(i, i)|> η1 then
5 add (i, i) to the set of flaw type 1

6 else
7 for l = 0, ...,k do
8 add (i, i) to the set of flaw type 1

9 for each Ak(i, j) 6= Ak(j, i) with j ≥ i at level k do
10 if i 6= j and |Ak(i, j)−Ak(j, i)|> η1 then
11 add (i, j) and (j, i) to the set of type 1 flaw

12 for each Bk(i,k) 6= 0 at level k do // computing type 2 flaw
13 for each Ak(i, j) = 0 do
14 if Φ(j) = k and |Bk(i,k)|> ε η2 then
15 add (i, j) to the set of flaw type 2

40

4.2. THE MULTILEVEL ALGORITHM

Two diagonal elements Al(i, i) and Al−1(i, i) are considered equal if, |Al(i, i)−Al−1(i, i)|<

η3(|Al(i, i)|+ |Al−1(i, i)|) for some positive threshold η3. In our implementation, we never

expand the Hessian approximation Ak into full matrix rather we access Ak by using matrix

Bk and the sparsity structure of trial pattern Sk.

Here the type-2 flaws do not depend on the voting technique, at each level we recompute

type-1 flaws at all previous levels using the currently available information. The selection

of nonzero constants and threshold values will affect algorithm efficiency. For example a

problem can arise if the nonzeros have the same values. If δi = δ j for all i, j, the computed

location for any flawed element in H will be same for the equal nonzero values. Thus in

our implementation,

• δi 6= δ j for all i, j and δi = ri×10−12, where ri is a randomly selected number between

0.5 to 2.

• ηi = 10−12, for i = 1,2 and 3.

4.2.2 Asymptotic Analysis

In Algorithm 4, lines 1−8 executes the voting scheme n times between levels 0 to k for

calculating type 1 flaws. The time complexity of voting between level (line 2) is O(k). The

time for adding (i, i) flaws between level (line 3-8) is also O(k). The total computational

complexity of voting scheme is O(nk2).

Line (9-11) require O(np) time to calculate type 1 flaw for i 6= j. There is no voting for

type 2 flaws, so the time complexity of calculating type 2 flaw (line 12−15) is still O(np)

as in Algorithm 3. The resulting time complexity for Algorithm 4 is O(nk2)+O(np).

Finding all Possible flaws

If the randomly generated sparsity pattern has enough randomizing effect then the lo-

cations of spurious elements will be significantly different and the number of spurious ele-

ments in (F0
⋂

F >0)
⋂
(F1

⋂
F >1) will be considerably reduced from the number present in

41

4.2. THE MULTILEVEL ALGORITHM

(F0
⋂

F >0).

The flaw pattern at level k is,

S(F) = S
(
F0

⋂
F >0

⋂
F1

⋂
F >1

⋂
. . .

⋂
Fk

⋂
F >k
)

It is not necessary to calculate or store the intermediate patterns Fi for i = 1, . . . ,k− 1

and S(F) because S(F) can be directly computed from the flaws. Algorithm 5 describes

Algorithm 5: Compute the set of all possible flaws S(F)

Input : Array Φk that gives the column partitioning of symmetric pattern Sk
flaw locations Fk

Output: The set of all possible flaws S(F)
1 Set S(F) = φ ;
2 for each flaw (i, j) do
3 for each element (i, l) where l ∈Φk(j) and k > i do
4 Add (i, l) and (l, i) to the set S(F) ;

the pattern of flaw matrix F according to Proposition 1 and Proposition 2 and based on the

flaws computed by Algorithm 4. We emphasize that the flaw matrix need not be constructed

explicitly and is shown here for the purpose of illustration.

Now we can present the complete multilevel algorithm for the determination of Hessian

matrix.

42

4.2. THE MULTILEVEL ALGORITHM

4.2.3 Multilevel Algorithm to Determine the Sparsity Structure of Hessian Matrix H

Algorithm: Multilevel algorithm to determine the sparsity structure of Hessian matrix
Input : A symmetric trial pattern S0

An estimation on the number of missing elements nestimate
Output: The final true pattern S(H)

1 if I * S0 then
2 S0 = S0∪ I ;

3 k = 0 ;
4 if nnz(S0)< k1nestimate then
5 S0 = S0 +R0

6 Use DSJM toolkit to partition the columns of S0 into Φ0 ;
7 Compute matrix B0 using the CPR algorithm with S0, S and Φ0; // using

Algorithm 1;
8 Compute the flaw locations F0 and set nestimate = nnz(F0); // using Algorithm 4;
9 Compute the set of flaws S(F) = S

(
F0

⋂
F >0
)

;
10 while nnz(S(F))/α > nestimate do
11 k = k+1 ;
12 Generate a random symmetric pattern Rk where, nnz(Rk)≥ k2n ;
13 Sk = Sk−1∪Rk where, nnz(Rk)+nnz(Sk−1)≥ k1nestimate;
14 Use DSJM toolkit to partition the columns of Sk into Φk;
15 Compute matrix Bk using the CPR algorithm with Sk, S and Φk; // using

Algorithm 1 ;
16 Compute the flaw locations Fk; // using Algorithm 4;
17 Estimate the number of missing elements, nestimate = nnz(Fk) ;
18 if k < 2 then
19 go to step 9

20 Compute the set of flaws S(F) = S
(
F0

⋂
F >0

⋂
F1

⋂
F >1

⋂
. . .

⋂
Fk

⋂
F >k
)

;

21 k = 0 ;
22 S0 = S0

⋂
S(F) ;

23 Use DSJM toolkit to partition the columns of S0 into Φ0 ;
24 Compute matrix B0 using the CPR algorithm with S0, S and Φ0; // using

Algorithm 1;
25 Compute the flaw locations F0; // using Algorithm 4;
26 Estimate the number of missing elements, nestimate = nnz(F0) ;
27 Get the final pattern S(H) by eliminating spurious entries from S0; // using

Algorithm 6;
28 if nestimate = 0 then
29 exit;
30 else
31 go to step 11 ;

43

4.2. THE MULTILEVEL ALGORITHM

Here we start with an initial estimation on the number of missing elements nestimate

based on input trial pattern S0, which is used to determine the the number of nonzeros for

the starting guess pattern. Later we update nestimate by the number of nonzero elements

in flaw matrix F . We use a random number generator to produce pairs of integers (i, j)k,

k = 1,2,m/2 (with each integer between 1 to n) to generate a symmetric pattern Rk with

m entries. The reason of taking random pattern Rk is to make different guess pattern by

Sk = Sk−1∪Rk at each level of computation. We should consider some adjustment before

selecting these values as proper selection of the values of these parameters can lead to

improved efficiency.

• The number of nonzero elements in Sk should be at least a small multiple of nestimate,

i.e. nnz(Sk)≥ k1nestimate

• The number of nonzero elements in Rk should be at least a small multiple of n, i.e.

nnz(Rk)≥ k2n to randomize the pattern of flaws.

• The while loop should execute until the number of nonzero elements in flaw matrix

pattern is significantly small than nestimate, i.e. nnz(S(F))/α > nestimate.

Where k1 ≥ 2, k2 ≥ 1 and α ≥ 5. Line (4− 5) execute when no initial guess pattern sup-

plies or the number of nonzero elements in S0 is less then a small multiple of nestimate, i.e.

nnz(S0)< k1nestimate.

To Compute the set of flaws S(F) we do not need to calculate or store the intermediate

patterns Fk because S(F) can be directly calculated from the flaws.

In the pattern matrix S0 (at line 22 of multilevel algorithm) some zero entries of the true

Hessian matrix may have been mislabelled as nonzero. Such entries will vanish in B0 (at

line 24) and can be easily be identified using the pattern S0. Removing these spurious en-

tries from S0 yields the true sparsity pattern of the Hessian. Algorithm to eliminate spurious

zeros from B0 as follows,

44

4.2. THE MULTILEVEL ALGORITHM

Algorithm 6: Eliminating spurious entries from S0

Input : Matrix S0
Array Φ that gives the column partitioning of symmetric pattern S0
Matrix B0

Output: The final pattern S(H)
1 for each S0(i, j) 6= 0 where j ≥ i do
2 if max (|A0(i, j)|, |A0(j, i)|)< η0 then
3 S0(i, j) = 0 ;

where η0 is a positive threshold used to find the spurious zeros in A0 (η0 = 10−6 in our

implementation) and we access A0 by using matrix B0.

4.2.4 Asymptotic Analysis

In the multilevel algorithm, most computationally expensive operations are performed

within the while loop (lines 10-20). The DSJM toolkit requires O(
m

∑
i=1

ρ
2
i) times to partition

the columns of Sk (line 14) and the Algorithm 1 needs O(nnz) times (line 15) to compute

matrix Bk. The time complexity for Algorithm 4 is O(nk2)+O(np) to compute the flaw

locations (line 16). The time for Eliminating spurious entries from S0 in line 27 is O(nnz)

where nnz is the number of nonzeros in S0 (in Algorithm 6).

45

Chapter 5

Numerical Experiments

In this chapter, we present numerical results of applying algorithms proposed in this thesis

on practical instances. In Section 5.1 we give details of test data sets that we have used in

our experiments. We describes the numerical experiments with the iterative algorithm in

Section 5.2. In Section 5.3, we provide our findings.

5.1 Test Data Sets

In this section, we discuss about our data sets. The data set in Table 5.1 is for the

matrices which are collected from Matrix Market Collection [3]. The data set in Table

5.2 is obtained from University of Florida Matrix Collection [5]. In tables, Table 5.1 and

Table 5.2 we provide the name of the matrix under the column labeled Matrix, the columns

labeled n is used to represent the number of columns and rows (square matrix) and nnz is

used to represent the total number of nonzeroes in the matrix.

Table 5.1: Matrix Data Sets-1

Matrix n nnz

bcspwr05 443 1,623

dwt 592 592 5,104

nos6 675 3,255

young1c 841 4,089

Continued on next page

46

5.1. TEST DATA SETS

Table 5.1 – continued from previous page

Matrix n nnz

sherman1 1,000 3,750

rdb1250 1,250 7,300

lshp1561 1,561 10,681

fidap004 1,601 32,287

plat1919 1,919 32,399

rdb2048 2,048 12,032

orsreg 1 2,205 14,133

zenios 2,873 27,191

pde2961 2,961 14,585

bcsstk21 3,600 26,600

e20r0000 4,241 131,556

fidapm09 4,683 95,053

mhd4800b 4,800 27,520

sherman3 5,005 20,033

bcspwr10 5,300 21,842

fidap018 5,773 69,335

fidap015 6,867 96,421

e30r1000 9,661 306,356

bcsstk17 10,974 428,650

bcsstk18 11,948 149,090

fidapm29 13,668 186,294

Continued on next page

47

5.1. TEST DATA SETS

Table 5.1 – continued from previous page

Matrix n nnz

bcsstk29 13,992 619,488

bcsstk25 15,439 252,241

e40r5000 17,281 553,956

bcsstk30 28,924 2,043,492

Table 5.2: Matrix Data Sets-2

Matrix n nnz

662 bus 664 2,274

dwt 758 758 5,994

rdb800l 800 4,640

olm1000 1,000 4,994

Jagmesh3 1,089 4,661

Jagmesh5 1,180 4,951

Jagmesh8 1,141 7,465

dwt1242 1,242 7,213

lshp1270 1,270 5,533

Jagmesh9 1,349 5,654

Jagmesh4 1,440 6,052

bscpwr06 1,454 5,300

bscpwr08 1,624 6,050

filter2D 1,668 10,750

Continued on next page

48

5.2. TEST ENVIRONMENT

Table 5.2 – continued from previous page

Matrix n nnz

ex33 1,733 22,189

watt 1 1,856 11,488

G26 2,000 39,980

t2dal a 4,257 37,465

nasa4704 4,704 104,756

EX5 6,545 196,360

Kuu 7,102 340,200

G65 8,000 32,000

delaunay n13 8,192 49,094

aft01 8,205 125,567

nemeth02 9,506 394,808

wing nodal 10,937 150,976

linverse 11,999 95,977

stokes64s 12,546 140,034

barth5 15,606 107,362

gyro m 17,361 340,431

Trefethen 20000b 19,999 554,435

t3dl e 20,360 20,360

tube1 21,498 897,056

49

5.3. TEST RESULTS

5.2 Test Environment

Numerical Experiments with data sets in Table (5.1) and Table (5.2) were done on an

AMD PC with AMD Opteron(tm) Processor 4284, 16 GB RAM and 2048kB L2 cache

running 64 bit Linux.

5.3 Test Results

Our implementation relies heavily on the use of efficient sparse data structures and op-

erations on sparse matrices. We use the package DSJM [24] to compute the structurally

orthogonal partitioning and use difference approximation (Equation (1.1)) to compute ma-

trix B corresponding to a given sparsity pattern. Matrix B is stored as a dense matrix since

most of its entries are nonzero. The union and intersection operations as well as the compu-

tation of flaw matrix F use sparse data structures based on compressed sparse row (CSR)

and compressed sparse column (CSC) representations [24]. Our test results are shown in

Table 5.3 and 5.4 with Matrix Market collection and University of Florida Sparse Matrix

Collection respectively. In both tables, ρmax represents maximum number of nonzeroes in

any row of the matrices. For our test matrices the value of ρmax is between 5−218. Entries

in column labelled ncolor denote the number of column groups in the structurally orthog-

onal partition of the true Hessian. The total number of gradient evaluations to detect the

sparsity pattern for each test problem is listed under column nfeval.

5.3.1 Numerical Experiments

Table 5.3: Computational Cost for Sparsity Detection for data set 1

Matrix n ρmax ncolor nfeval nCPR

bcspwr05 443 10 10 154 8

nos6 675 5 5 151 8

Continued on next page

50

5.3. TEST RESULTS

Table 5.3 – continued from previous page

Matrix n ρmax ncolor nfeval nCPR

young1c 841 5 5 162 10

rdb1250 1,250 6 8 297 9

bcsstm12 1,473 22 26 713 11

lshp1561 1,561 7 8 368 10

plat1919 1,919 19 24 780 11

rdb2048 2,048 6 9 273 9

orsreg 1 2,205 7 11 239 9

zenios 2,873 14 48 1,095 11

bcsstk21 3,600 9 14 535 11

e20r0000 4,241 62 69 2,516 14

fidapm09 4,683 37 45 1,567 12

mhd4800b 4,800 10 10 497 11

bcspwr10 5,300 14 14 329 12

s1rmt3m1 5,489 48 50 2,864 13

fidap018 5,773 18 22 1,277 14

fidap015 6,867 18 22 1,297 14

e30r1000 9,661 62 70 2,998 12

bcsstk17 10,974 150 150 3,580 11

bcsstk18 11,948 49 49 1,680 13

bcsstk29 13,992 71 72 5,069 11

bcsstk25 15,439 59 59 2,950 15

Continued on next page

51

5.3. TEST RESULTS

Table 5.3 – continued from previous page

Matrix n ρmax ncolor nfeval nCPR

e40r5000 17,281 62 70 3,383 12

bcsstk30 28,924 218 219 9,131 13

Table 5.4: Computational Cost for Sparsity Detection for data set 2

Matrix n ρmax ncolor nfeval nCPR

662 bus 664 10 20 214 6

dwt 758 758 11 12 342 7

rdb800l 800 6 10 286 7

olm1000 1,000 6 11 241 7

Jagmesh3 1,089 7 16 284 8

Jagmesh5 1,180 7 8 246 7

Jagmesh8 1,141 7 10 324 8

dwt1242 1,242 12 12 409 10

lshp1270 1,270 7 8 256 7

Jagmesh9 1,349 7 8 251 8

Jagmesh4 1,440 7 8 263 8

bscpwr06 1,454 13 15 293 7

bscpwr08 1,624 14 14 451 11

filter2D 1,668 9 11 589 11

ex33 1,733 18 22 825 13

watt 1 1,856 7 17 259 6

Continued on next page

52

5.3. TEST RESULTS

Table 5.4 – continued from previous page

Matrix n ρmax ncolor nfeval nCPR

G26 2,000 40 82 1,504 9

t2dal a 4,257 9 12 894 12

nasa4704 4,704 42 47 1,805 15

EX5 6,545 120 138 3,205 13

Kuu 7,102 96 108 4,744 11

G65 8,000 19 19 318 12

delaunay n13 8,192 12 14 578 11

aft01 8,205 21 25 1,367 11

nemeth02 9,506 52 56 3,739 13

wing nodal 10,937 28 37 1,520 9

linverse 11,999 9 11 764 15

stokes64s 12,546 11 20 1,083 13

barth5 15,606 11 11 1,235 14

gyro m 17,361 120 120 4,287 14

Trefethen 20000b 19,999 84 84 4,110 16

t3dl e 20,360 1 3 3 2

tube1 21,498 48 67 5,251 11

5.3.2 Summary of Experimental Results

For the above numerical experiments the inputs of our multilevel algorithm are,

• a band matrix of size n×n with bandwidth 3 as the input symmetric trial pattern S0

and

• nestimate = nnz(H)−3∗n where nnz(H) is the number of nonzero entries in the true

53

5.3. TEST RESULTS

pattern H ∈ Rn×n.

Line 5 executes to enlarge the input trial pattern S0 if nnz(S0) < k1nestimate where R0 is a

band matrix with bandwidth 5. We have done our experiments by setting k1 = 2, k2 = 1 and

α = 5 in multilevel algorithm. If we increase the value of k2 to 3 it decreases the number of

level but increase the number of gradient evaluations. The same behavior is observed if we

increase the value of α.

Number of Iterations

Number of iterations the while loop (lines 10− 18) goes through to obtain the true

sparsity pattern is between 1−5. For the first time the while loop iterates 3 or 4 times for

most of the test matrices. For some cases the number is 5, e.g., e20r000, ex5 (when the

test matrix is less sparse). When the number of nonzeros are very small, the first iteration

of while loop is 2 or 1. The number of while loop iterations decreases to 1 as the true

sparsity pattern reveals with the outer iteration (line 29). The number of outer iterations for

multilevel algorithm is between 1−4. The outer iteration is 1 or 2 only for small number of

nonzeros (approximately nnz < 30,000). Those iteration numbers depend on the randomly

generated sparsity pattern Rk at each level. If the randomly generated sparsity pattern is a

good guess of the true sparsity pattern the number of iteration will be small.

Number of CPR calls

From the number of iterations we can also find the number of calls to the CPR algorithm.

For our test results shown above the number of CPR calculation (nCPR) is between 7−16.

For small number of nonzeros there are 7−13 CPR calls and for large number of nonzeros

entries there are 11−16 CPR calls in total.

Number of Gradient Evaluations

The number of gradient evaluation nfeval increases inside the while loop iteration and

decreases for the outer loop iteration.

54

5.3. TEST RESULTS

From the above tables (Table 5.3 and Table 5.4), we can make the following statements

about our experimental results

• It is clear that the number of calls to the CPR (nCPR) to detect the sparsity pattern is

quite modest (relative to n) and is independent of the matrix dimension.

• Furthermore, for all the test matrices, the true pattern of the Hessian (with voting

heuristic for the diagonal elements) is obtained within 2−4 outer iterations.

• We note that ρmax is a lower bound on the number of groups in a structurally orthog-

onal partition.

• On average, the number of function evaluations required in the proposed method is

approximately one-fourth of the number of columns n for large matrices.

55

Chapter 6

Conclusion and Future works

6.1 Conclusion

The calculation of the Hessian matrix of a scalar function is a sub problem in many

numerical optimization algorithms. For large-scale problems often the Hessian matrix is

sparse and structured and it is preferable to exploit such information when available. Some-

times it is possible to determine from the problem structure the locations in the Hessian

matrix that are identically zero. In this thesis,

• We have presented an efficient method to detect Hessian matrix sparsity pattern where

the gradient is available as a black-box.

• On a set of large-scale practical test instances, we have observed a factor of 4 reduc-

tion (on average), in the number of gradient evaluations over the complete evaluation

of the Hessian matrix (= the number of columns).

6.2 Future works

There are many opportunities for extending the scope of this thesis. This section presents

some of these directions.

• For problems with special structures e.g., band matrices can be made very efficient

because coloring and other relevant computations of band matrices will reduce the

computational cost. Using band matrices instead of using randomly generated pattern

at each level can be explored. This strategy is currently being implemented.

56

6.2. FUTURE WORKS

• A parallel implementation on shared memory symmetric multi-processor system is a

promising research direction as there are ample opportunities for thread-level paral-

lelism in the algorithms.

• The thesis uses the greedy CPR algorithm. More effective column partitioning con-

sistent with direct determination allows structurally dependent column groups under

certain restrictions. Methods in this category usually require fewer gradient evalua-

tions compared with the CPR-type methods [34, 19].

• Voting scheme allows for the computation of Jacobian sparsity pattern detection. This

is an exciting line of future research.

57

Bibliography

[1] Admat. http://www.cayugaresearch.com. Accessed: 2016-06-20.

[2] Bcs structural engineering matrices small test problem. http://math.nist.gov/
MatrixMarket/data/Harwell-Boeing/bcsstruc1/bcsstk01.html. Accessed:
2016-06-20.

[3] The matrix market project. http://math.nist.gov/MatrixMarket/. Accessed:
2016-06-20.

[4] Power network pattern. http://math.nist.gov/MatrixMarket/data/
Harwell-Boeing/bcspwr/bcspwr03_lg.html. Accessed: 2016-06-20.

[5] The University of Florida Sparse Matrix Collection. http://www.cise.u.edu/
research/sparse/matrices/. Accessed: 2016-06-20.

[6] Randal Bryant, O’Hallaron David Richard, and O’Hallaron David Richard. Computer
systems: a programmer’s perspective, volume 281. Prentice Hall Upper Saddle River,
2003.

[7] Richard Geoffrey Carter. Fast numerical determination of symmetric sparsity pat-
terns. Army High Performance Computing Research Center, 1992.

[8] Richard Geoffrey Carter, Shahadat Hossain, and Marzia Sultana. Efficient Detection
of Hessian Matrix Sparsity Pattern. Poster paper presented at 41st International Sym-
posium on Symbolic and Algebraic Computation (ISSAC). Waterloo, 2016.

[9] Richard Geoffrey Carter, Shahadat Hossain, and Marzia Sultana. Efficient Detection
of Hessian Matrix Sparsity Pattern. To appear in ACM Communications in Computer
Algebra (CCA), 2016.

[10] Thomas F Coleman, Burton S Garbow, and Jorge J Moré. Software for estimating
sparse Jacobian matrices. ACM Transactions on Mathematical Software (TOMS),
10(3):329–345, 1984.

[11] Thomas F Coleman, Burton S Garbow, and Jorge J Moré. Software for estimat-
ing sparse Hessian matrices. ACM Transactions on Mathematical Software (TOMS),
11(4):363–377, 1985.

[12] Thomas F Coleman and Jorge J Moré. Estimation of sparse Hessian matrices and
graph coloring problems. Mathematical Programming, 28(3):243–270, 1984.

58

http://www.cayugaresearch.com
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc1/bcsstk01.html
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc1/bcsstk01.html
http://math.nist.gov/MatrixMarket/
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcspwr/bcspwr03_lg.html
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcspwr/bcspwr03_lg.html
http://www.cise.uﬂ.edu/research/sparse/matrices/
http://www.cise.uﬂ.edu/research/sparse/matrices/

BIBLIOGRAPHY

[13] Thomas F Coleman and Arun Verma. The efficient computation of sparse Jaco-
bian matrices using automatic differentiation. SIAM Journal on Scientific Computing,
19(4):1210–1233, 1998.

[14] AR Curtis, Michael JD Powell, and John K Reid. On the estimation of sparse Jacobian
matrices. J. Inst. Math. Appl, 13(1):117–120, 1974.

[15] John E Dennis Jr and Robert B Schnabel. Numerical methods for unconstrained opti-
mization and nonlinear equations, volume 16. Siam, 1996.

[16] Shaun A Forth. An efficient overloaded implementation of forward mode automatic
differentiation in MATLAB. ACM Transactions on Mathematical Software (TOMS),
32(2):195–222, 2006.

[17] Assefaw H Gebremedhin, Arijit Tarafdar, Fredrik Manne, and Alex Pothen. New
acyclic and star coloring algorithms with application to computing Hessians. SIAM
Journal on Scientific Computing, 29(3):1042–1072, 2007.

[18] Assefaw H Gebremedhin, Arijit Tarafdar, Alex Pothen, and Andrea Walther. Effi-
cient computation of sparse Hessians using coloring and automatic differentiation.
INFORMS Journal on Computing, 21(2):209–223, 2009.

[19] Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. What color is your
Jacobian? graph coloring for computing derivatives. SIAM review, 47(4):629–705,
2005.

[20] D Goldfarb and Ph L Toint. Optimal estimation of Jacobian and Hessian matrices that
arise in finite difference calculations. Mathematics of Computation, 43(167):69–88,
1984.

[21] RM Gower and MP Mello. A new framework for the computation of Hessians. Opti-
mization Methods and Software, 27(2):251–273, 2012.

[22] Andreas Griewank and Christo Mitev. Detecting Jacobian sparsity patterns by
Bayesian probing. Mathematical programming, 93(1):1–25, 2002.

[23] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and tech-
niques of algorithmic differentiation. SIAM, 2008.

[24] Mahmudul Hasan, Shahadat Hossain, Ahamad Imtiaz Khan, Nasrin Hakim Mithila,
and Ashraful Huq Suny. DSJM: a software toolkit for direct determination of sparse
Jacobian matrices. In Proceedings of the 5th International Conference on Mathemat-
ical Software, ICMS, volume 9725 of LNCS, pages 275–283, Berlin,Germany, 2016.
Springer.

[25] AKM Shahadat Hossain and Trond Steihaug. Computing a sparse Jacobian matrix by
rows and columns. Optimization Methods and Software, 10(1):33–48, 1998.

59

BIBLIOGRAPHY

[26] Shahadat Hossain and Trond Steihaug. Computing sparse Jacobian matrices opti-
mally. In Automatic Differentiation: Applications, Theory, and Implementations,
pages 77–87. Springer, 2006.

[27] Shahadat Hossain and Trond Steihaug. Graph models and their efficient imple-
mentation for sparse Jacobian matrix determination. Discrete Applied Mathematics,
161(12):1747–1754, 2013.

[28] Shahadat Hossain and Trond Steihaug. Optimal direct determination of sparse Jaco-
bian matrices. Optimization Methods and Software, 28(6):1218–1232, 2013.

[29] Shahadat Hossain and Trond Steihaug. Sparse matrix computations with application to
solve system of nonlinear equations. Wiley Interdisciplinary Reviews: Computational
Statistics, 5(5):372–386, 2013.

[30] Shahadat Hossain and Marzia Sultana. Determination of Hessian Matrix Sparsity Pat-
tern. Poster paper presented at The Workshop on Nonlinear Optimization Algorithms
and Industrial Applications. The Fields Institute, Toronto, 2016.

[31] David Juedes and Jeffrey Jones. Coloring Jacobians revisited: a new algorithm for star
and˜ acyclic bicoloring. Optimization Methods and Software, 27(2):295–309, 2012.

[32] S Thomas McCormick. Optimal approximation of sparse Hessians and its equivalence
to a graph coloring problem. Mathematical Programming, 26(2):153–171, 1983.

[33] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &
Business Media, 2006.

[34] MJD Powell and Ph L Toint. On the estimation of sparse Hessian matrices. SIAM
Journal on Numerical Analysis, 16(6):1060–1074, 1979.

[35] Andrea Walther. Computing sparse Hessians with automatic differentiation. ACM
Transactions on Mathematical Software (TOMS), 34(1):3, 2008.

[36] Andrea Walther. On the efficient computation of sparsity patterns for Hessians. In
Recent Advances in Algorithmic Differentiation, pages 139–149. Springer, 2012.

[37] Andrea Walther and Andreas Griewank. Getting started with adol-c. In Combinatorial
scientific computing, pages 181–202, 2009.

[38] JH Wilkinson. The algebraic eigenvalue problem. In Handbook for Automatic Com-
putation, Volume II, Linear Algebra. Springer-Verlag New York, 1971.

[39] Wei Xu and Thomas F Coleman. Efficient (partial) determination of derivative
matrices via automatic differentiation. SIAM Journal on Scientific Computing,
35(3):A1398–A1416, 2013.

60

	Contents
	List of Tables
	List of Figures
	List of Notations
	List of Symbols
	Introduction
	Motivation
	Our Contribution
	Thesis organization

	Problem Definition and Background Study
	Problem Definition
	Preliminaries
	Gradient
	Hessian
	Finite Difference Approximation
	Approximating the Hessian
	Algorithmic Differentiation
	Forward Accumulation
	Reverse Accumulation

	Determination of Sparse Derivative Matrices
	The CPR Algorithm

	Flaw Computation
	Sparse Matrix
	Data Structure for Sparse Matrix
	Coordinate Storage
	Compressed Storage
	Cache Complexity of Sparse Matrix Access

	Detection of Missing Elements
	Determination of Flaw Locations
	Asymptotic Analysis

	Data Structure for Flaws

	Detection of Hessian Matrix Sparsity Pattern
	DSJM toolkit
	Greedy coloring method
	Smallest-Last Ordering

	The Multilevel Algorithm
	Voting between Levels
	Asymptotic Analysis
	Multilevel Algorithm to Determine the Sparsity Structure of Hessian Matrix H
	Asymptotic Analysis

	Numerical Experiments
	Test Data Sets
	Test Environment
	Test Results
	Numerical Experiments
	Summary of Experimental Results

	Conclusion and Future works
	Conclusion
	Future works

	Bibliography

