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Abstract
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1 Introduction
We must begin by introducing Cayley (di)graphs and circulant (di)graphs.

Definition 1.1. Let G be a group and S ⊂ G such that 1G 6∈ S. Define a digraph Γ =
Γ(G,S) by V (Γ) = G and E(Γ) = {(u, v) : v−1u ∈ S}. Such a digraph is a Cayley
digraph of G with connection set S. A Cayley graph of G is defined analogously though
we insist that S = S−1 = {s−1 : s ∈ S}. If G = Zn, then a Cayley (di)graph of G is a
circulant (di)graph of order n.

It is straightforward to verify that for g ∈ G, the map gL : G → G by gL(x) = gx is
an automorphism of Γ. Thus GL = {gL : g ∈ G}, the left regular representation of G, is a
subgroup of the automorphism group of Γ, Aut(Γ).

Determining the full automorphism group of a Cayley (di)graph is one of the most fun-
damental questions one can ask about a Cayley (di)graph. While it is usually quite difficult
to determine the automorphism group of a Cayley (di)graph, characterizing almost all Cay-
ley graphs of a group G, based on the structure of G, has been of consistent interest in the
last few decades. Babai, Godsil, Imrich, and Lovász (see [2, Conjecture 2.1]) conjectured
that almost all Cayley graphs of any group G that is not generalized dicyclic or abelian
with exponent greater than 2 are GRRs (graphs that have automorphism group GL). A
similar conjecture (with no exceptions) was made for digraphs being DRRs (digraphs that
have automorphism group GL) by Babai and Godsil [2]. Babai and Godsil [2, Theorem
2.2] proved these two conjectures for nilpotent (and nonabelian in the case of undirected
graphs) groups of odd order.

Definition 1.2 (Xu [15]). A normal Cayley (di)graph of the group G is a Cayley (di)graph
Γ = Γ(G,S) such that GL CAut(Γ).

Xu also conjectured [15, Conjecture 1] that almost every Cayley (di)graph is normal.
The precise formulation of Xu’s conjecture is:

Conjecture 1.3 (Conjecture 1, [15]). For any positive integer n, we let Fn denote the class
of all groups of order n, and let

f(n) = minG∈Fn

# of normal Cayley digraphs of G

# of Cayley digraphs of G
.

Then lim
n→∞

f(n) = 1.

In 2010, the second author showed that almost all Cayley graphs of an abelian group G
of odd prime-power order are normal [4].

Before proceeding farther, we specify what we will mean in this paper when we say
something about “almost all” graphs in a particular family:

Definition 1.4. Let F2 ⊆ F1 be two families of circulant (di)graphs, and Fi(n) (i = 1, 2)
be the graphs of order n ∈ N in Fi. Then by almost all circulant (di)graphs in F1 are in
F2, we mean that

lim
n∈N,n→∞

|F2(n)|
|F1(n)|

= 1.

If in the above we replace N by some set I of infinitely many integers, we say that “almost
all” circulant (di)graphs in F1 of order n, where n ∈ I , are in F2.
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Our object in this paper is to determine as far as we can what the automorphism group
of a generic circulant (di)graph should look like, by recursively classifying (or attempting to
classify) the automorphism groups of almost all circulant (di)graphs that do not fall within
a previous step’s classification.

The following maps will be used in a number of places in this paper:

Definition 1.5. Let ιG : G→ G be defined by ιG(g) = g−1 for every g ∈ G. If G ∼= Zn,
we use ιn instead of ιZn

.
Let ρ : Zn → Zn by ρ(i) = i+ 1 (mod n). Thus 〈ρ〉 = (Zn)L.

Notice that if G is abelian then ιG is an automorphism of every Cayley graph Γ(G,S)
since S = S−1. Thus it is not possible for a Cayley graph on an abelian group G to be a
GRR unless G = Zk2 , k ≥ 1, while Imrich [7, Theorem] has shown that Zk2 has a GRR if
and only if k 6= 2, 3, 4. Nowitz showed [11] during the classification of GRRs that a Cayley
graph on a generalized dicyclic group cannot be a GRR.

Definition 1.6. We say that a Cayley (di)graph Γ = Γ(G,S) has automorphism group as
small as possible if one of the following holds:

• Γ is a GRR or a DRR; or

• G is either abelian or generalized dicyclic, and |Aut(Γ)| = 2|G|.

WhenG = Zn, we let Small(n) denote the set of all circulant graphs whose automorphism
group is as small as possible, and Small = ∪n∈NSmall(n).

When G is abelian and Aut(Γ(G,S)) is as small as possible, we have that Aut(Γ(G,
S)) = 〈GL, ιG〉. Clearly ιn normalizes (Zn)L, so every member of Small will be a normal
circulant graph. The first theorem in this paper, Theorem 3.2, shows that almost all circu-
lant graphs are in Small, and thus are normal. This represents some progress towards the
proof of Xu’s conjecture, and is the first step in our determination of the structure of the
automorphism group of a generic circulant graph. It is a natural extension of the work of
Babai and Godsil, mentioned above [2, Theorem 2.2].

From there, we proceed to consider classifying the automorphism groups of circulant
(di)graphs that are not DRRs. In [4, Conjecture 4.1], the second author conjectured that
almost every Cayley (di)graph whose automorphism group is not as small as possible is
a normal Cayley (di)graph. We show that this conjecture fails for circulant digraphs of
order n, where n ≡ 2 (mod 4) has a fixed number of distinct prime factors (Theorem
3.5), and point out some “gaps” in the proof of [4, Theorem 3.5], which lead to additional
counterexamples to [4, Conjecture 4.1] for graphs in the case where n = p or p2 and p is
a safe prime, i.e. p = 2q + 1 where q is prime, or when n is a power of 3 (Theorem 3.6).
Finally, we prove that the conjecture holds for digraphs of order n where n is odd and not
divisible by 9 (Theorem 3.7) and for graphs of order n, where n is odd, not a safe prime or
the square of a safe prime and not divisible by 9 (Theorem 3.8).

In Section 4, we focus on non-normal circulant (di)graphs. A variety of authors (see
[5, 6, 8, 9]) have shown that non-normal Cayley (di)graphs are either generalized wreath
products (see Definition 2.5) or have the same automorphism group as a deleted wreath
product (see Definition 2.14). We show in general, neither of these classes dominate.

In the next section, we will focus on background results and terminology, as well as
developing the counting tools needed in Sections 3 and 4.
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2 Preliminaries and tools
We start by stating basic definitions, and then proceed to known results in the literature that
we will need. We will finish with results that will be the main tools throughout the rest of
the paper.

Definition 2.1. Let G be a transitive permutation group with block system B. By G/B, we
mean the subgroup of SB induced by the action of G on B, and by fixG(B) the kernel of
this action. ThusG/B = {g/B : g ∈ G}where g/B(B1) = B2 if and only if g(B1) = B2,
B1, B2 ∈ B, and fixG(B) = {g ∈ G : g(B) = B for all B ∈ B}.

Let G be a transitive permutation group, B a block system of G, and 〈ρ〉 ≤ G. Since
〈ρ〉 is transitive and abelian, it is regular [13, Proposition 4.4], and so there is a subgroup
of 〈ρ〉 (namely fix〈ρ〉(B)) whose orbits are precisely the blocks of B. It is therefore not
difficult to show that B consists of the cosets of some (cyclic) subgroup of Zn.

A vertex-transitive (di)graph is a (di)graph whose automorphism group acts transi-
tively on the vertices of the (di)graph.

Definition 2.2. The wreath (or lexicographic) product of Γ1 and Γ2, denoted Γ1 o Γ2, is
the digraph such that V (Γ1 o Γ2) = V (Γ1)× V (Γ2) and edge set

{((x, x′), (y, y′)) : xy ∈ E(Γ1), x′, y′ ∈ V (Γ2) or x = y and x′y′ ∈ E(Γ2)}.

We remark that the wreath product of a circulant digraph of order m and a circulant
digraph of order n is circulant. Note that what we have just defined as Γ1 oΓ2 is sometimes
defined as Γ2 o Γ1, particularly in the work of Praeger, Li, and others from the University
of Western Australia.

Definition 2.3. Let Ω be a set andG ≤ SΩ be transitive. LetG act on Ω×Ω by g(ω1, ω2) =
(g(ω1), g(ω2)) for every g ∈ G and ω1, ω2 ∈ Ω. We define the 2-closure of G, denoted
G(2), to be the largest subgroup of SΩ whose orbits on Ω × Ω are the same as G’s. Let
O1, . . . ,Or be the orbits of G acting on Ω×Ω. Define digraphs Γ1, . . . ,Γr by V (Γi) = Ω
and E(Γi) = Oi. Each Γi, 1 ≤ i ≤ r, is an orbital digraph of G, and it is straightforward
to show that G(2) = ∩ri=1Aut(Γi). A generalized orbital digraph of G is an arc-disjoint
union of orbital digraphs of G. We say G is 2-closed if G(2) = G.

Clearly the automorphism group of a graph or digraph is 2-closed.
The following theorem appears in [10] and is a translation of results that were proven

in [6, 8, 9] using Schur rings, into group theoretic language. We have re-worded part (1)
slightly to clarify the meaning. In the special case of circulant digraphs of square-free order
n, an equivalent result was proven independently in [5].

Theorem 2.4. Let G ≤ Sn contain 〈ρ〉. Then one of the following statements holds:

1. There exist G1, . . . , Gr such that G(2) = G1 × . . . × Gr, and for each Gi, either
Gi ∼= Sni , or Gi contains a normal regular cyclic group of order ni. Furthermore,
r ≥ 1, gcd(ni, nj) = 1 for i 6= j, and n = n1n2 · · ·nr.

2. G has a normal subgroup M whose orbits form the block system B of G such that
each connected generalized orbital digraph contains a subdigraph Γ which is an
orbital digraph of G and has the form Γ = (Γ/B) o K̄b, where b = |M ∩ 〈ρ〉|.
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Definition 2.5. A circulant digraph Γ(Zn, S) is said to be a (K,H)-generalized wreath
circulant digraph (or just a generalized wreath circulant digraph) if there exist groups
H , K with 1 < K ≤ H ≤ Zn such that S \H is a union of cosets of K.

The name generalized wreath is chosen for these digraphs as if K = H , then Γ is in
fact a wreath product. We now wish to investigate the relationship between generalized
wreath circulant digraphs and the preceding result. We shall have need of the following
lemma.

Lemma 2.6. Let Γ be a disconnected generalized orbital digraph of a transitive group G.
Then the components of Γ form a block system B of G.

Proof. As the blocks of G(2) are identical to the blocks of G [12, Theorem 4.11] ( [12]
is contained in the more accessible [14]), we need to show that the set of components
B of Γ is a block system of G(2). This is almost immediate as G(2) = ∩ri=1Aut(Γi),
where Γ1, · · · ,Γr are all of the orbital digraphs of G. Assume that Γ = ∪si=1Γi, for some
s ≤ r. Then ∩si=1Aut(Γi) ≤ Aut(Γ), so that B is a block system of ∩si=1Aut(Γi). Also,
G ≤ G(2) = ∩ri=1Aut(Γi) ≤ ∩si=1Aut(Γi). Thus B is a block system of G(2) as B is a
block system of ∩si=1Aut(Γi).

We will require the following partial order on block systems.

Definition 2.7. We say that B � C if for every B ∈ B there exists C ∈ C with B ⊆ C.
That is, each block of C is a union of blocks of B. For g ∈ StabG(C), C ∈ C, we denote
by g|C the permutation defined by g|C(x) = g(x) if x ∈ C and g|C(x) = x otherwise. For
H ≤ StabG(C), we write H|C = {g|C : C ∈ C}.

Our main tool in examining generalized wreath circulants will be the following result.

Lemma 2.8. Let G be 2-closed with a normal subgroup M and a regular subgroup 〈ρ〉.
Let B be the block system ofG formed by the orbits ofM , and suppose that each connected
generalized orbital digraph contains a subdigraph Γ which is an orbital digraph of G and
has the form Γ = (Γ/B) oK̄b, where b = |M ∩〈ρ〉|. Then there exists a block system C � B
of G such that fixG(2)(B)|C ≤ G(2) for every C ∈ C.

Proof. Observe that we may choose M = fixG(B), in which case |M ∩ 〈ρ〉| = |B|, where
B ∈ B, so that b is the size of a block of B. First suppose that if B,B′ ∈ B, B 6= B′, then
any orbital digraph Γ′ that contains some edge of the form ~xy with x ∈ B, y ∈ B′ has every
edge of the form ~xy, with x ∈ B, y ∈ B′. It is then easy to see that every orbital digraph
Γ of G can be written as a wreath product Γ′ = Γ1 o Γ2, where Γ1 is a circulant digraph of
order n/b and Γ2 is a circulant digraph of order b. Then G/B o fixG(B)|B ≤ Aut(Γ′) for
every orbital digraph Γ′, and so G/B o (fixG(B)|B) ≤ G(2). Then result then follows with
C = B. (Note that G is 2-closed, so G(2) = G.)

Denote the orbital digraph that contains the edge ~xy by Γxy . We may now assume that
there exists some B,B′ ∈ B, B 6= B′, and x ∈ B, y ∈ B′ such that Γxy does not have
every edge of the form ~x′y′, with x′ ∈ B and y′ ∈ B′. Note then that no Γx′y′ with x′ ∈ B
and y′ ∈ B′ has every directed edge from B to B′. Let X be the set of all Γxy such that if
x ∈ B1 ∈ B and y ∈ B2 ∈ B, B1 6= B2, then Γxy does not have every edge from B1 to
B2. Let Γ̂ be the generalized orbital digraph whose edges consist of all edges from every
orbital digraph in X , as well as every directed edge contained within a block of B. Then no
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orbital digraph that is a subgraph of Γ̂ can be written as a connected wreath product Γ′ o K̄b

for some Γ′, and so by hypothesis, Γ̂ must be disconnected.
By Lemma 2.6, the components of Γ̂ form a block system C � B of G. (To see that

C � B, note that Γ̂ contains every edge from B to B′, so B is in a connected component
of Γ̂. Since G is transitive, C � B.) Let Γ1,Γ2, . . . ,Γr be the orbital digraphs of G, and
assume that ∪si=1Γi = Γ̂. If 1 ≤ i ≤ s, then (G(2)/C) o (fixG(2)(C)|C) ≤ Aut(Γi); this
is because G(2) ≤ Aut(Γi), Γi is disconnected, and each component is contained in a
block of C. Thus fixG(2)(B)|C ≤ Aut(Γi) for every 1 ≤ i ≤ s. If s + 1 ≤ i ≤ r, then
if B,B′ ∈ B, B 6= B′ and ~xy ∈ E(Γi) for some x ∈ B, y ∈ B′, then ~xy ∈ E(Γi)
for every x ∈ B and y ∈ B′. Also observe that as the subgraph of Γ̂ induced by B is
Kb, the subgraph of Γi induced by G is K̄b. We conclude that Γi = Γi/B o K̄b, and
so Aut(Γi/B) o Sb ≤ Aut(Γi). Then fixG(2)(B)|B ≤ Aut(Γi) for every B ∈ B. As
B � C, fixG(2)(B)|C ≤ Aut(Γi) for every 1 ≤ i ≤ r and as G(2) = ∩ri=1Aut(Γi),
fixG(2)(B)|C ≤ G(2) for every C ∈ C.

Lemma 2.9. Let Γ be a circulant digraph of order n. Then Γ is a (K,H)-generalized
wreath circulant digraph if and only if there exists G ≤ Aut(Γ) such that G contains a
regular cyclic subgroup, and fixG(2)(B)|C ≤ G(2) for every C ∈ C, where B � C are
formed by the orbits of K and H , respectively.

Proof. Suppose first that G ≤ Aut(Γ) with ρ ∈ G, and there exist block systems B � C
of G such that fixG(2)(B)|C ≤ G(2) ≤ Aut(Γ) for every C ∈ C. Since ρ ∈ G, the action
of fixG(2)(B)|C is transitive on every B ⊆ C, so between any two blocks B1, B2 ∈ B that
are not contained in a block of C, we have that there is either every edge from B1 to B2 or
no edges from B1 to B2. Let B be formed by the orbits of K ≤ 〈ρ〉. Then for every edge
~xy whose endpoints are not both contained within a block of C, (y − x) + K ⊂ S. Let C
be formed by the orbits of H ≤ 〈ρ〉. Then S \H is a union of cosets of K as required.

Conversely, suppose that Γ is a (K,H)-generalized wreath circulant digraph. Then
ρm|C ∈ Aut(Γ) for every C ∈ C, where m = [Zn : K]. Let G ≤ Aut(Γ) be the maximal
subgroup of Aut(Γ) that admits both B and C as block systems; clearly ρ ∈ G. Also,
since G(2) has the same block systems as G and G(2) ≤ Aut(Γ), G(2) = G. Now, if
g ∈ fixG(B), then g|C ∈ Aut(Γ) as well. But this implies that g|C ∈ G.

Combining Lemma 2.8 and Lemma 2.9, and recalling that the full automorphism group
of a (di)graph is always 2-closed, we have the following result.

Corollary 2.10. Let Γ be a circulant digraph whose automorphism group G = Aut(Γ)
satisfies Theorem 2.4(2). Then Γ is a generalized wreath circulant digraph.

We now wish to count the number of generalized wreath circulant digraphs.

Lemma 2.11. The total number of generalized wreath circulant digraphs of order n is at
most ∑

p|n

2n/p−1

( ∑
q|(n/p)

2(n−n/p)/q
)
,

where p and q are prime.

Proof. Let Γ be a (K,H)-generalized wreath circulant digraph of order n. By Lemma 2.9,
there existsG ≤ Aut(Γ) that admits B and C such that ρ ∈ G, and fixG(2)(B)|C ≤ Aut(Γ)
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for every C ∈ C, where B is formed by the orbits of K and C is formed by the orbits of
H . Let B consist of m blocks of size k. Then ρm|C ∈ Aut(Γ) for every C ∈ C. Choose
q|k to be prime, and let G′ ≤ Aut(Γ) be the largest subgroup of Aut(Γ) that admits a
block system D consisting of n/q blocks of size q. Note then that ρn/q|C ∈ G′ for every
C ∈ C. Let p be a prime divisor of the number of blocks of C, and E the block system of
〈ρ〉 consisting of p blocks of size n/p. Then C � E and ρn/q|E ∈ G′ for every E ∈ E .
Thus every (K,H)-generalized wreath circulant digraph is a (Lq,Mp)-generalized wreath
circulant digraph, where Lq has prime order q where q divides |K| and Mp has order n/p
where p divides n/|H|. Note that there is a unique subgroup of Zn of prime order q for
each q|n, and that Mp is also the unique subgroup of Zn of order n/p.

As |Lq| = q, we use the definition of an (Lq,Mp)-generalized wreath circulant digraph
to conclude that S \Mp is a union of some subset of the (n− n/p)/q cosets of Lq that are
not in Mp. Thus there are 2(n−n/p)/q possible choices for the elements of S not in Mp. As
there are at most 2n/p−1 choices for the elements of S contained in Mp, there are at most
2n/p−1 · 2(n−n/p)/q = 2n/p+n/q−n/(pq)−1 choices for S. Summing over every possible
choice of q and then p, we see that the number of generalized wreath digraphs is bounded
above by ∑

p|n

2n/p−1

( ∑
q|(n/p)

2(n−n/p)/q
)
.

We will denote the set of all circulant digraphs of order n whose automorphism groups
are of generalized wreath type by GW(n). The corresponding set of all circulant graphs
will be denoted by GWG(n). Note that no term in the previous summation given in Lemma
2.11 is larger than 2n/p+n/q−n/(pq)−1, where q is the smallest prime divisor of n and p is
the smallest prime divisor of n/q. As the number of prime divisors of n is at most log2 n,
we have the following result.

Corollary 2.12. Let q be the smallest prime dividing n, and p the smallest prime prime
dividing n/q. Then

|GW(n)| ≤ (log2
2 n)2n/p+n/q−n/pq−1.

Using the fact that there are at most two elements that are self-inverse in Zn (namely 0
and n/2 if n is even, and 0 6∈ S), and at most one coset of Zn/Lq that is self-inverse and
not in Mp (as Zn/Lq is cyclic), and the fact that (p+ q− 1)/pq ≤ 3/4, a similar argument
shows that:

Corollary 2.13. Let q be the smallest prime dividing n, and p the smallest prime prime
dividing n/q. Then

|GWG(n)| ≤ (log2
2 n)2n(p+q−1)/(2pq)+1/2 ≤ (log2

2 n)23n/8+1/2.

We now consider circulant (di)graphs Γ for which Aut(Γ) satisfies Theorem 2.4 (1),
and use the notation of that result. If no Gi ∼= Sni

with ni ≥ 4, then Aut(Γ) contains a
normal regular cyclic group and Γ is a normal circulant digraph. Otherwise, we have the
following definition.

Definition 2.14. A circulant (di)graph Γ(Zn, S) is of deleted wreath type if there exists
some m > 1 such that:
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• m | n;

• gcd(m,n/m) = 1; and

• if H = 〈n/m〉 is the unique subgroup of order m in G, then S ∩H ∈ {∅, H \ {0}},
and for every g ∈ 〈m〉 \{0}, S∩ (g+H) ∈ {∅, {g}, (g+H)\{g}, g+H}. (Notice
that because gcd(m,n/m) = 1, the group 〈m〉 contains precisely one representative
of each coset of H in G.)

A circulant digraph is said to be of strictly deleted wreath type if it is of deleted wreath
type and is not a generalized wreath circulant.

There are deleted wreath type circulants which are not of strictly deleted wreath type.
For an example of this, consider a circulant digraph on pqm vertices where m ≥ 4 and p, q
and m are relatively prime, whose connection set is S = (〈pq〉 \ {0}) ∪ (m+ 〈mq〉). This
digraph is an (H,K)-generalized wreath circulant for H = 〈q〉 and K = 〈mq〉. It is also
of deleted wreath type with H = 〈pq〉, since S ∩H = H \ {0}, while for g ∈ 〈m〉 \ {0},
we have S ∩ (g +H) = {g} if g ∈ m+ 〈mq〉 and S ∩ (g +H) = ∅ otherwise.

Definition 2.15. For a positive integer m, and a digraph Γ, we denote by mΓ the digraph
consisting of m vertex-disjoint copies of Γ. The digraph Γ o K̄m−mΓ is a deleted wreath
product. Thus this digraph is the digraph whose vertex set is the vertex set of Γ o K̄m and
whose edge set is the edge set of Γ o K̄m with the edges of mΓ removed.

The name deleted wreath type is chosen as these digraphs have automorphism groups
that are isomorphic to the automorphism groups of deleted wreath products.

Lemma 2.16. Let Γ = Γ(Zn, S), and letm ≥ 4 be a divisor of n such that gcd(m,n/m) =
1. Then Γ is of deleted wreath type with m being the divisor of n that satisfies the condi-
tions of that definition, if and only if Aut(Γ) contains a subgroup isomorphic to H × Sm
with the canonical action, for some 2-closed group H with Zn/m ≤ H ≤ Sn/m.

Proof. In this proof for a given m satisfying n = km and gcd(m, k) = 1, it will be
convenient to consider Zn = Zk × Zm in the obvious fashion. For i ∈ Zk, set Bi =
{(i, j) : j ∈ Zm}.

First, suppose Γ is of deleted wreath type with m ≥ 4 being the divisor of n that
satisfies the conditions of that definition, and n = mk. Using Zn = Zk × Zm, we see
that for every i ∈ Zk \ {0}, we have S ∩ Bi ∈ {∅, {(i, 0)}, Bi \ {(i, 0)}, Bi}. Also,
S ∩ B0 ∈ {∅, B0 \ {(0, 0)}}. Let B = {Bi : i ∈ Zk} and let G ≤ Aut(Γ) be maximal
such that G admits B as a block system. Let H ≤ Sk be the projection of G onto the first
coordinate. Since Zk × Zm ∼= 〈ρ〉 ≤ G, clearly Zk ≤ H .

We claim thatH×Sm ≤ Aut(Γ). Let ((i1, j1), (i2, j2)) ∈ E(Γ), and (h, g) ∈ H×Sm.
Suppose first that i1 = i2. We have S ∩ B0 ∈ {∅, B0 \ {(0, 0)}}, and i1 = i2 forces
S ∩ B0 6= ∅. Hence Γ[Bi] is complete, so clearly ((h(i1), g(j1)), (h(i2), g(j2))) ∈ E(Γ),
as h(i2) = h(i1). Now suppose i1 6= i2. So h(i1) 6= h(i2). Let i = i2 − i1 and let
i′ = h(i2) − h(i1), with 1 ≤ i, i′ ≤ k − 1. By the definition of H , there is some g ∈ G
that takes Bi1 to Bh(i1) and Bi2 to Bh(i2). Hence the number of arcs in Γ from Bi1 to Bi2 ,
which is |S ∩ Bi|, must be the same as the number of arcs from Bh(i1) to Bh(i2), which
is |S ∩ Bi′ |. Since 1 ≤ i, i′ ≤ k − 1 and (i1, j1), (i2, j2) ∈ E(Γ), |S ∩ Bi| = |S ∩ Bi′ |
must be 1,m − 1 or m. Since m ≥ 4 > 2, the integers 1,m − 1 and m are all distinct,
so S ∩ Bi and S ∩ Bi′ are uniquely determined by their cardinality. If |S ∩ Bi| = 1, then
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S ∩ Bi = {(i, 0)} and j2 = j1. Hence g(j1) = g(j2), and since S ∩ Bi′ = {(i′, 0)},
the arc ((h(i1), g(j1)), (h(i2), g(j2))) is in Γ. Similarly, if the cardinality is m − 1, then
S ∩ Bi = {Bi \ {(i, 0)}} so j2 6= j1. Hence g(j1) 6= g(j2), and since S ∩ Bi′ =
{Bi′ \ {(i′, 0)}}, the arc ((h(i1), g(j1)), (h(i2), g(j2))) is in Γ. Finally, if the cardinality
is m, then S ∩Bi = Bi, and S ∩Bi′ = Bi′ , so the arc ((h(i1), g(j1)), (h(i2), g(j2))) is in
Γ. Thus H × Sm ≤ Aut(Γ).

By [12, Theorem 4.11], we have that (H × Sm)(2) admits B as H × Sm ≤ Aut(Γ)
does. Finally, by [3, Theorem 5.1], Aut(Γ) ≥ (H × Sm)(2) ≥ H(2) × Sm. As H is the
projection of G onto the first coordinate, we conclude that H(2) = H and H is 2-closed.

Conversely, assume that Aut(Γ) contains a subgroup isomorphic to H × Sm with
the canonical action, for some 2-closed group H with Zn/m ≤ H ≤ Sn/m. Clearly
Stab1×Sm

(0, 0) is transitive on Bi \ {(i, 0)}, and so the orbits of Stab1×Sm
(0, 0) on Bi

are {(i, 0)} andBi\{(i, 0)}. Also 1×Sm ≤ H×Sm ≤ Aut(Γ) implies Stab1×Sm
(0, 0) ≤

StabH×Sm
(0, 0) ≤ StabAut(Γ)(0, 0). Thus each S∩Bi is a union of some (possibly none)

of these two orbits. Hence the only possibilities for each S∩Bi are ∅, {(i, 0)}, Bi \{(i, 0)}
and Bi if 1 ≤ i ≤ k − 1; and since 0 6∈ S, S ∩B0 is either ∅ or B0 \ {(0, 0)}.

We remark that the above lemma shows that a deleted wreath product type circulant
digraph is not a normal circulant digraph when m ≥ 4.

The following result is an easy consequence of Lemma 2.16 together with the fact that
the 2-closure of a direct product is the direct product of the 2-closures of the factors [3,
Theorem 5.1].

Corollary 2.17. A non-normal circulant (di)graph whose automorphism group satisfies
the conclusion of Theorem 2.4(1) is of deleted wreath type with m ≥ 4.

Corollary 2.18. There are at most 2n/m+1 graphs Γ and at most 22n/m digraphs Γ that
contain K × Sm for any choice of K that is 2-closed and has Zn/m ≤ K ≤ Sn/m,
where m ≥ 4. Equivalently, there are at most 22n/m digraphs of deleted wreath type,
and at most 2n/m+1 graphs of deleted wreath type, for any fixed m ≥ 4 with m | n and
gcd(m,n/m) = 1.

Proof. A consequence of Lemma 2.16 is that there are 2 · 4n/m−1 < 4n/m = 22n/m

digraphs Γ of order n such that K × Sm ≤ Aut(Γ) for m ≥ 4. Note that a digraph Γ
with Aut(Γ) = K × Sm, m ≥ 3, is a graph if and only if K contains the map ιn/m. Then
ιn/m(g + H) = (−g) + H where H = 〈n/m〉, and so if n/m is odd, there are at most
4n/(2m) = 2n/m graphs Γ that contain K × Sm for any choice of K that is 2-closed and
has Zn/m ≤ K ≤ Sn/m. Even if n/m is even, only one nontrivial coset of 〈n/m〉 is fixed
by ιn/m, so there are at most 2 · 4 · 4(n/m−2)/2 = 2n/m+1 graphs Γ that contain K × Sm
for any choice of K that is 2-closed and has Zn/m ≤ K ≤ Sn/m.

3 Normal circulants
In this section our main focus is on determining whether or not almost all circulants that do
not have automorphism groups as small as possible are normal circulants, as conjectured
by the second author [4, Conjecture 1]. We begin by showing that almost every circulant
graph of order n has automorphism group as small as possible. We remark that Babai and
Godsil [2, Theorem 5.3] have shown this to be true for Cayley graphs on abelian groups of
order n, where n ≡ 3 (mod 4).
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We require some additional notation that will be used through the remainder of this
paper.

Definition 3.1. Let ACG(n) be the set of all circulant graphs of order n.
Throughout this paper Z∗n denotes the group of units (invertible elements) of Zn. For

a ∈ Z∗n, we define ā : Zn → Zn by ā(i) = ai. As previously defined, if a = −1 then we
denote ā by ιn. Finally, by |g| we denote the order of any element g in any group G.

Theorem 3.2. For almost every circulant graph Γ, Aut(Γ) is as small as possible. More
precisely,

lim
n→∞

|Small(n)|
|ACG(n)|

= 1.

Proof. We first count the number of circulant graphs of order n not in Small(n). By
Corollary 2.13, there are at most log2

2 n · 23n/8+1/2 generalized wreath circulant graphs of
order n.

Now assume Γ 6∈ GWG(n) ∪ Small(n). By Corollary 2.10, Aut(Γ) satisfies Theo-
rem 2.4(1). Either Aut(Γ) normalizes 〈ρ〉 orGi = Sni for some ni ≥ 4 (using the notation
of Theorem 2.4(1)). We will find an automorphism α of Zn such that α ∈ Aut(Γ) \ 〈ιn〉.
Obviously, if 〈ρ〉 / Aut(Γ), then since Γ 6∈ Small(n), such an α exists. If Gi = Sni

and
ni ≥ 4, then Gi contains a nontrivial automorphism b̄ of Zni

. Regard Zn as Zn/ni
× Zni

in the usual way. If ni ≥ 7 then we may choose b 6= ±1, and α = (1, b). We may assume
n is arbitrarily large, so if 4 ≤ ni < 7 we may assume n/ni ≥ 3, and let α = (−1, 1).
Thus there exists α ∈ Aut(Zn) ∩Aut(Γ) but not in 〈ιn〉.

Now observe that ιn has at most two fixed points, and so has at most (n − 2)/2 + 2
orbits. Let α ∈ Aut(Zn) be such that α 6∈ 〈ιn〉. Observe that we may divide the orbits
of 〈ιn, α〉 into three types: singleton orbits, orbits of length 2, and orbits of length greater
than 2. As 〈ιn〉 has at most 2 singleton orbits, 〈ιn, α〉 has at most two singleton orbits,
namely 0 and n/2. If x 6= 0, n/2, then x is contained in an orbit of 〈ιn〉 of length 2. If such
an x is contained in an orbit of 〈ιn, α〉 of length 2, then setting α = ā, a ∈ Z∗n, we have
that {x,−x} = {ax,−ax}, in which case either x = ax and x is a fixed point of α, or
x = −ax and x is a fixed point of ιnα. If x = ax set β = α and if x = −ax, set β = ιnα.
Then 〈ιn, α〉 = 〈ιn, β〉, and x is a fixed point of β. It is easy to see that the set of fixed
points of β, say H(β), forms a subgroup of Zn, and so |H(β)| ≤ n/2. Thus 〈ιn, α〉 has at
at most (n/2−1)/2 orbits of length two, and so at most (n/2−1)/2+2 orbits of length one
or two. Every remaining orbit of 〈ιn, α〉 is a union of orbits of 〈ιn〉 of size 2, and so every
remaining orbit of 〈ιn, α〉 has length at least 4. Clearly, the number of orbits of 〈ιn, α〉 is
maximized if it has 2 orbits of length 1, (n/2− 1)/2 orbits of length 2, and the remainder
have length greater than 2. In this case, there will be at most (n/2 − 1)/4 = n/8 − 1/4
orbits of length greater than 2. We conclude that there are at most 3n/8 + 5/4 orbits of
〈ιn, α〉, and as S must be a union of orbits of 〈ιn, α〉 not including {0}, there are at most
23n/8+1/4 such circulant graphs for each α ∈ Aut(Zn), α 6∈ 〈ιn〉. As there are at most n
(actually ϕ(n) of course) automorphisms of Zn, there are at most n · 23n/8+1/4 circulant
graphs that contain an automorphism of Zn other than ιn.

We have shown that there are at most n · 23n/8+1/4 + log2
2 n · 23n/8+1/2 <

√
2(n +

log2
2 n)23n/8 circulant graphs of order n that are not in Small(n). As there are

2(n−2)/2+1 = 2n/2 circulant graphs of order n if n is even and 2(n−1)/2 circulant graphs
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of order n if n is odd,

lim
n→∞

|Small(n)|
|ACG(n)|

≥ 1− lim
n→∞

√
2(n+ log2

2 n)23n/8

2(n−1)/2
= 1.

The above theorem clearly shows that almost all circulant graphs are normal. In 2010,
the second author made the following conjecture for Cayley (di)graphs (not necessarily
circulant) whose automorphism group is not as small as possible [4, Conjecture 1].

Conjecture 3.3. Almost every Cayley (di)graph whose automorphism group is not as small
as possible is a normal Cayley (di)graph.

It is difficult to determine the automorphism group of a (di)graph, so the main way to
obtain examples of vertex-transitive graphs is to construct them. An obvious construction
is that of a Cayley (di)graph, and the conjecture of Imrich, Lovász, Babai, and Godsil
says that when performing this construction, additional automorphisms are almost never
obtained. The obvious way of constructing a Cayley (di)graph of G that does not have
automorphism group as small as possible is to choose an automorphism α of G and make
the connection set a union of orbits of α. The above conjecture in some sense says that
this construction almost never yields additional automorphisms other than the ones given
by the construction.

Throughout the remainder of this paper, all circulant digraphs of order n whose auto-
morphism groups are of deleted wreath, and strictly deleted wreath types will be denoted
by DW(n), and SDW(n) respectively. The corresponding set of all graphs whose auto-
morphism groups are of deleted wreath type will be denoted by DWG(n). If we wish
to consider a subset of one of these sets with a restriction on m, we indicate this in a
subscript, as for example DW(n)m≥4. Also, the sets of all digraphs that are circulants,
DRR circulants, normal circulants, and non-normal circulants of order n will be denoted
as ACD(n),DRR(n),Nor(n) and NonNor(n), respectively. The corresponding sets of all
graphs that are circulants, normal circulants, and nonnormal circulants, will be denoted by
ACG(n), NorG(n), and NonNorG(n), respectively.

The following lemma will prove useful in determining how many circulant (di)graphs
are not normal.

Lemma 3.4. If a circulant digraph Γ of composite order n that is a (K,H)-generalized
wreath circulant digraph is normal, then 4 | n.

Proof. Without loss of generality we may assume that K is of prime order p. Let B be
the block system of 〈ρ〉 formed by the orbits of 〈ρm〉, where |H| = n/m. Then ρn/p|B ∈
Aut(Γ) for everyB ∈ B. SetG = 〈ρ, ρn/p|B : B ∈ B〉, and let C be the block system ofG
formed by the orbits of 〈ρn/p〉, so that fixG(C) = 〈ρn/p|B : B ∈ B〉, and has order pn/m.
Then C is also a block system of N(n), where N(n) = {x → ax + b : a ∈ Z∗n, b ∈ Zn}.
Let n = pa11 pa22 · · · parr be the prime power decomposition of n. As N(n) = Πr

i=1N(paii ),
we see that a Sylow p-subgroup of fixN(n)(C) is a Sylow p-subgroup of 1Sn/pa

×N(pa),
where p = pj and a = aj for some j. Let E be the block system of N(pa) consisting of
blocks of size p. Then a Sylow p-subgroup of fixN(pa)(E) has order at most p2 as a Sylow
p-subgroup of N(pa) is metacyclic. If Γ ∈ Nor(n), then 〈ρ〉 / G since G ≤ Aut(Γ), so
G ≤ N(n). This implies that a Sylow p-subgroup of fixG(C) has order at most p2, and
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so pn/m ≤ p2. Since H > 1 we have n > m, so this forces n = 2m, and B consists
of 2 blocks. Finally, let δ = ρn/p|B , where B ∈ B with 0 ∈ B. If Γ ∈ Nor(n), then
γ = ρ−1δ−1ρδ ∈ 〈ρ〉, and straightforward computations will show that γ(i) = i + n/p
if i is even, while γ(i) = i − n/p if i is odd. As γ ∈ 〈ρ〉, we must have that n/p ≡
−n/p (mod n), and so 2n/p ≡ 0 (mod n). This then implies that p = 2 and so 4|n as
required.

We first show that Conjecture 3.3 is false for circulant digraphs of order n, where n ≡ 2
(mod 4) has a fixed number of distinct prime factors.

Theorem 3.5. Let n = 2pe11 p
e2
2 · · · perr , where the pi are distinct odd primes and r is fixed.

Then

lim
n→∞,r fixed

|NonNor(n)|
|Nor(n)\DRR(n)|

≥ 1

2(2r − 1)
.

Proof. By Lemma 3.4, we have that |NonNor(n)| ≥ |GW(n)|. We claim that |GW(n)| ≥
2n/2+n/(2p)−1, where 1 6= p is the smallest divisor of n/2. To see this, we construct this
number of distinct generalized wreath circulant digraphs of order n, as follows: B will be
the block system formed by the orbits (cosets) of 〈n/2〉, and C the block system formed
by the orbits (cosets) of 〈p〉. Since there are n/p elements in each block of C, there are
2n/p−1 choices for S ∩ C0, where C0 is the block of C that contains 0. Since there are
n/2 − n/(2p) orbits (cosets) of 〈n/2〉 that are not in C0, there are 2n/2−n/(2p) choices
for S − C0 that create a generalized circulant digraph with this choice of B and C. These
2n/p+n/2−n/(2p)−1 = 2n/2+n/(2p)−1 generalized circulant digraphs are all distinct (though
not necessarily nonisomorphic), so |GW(n)| ≥ 2n/2+n/(2p)−1 as claimed.

Let S(n) be the set of all circulant digraphs of order n whose automorphism group
contains a nontrivial automorphism of Zn. Clearly then |S(n)| ≥ |Nor(n)\DRR(n)|. We
now seek an upper bound on |S(n)|. Observe that for any circulant digraph Γ, if there
exists an nontrivial automorphism α ∈ Aut(Γ)∩Aut(Zn), then we may choose such an α
of prime order.

Let 1 6= a ∈ Z∗n have prime order `. We first consider the case that ā has a fixed point
i 6= 0. Then ai ≡ i (mod n), so (a − 1)i ≡ 0 (mod n). Since a 6= 1, we must have
gcd(i, n) = m > 1, which clearly implies i ∈ 〈m〉. Since a ∈ Z∗n, a = sn/m + 1 for
some 0 < s < m must be a unit, i.e., gcd(n, sn/m + 1) = 1. Note that m > 2, since
if m = 2 then s = 1, but gcd(n, n/2 + 1) ≥ 2 since n/2 is odd. Now, ā fixes n/m
points {0,m, · · · , (n/m − 1)m}, and since |ā| = ` is prime, every non-singleton orbit
of ā has length `. So ā has n(1 − 1/m)/` orbits of length `, and n/m + n/` − n/(m`)
orbits in total. We will separate the cases ` = 2 and ` = 3 to make the proof easier. If
` = 2 then 1/m + 1/` − 1/(m`) = 1/2 + 1/(2m) ≤ (p + 1)/(2p) since m ≥ p (p is
still the smallest nontrivial divisor of n/2), so if |ā| = 2, then α has at most (p+ 1)n/(2p)
orbits. If ` = 3 then 1/m + 1/` − 1/(m`) = 1/3 + 2/(3m) ≤ (p + 2)/(3p) since
m ≥ p, so if |ā| = 3, then ā has at most (p + 2)n/(3p) orbits. Finally, if ` ≥ 5 then
1/m + 1/` − 1/(m`) ≤ (m + 4)/(5m) ≤ 7/15 since m ≥ 3, so if |ā| ≥ 5 then ā has at
most 7n/15 orbits.

Finally, notice that if ā fixes only 0, it will have 1 fixed point and n− 1 points that are
not fixed. If |ā| = 2 then its orbits are all of length 1 or 2, and since n− 1 is odd, it cannot
be partitioned into orbits of length 2. So an element of order 2 must have some fixed point
other than 0. Hence if ā fixes only 0, it must have order at least 3, so each non-singleton
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orbit must have length at least 3. Hence ā has at most b(n− 1)/3c < n/3 orbits other than
{0}.

We now split the set of all elements of Z∗n that have prime order into disjoint subsets: U
(consisting of all elements of order 2 that have fixed points); V (consisting of all elements
of order 3 that have fixed points); W (consisting of all elements of order 5 or greater that
have fixed points) and X (consisting of all elements that have no fixed points other than 0).
Notice that Z∗n = Z∗

p
e1
1
× . . .× Z∗

perr
and each Z∗

p
ei
i

is cyclic, so contains a unique element
of order 2. Any element of order 2 in Z∗n must be a product of elements of order 1 or 2
from the Z∗pi , at least one of which must have order 2. So there are 2r−1 elements of order
2 in Z∗n. Also, there are at most n elements of any other order in Z∗n. Thus,

|S(n)| ≤
∑
ā∈U

2(p+1)n/(2p) +
∑
ā∈V

2(p+2)n/(3p) +
∑
ā∈W

27n/15 +
∑
ā∈X

2n/3

≤ (2r − 1)2(p+1)n/(2p) + n(2(p+2)n/(3p) + 27n/15 + 2n/3).

Now,

lim
n→∞,r fixed

|NonNor(n)|
|Nor(n)\DRR(n)|

≥ lim
n→∞,r fixed

2n/2+n/(2p)−1

|S(n)|
=

1

2(2r − 1)
.

A safe prime is a prime number p = 2q + 1, where q is also prime.
We now show that it is not true that almost all circulant graphs of order p or p2, where p

is a safe prime, or of order 3k, are normal. This shows that [4, Theorem 3.5] is not correct.
We provide a correct statement of [4, Theorem 3.5] as well as point out explicitly where
“gaps” occur in the proof. As a consequence, much of the following result is essentially the
same as the proof of [4, Theorem 3.5]. The entire argument is included for completeness.

Theorem 3.6. Let X = {p, p2 : p is a safe prime} ∪ {3k : k ∈ N}, T the set of all powers
of odd primes, and R = T \X . Then

lim
n∈R,n→∞

|NonNorG(n)|
|ACG(n) \ Small(n)|

= 0.

Additionally, if n ∈ X , then more than one fifth of all elements of ACG(n) \ Small(n) are
in NonNorG(n).

Proof. Let n = pk ∈ T , where p is an odd prime, Γ = Γ(Zn, S).
First suppose that k = 1. The statement about X is vacuously true for p = 3 and

easy to verify for p = 5, so we assume p > 5. If p = 2q + 1 is a safe prime, then Z∗p is
cyclic of order 2q ≥ 6, so every element of Z∗p has order 2, q, or 2q. Since ιp ∈ Aut(Γ),
if Γ /∈ Small(p) is normal then ā ∈ Aut(Γ) for a ∈ Z∗p of order q or 2q. Since q > 2,
the orbit of length q that contains 1 in Z∗p does not contain −1, so the orbits of 〈α, ιp〉
have length 1 (the orbit of 0) and 2q = p − 1 (everything else). So Γ = Kp or K̄p and
Aut(Γ) = Sp contradicting Γ being normal. Hence ACG(p) \ Small(p) ⊆ NonNorG(p).
(The proof of [4, Theorem 3.5] overlooks this case.)

Now if p is not a safe prime, then we can write (p−1)/2 = rswhere 1 < r ≤ s < (p−
1)/2. As Z∗p is cyclic of order p− 1, there is a ∈ Z∗p with |a| = 2r. Then ā has s+ 1 orbits
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(the cosets of 〈a〉 in Z∗p, together with 0). Since |a| is even, −1 ∈ 〈a〉. If S is a union of
these orbits, Γ is a graph, and since |a| > 2, Γ /∈ Small(p). Hence |ACG(p)\Small(p)| ≥
2s ≥ 2

√
(p−1)/2. Meanwhile, if Aut(Γ) 6< AGL(1, p) then Aut(Γ) = Sp by [1], and

Γ = Kp or K̄p. So |NonNor(p)| = 2 and clearly 2/(2
√

(p−1)/2)→ 0 as p→∞.
Now let k ≥ 2. Through the rest of this proof, let a = pk−1 + 1. We show that

ā ∈ Aut(Γ) if and only if Γ ∈ NonNor(n). Using the binomial theorem, it is easy to
see that |ā| = p. Furthermore, ā fixes every element of 〈p〉, and fixes setwise every coset
of 〈pk−1〉. Since |ā| = p and ā does not fix any element of any coset of 〈pk−1〉 that is
not in 〈p〉, the orbits of ā on each coset of 〈pk−1〉 that is not in 〈p〉 have length p. Thus
if ā ∈ Aut(Γ), then Γ is a (〈pk−1〉, 〈p〉)-generalized wreath circulant digraph, and in fact
by Lemma 3.4, Γ ∈ NonNor(n). Conversely, if Γ ∈ NonNor(n), then by Theorem 2.4,
Aut(Γ) either falls into category (1) with a single factor in the direct product (since n = pk

does not permit coprime factors) and since Γ ∈ NonNor(n), Γ is complete (or empty), or
category (2) so by Corollary 2.10, Γ ∈ GW(n). Since Kn, K̄n ∈ GW(n), Γ ∈ GW(n).
It is straightforward to verify using the definition of a generalized wreath circulant, that
ā ∈ Aut(Γ).

Now suppose p = 3. We have Z∗3k is cyclic of order 2 · 3k−1. For Γ ∈ Nor(3k) \
Small(3k), there exists −1 6= b ∈ Z∗3k with b̄ ∈ Aut(Γ). If |b| is divisible by 3, then
since Z∗3k is cyclic and a generates the unique subgroup of order 3, we have ā ∈ 〈b̄〉, so
ā ∈ Aut(Γ). Hence Γ ∈ NonNor(3k). But the only divisor of 2 · 3k−1 not divisible by
3 is 2, and so b = −1. This shows that if Γ ∈ NorG(3k) then Γ ∈ Small(3k). Thus
ACG(3k) \ Small(3k) ⊆ NonNorG(3k).

Now we calculate |NonNorG(n)|. As noted above, if Γ ∈ NonNorG(n) then ā ∈
Aut(Γ), and the orbits of ā all have length 1 or length p. Now since multiplication is
commutative, ιpk permutes the orbits of 〈ā〉, and since |ā| = p is odd, ιpk 6∈ 〈ā〉, so ιpk
will exchange pairs of orbits of 〈ā〉, except the orbit {0}. Consequently, 〈ā, ιpk〉 will have
one orbit of length 1 ({0}); (pk−1− 1)/2 orbits of length 2 (whose union is 〈p〉 \ {0}); and
(pk−pk−1)/(2p) orbits of length 2p (everything else). So 〈ā, ιpk〉 has exactly pk−1− (1+
pk−2)/2 orbits other than {0}. Since we have shown that Γ ∈ NonNor(pk) if and only if
〈ā, ιpk〉 ≤ Aut(Γ), |NonNor(pk)| = 2p

k−1−(1+pk−2)/2.
Now we find a lower bound for |ACG(n) \ Small(n)| when n ∈ R and k > 2. Since

p is an odd prime, Z∗pk is cyclic of order (p− 1)pk−1. Let b ∈ Z∗pk have order p− 1. Note
that ιpk ∈ 〈b̄〉 since b has even order, and b̄ 6= ιpk since p > 3 (the proof of [4, Theorem
3.5] overlooks the fact that b̄ = ιpk when p = 3). Clearly, b̄ fixes 0, and since the order of
b̄ is p− 1, every other orbit of b̄ has length at most p− 1, so b̄ has at least (pk − 1)/(p− 1)

orbits other than {0}. Thus there are at least 2(pk−1)/(p−1) circulant graphs of order pk

whose automorphism group contains b̄, and |ACG(pk) \ Small(pk)| ≥ 21+(pk−1)/(p−1),
p > 3. Note that as k ≥ 2, (pk − 1)/(p− 1) 6= 1. Then

lim
pk→∞

|NonNorG(pk)|
|ACG(pk) \ Small(pk)|

≤ lim
pk→∞

2p
k−1−(1+pk−2)/2

2(pk−1)/(p−1)

= lim
pk→∞

1

2(3pk−2+1)/2+
∑k−3

i=0 p
i
.

Thus as k ≥ 3, the result follows. (The proof of [4, Theorem 3.5] concludes the above
limit is 1 in all cases – hence the gap in that theorem when k = 2.)
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For the remainder of the proof we suppose that k = 2 and p > 3. Substituting k = 2
into our formula for |NonNorG(n)|, we conclude that |NonNorG(p2)| = 2p−1.

If p = 2q + 1 is a safe prime, q prime, then 〈ā〉 is the unique subgroup of order p
in Z∗p2 , so any subgroup of Z∗p2 that contains −1 but does not contain a = p + 1, must
have even order not a multiple of p. Since Z∗p2 is cyclic of order p(p − 1) = 2pq, the
group C of order 2q is the only such subgroup. Then if Γ ∈ Nor(p2) \ Small(p2), then
Aut(Γ) = C · (Zp2)L. Now, C fixes 0 and since C has order 2q and is cyclic, the other
orbits of C all have length precisely 2q (it is not hard to show that the only elements of
Z∗p2 that fix anything but 0 are 1 and the elements of order p; this forces the orbit lengths
of C to be the order of C), so there are (p2 − 1)/2q = 1 + p orbits of C other than
{0}, and hence fewer than 21+p graphs in Nor(p2) are not in Small(p2) (the “fewer than”
is due to the fact that some of these graphs are not normal, for example Kp2 ). Hence
NonNor(p2)/(ACG(p2) \ Small(p2)) ≥ 2p−1/(2p−1 + 2p+1) = 1/5.

Suppose now that p is not a safe prime. Then there exists b ∈ Z∗p2 of order p− 1. Since
p is not a safe prime, there exists 1 < r ≤ s < (p − 1)/2 such that rs = (p − 1)/2.
As every non-singleton orbit of 〈b̄〉 has length p − 1 (as shown for the orbits of C in the
preceding paragraph), every nonsingleton orbit of 〈b̄s〉 has length (p − 1)/s. Then b̄s has
s(p + 1) orbits not including {0} and since |bs| = 2r > 2, b̄s 6= ιp2 . We conclude that
there are at least 2s(p+1) graphs of order p2 in ACG(p2) \ Small(p2). As there are 2p−1

non-normal circulant graphs of order p2 and s ≥
√

(p− 1)/2,

lim
p2→∞

|NonNorG(p2)|
|ACG(p2) \ Small(p2)|

≤ lim
p→∞

2p−1

2s(p+1)
= 0.

We now verify that Conjecture 3.3 does hold for circulant digraphs of order n, and also
for circulant graphs of order n, for large families of integers. Note that, using Corollaries
2.10 and 2.17, we have for any n, |NonNor(n)| ≤ |DW(n)m≥4|+ |GW(n)|.

Theorem 3.7. Let n be any odd integer such that 9 - n. Then almost all circulant digraphs
of order n that are not DRRs are normal circulant digraphs.

Proof. A lower bound for |ACD(n) \DRR(n)| is the number of circulant graphs of order
n, which is 2(n−1)/2. We first find an upper bound for |DW(n)m≥4|. As n is odd, we have
2n/m ≤ 2n/5. Also, n is an upper bound on the number of nontrivial divisors of n. By
Corollary 2.18, |DW(n)m≥4| ≤

∑
m|n,m≥4 22n/m ≤ n · 22n/5.

By Corollary 2.12, we have |GW(n)| ≤ log2
2 n · 2n/p+n/q−n/(pq)−1, where q is the

smallest prime divisor of n and p is the smallest prime divisor of n/q. Since n is odd
we have q ≥ 3, and since 9 - n we have p ≥ 5. If q ≥ 5 then 1/p + 1/q − 1/(pq) <
1/p + 1/q ≤ 2/5, while if q = 3 then 1/p + 1/q − 1/(pq) = 2/(3p) + 1/3 ≤ 7/15, so
we always have 1/p + 1/q − 1/(pq) ≤ 7/15. Note that if 9|n then p = q = 3, and this
inequality is not true. Then

lim
n→∞

|NonNor(n)|
|ACD(n) \DRR(n)|

≤ lim
n→∞

n · 22n/5 + log2
2 n · 27n/15

2(n−1)/2
= 0.
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Theorem 3.8. Let n be any odd integer such that 9 - n, and n is not a safe prime or
the square of a safe prime. Then almost all circulant graphs of order n that do not have
automorphism group as small as possible are normal circulant graphs.

Proof. We need to show that

lim
n→∞,n6∈T

|NonNorG(n)|
|ACG(n) \ Small(n)|

= 0,

where T = {p, p2 : p is a safe prime} ∪ {n : 9 | n} ∪ {n : 2 | n}. This is true if n is
a prime power by Theorem 3.6, so we assume there is a proper divisor m of n such that
gcd(m,n/m) = 1. We also assume that n/m > m, and regard Zn as Zn/m × Zm in the
natural way.

We begin by finding a lower bound for |ACG(n) \ Small(n)|. Let Γ ∈ ACG(n)
such that ā ∈ Aut(Γ) where a = (1,−1). Obviously ā /∈ 〈ρ, ιn〉, so Γ 6∈ Small(n).
Straightforward computations will show that the orbits of 〈ā, ιn〉 ≤ Aut(Γ) are the sets
{(0, 0)}, {(i, 0), (−i, 0)}, {(0, j), (0,−j)}, and {(i, j), (−i, j), (i,−j), (−i,−j)}, where
i ∈ Zn/m \ {0} and j ∈ Zm \ {0}. We conclude that 〈ā, ιn〉 has

1 +
n/m− 1

2
+
m− 1

2
+
n− n/m−m+ 1

4
=
n+ n/m+m+ 1

4
>
n

4

orbits. Hence |ACG(n) \ Small(n)| ≥ 2n/4. Recall (by Corollaries 2.10 and 2.17)
|NonNorG(n)| ≤ |DWG(n)m≥4| + |GWG(n)|. By Corollary 2.18, we have that
|DWG(n)m≥4| ≤

∑
m|n,m≥4 2n/m+1. Since n is odd, m is odd, so m ≥ 5, so n/m ≤

n/5, and
∑
m|n,m≥4 2n/m+1 ≤ n2n/5+1. By Corollary 2.13, we have that |GWG(n)| ≤

(log2
2 n)2n(p+q−1)/(2pq)+1/2, where p is the smallest divisor of n and q is the smallest di-

visor of n/p. As in the proof of Theorem 3.7, it is straightforward to show that since n is
odd and not divisible by 9, (p+ q − 1)/(pq) ≤ 7/15. Hence

lim
n→∞,n6∈S

|NonNorG(n)|
|ACG(n) \ Small(n)|

≤ lim
n→∞,n6∈S

n2n/5+1 + (log2
2 n)27n/30+1/2

2n/4

= 0.

4 Non-normal circulants
By Theorem 2.4, a circulant (di)graph that is not normal is generalized wreath or deleted
wreath type. For each of these classes, we will now consider whether or not almost all
non-normal circulant (di)graphs lie within this class. The short answer is “No” and is given
by the following result.

Theorem 4.1. Let Γ be a circulant digraph of order pq, where p and q are primes and
p, q ≥ 5. Then

1. if q 6= p then
|GW(pq)|
|SDW(pq)|

=
2p+q−1 − 2

22p−1 + 22q−1 − 2p − 2q − 2
,
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2. if p is fixed, then limq→∞ |GW(pq)|/|SDW(pq)| = 0,

3. if q = p+ c for some constant c ≥ 2, then

lim
p→∞

|GW(pq)|
|SDW(pq)|

=
2c

(1 + 22c)
,

4. if q = p then all non-normal circulants are generalized wreath products.

Proof. Note that for Γ ∈ SDW(pq) we have m ∈ {p, q} so m ≥ 5 and Γ ∈ NonNor(n).
(1): We require exact counts of |GW(pq)| and of |SDW(pq)|. First, when n = pq a

generalized wreath product will actually be a wreath product. For a wreath product digraph
with p blocks of size q, there are q − 1 possible elements of S ∩ 〈p〉, and p − 1 choices
for the cosets of 〈p〉 to be in S. Hence there are 2p+q−2 wreath product circulant digraphs
with p blocks of size q. Similarly, there are 2q+p−2 wreath product circulant digraphs with
q blocks of size p. The only digraphs that have both of these properties are Kpq and its
complement, each of which has been counted twice, so |GW(pq)| = 2 · 2p+q−2 − 2 =
2p+q−1 − 2.

Now we count strictly deleted wreath products. As mentioned in the first sentence of the
proof of Corollary 2.18, there are precisely 2 · 4p−1 digraphs whose automorphism group
contains K × Sq , and 2 · 4q−1 digraphs whose automorphism group contains K ′ × Sp.
Of the first set, 2 · 2p−1 are wreath products (those in which S ∩ (rq + 〈p〉) is chosen
from {∅, rq + 〈p〉}, for every 1 ≤ r ≤ p − 1). Similarly, of the second set, 2 · 2q−1 are
wreath products (those in which S ∩ (rp + 〈q〉) is chosen from {∅, rp + 〈q〉}, for every
1 ≤ r ≤ q − 1). Finally, notice that if a digraph is counted in both the first and second sets
then its automorphism group must contain Sq ×Sp. Consequently, the number of elements
in S ∩ (rp + 〈q〉) is constant over r, as is the number of elements in S ∩ (rq + 〈p〉).
Since we have already eliminated wreath products from our count, the first number must
be 1 or p − 1, and the second must be 1 or q − 1. Furthermore, if the first number is 1
then we have p ∈ S but p + q 6∈ S, so the second cannot be q − 1 (and the same holds
if we exchange p and q), so there are only 2 choices for such digraphs: that in which all
of the values are 1, which is Kp�Kq (where � denotes the cartesian product), and its
complement, in which all of the values are p − 1 or q − 1. Summing up, we see that
|SDW(pq)| = 2 · 4p−1 + 2 · 4q−1 − 2 · 2p−1 − 2 · 2q−1 − 2. The result follows.

(2): This follows from (1) by letting q tend to infinity.
(3): Substituting q = p+ c into (1) and letting p tend to infinity, we have

lim
p→∞

|GW(pq)|
|SDW(pq)|

= lim
p→∞

2c−1 − 21−2p

2−1 + 22c−1 − 2−p − 2c−p − 21−2p
.

Deleting the terms that tend to zero, we are left with

lim
p→∞

2c−1

2−1 + 22c−1
=

2c

1 + 22c
,

as claimed.
(4): By Theorem 2.4, if Γ ∈ NonNor(p2), then Aut(Γ) must either fall into category

(1) or category (2). If it falls into category (1) then, since n = p2 and the ni are coprime,
there can only be a single factor in the direct product, and since Γ ∈ NonNor(n), the factor
must be Sp2 , so Γ ∈ {Kp2 , K̄p2} ⊆ GW(p2). If it falls into category (2) then by Corollary
2.10, Γ ∈ GW(p2).
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Notice that if we choose a constant c ≥ 2 and define Tc = {pq : q = p+c}where p and
q are prime, then as a consequence of Theorem 4.1(3), since 0 < 2c/(1+22c) <∞, neither
generalized wreath circulant digraphs nor strictly deleted circulant digraphs dominates in
Tc. The recent breakthrough by Zhang [16] shows that the union of the first 70 million
Tcs is infinite, and therefore that at least one of these sets is infinite. Essentially, we have
shown that if n = pq is a product of two primes, then generalized wreath products dominate
amongst circulant digraphs of order n if p = q (in fact there are no others); neither family
dominates if p and q are “close” to each other, and strictly deleted wreath products dominate
if one prime is much larger than the other.

We now give two infinite sets N1 and N2 of integers, each integer in both sets being
divisible by three distinct primes. In N1, almost all non-normal circulant digraphs are
of strictly deleted wreath type (and N1 includes all of the square-free integers that are
not divisible by 2 or 3). Meanwhile in N2, almost all non-normal circulant digraphs are
generalized wreath circulant digraphs.

Theorem 4.2. Let N1 = {n ∈ N| n is the product of at least three primes and q2 - n where
q ≥ 5 is the smallest prime divisor of n}. Then,

lim
n∈N1,n→∞

|SDW(n)|
|NonNor(n)|

= 1

Proof. By Corollaries 2.10 and 2.17, NonNor(n) ⊆ GW(n) ∪ SDW(n)m≥4, and by the
definition of SDW(n), these sets are disjoint. Since q ≥ 5 we also have m ≥ 5 for any
proper divisor m of n, so SDW(n) = SDW(n)m≥4. Hence |NonNor(n)| = |GW(n)| +
|SDW(n)|. We show that limn→∞

|GW(n)|
|NonNor(n)| = 0, which implies the result.

The first sentence of the proof of Corollary 2.18 notes that for a proper divisor m of n,
the number of digraphs Γ with H × Sm ≤ Aut(Γ) for some 2-closed group H ≤ Sn/m
is precisely 2 · 4n/m−1. The maximum number of times that a specific circulant digraph
Γ can be counted in

∑
m|n

2 · 4n/m−1, is the number of divisors of n, d(n) ≤ n. Thus

|DW(n)| ≥
∑
m|n

2 · 4n/m−1/n, and so by Lemma 2.16, |NonNor(n)| ≥
∑
m|n

2 · 4n/m−1/n.

By Corollary 2.12, we have that |GW(n)| ≤ (log2
2 n)2n/p+n/q−n/(pq)−1, where q is the

smallest prime divisor of n and p is the smallest prime divisor of n/q. Then

lim
n→∞

|GW(n)|
|NonNor(n)|

≤ lim
n→∞

(log2
2 n)2n/p+n/q−n/(pq)−1∑
m|n 2 · 4n/m−1/n

< lim
n→∞

(log2
2 n)2n/(q+2)+n/q

4 · 4n/q−1/n

= lim
n→∞

n log2
2 n

22n/(q(q+2))
.

Since q(q + 2) < n2/3 as q is the smallest prime factor of n, q2 - n, and n has at least 3
prime factors, we have n/(q(q + 2)) > n1/3, so limn→∞

|GW(n)|
|NonNor(n)| = 0.

Theorem 4.3. For any natural number n, let pn be the smallest prime divisor of n, and qn
the smallest prime divisor of n such that qn 6= pn and q2

n - n. Let N2 = {n ∈ N : pn ≥
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5, p2
n | n, n has at least 3 distinct prime divisors, and qn > 2pn}. Then

lim
n∈N2,n→∞

|GW(n)|
|NonNor(n)|

= 1.

Proof. Let p = pn. First notice that there are 2p−1+n/p−1 circulant digraphs that are
wreath products Γ1 o Γ2 where Γ1 has order n/p and Γ2 has order p: 2p−1 choices for
S ∩ 〈n/p〉 and 2n/p−1 choices for which cosets of 〈n/p〉 are in S. All of these digraphs
are distinct, so since by Lemma 3.4 these are all non-normal, we have |NonNor(n)| ≥
2p+n/p−2.

By Corollary 2.18, for a proper divisor m ≥ pn > 4 of n, the number of digraphs of
deleted wreath type is at most 4n/m. Thus

|DW(n)| ≤
∑

m|n,gcd(m,n/m=1)

4n/m.

Let
∏t
i=1 p

ai
i be the prime decomposition of n, and let pakk = min

1≤i≤t
{paii }. Clearly 4n/(p

ak
k )

is the largest term in this sum, and there are at most d(n) (the number of divisors of n) terms
in this sum. Thus |DW(n)| ≤ d(n) · 4n/(p

ak
k ).

Observe that if ak ≥ 2, then pakk ≥ 5p > 2p since p ≥ 5 is the smallest divisor of n.
Also, if ak = 1, then by hypothesis pk ≥ qn > 2p. Hence pakk − 2p ≥ 1 since both are
integers. Now,

lim
n→∞

|DW(n)|
|NonNor(n)|

≤ lim
n→∞

d(n) · 4n/(pkak )

2p+n/p−2

< lim
n→∞

4n

2p+n·(p
ak
k −2p)/(pp

ak
k )

≤ lim
n→∞

4n

2p+n/(pp
ak
k )

.

Since n has at least 3 distinct prime divisors, there is some j such that pj 6= p, pk. Now
p
aj
j > pakk by our choice of k, and pajj ≥ pj > p, so since n/(ppakk ) ≥ p

aj
j , we have

(n/(ppakk ))2 ≥ ppakk . Hence ppakk ≤ n2/3, so n/(ppakk ) ≥ n1/3. So the above limit is at
most

lim
n→∞

4n

2p+n1/3
= 0.
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