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Abstract

In a Cayley digraph on a group G, if a distinct colour is assigned to each
arc-orbit under the left-regular action of G, it is not hard to show that
the elements of the left-regular action of G are the only digraph auto-
morphisms that preserve this colouring. In this paper, we show that the
equivalent statement is not true in the most straightforward generalisa-
tion to G-vertex-transitive digraphs, even if we restrict the situation to
avoid some obvious potential problems. Specifically, we display an infi-
nite family of 2-closed groups G, and a G-arc-transitive digraph on each
(without any digons) for which there exists an automorphism of the di-
graph that is not an element of G (it is an automorphism of G). Since
the digraph is G-arc-transitive, the arcs would all be assigned the same
colour under the colouring by arc-orbits, so this digraph automorphism
is colour-preserving.

1 Introduction

A Cayley digraph Cay(G;S) on a group G with connection set S ⊂ G, is the digraph
whose vertices are elements of G, with an arc from g to gs if and only if s ∈ S. If
we want to consider Cayley graphs rather than digraphs, we insist that S = S−1,
so that whenever s ∈ S we have the arc from gs to (gs)s−1 = g as well as the arc
from g to gs. By convention, we assume 1 6∈ S; this avoids the situation where our
digraphs have loops at every vertex, although this assumption is in no way material
to the results we present here.

Observe that for any Cayley digraph Cay(G;S), there are certain natural auto-
morphisms that come from the group action. The most obvious is the left-regular
representation of G, denoted by GL. It was first observed by Sabidussi in [13, Lemma
4] that for every element g ∈ G, left-multiplication of all vertices by g is an automor-
phism of Cay(G;S), so that there is a regular copy of G sitting inside the automor-
phism group of the Cayley digraph. (In fact, as Sabidussi observed, Cayley digraphs
on G are characterised by the property of having a regular subgroup isomorphic to
G in their automorphism groups.)

The other natural Cayley digraph automorphism that can arise from the group
action, arises when there is an automorphism α of G such that α(S) = S. The set of
all such automorphisms forms a subgroup of the automorphism group of G, usually
denoted by Aut(G,S).

A normal Cayley digraph (defined by Xu in [16]) is a Cayley digraph for which
these group automorphisms are the only digraph automorphisms. Thus, in a normal
Cayley digraph Γ = Cay(G;S), we have Aut(Γ) = GL o Aut(G;S). These are very
special digraphs. With some very small exceptions, it is never the case that all Cayley
digraphs (or even all connected Cayley digraphs) on a group will be normal, since
if |G| = n, Kn is a (connected) Cayley digraph on G with automorphism group Sn,
and for n ≥ 5, it is not possible to write Sn as GL o Aut(G;S).
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It therefore makes sense to look for natural ways to restrict the full automorphism
group of a given Cayley digraph, so that all of the automorphisms subject to this
restriction, do come from the group actions. One approach that has been proposed
is the CCA problem, [6]. In this approach, the authors begin by defining a natural
colouring on the arcs of any Cayley digraph, using the elements of S as the colours.
The arc from g to gs is assigned the colour s.

Definition 1.1 An automorphism α of an arc-colored digraph Γ is said to be colour-
preserving, if the colour of every arc e is the same as the colour of α(e). A Cayley
digraph Cay(G;S) is called CCA (for Cayley Colour Automorphism) if the colour-
preserving automorphisms of the naturally coloured Cay(G;S) all arise from the
group actions; that is, they all lie in GL o Aut(G;S).

A very straightforward argument was used in [15, Theorem 4-8] to show that all
Cayley digraphs have an even stronger property than being CCA: specifically, all of
their colour-preserving automorphisms come from GL. This makes it easy to show
that Cayley digraphs are CCA.

Proposition 1.2 [15, Theorem 4-8] Every Cayley digraph is CCA.

Notice that if α ∈ Aut(G;S), even though S is fixed setwise by α, the only way
that α will be colour-preserving is if for each s ∈ S, α(s) = s. Thus, the restriction
to colour-preserving automorphisms is stronger than we would really like, since it
may eliminate many automorphisms that do come from the group action, as well as
(we hope) those that do not. The authors therefore propose a related problem.

Definition 1.3 An automorphism α of an arc-coloured digraph Γ is colour-permut-
ing if whenever arcs e1, e2 of Γ have the same colour, so do α(e1), α(e2) (but the
colour of α(e1) might not be the same as the colour of e1).

Clearly every colour-preserving automorphism is also colour-permuting. Thus, in
a Cayley digraph, the elements of GL are colour-permuting automorphisms (since
they are colour-preserving). Additionally, the elements of Aut(G;S) are all colour-
permuting, even if they are not colour-preserving.

Definition 1.4 A Cayley digraph Cay(G;S) is called strongly CCA if every colour-
permuting automorphism of naturally coloured Cay(G;S) lies in GL o Aut(G;S).

Since it is easy to see that the group of colour-preserving automorphisms is nor-
mal in the group of colour-permuting automorphisms, the following result is also
straightforward.

Proposition 1.5 [4, Lemma 2.1] Every Cayley digraph is strongly CCA.
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Our aim in this paper is to generalise the CCA problem to vertex-transitive di-
graphs that are not Cayley digraphs. We will show that the status of vertex-transitive
digraphs that are not Cayley digraphs is not so straightforward. To this end, we will
present an infinite family of vertex-transitive digraphs that are not Cayley digraphs
that have automorphisms that are not elements of a minimal transitive subgroup
M of their automorphism group, amongst other properties. These automorphisms
are still related to M , since they lie in its normaliser. We think that this family of
digraphs may also have other interesting properties deserving of further study.

2 How should the CCA property be generalised to vertex-
transitive digraphs?

Observe that in the CCA (or strongly CCA) problem, in the “natural arc-colouring”
being studied, each colour class is precisely the orbit of some arc of a Cayley digraph
on a group G, under the regular action of G.

There is an obvious generalisation of this colouring to vertex-transitive digraphs.

Definition 2.1 Given a digraph Γ and a vertex-transitive subgroup G ≤ Aut(Γ), the
natural arc-colouring assigns a different colour to each arc-orbit of G: two arcs get
the same color if and only if they lie in the same orbit of G.

With this colouring, it is natural to study the closely-related problem on vertex-
transitive digraphs: when do all colour-preserving (or more strongly, all colour-
permuting) automorphisms of the digraph, come from the group action? However,
even with the new colouring, we need to define what it means in this context for an
automorphism to come from the group action.

Recall that we defined a Cayley digraph to have the CCA (respectively, strongly
CCA) property if all colour-preserving (respectively, colour-permuting) digraph auto-
morphisms lie in GL o Aut(G;S). Observe that the elements of Aut(G) \Aut(G;S)
are not automorphisms of the Cayley digraph Cay(G;S) at all. Therefore, it is
equivalent to define a Cayley digraph to have the CCA (respectively, strongly CCA)
property if all colour-preserving (respectively, colour-permuting) digraph automor-
phisms lie in GL o Aut(G). This version of the definition proves easier to generalise
to the vertex-transitive situation.

Clearly, the natural arc-colouring is preserved by every element of G, so G will
take the role of GL from the problem for Cayley digraphs. Let H be the stabiliser in G
of some vertex of the digraph Γ. As before, Aut(G;H) will denote all automorphisms
of G that fix H setwise. The action of G on Γ is isomorphic to the action of G
on the left cosets of H; we identify these two actions. Automorphisms of Γ that
come from the group action are those that lie in G o Aut(G;H). In fact, to be an
automorphism of Γ, an automorphism of G must fix not only H, but the collection
of left cosets of H that are neighbours of H. Similar to the Cayley digraph situation,
every automorphism of G that is an automorphism of Γ, will permute the orbits
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of the edges (or arcs) under the action of G, so will be colour-permuting (if not
colour-preserving).

It is tempting to immediately define the G-VTCA property analogously to the
CCA property, but in some sense this could be considered “cheating.” Let Γ be a
G-vertex-transitive graph. We don’t want to have a situation where there is some
G′ ≥ G that gives rise to precisely the same arc-colouring as G, and all of the
digraph automorphisms of Γ lie in G′ o Aut(G′;H ′) even though they do not lie in
G o Aut(G;H). (Here H ′ is the stabiliser of a vertex of Γ under the action of G′.)
In essence, this would mean that we erred in choosing G rather than G′ as the group
that gave rise to this colouring.

Definition 2.2 The permutation group G acting on the set Ω is 2-closed, if there
is no permutation group G′ > G such that the orbits of G′ on Ω × Ω are the same
as the orbits of G on Ω × Ω. (The “2” comes from the fact that we are looking at
the orbits of G on ordered pairs of elements of Ω.) The 2-closure of G is the largest
group G′ ≥ G that has the same orbits as G on Ω× Ω. It is denoted by G(2).

Equivalently, it can be shown that a permutation group is 2-closed if and only if
it is the automorphism group of some colour digraph.

Observe that the regular action of any group G is 2-closed, since it is the auto-
morphism group of every connected Cayley colour digraph on G (with the natural
edge-colouring), as was shown in [15, Theorem 4-8] and mentioned previously. How-
ever, it is sometimes possible to find a group G that is not 2-closed, acting vertex-
transitively on a digraph Γ. In such a case, as noted above, the 2-closure of G has
the same orbits on arcs as G, and hence induces the same colouring on the arcs.
Every element of G(2) is therefore a colour-preserving automorphism, but there is
no reason to believe in general that the elements of G(2) \ G will lie in Aut(G;H).
Before turning to an example of this, we will need some terminology.

Definition 2.3 Let G be a transitive permutation group with invariant partition B.
By G/B, we mean the subgroup of SB induced by the action of G on B, and by fixG(B)
the kernel of this action. Thus G/B = {g/B : g ∈ G} where g/B(B1) = B2 if and
only if g(B1) = B2, B1, B2 ∈ B, and fixG(B) = {g ∈ G : g(B) = B for all B ∈ B}.

Example 2.4 Let p ≥ 11 be an odd prime, α = p + 1 ∈ Z∗p3 of order p2, and
G = Zp3oαZp2. Then G is a minimal transitive subgroup of the automorphism group
of a vertex-transitive digraph but is not 2-closed. Additionally, G is not normal in
G(2).

Proof: By [8, Proposition 3.5] or [11, Theorem 6] there exists a non-Cayley vertex-
transitive digraph Γ of order p4 whose automorphism group contains G as a transitive
subgroup. (That the automorphism groups of these digraphs contains G as a transi-
tive subgroup is not in the statements of either [8, Proposition 3.5] or [11, Theorem
6], but is given in the proofs of these results. Additionally, these results are only
proven for graphs, but can be easily modified to give examples of such digraphs.)



T. DOBSON ET AL. / AUSTRALAS. J. COMBIN. 67 (1) (2017), 88–100 93

More specifically, there is a G-invariant partition consisting of p blocks of size p3,
which are the orbits of the normal cyclic subgroup 〈ρ〉. We can identify the ver-
tices with the elements of Zp × Zp3 so that for every (i, j) ∈ Zp × Zp3 , we have
ρ((i, j)) = (i, j + 1), and G = 〈ρ, τ〉, where τ((i, j)) = (i+ 1, (p+ 1)j).

Observe that |G| = p5, so if there were a smaller transitive subgroup it would have
to be regular, contradicting the fact that this graph is non-Cayley. Hence G is a
minimal transitive subgroup of Aut(Γ). It only remains to show that G(2) 6= G and
that G is not normal in G(2). Now, G admits an invariant partition B consisting
of p3 blocks of size p formed by the orbits of 〈ρp2〉; that is, each B ∈ B has the
form {(i, j + kp2) : 0 ≤ k ≤ p − 1}, for some (i, j) ∈ Zp × Zp3 . Observe that
τ p((i, j)) = (i, (p + 1)pj) = (i, (p2 + 1)j), so τ p ∈ fixG(B). Thus, G/B ∼= Zp2 o Zp
is regular, and so fixG(B) has order p2. It then follows by [1, Lemma 2] that there
is a nontrivial G-invariant partition C � B with ρp

2 |C ≤ G(2) for every C ∈ C.
Since C is nontrivial, it consists of at least p blocks. Hence fixG(2)(B) has order
at least pp, |G(2)| ≥ pp+3 > p5 since p is odd, so G(2) 6= G. Finally, it cannot
be the case that G(2) ≤ G o Aut(G) as |Aut(G)| = (p − 1)p5 by [12], and so
|Go Aut(G)| = (p− 1)p10 < pp+3 as p ≥ 11. 2

The above result also holds for odd primes p < 11, but the proof is more compli-
cated. We chose the simpler proof as our intention is to only show the existence of
a G as in the result.

Definition 2.5 We will say that a G-vertex-transitive digraph Γ has the G-VTCA
property if G is a 2-closed group, and every automorphism of Γ that preserves the
natural arc-colouring lies in G o Aut(G;H). Similarly, it has the strong G-VTCA
property, if every automorphism of Γ that permutes the natural arc-colouring lies in
Go Aut(G;H).

As observed in Proposition 1.5, all Cayley digraphs are strongly CCA, and the
only colour-preserving automorphisms are elements of GL. The goal of this paper
is to show that the corresponding situation for vertex-transitive digraphs is much
more interesting and complex. In particular, we aim to construct an infinite family
of G-vertex-transitive digraphs that may or may not have the G-VTCA property,
but for which there are some colour-preserving digraph automorphisms that come
from Aut(G;H) rather than from G.

Since it was already shown in [6, Theorem 1.6] that there exist Cayley graphs that
do not even have the (weaker) CCA property, one way to construct such digraphs
would be to find a group G that acts vertex-transitively on a digraph Γ, and also
contains elements that reverse each arc of Γ, so that every arc is part of a digon,
and both arcs in the digon have the same colour. This would be a very unsatisfying
construction. Morally, such a structure is really a graph, not a digraph. We will
insist in our construction that there exists some arc (u, v) in each of our digraphs,
such that the reverse arc (v, u) is either not in the digraph, or at least has a different
colour from (u, v).
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There is one additional property that we would like our example to have. Namely,
it is often the case that in the automorphism group of a digraph there is a chain
of subgroups G1 < G2 < · · · < Gr and each of the Gi are transitive and 2-closed.
Sabidussi [14, Theorem 2] has shown that every vertex-transitive graph (and the same
construction works equally well for digraphs) can be constructed as a coset digraph of
a transitive subgroup of its automorphism group. If the transitive subgroup is chosen
to be regular, then the coset digraph construction is the same as the Cayley digraph
construction. So when constructing vertex-transitive digraphs there are often many
choices of which transitive subgroup to use in the coset digraph construction, but it
is most natural to use a minimal transitive subgroup.

3 Adapted Marušič-Scappellato graphs

Our construction will involve orbital digraphs of SL(2, q), where q = pm, p is any
odd prime and m ≥ 2. The first related construction of this type was introduced by
Marušič and Scappellato [9, 10], with a related construction involving SL(2, p) being
introduced in [2]. These constructions produced graphs with various interesting
properties, but neither existing construction has three significant properties that we
seek. First, we will construct digraphs rather than graphs; second, we will ensure
that the resulting digraphs are not Cayley digraphs (since we know that Cayley
digraphs will be CCA); and third, we will ensure that there will be an automorphism
of the digraph that does not come directly from the appropriate vertex-transitive
group actions (although it will normalise these).

In our construction, we require the concept of an orbital digraph.

Definition 3.1 Let G be any permutation group acting on a set Ω. Let O0, O1, . . . ,
Ok be the orbits of G on Ω×Ω, and assume O0 is the diagonal orbit {(ω, ω) : ω ∈ Ω}.
Then there are k orbital digraphs of G: Γ1, . . . ,Γk. Each of these digraphs has for
its vertices the elements of Ω. For every 1 ≤ i ≤ k, there is an arc from u to v in Γi
if and only if (u, v) ∈ Oi. In other words, each of the orbital digraphs of G has for
its arcs the orbit of some particular arc under the action of G.

Construction 3.2 Let Gq = SL(2, q) be the special linear group of dimension two
over the field GF(q) where q = pm, p is any odd prime, and m ≥ 2. The vertices of
our digraph will be the non-zero two-dimensional vectors over GF(q). Observe that
the one-dimensional subspaces with the zero vector removed, form a Gq-invariant par-
tition B of these vertices. We call the elements of this partition the blocks of B, and
remark that they are also called projective points. We choose the arc ((1, 0), (0, 1))
(note that (1, 0) and (0, 1) do not lie in the same block of B), and let Γq be the orbital
digraph of Gq that contains this arc.

It is clear that the group Gq has a vertex-transitive action on Γq. In fact, the
action of Gq on the blocks of B is doubly-transitive. Note that fixGq(B) consists of
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the identity matrix I and the matrix

−I =

(
−1 0
0 −1

)
(no other scalar matrix lies in Gq = SL(2, q)).

Observe that every arc of Γq goes from one element of B to another; since B
forms an invariant partition under Gq, it is not possible for an element of Gq to take
((1, 0), (0, 1)) to an arc both of whose endpoints lie in a single block of B.

Also note that since Γq is a single orbital digraph of Gq, every arc of Γq has a
single colour in our colouring, so any automorphism of the digraph will be colour-
preserving.

We now show that Γq is indeed a digraph rather than a graph; in fact, that for
every arc (u, v) of Γq, the arc (v, u) is not in Γq.

Lemma 3.3 [5, Theorem 8.3] A Sylow 2-subgroup of SL(2, q) is generalised quater-
nion when q is odd.

Corollary 3.4 There is a unique subgroup of order 2 in SL(2, q) when q is odd.
Furthermore, the unique element of order 2 is −I.

Lemma 3.5 For every arc (u, v) in Γq, the arc (v, u) is not in Γq.

Proof: Since Γq is an orbital digraph of Gq, the group Gq acts transitively on the
arcs of Γq. Thus, if for some arc (u, v) of Γq the arc (v, u) were also in Γq, there must
be some element g of Gq that maps (u, v) to (v, u). Clearly, the element g must have
even order.

By Corollary 3.4, some power of g is −I. Since −I fixes every block of B, it cannot
map (u, v) to (v, u). However, −I also does not fix any vertex of Γq. Since every
power of g maps (u, v) to either (u, v), or (v, u), this is a contradiction. 2

Next we show that Gq is 2-closed.

Proposition 3.6 The group Gq = SL(2, q) in its action on the non-zero two-dim-
ensional vectors over GF(q), is the automorphism group of a colour digraph, so is
2-closed.

Proof: It is well-known that the nonzero elements of any finite field form a cyclic
group under multiplication. Let α be a generator for this group. Define Γ′q to be
the digraph obtained by adding to Γq (all of whose arcs have been assigned a single
colour, say black) all arcs of the form (u, αu) where u is a nonzero 2-dimensional
vector, and assigning a new colour (red, say) to all of these arcs. We claim that Gq

is the automorphism group of this digraph.

It should be clear that Gq ≤ Aut(Γ′q). Since Γq is an orbital digraph of Gq, its arcs
are clearly preserved under the action of Gq, while the red arcs are preserved because
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multiplying a vector u by the scalar α commutes with the action of any element of
Gq (scalar matrices lie in the centre of SL(2, q)). We must show that Γ′q has no other
automorphisms. We will do this by showing that |Aut(Γ′q)| = q(q2 − 1) = |Gq|.
Observe that if we ignore the black arcs, the digraph of red arcs consists of q + 1
disjoint directed cycles, each of length q − 1. Furthermore, these connected compo-
nents are precisely the blocks of B. Thus, the automorphism group of Γ′q must be
imprimitive, with these blocks forming an invariant partition. Since Gq ≤ Aut(Γ′q),
we see that Aut(Γ′q) is vertex-transitive, so by the orbit-stabiliser theorem, its order
will be q2 − 1 times the order of the subgroup that fixes some vertex. We choose to
consider the subgroup that fixes the vertex (1, 0).

Note that since Gq acts arc-transitively on Γq, the neighbours in Γq of (1, 0) are the
images of (0, 1) under the subgroup of Gq that fixes (1, 0). The matrices of SL(2, q)
that fix (1, 0) have the form (

1 b
0 1

)
,

where b is any element of GF(q). Thus, the outneighbours in Γq of (1, 0) are precisely
the elements (b, 1). Since Gq ≤ Aut(Γ′q) has this same action on the black arcs of Γ′q,
we see that the orbit of (0, 1) under the subgroup of Aut(Γ′q) that fixes (1, 0), has
length q. To complete the proof, it will suffice (using the orbit-stabiliser theorem) to
show that the subgroup of Aut(Γ′q) that fixes both (1, 0) and (0, 1) is trivial.

Consider an arbitrary automorphism β of Γ′q that fixes both (1, 0) and (0, 1). Since
there is a unique directed cycle of red arcs containing any vertex, we see that every
vertex of the form (x, 0) and every vertex of the form (0, y) must also be fixed by
β (where x, y ∈ GF(q)). We have seen above that (1, 0) has precisely one black
outneighbour in each of the blocks B ∈ B. Consider an arbitrary such black out-
neighbour of (1, 0), say (b, 1). Using the fact that Γq is an orbital digraph of Gq,
it is not hard to see that (b, 1) must have a unique black inneighbour in the block
B ∈ B that contains (0, 1), and that this inneighbour is (0, b−1). In particular, this
shows that each of the q − 1 black outneighbours of (1, 0) (not counting (0, 1)) has
a distinct black inneighbour from B. This shows that every black outneighbour of
(1, 0) is fixed by β, which implies that the directed red cycles containing each of
these vertices are all fixed pointwise by β. There are no other vertices in Γ′q, so β is
trivial, completing the proof. 2

We still have to show that Γq admits some automorphism that is not an element
of Gq.

Proposition 3.7 The map α defined by α((x, y)) = (xp, yp) is an automorphism of
Γq, and does not lie in Gq.

Proof: We see that α fixes (1, 0) and fixes the outneighbours of (1, 0) setwise, since
any element of the form (y, 1) maps to (yp, 1). Thus, these arcs are preserved. Since
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Γq is an orbital digraph of Gq, any other arc of Γq has the form (β(1, 0), β(0, 1)),
where β ∈ Gq. In particular, if

β =

(
a b
c d

)
,

then the arc is ((a, c), (b, d)). Under α, this arc maps to ((ap, cp), (bp, dp)). Since(
ap bp

cp dp

)
is also in Gq = SL(2, q), we see that α((a, c), (b, d)) is also an arc of Γq. Thus α is
indeed an automorphism of Γq.

Since q = pr with r > 1, α is not the identity, but α fixes both (0, 1) and (1, 0).
Therefore α does not lie in Gq. 2

Finally, in order to show that SL(2, q) contains no proper transitive subgroups in
its action on the 2-dimensional nonzero vectors, we will need Dickson’s Classification
of the subgroups of PSL(2, q) [7, Hauptsatz 8.27].

Theorem 3.8 A subgroup of PSL(2, q) with q = pr and p a prime is one of the
following groups:

1. An elementary abelian p-group of order pm with m ≤ r.

2. A cyclic group of order z where z is a divisor of q − 1 or q + 1 if p = 2, and a
divisor of (q − 1)/2 or (q + 1)/2 if p > 2.

3. A dihedral group of order 2z where z is as in (2).

4. A semi-direct product of an elementary abelian p-group of order pm and a cyclic
group of order t where t is a divisor of pgcd(m,r) − 1.

5. A group isomorphic to A4 where if p = 2 then r is even.

6. A group isomorphic to S4 if p2
r − 1 ≡ 0 (mod 16).

7. A group isomorphic to A5 if pr(p2
r − 1) ≡ 0 (mod 5).

8. A group isomorphic to PSL(2, pm) where m divides r.

9. A group isomorphic to PGL(2, pm) where 2m divides r.

Proposition 3.9 Let p be an odd prime, r ≥ 2, and q = pr. The action of SL(2, q)
on the 2-dimensional nonzero vectors over GF(q) contains no proper transitive sub-
groups.
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Proof: Let Gq denote the action of SL(2, q) on the 2-dimensional nonzero vectors
over GF(q). Clearly there are q2 − 1 nonzero 2-dimensional vectors over GF(q).
Also, as fixGq(B) = 〈−I〉, we have Gq/B = SL(2, q)/B ∼= PSL(2, q) and is transitive
of degree (q2 − 1)/2. Hence PSL(2, q) contains a subgroup of order a multiple of
(q2−1)/2. Inspecting Dickson’s Classification of subgroups of PSL(2, q), we see that
the only subgroup of PSL(2, q) whose order is a multiple of (q2 − 1)/2 is PSL(2, q)
itself. Thus the only subgroups of Gq of order a multiple of q2−1 are either PSL(2, q)
or Gq. As PSL(2, q) has even order and so has elements of order 2 which are not
−I, we see by Corollary 3.4 that PSL(2, q) is not a subgroup of Gq, and so the only
transitive subgroup of Gq is Gq itself. 2

These results combine to prove our main theorem.

Theorem 3.10 The digraphs Γq of Construction 3.2 are SL(2, q)-vertex-transitive,
with the following additional properties:

1. for every arc in Γq, the reverse arc is not in Γq; and

2. Γq has a colour-preserving automorphism that does not lie in SL(2, q)L.

Furthermore, this action of SL(2, q) is 2-closed, and SL(2, q) contains no proper
transitive subgroups.

Proof: The digraphs are SL(2, q)-vertex-transitive by construction. Lemma 3.5
implies (1). Proposition 3.7 implies (2), and Proposition 3.6 implies that SL(2, q) in
its actions on the non-zero two-dimensional vectors over GF(q) is a 2-closed group.
Finally, SL(2, q) contains no proper transitive subgroups by Proposition 3.9. 2

We close this section with two obvious problems that the work in this paper
demonstrates are worth considering.

Problem 3.11 Are there digraphs Γ which are not graphs and which are not G-
VTCA digraphs for some transitive 2-closed group G ≤ Aut(Γ) that contains no
proper 2-closed minimal transitive subgroups?

Problem 3.12 Are there digraphs Γ which are not graphs and which are not strongly
G-VTCA digraphs for some transitive 2-closed group G ≤ Aut(Γ) that contains no
proper 2-closed minimal transitive subgroups?

4 Natural edge-colouring of vertex-transitive graphs

In this section we explain how the concepts that we study for digraphs can be natu-
rally extended to graphs. We start by defining CCA and strongly CCA property for
Cayley graphs, first introduced in [6].
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Definition 4.1 In the natural edge-colouring of the edges of a Cayley graph
Cay(G,S), we color the edges x− xs1 and x− xs2 (s1, s2 ∈ S) with the same colour
if and only if s2 = s−11 . Similarly to the definition for coloured digraphs, we say that
an automorphism α of an edge-coloured graph Γ is colour-preserving if the colour of
every edge e is the same as the colour of α(e). Analogously, we say that an auto-
morphism α of an edge-coloured graph Γ is colour-permuting if whenever edges e1,
e2 of Γ have the same colour, so do α(e1), α(e2) (but the colour of α(e1) might not
be the same as the colour of e1). We say that a Cayley graph Cay(G;S) is CCA (re-
spectively strongly CCA) if every colour-preserving (respectively colour-permuting)
automorphism of a naturally coloured graph Cay(G;S) lies in GL o Aut(G;S).

As observed in Proposition 1.5, every Cayley digraph is strongly CCA. The sit-
uation with graphs is much more interesting and much more complicated. It is an
interesting and open problem to classify Cayley graphs that have the CCA property.
Most of the progress to date has lain in the direction of determining the groups on
which all connected Cayley graphs have the CCA property, and the groups for which
this is not true. For more details regarding these topics, see [3, 6].

We extend the definition of G-VTCA digraph to graphs as follows.

Definition 4.2 Given a graph Γ and a vertex-transitive subgroup G ≤ Aut(Γ), the
natural edge-colouring assigns a different colour to each edge-orbit of G: two edges
get the same color if and only if they lie in the same orbit of G.

Definition 4.3 We will say that a G-vertex-transitive graph Γ has the G-VTCA
property, if G is a 2-closed group, and every automorphism of Γ that preserves the
natural edge-colouring lies in Go Aut(G;H). Similarly, it has the strong G-VTCA
property, if every automorphism of Γ that permutes the natural edge-colouring lies
in Go Aut(G;H).

We end with the natural graph analogues of our previous problems for digraphs.

Problem 4.4 Are there graphs Γ which are not G-VTCA graphs for some transi-
tive 2-closed group G ≤ Aut(Γ) that contains no proper 2-closed minimal transitive
subgroups?

Problem 4.5 Are there graphs Γ which are not strongly G-VTCA graphs for some
transitive 2-closed group G ≤ Aut(Γ) that contains no proper 2-closed minimal tran-
sitive subgroups?
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