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Abstract 

Oscillatory activity is a ubiquitous property of brain signals. The importance of 

the phase of EEG for processing naturalistic stimuli, which have typically long duration, 

is still not clear. In this study, we presented word-nonword pairs, each of which was 

visible for five seconds and measured the effect of EEG phase during stimulus onset on 

later memory recall. The task consisted of an encoding phase in which 20 word-nonword 

pairs were presented, followed by a testing phase in which subjects where shown one of 

the seen words with four target nonwords to choose from. We found that memory recall 

performance was higher when the words during encoding were presented at a descending 

phase of the theta oscillation. This effect was the strongest over the frontal cortex. These 

results suggest that the phase of ongoing cortical activity can affect memorization of 

persistent stimuli which are an integral part of daily tasks. 
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1. Introduction 

1.1 Memory formation, storage and retrieval 

Memory consists of the act of registration (learning or encoding), followed by 

storage which will lead to future retrieval. These three stages have been largely adopted 

by behavioral and cognitive neuroscientists. The processes that mediate between the 

experience of an event and the memory formation constitute the encoding phase. It is 

difficult to differentiate the encoding and storage stages. Based on the modal model 

(Murdock, 1967), memory storage can be classified into three levels: sensory storage, 

short-term memory (STM) and long-term memory (LTM). The information can enter the 

sensory stores whether the subject is paying attention or not and there is an immediate 

registration of the stimulus within the appropriate sensory dimensions (Atkinson & 

Shiffrin, 1968). Through control processes in each stage, the information flows from 

sensory registers to STM and then LTM (Figure 1). 

 

Figure 1. The information flow according to the memory model from Atkinson and 
Shiffrin (1971) 
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 In the early 1970s, there was evidence that the Modal model had at least two 

problems. The evidence suggested that if an item is merely held in STM, learning does 

not necessarily happen, but that learning depends on the level of the processing that an 

item goes through (Craik & Lockhart, 1972). The second problem for this model was that 

it had been assumed that STM is crucial for long-term learning. A series of experiments 

conducted by Baddeley and Hitch (1974), suggested that LTM was not totally dependent 

on STM. Instead, Baddeley and Hitch replaced STM by a more complex system called 

“working memory”.  In their proposed memory system, there are two short-term stores 

(phonological loop and visuospatial scratchpad) and a control system (central executive) 

(Figure 2).  

 

Figure 2. Baddeley and Hitch model of working memory from Baddeley and Hitch (1974) 

The information transfer from STM to LTM is called memory consolidation, 

which means the memory has been stabilized and becomes more resistant to interference 

(Stickgold, 2005). Consolidation is thought to originate from the reactivation of the 

encoded neuronal memory representations during slow-wave sleep (SWS). Retrieval of a 

memory is the process through which memory attributes are taken from the storage 

(Estes, 2014). During retrieval, neural states which were experienced during encoding are 

reactivated (Ritchey, Wing, LaBar, & Cabeza, 2012).  
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According to the information above, encoding and retrieval can be similar. Based 

on a computational model, this similarity is relevant to the role of the hippocampus in 

guiding a replay of the encoded information across neocortex (Sutherland & 

McNaughton, 2000). In this model, hippocampal neural activity is characterized by two 

sates: theta and large irregular activity (LIA). In the theta state, the activity is driven by 

the external stimuli, and in the LIA state the patterns of neural activity during the theta 

state are replayed. In a human study (Ritchey et al., 2012), it has been shown that memory 

success was correlated with encoding-retrieval pattern similarity in frontal and posterior 

cortices. This means that if the encoding process is performed properly, the stimuli might 

be recalled better.  

1.2 Electroencephalography (EEG) oscillations and memory 

Cortical cell assemblies communicate through brain oscillations (Klimesch, 1996). 

In the last three decades, researchers have investigated the role of these oscillations in 

memory formation. Most studies have focused on simple properties of a specific 

oscillation in a frequency band, for example, power of alpha (Doppelmayr, Klimesch, 

Stadler, Pöllhuber, & Heine, 2002; Klimesch, 1999). However, the emergence of complex 

computational methods made it possible to investigate other frequency bands and various 

oscillatory features, for example, phase-amplitude coupling. Canolty et al. (2006) showed 

that high gamma power is modulated by theta phase across a range of behavioral tasks 

including a working memory task.  
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Neuronal information can flow form one structure to another in the brain. The 

synaptic path length and effective connectivity are the factors that decide the possible 

routing schemes for information (Buzsáki, 2006). The frequency of the oscillations is a 

determinant factor in how far the information can propagate in one step. Hence, low-

frequency oscillations can travel further, and therefore, it has been suggested that the low 

frequency oscillations, for example theta oscillation, favor in synchronizing networks 

over longer spatial ranges, whereas high frequency oscillations are thought to 

synchronized the neural assemblies over a shorter distance (Buzsáki, 2006; Jensen & 

Colgin, 2007). An overview of studies has shown that different frequency oscillations 

might demonstrate opposing changes in their power in memory-related tasks (Hanslmayr 

& Staudigl, 2014).   

1.2.1 Oscillator synchrony  

As noted above, the relation between phases of various oscillations has been 

recently investigated using more complex computational approaches. In recent years, 

studies ranging from single-unit recordings in animals to EEG and 

magnetoencephalography (MEG) studies in humans have demonstrated the pivotal role of 

phase synchronization in memory processes (Fell et al., 2011). Etymologically, 

‘synchronize’ stems from the Greek word ‘synchronizein’, meaning ‘be of the same time’. 

The word ‘synchronization’ may be used differently depending on the context in the 

neuroscience literature. There are different forms of synchronization among oscillators, 

and therefore, it is important to distinguish which type of synchronization is the aim of 
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investigation. As it is explained by Buzsáki (2006), these heterogeneous mechanisms of 

synchronization are as follows: 

a) Mutual entrainment: if two or more oscillators have different frequencies, an 

intermediate resonating frequency, which is the global frequency of the 

network, may be produced when they are connected together. Therefore, the 

system is entrained to oscillate at a frequency that stabilizes the network. 

b) Coherence:  if there is a constant phase difference between two signals or 

there is a fixed phase relationship with a third signal that is considered as 

reference for each, the signals are called coherent.  

c) Phase-locking: if two oscillators interact in a way that the phase difference is 

kept fixed regardless of the amplitude changes, they are phase-locked. For 

phase-locking or phase-coupling, the events can be non-oscillatory, such as a 

phase-locked discharge of irregularly spiking neuron and an oscillator. In 

these cases, the term ‘entrainment’ is used instead. 

d) Cross-frequency phase synchrony: if there are two or more oscillators with 

various integer frequencies, they can be phased-locked at multiple cycles. This 

is referred to as cross-frequency phase synchrony. In case two oscillators 

differ in frequency and cannot maintain a fix phase difference, they can 

produce a transient and systematic interaction, called phase precession or 

phase retardation. 
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e) Phase reset: if one or many coupled or independent oscillators of one or many 

coupled or independent oscillators are enforced to restart at the same phase, 

phase reset occurs.  

1.2.2 Phase synchronization  

Phase synchronization is a related phenomenon to phase reset, but with a different 

mechanism. This phenomenon is a stimulus-induced oscillation in two or more structures 

with transient coherent phase. One of the phase synchronization mechanisms used for 

communication is cross-frequency phase-phase coupling. When this coupling happens, in 

addition to the entire cycle, individual phases of a single cycle of an oscillation with a 

higher frequency are locked to specific phases of an oscillation with a lower frequency 

(Fell & Axmacher, 2011). Jensen and Lisman (2005) argued that the cross-frequency 

phase-phase coupling has an important role in representations (without interference) of 

multiple items in working memory via consecutive gamma cycles, which are locked to 

specific theta phases.  

Phase-amplitude coupling is another form of synchronization where the phase of a 

low-frequency oscillation may be synchronized both with the phase and the amplitude of 

another (usually higher frequency) oscillation. This phenomenon was initially described 

based on recordings from the rat hippocampus (Bragin et al., 1995). Phase-amplitude 

coupling was also observed in the human brain using scalp (Demiralp et al., 2007) and 

intracranial EEG recordings (Canolty et al., 2006).  
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1.2.3 EEG Acquisition  

Neuronal oscillations have a broad spectral content ranging from 0.05 to 500 Hz 

in the mammalian forebrain (Buzsáki & Draguhn, 2004). These oscillations are 

characterized by their amplitude, frequency, and phase. In order to study these properties 

in the time domain, namely phase and amplitude, a temporal resolution of 2 ms to 20 s is 

required.  

EEG, MEG, and intracranial EEG (iEEG) are common recording methods for 

studying the dynamics of synchronous neuronal oscillations and cognitive processes, such 

as memory and attention (Ward, 2003). iEEG recordings provide a high signal-to-noise 

ratio compared to EEG. However, the former is an invasive method that is applied in 

epilepsy surgeries for preoperative evaluation and functional mapping (Wang, Yan, Wen, 

Yu, & Li, 2016). Methods such as functional magnetic resonance imaging (fMRI) and 

positron emission tomography (PET) record changes in blood flow and the metabolic 

activity, respectively. These measures have a time resolution varying from seconds to 

minutes. Hence, in spite of their high spatial resolution, they blur events in time. 

Although EEG does not provide a high spatial resolution, it gives a temporal 

resolution on the order of milliseconds. This temporal resolution makes it easier to track 

the rapid shifts in brain functioning. Numerous studies have used EEG to study the effect 

of the amplitude of EEG oscillations on memory recall (Jensen & Tesche, 2002; 

Klimesch, 1999; Onton, Delorme, & Makeig, 2005). Compared to other methodologies in 

cognitive research, EEG allows temporally accurate measurements of intracranial current 
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flows, is inexpensive, and noninvasive. For these reasons, in our study we made extensive 

use of 128-channel dense array EEG system at the University of Lethbridge to investigate 

EEG dynamics in a visual memory task regardless of the underlying functional anatomy 

of memory encoding and retrieval. 

1.2.4 Phase Analysis 

One of the properties of the oscillations is phase. The instantaneous phase of a 

complex function is defined as: 

 ( ) = arg[ ( )] (1) 

Where   is argument function (Fig 1). For a real-valued function, the phase is 

calculated as: 

 ( ) = arg[ ( )] (2) 

where ( ) is the analytic representation of the function. An analytical function can be 

expressed in the form of time-varying magnitude and phase and can be written as: 

 ( ) = ( ) [ ( )] (3) 

where ( ) is the instantaneous amplitude and ( ) is the instantaneous phase of the real 

signal ( ) (Picinbono, 1997). 

In order to measure the instantaneous phase, two methods have been used for 

neural signals: wavelet transform and Hilbert transform (le Van Quyen et al., 2001; 
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Olkkonen, 2006).  For wavelet analysis, the convolution of the signal with a complex 

wavelet is computed. When using Hilbert transform, the analytical function is obtained by 

convolving the signal with the function 1 . The output of this function in combination 

with the original signal gives the analytic signal (3) that is a complex valued signal with 

no negative frequency components. From this function, the instantaneous phase ( ( )) is 

obtained.  

Wavelets are localized in both the time and frequency domains, unlike sine and 

cosine, which are used as basis functions in fast Fourier transform (FFT) and are localized 

in frequency but infinitely extended in time. Shrinking the wavelet in time results in a 

more localized resolution in time and will cover a wider frequency range, whereas 

stretching the wavelet will result in less localization in time and more localization in 

frequency. Hence, wavelets follow the Heisenberg Uncertainty Principle. This property of 

wavelet makes them a good choice for analyzing the neuroelectric events that are closely 

spaced in time.  

As mentioned earlier, the Hilbert transform gives the analytic signal of the real 

signal. In order to calculate a meaningful instantaneous phase some conditions must be 

met: the signal has to be monocomponent, zero mean locally and symmetric with respect 

to the zero mean (Huang et al., 2009). However, EEG is not a monocomponent signal. In 

order to reliably calculate the instantaneous phase, EEG signal should be bandpass 

filtered to a narrowband. As a result, applying the Hilbert transform necessitates 

designing bandpass filters for different frequency bands. 
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Despite the fact that there are minor differences between wavelet and Hilbert 

transforms, it has been shown that for studying phase synchrony and phase-locking in 

neuroelectrical signals both methods can be equivalently used with comparable 

computational complexity (Le Van Quyen et al., 2001). 

1.2.5 Filter design 

Filtering is one of the preprocessing steps for analyzing EEG data. Although 

filtering attenuates undesired components of the signal, such as noise or off-target 

frequencies, it might introduce unintended distortions to the signal.  

The first step is to decide what type of filter is needed for analyzing the EEG 

signal. According to our desired frequency range, we can choose low-pass (attenuating 

high-frequency band), high-pass (attenuating low-frequency band), band-pass (passes the 

signal within a certain band), or band-stop (opposite of a band-pass). In our study, we 

were interested in band-pass filtering the signal. In order to ideally filter the signal to a 

desired frequency band, a sharp filter with narrow transition band is needed. The steeper 

the filter is in the frequency band, the longer the order of the filter will be in the time 

domain. It has been suggested to separately apply a steep high-pass and a shallow low-

pass filter over a band-pass filter with steep high-pass and low-pass transition (Widmann, 

Schröger, & Maess, 2015). If the length of EEG data, as the input, is large enough 

compared to the order (or length) of the filter (usually three times larger), it is possible to 

design a steep band-pass filter.  
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In theory, an ideal filter has a finite bandwidth in frequency domain, and therefore 

requires an infinitely long filter in the time domain. This is impossible as all recorded data 

are finite. The solution is to multiply the impulse response of the filter by a window to 

make it finite, but this introduces sidelobes outside the desired frequency band. The 

choice of the window can minimize these adverse effects. From the common window 

choices, such as rectangular, Hamming, Hanning, Blackman, and Kaiser, we chose the 

Kaiser window, as it gives acceptable attenuation outside the desired frequency band and 

minimum passband ripple (deviation from desired frequency response within the 

passband), which minimizes signal distortion. 

We next needed to decide to use either a finite impulse response (FIR) or an 

infinite-impulse response (IIR) filter. In order to make this decision, there are some 

factors to consider. Although IIR filters are computationally more efficient, they have a 

non-linear phase, which introduces different delays to different frequency bands. 

However, with FIR it is always possible to achieve a linear phase, which introduces an 

equal (group) delay at all frequency bands. This means that a certain amount of delay is 

applied to all the samples of the input signal in time domain. This property enables us to 

use a two-pass filtering (filtering the output of the filter in the reverse direction) approach 

and compensate for the filter delay, which can be achieved through using the filtfilt 

function in MATLAB.  

Taking into account these considerations, we chose to design a linear phase FIR 

band-pass filter with the Kaiser window using fdatool from MATLAB. 
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2. Phase of the Low Frequency Brain Oscillations 

2.1 Introduction 

Oscillations have been documented in the brains of mammalian species, ranging 

from very slow (with periods of minutes) to very fast (with periods of milliseconds). In 

rats, all frequencies from 0.02 to 600 Hz are continuously present (Buzsáki, 2006). 

Frequency band categorization in humans, however, follows the classification of the 

International Federation of Societies for Electroencephalography and Clinical 

Neurophysiology from 1974, which were based on the limitations of the recording 

devices used at the time. Nonetheless, we adhered to this convention, and the frequency 

band borders were chosen as: delta: 0.5 - 4 Hz, theta: 4 – 8 Hz, alpha: 8 - 12 Hz, beta: 12 - 

30 and gamma: >30 Hz.  

Slow wave oscillations during sleep play a crucial role in memory consolidation 

(Buzsáki, 1998; Marshall, Helgadóttir, Mölle, & Born, 2006). SWS (< 1 Hz) is 

characterized by slow sequences of hyperpolarization (down state) and depolarization (up 

state) with high amplitude (Achermann & Borbely, 1997; Steriade, McCormick, & 

Sejnowski, 1993). During the down state, neurons are silent (Plenz & Kitai, 1998) 

whereas the up states are characterized by irregular spike discharge at low frequency as 

well as by burst firing (Wilson & Groves, 1981). The enhancement of memory 

consolidation during sleep depends on the timing of the stimuli. If the stimuli are 

delivered in phase with the ongoing rhythmic occurrence of the up states of slow wave 

oscillation, memory consolidation is facilitated (Ngo, Martinetz, Born, & Mölle, 2013). In 

another study, presenting milliseconds long stimuli at the trough of the alpha oscillation 
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suppressed the cortical activation after the stimulus onset and made participants less 

likely to detect the target in a metacontrast masking paradigm (Mathewson, Gratton, 

Fabiani, Beck, & Ro, 2009). Batterink, Creery, and Paller (2016) showed that during 

sleep, the phase of slow oscillations at the time of targeted memory reactivation affected 

later recall. Participants were asked to learn objects paired with a characteristic sound, for 

example, cat – meow. Then, half of the sounds were presented during SWS periods of 

sleep. Cues were more likely to be forgotten or remembered depending on the phase of 

slow oscillation prior to stimulus presentation. This demonstrated that there is an optimal 

phase for memory consolidation during sleep. However, it has not been shown whether 

this holds true when the participants are awake. 

2.2 Phase of theta oscillations 

Theta oscillation (4-8 Hz) can contribute to successful encoding. Klimesch, 

Doppelmayr, Russegger, and Pachinger (1996) showed that the amplitude of brain 

oscillations in the theta frequency positively affected later retrieval success. Pre-stimulus 

thalamic theta power predicted successful and unsuccessful encoding in humans 

(Sweeney-Reed et al., 2016). Between-area phase synchrony in theta frequencies has been 

reported to be predictive of short-term memory performance (Liebe, Hoerzer, Logothetis, 

& Rainer, 2012). Successful memory formation was linked with tight coordination of 

spike timing with the local theta oscillation (Rutishauser, Ross, Mamelak, & Schuman, 

2010). Theta oscillations have been observed in many structures, including hippocampus 

(Buzsáki, 2002; Cantero et al., 2003; Rutishauser et al., 2010) and amygdala (Rutishauser 

et al., 2010). The phase of low frequency oscillations at the onset of stimuli seems to play 



 

14 

 

a significant role, not only during sleep but also when the participants are performing a 

memory-related task during daytime. However, whether the phase of theta oscillations at 

the onset of the stimuli modulates encoding of information has not been determined. 

In this study we used EEG to test the hypothesis that low frequency oscillations, 

namely theta, might play a role in encoding sensory information. We recorded the EEG 

signal over the scalp while human subjects performed a word-nonword pair matching 

experiment. We tested if stimuli presentation at a particular phase of low frequency 

oscillations would affect later recall.   

2.3  Methods 

2.3.1 Participants 

Undergraduate students (n=18) from the University of Lethbridge were recruited 

from introductory neuroscience courses and participated for course credit. Participants 

provided informed written consent. All procedures were in accordance with the 

declaration of Helsinki and were approved by the University of Lethbridge Human 

Subjects Review Committee. Subjects reported normal vision and no neurological 

conditions. Only EEG data from participants who correctly responded at a rate higher 

than chance (>25% correct) were analyzed. Thus, 11 participants (6 female; average age 

19.8, SD = 2) contributed to the data analysis.  

2.3.2 Stimuli and Procedures 

Subjects were comfortably seated 57 cm away from a 17-inch LCD monitor, with 

a refresh rate of 60 Hz. Figure 3 shows the structure of the modified word-nonword pair 
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matching task adapted from (Mander et al., 2013) using Psychophysics Toolbox Version 

3. The task consisted of four blocks, each of which was divided into two phases: learning 

and testing. The learning (or encoding) phase contained 20 trials. In each trial a word-

nonword pair was presented to the participant for five seconds followed by a one second 

interstimulus interval. Word-nonword pairs appeared with a white fixation square at the 

centre of the monitor. EEG collection was time-locked to the onset of stimulus. Each 

word-nonword pair was comprised of a word and a nonword which were derived from a 

normative database (Buchanan, Holmes, Teasley, & Hutchison, 2013) and the ARC 

nonword database (Rastle, Harrington, & Coltheart, 2002), respectively. All stimuli were 

presented on a light grey background. In the self-paced testing phase, the participant was 

asked to match the word with the nonword in the format of a multiple choice question as 

it is shown in Figure 3. Twenty word-nonword pairs which were previously seen during 

the learning phase were presented along with 20 new words. Thus, there were 40 multiple 

choice questions in the testing phase.  

Each participant completed four blocks. Short rest breaks (no more than one 

minute) were given between the blocks. Participants were given verbal instruction before 

the experiment began and the participants were asked to minimize their eye and body 

movements. 
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Figure 3. A) Schematic illustration of the learning and testing phase. B) Each experiment 
consisted of four blocks composed of 20 learning and 40 testing trials. 

2.4 EEG Acquisition and Analysis 

EEG was recorded with 128 Ag/Ag-Cl electrodes in an elastic net (Electrical 

Geodesics Inc., Eugene, OR, USA). Scalp voltages were recorded at a 500 Hz sampling 

rate and impedances were maintained under 100 k . Data were high-pass filtered at 

0.1 Hz to remove DC offset, re-referenced offline to average and analyzed using the 

BESA software package (Megis Software 5.3, Grafelfing, Germany). All the channels 
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were visually inspected for poor signal. The signal from a small number of electrodes (10 

or less) showing poor quality was replaced with an interpolated signal from neighboring 

sites. Because of the length of the trials, eye movement artifacts occurred in a majority of 

trials. Therefore, eye movement artifacts were corrected using the adaptive artifact 

correction algorithm (Ille, Berg, & Scherg, 2002). The channels from the standard 

montage were used for analysis. Data were exported from BESA and further analyzed in 

MATLAB (MATLAB version 8.3.0.532; The Mathworks Inc., 2014, Natick, MA, USA) 

using custom scripts and EEGLAB functions (Delorme & Makeig, 2004). 

For phase analysis, we first bandpass filtered the data to 0.5 and 30 Hz. For this 

reason, we designed a FIR ban-pass filter with Kaiser window using fdatool from 

MATLAB (Figure 4). EEG data were then epoched from -200 ms before to 1000 ms after 

each stimulus. The period from -200 ms to 0 ms was considered as the baseline, and the 

average EEG amplitude in the period was subtracted from each trial. In order to calculate 

the phase angle and power for each trial we used Morlet wavelet transform of single trials 

using timefreq function of EEGLab. Wavelet transformation was computed with one Hz 

steps and cycles starting from 0.5 for 0.5 Hz and 15 for 30 Hz. The output of this function 

is a matrix of complex numbers. Thus, for calculating the phase angle of each trial we 

used angle function from MATLAB. In order to ensure that our results were not 

dependent on this particular wavelet transform, we also used the Hilbert transform to 

calculate phases at the onset of the stimuli (Le Van Quyen et al., 2001). Both methods 

gave consistent results.  
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Figure 4. Band-pass filter design in fdatool from MATLAB 

2.5 Results 

2.5.1 Behavioural results 

In the word-nonword pair matching task, if the participant correctly matched the 

previously studied word with the paired nonword, it was labeled as ‘hit’, and if the 

participant incorrectly matched the word with other choices it was labeled as ‘nonhit’. As 

an example, consider Figure 3.A; if the participant would choose the nonword ‘hirmbth’ 

in the testing phase, it is called a hit and all other choices, nonhits. In our word-nonword 

pair matching task, the participants correctly matched (64.7 ± 5.9 SEM) % of the words 

over all the four blocks (chance level = 25%, Figure 5). 
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Figure 5. Average performance of the subjects plotted as a function of blocks. The error 
bars depict SEM. The performance is above chance (25%) for each block. 

2.5.2 P200 component 

Event-related potentials (ERPs) provide a way to compare the differences in 

average EEG amplitude between experimental conditions. We investigated the difference 

between one of the components of the grand average ERP (Figure 6.A). In particular, we 

investigated the P200 component, which has been reported to be modulated by different 

cognitive processes such as short-term memory (Golob & Starr, 2000) and selective 

attention (Hillyard, Hink, Schwent, & Picton, 1973). Consistent with other studies 

(Kenemans, Kok, & Smulders, 1993; Key, Dove, & Maguire, 2005), we observed a 

pronounced P200 component at the frontal sites around 150-200 ms after the stimulus 

onset (Figure 6.A). Based on paired two-tailed t-test results, there was no significant 

difference in the magnitude of the P200 component for hits (M = 2.41 µV, SEM = 0.41 

µV) and nonhits (M = 2.62 µV, SEM = 0.35 µV); t(10) = 0.43, p = 0.68. This suggests that 
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the amplitude of P200 component, which is a typical EEG measure of cognitive 

processes, is not sensitive to performance in our memory encoding task. 

2.5.3 Phase of the EEG signal at the onset of the stimuli and memory 
performance 

Next we investigated if other features of the EEG signal correlate with 

performance in our memory task. In Figure 6.A, we show that the ERP amplitude of hits 

and nonhits is different at [-38, -26] ms before the onset of the stimulus (p<0.05 for all 

points in that interval; two-tailed paired t-test). Considering previous work (Batterink et 

al., 2016), we hypothesized that this pre-stimulus difference could be the result of 

different EEG phases at stimulus onset, which could affect memory encoding. To obtain 

EEG phase information, we used wavelet decomposition (see Methods). For each subject 

we calculated the average phase at the stimulus onset for hit and nonhit trials. We found 

that for the frequency band ~ 4-5Hz at a frontal channel (F3), hit trials had a tendency to 

start at a descending phase (Figure 6.B, C), while nonhit trials did not show specific phase 

preference. 
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Figure 6. (A) Grand average ERP for channel F3 plotted as a function of time. Time = 0 
corresponds to the onset of the stimuli. Shaded regions demonstrate the SEM at each time 

point. Horizontal bar denotes the interval [-38, -26] ms, where the amplitude of the hit 
and nonhit are significantly different before the onset of the stimuli. (B) Circular plot for 
hits (blue) and nonhits (red) for channel F3, f ~ 4-5 Hz at the onset of the stimuli. Each 

blue circle on the unit circle demonstrates the average phase of the hit trials for a subject. 
For visualization, the red circles, which show the average phase of the nonhits for the 

subjects are depicted on a circle with a smaller radius. The blue and the red bar show the 
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direction and magnitude of the average phase over all the subjects for hits and nonhits, 
respectively. (C) One cycle of a sinusoidal wave illustrating the preferred phase of 

successful memory encoding. 

In order to determine if this effect is spatially restricted, we used the Rayleigh test 

to check whether the phase angles (across trials) are uniformly distributed for each 

condition. The test was performed on the phase angle of all the hit versus nonhit trials, 

and consisted of 569 hit and 311 nonhit trials for each channel. Figure 7 shows the p-

values for f ~ 4-5 Hz at the onset of the stimuli for 19 channels on the scalp. As seen from 

the figure, the angle phase of hit trials is significantly directional (p < 0.01) compared to 

the nonhit trials. This effect was most pronounced in the frontal regions on the scalp. 

 

Figure 7. P-values from the Rayleigh test for 19 channels on the scalp depicted using 
topographic maps for (A) hit and (B) nonhit trials at the onset of the stimuli calculated for 

f ~ 4-5 Hz. The angles for each condition were tested to check whether they were 
uniformly distributed using Rayleigh test. The color bars indicate p-value, and a lower p-

value means higher directionality in the phase distribution.  
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3. Discussion 

The present study investigated the effect of the phase of slow oscillations on 

memory recall using a word-nonword pair matching experiment. We demonstrated that 

the phase of the theta oscillations at the onset of the stimuli affects memory recall. The 

phase of the hit and nonhit trials was calculated and compared using the Rayleigh test. 

We observed that if the stimuli were delivered at a specific phase of theta oscillations, the 

participants were more likely to match the nonword with the correct word. This is the first 

study to show that for a memory task similar to many daily tasks, the phase of theta 

oscillation affects the success of later recollection. 

Our results support the idea that theta oscillations play a crucial role in memory-

related processing, as was previously postulated by studies done in monkeys (Liebe et al., 

2012) and humans (Rutishauser et al., 2010). Theta oscillations are associated with 

induction of synaptic plasticity (Huerta et al., 1995), which underlies memory formation. 

Increases in theta power before the onset of the stimuli in the hippocampus and neocortex 

predict heightened memory performance in human participants with implanted electrodes 

(Sweeney-Reed et al., 2016). Theta coupling has been shown between cortical area V4 

and prefrontal cortex in a monkey study on working memory maintenance (Liebe et al., 

2012). In our study, we have shown that the phase of the theta oscillation in the occipital 

and frontal regions is a good indication of the performance of the participants. 

Our results provide evidence that phase synchronization of theta oscillation is not 

prominent over the entire scalp. This effect is seen in the frontal and occipital regions on 
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the scalp (Figure 7). Since both regions are phase-locked to the onset of the stimuli, this 

suggests that there is a phase-related functional connectivity between these regions. It has 

been shown that neuronal communication is facilitated by oscillatory synchronization 

within a group of neurons sending a message along with coherence (or phase-locking) 

between the oscillations in the sending and receiving group (Fries, 2005). There is also 

abundant evidence that the prefrontal cortex, in particular the medial prefrontal cortex 

(mPFC), is involved in memory consolidation (Lynch, 2004; Marshall et al., 2006; 

Peyrache, Battaglia, & Destexhe, 2011). This suggests that the frontal regions are 

involved in encoding or gating the information.  

In our study, we found no significant difference between hits and nonhits 

regarding the P200 component. Dunn, Dunn, Languis, and Andrews (1998) demonstrated 

that low recallers generate greater frontal P200 amplitude and smaller parietal/occipital 

amplitudes than high recallers while encoding the words across two different (serial-order 

and category) memory tasks. However, in our study we focused on comparing two 

conditions rather than comparison across subjects with high and low memory 

performance. It has been shown that the amplitude of the P200 component was correlated 

with memory load over the parietal electrodes (Missonnier et al., 2007). Although in our 

task memory load does not vary across trials, it can be further investigated whether there 

is a significant difference in P200 amplitude in parietal regions of the brain. If P200 

merely indexes mechanisms of selective attention (Hillyard et al., 1973), it can be argued 

that a significant difference in the amplitude of P200 should be expected between hit and 

nonhit trials. However, our comparison is performed across all the subjects, and since 
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there are strong individual differences in the P200 component (Dunn et al., 1998), the 

difference within conditions might have been averaged out. 

Taken together, our findings suggest that phase of the low frequency oscillations, 

namely theta, has a role in gating the information during the encoding phase. If the 

stimuli are presented at a specific phase of theta oscillations, the participants are more 

likely to recall the word-nonword pairs later. We have shown that the phase of theta 

oscillation at the onset of the visual stimuli enhances the encoding of information during 

wakefulness. At the population level, information in cortical areas is thought to be 

processed not continuously but in the form of discrete packets with a sequential structure 

(Luczak, McNaughton, & Harris, 2015). We speculate that if the stimuli are not delivered 

at the correct phase of the occurring packets, it might be less optimal to integrate the 

information into the ongoing process. Hence, our observations are consistent with the 

proposition that the phase of low frequency oscillations in frontal regions could be a 

fundamental component in the encoding of information. 
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4. Conclusion 

Brain oscillations are fundamental to neuronal communication within cell 

assembly networks. Low frequency oscillations have been shown to play an important 

role in memory formation. Theta oscillations, although mostly investigated in rodents, 

have implications in memory formation in humans (Cantero et al., 2003; Kahana, Sekuler, 

Caplan, Kirschen, & Madsen, 1999; Rutishauser et al., 2010). Our word-nonword pair 

matching memory task provided further evidence that the phase of theta oscillations 

might affect encoding and later retrieval, accordingly.  

In this study, we showed that if the stimuli were delivered at a specific phase of 

theta oscillations, the recall success increased. The fact that theta oscillations affect the 

memory performance is in line with previous research that showed theta oscillations have 

been implicated in memory formation (Klimesch, 1999; Klimesch et al., 1996; Rizzuto, 

Madsen, Bromfield, Schulze-Bonhage, & Kahana, 2006). More importantly, the phase of 

theta oscillations at the onset of the stimuli contributed to encoding the information so 

that it could be recalled later. This is in line with a study conducted by (Rutishauser et al., 

2010) in which they showed that neurons in the hippocampus and amygdala were firing 

phase-locked to the theta oscillations (±45  around the peak or trough) when participants 

remembered the stimulus. This phase locking effect was most pronounced in the frontal 

regions of the scalp, which supports the results of Siapas et al., (2005) where they 

suggested that neurons in the medial prefrontal cortex of freely behaving rats fire phase-

locked to the hippocampal theta oscillations, which may be important for the formation of 

long-term memory.  
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These findings suggest that the phase of ongoing cortical activity can affect the 

ability to remember persistent stimuli, which are an integral part of many daily tasks. 
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