
TERNARY MAX-MIN ALGEBRA WITH APPLICATION TO REVERSIBLE
LOGIC SYNTHESIS

MUSHARRAT KHAN
Bachelor of Science, East West University, Bangladesh, 2014

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c©Musharrat Khan, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/325988112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TERNARY MAX-MIN ALGEBRA WITH APPLICATION TO REVERSIBLE LOGIC
SYNTHESIS

MUSHARRAT KHAN

Date of Defence: March 15, 2017

Dr. Jacqueline E. Rice
Supervisor Professor Ph.D.

Dr. Howard Cheng
Committee Member Associate Professor Ph.D.

Dr. Locke Spencer
Committee Member Assistant Professor Ph.D.

Dr. Amir Akbary-Majdabadno
Chair, Thesis Examination Com-
mittee

Professor Ph.D.

Dedication

To them who advance reversible computing.

iii

Abstract

Ternary reversible circuits are 0.63 times more compact than equivalent binary reversible

circuits and are suitable for low-power implementations. Two notable previous works on

ternary reversible circuit synthesis are the ternary Galois field sum of products (TGFSOP)

expression-based method and the ternary Max-Min algebra-based method. These methods

require high quantum cost and large number of ancilla inputs. To address these problems we

develop an alternative ternary Max-Min algebra-based method, where ternary logic func-

tions are represented as Max-Min expressions and realized using our proposed multiple-

controlled unary gates. We also show realizations of multiple-controlled unary gates using

elementary quantum gates. We develop a method for minimization of ternary Max-Min

expressions of up to four variables using ternary K-maps. Finally, we develop a hybrid Ge-

netic Algorithm (HGA)-based method for the synthesis of ternary reversible circuits. The

HGA has been tested with 24 ternary benchmark functions with up to five variables. On

average our method reduces quantum cost by 41.36% and requires 35.72% fewer ancilla

inputs than the TGFSOP-based method. Our method also requires 74.39% fewer ancilla

inputs than the previous ternary Max-Min algebra-based method.

iv

Acknowledgments

I would like to express my heartfelt thanks and gratitude to my thesis supervisor Dr. Jacque-

line E. Rice for her tireless effort for managing funds for my study, for continuous advice,

encouragement, and guidance for both course work and research work, and most impor-

tantly for standing beside me during my academic and personal odds, without which this

thesis would have not seen the day light. Simply saying thanks to her will be inadequate

for what she has done for me.

I would also like to thank my committee members Dr. Howard Cheng and Dr. Locke

Spencer for their encouragement and suggestions for improving the quality of my thesis. I

specially thank Dr. Howard Cheng for his academic and administrative helps.

I must thank Administrative Support Ms. Barb Hodgson for her cordial support when-

ever I needed help from her.

I would like to thank anonymous reviewers of my two conference papers published in

Proc. IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, Canada,

May 2016 for their invaluable suggestions to improve my papers that constitute a large part

of my thesis.

I also thank other faculty members of the department and my fellow students for their

unconditional helps and supports.

Finally, I must thank my parents for extending every possible supports and absorbing

emotional pains to keep their only daughter alone staying several thousand miles away from

home for this study.

This list is not an exhaustive list to thank. Anybody who directly or indirectly helped

me in any aspect during my study also deserves a great thank.

v

Contents

Contents vi

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Motivation of the Thesis . 1
1.2 Outcomes of the Thesis . 3
1.3 Organization of the Thesis . 4

2 Background 6
2.1 Introduction . 6
2.2 Reed-Muller Representations of Binary Logic Functions 7
2.3 Ternary Logic . 10

2.3.1 Advantages of Ternary Logic . 11
2.3.2 Disadvantages of Ternary Logic 11

2.4 Max-Min Algebra-Based Representation of Ternary Logic Functions 12
2.4.1 Ternary Max-Min Algebra . 12
2.4.2 Ternary Max-Min Expression . 13
2.4.3 Ternary Logic Function Representation Using Max-Min Expressions 15

2.5 Galois Field-Based Representation of Ternary Logic Functions 16
2.5.1 Ternary Galois Field . 16
2.5.2 Ternary Galois Field Sum of Products (TGFSOP) Expressions . . . 18

2.6 Ternary Karnaugh Map . 18
2.6.1 Structures of Ternary K-Maps . 19
2.6.2 Putting Ternary Logic Functions on a Ternary K-Map 19

2.7 Reversible Logic . 21
2.7.1 Irreversible Logic Versus Reversible Logic 21
2.7.2 Advantages of Reversible Logic Over Irreversible Logic 23
2.7.3 Disadvantages of Reversible Logic 24

2.8 Ternary Reversible Logic . 25
2.8.1 Ternary Reversible Gates . 25
2.8.2 Realizations of TGFSOP Expressions Using Feynman and Toffoli

Gates . 27
2.9 Reversible Circuit Realization Complexities 28

vi

CONTENTS

3 Literature Review 30
3.1 Introduction . 30
3.2 Realizations of Macro-Level Ternary Reversible Gates 30
3.3 Previous Works on Reversible Synthesis of Ternary Logic Circuits 33

3.3.1 Genetic Algorithm-Based Synthesis of Ternary Reversible Circuits . 33
3.3.2 Max-Min Algebra-Based Synthesis of Ternary Reversible Circuits . 34
3.3.3 Transformation-Based Synthesis of Ternary Reversible Circuits . . 36
3.3.4 TGFSOP-Based Synthesis of Ternary Reversible Circuits 37
3.3.5 Projection Operation-Based Synthesis of Ternary Reversible Circuits 40
3.3.6 Group Theory-Based Synthesis of Ternary Reversible Circuits . . . 41

4 Ternary Logic Function Representation Using Max-Min Algebra 42
4.1 Introduction . 42
4.2 Literals of the Proposed Ternary Max-Min Algebra 43
4.3 Ternary Logic Function Representation using Max-Min Algebra 44

4.3.1 Sub-Functions of a Ternary Logic Function 44
4.3.2 Canonical Max-Min Expression for a Sub-Function 45

5 Ternary Multiple-Controlled Unary Gates 48
5.1 Introduction . 48
5.2 Ternary Elementary Quantum Gates . 49
5.3 Ternary Single-Controlled Unary Gates 49

5.3.1 Ternary Single-Controlled Unary Gates with Simple Control 49
5.3.2 Ternary Single-Controlled Unary Gates with Composite Control . . 50
5.3.3 Realization Complexities of Ternary Single-Controlled Unary Gates 51

5.4 Ternary Multiple-Controlled Unary Gates 52
5.4.1 Ternary Multiple-Controlled Unary Gates with Simple Controls . . 52
5.4.2 Ternary Multiple-Controlled Unary Gates with Composite Controls 54
5.4.3 Ternary Multiple-Controlled Unary Gates with Mixed Controls . . . 56
5.4.4 Realization Complexities of Multiple-Controlled Unary Gates . . . 57

6 Ternary Reversible Circuit Synthesis Using Max-Min Algebra 59
6.1 Introduction . 59
6.2 Mapping of Ternary Max-Min Expressions into Reversible Circuits 60
6.3 Architectures of Ternary Reversible Circuit Synthesis 63
6.4 Ternary Reversible Circuit Synthesis Example 66
6.5 Post Synthesis Quantum Cost Reduction 66

7 Ternary K-map-Based Minimization of Ternary Max-Min Expressions 69
7.1 Introduction . 69
7.2 Motivation of Minimization of Ternary Max-Min Expressions 70
7.3 Grouping of Cells on a Ternary K-Map . 72

7.3.1 Sizes of Groups . 72
7.3.2 Grouping Rules . 74

vii

CONTENTS

7.4 Minimization of Ternary Max-Min Expression of a Ternary Sub-Function
Using Ternary K-Map . 75
7.4.1 Grouping and Determining Max-Min Expression 75
7.4.2 Some Observations . 78
7.4.3 K-Map-Based Minimization Method 83

7.5 Ternary K-Map-Based Minimization Examples 84
7.6 Comparison Between K-Map-Based ESOP and Ternary Max-Min Mini-

mizations . 88

8 Hybrid Genetic Algorithm-Based Synthesis of Ternary Reversible Circuits Us-
ing Max-Min Algebra 90
8.1 Introduction . 90
8.2 Brief Introduction to Genetic Algorithms (GAs) 91
8.3 Generation of Potential Candidate Minterms for Solution 96

8.3.1 Encoding of Variable Value Variation 96
8.3.2 Minterm Generation . 98
8.3.3 Reducing the Number of Potential Minterms 99
8.3.4 Example of Minterm Generation 100
8.3.5 Algorithm for Minterm Generation 101

8.4 Problem Encoding into Genetic Algorithm Domain 103
8.5 Proposed Hybrid Genetic Algorithm (HGA) 105
8.6 Ternary Reversible Circuit Synthesis From Outputs of Hybrid Genetic Al-

gorithm . 111
8.6.1 Logic-Level Ternary Circuit Synthesis Using Multiple-Controlled

Unary Gates from Output of the Hybrid Genetic Algorithm 111
8.6.2 Post Synthesis Quantum Cost Reduction 112

9 Experimental Results 115
9.1 Introduction . 115
9.2 Results of Ternary Benchmark Sub-Function Synthesis Using Hybrid Ge-

netic Algorithm (HGA) . 116
9.3 Results of Ternary Benchmark Circuit Synthesis 121
9.4 Comparison of Circuit Synthesis Results With Previous Work 122

10 Conclusion and Future Work 126
10.1 Conclusion . 126
10.2 Future Work . 127

Bibliography 130

A Ternary Benchmark Functions 133

viii

List of Tables

2.1 An example 4-variable binary logic function. 10
2.2 Ternary Max operation. 12
2.3 Ternary Min operation. 13
2.4 Ternary Complement (or Negation) operation. 13
2.5 1-Reduced Post literals of a variable. 14
2.6 2-Reduced Post literals of a variable. 14
2.7 Truth table of a ternary half-adder. 16
2.8 GF3 addition operation. 17
2.9 GF3 multiplication operation. 17
2.10 An example two-variable ternary logic function. 21
2.11 Truth table of the binary EXOR function. 22
2.12 Truth table of the binary reversible EXOR function. 23
2.13 Ternary single-input (unary) reversible operations and their corresponding

reversible literals. 26

3.1 Compound Forms of 1-Reduced Post literals. 35

4.1 Ternary unary reversible operations and their corresponding literals. 43
4.2 Ternary unary non-reversible operations and their corresponding literals. . . 44
4.3 An example two-variable ternary logic function and its three sub-functions. 44
4.4 Reversible literal assignment to input values for determining the canonical

minterm for an input combination. 45

5.1 Quantum costs and number of ancilla inputs for ternary single-controlled
unary gate realizations. 52

6.1 An example two-variable ternary logic function and its three sub-functions. 60
6.2 Literal to control value mapping for realization of a minterm using a ternary

multiple-controlled unary gate. 61
6.3 Post synthesis quantum cost reduction. 68

7.1 An example two-variable ternary logic function and its three sub-functions. 76
7.2 Truth table for a ternary full-adder with all sub-functions. 87

8.1 Variable value encoding in a group of cells. 96
8.2 An example two-variable ternary logic function and its three sub-functions. 97
8.3 Minterm generation for sub-function F1(A,B) in Table 8.2. 101
8.4 Minterm generation for sub-function F1(A,B) in Table 8.2 (continued). . . 102

ix

LIST OF TABLES

8.5 List of minterms which are potential candidates for optimal (or near opti-
mal) solution. 103

8.6 Experimental results of generic GA-based minimization of some ternary
benchmark sub-functions from Appendix A. 107

8.7 Mapping of value change of a variable to literal and mapping of literal to
control value of the multiple-controlled unary gate. 111

9.1 Experimental results of minterm generation and HGA-based synthesis of
ternary reversible logic circuits. 118

9.2 Experimental results of minterm generation and HGA-based synthesis of
ternary reversible logic circuits (continued). 119

9.3 Experimental results of minterm generation and HGA-based synthesis of
ternary reversible logic circuits (continued). 120

9.4 Ternary reversible circuit realization results. 123
9.5 Comparison of our Max-Min expression-based synthesis results with those

of TGFSOP-based method [16]. 124
9.6 Comparison of number of ancilla inputs required in our method with those

of [5]. 125

x

List of Figures

2.1 ESOP minimization for the Boolean function in Table 2.1. 9
2.2 Realization of the ESOP expression (2.1). 10
2.3 Structures of (a) a two-variable, (b) a three-variable, and (c) a four-variable

ternary K-map. 20
2.4 Putting the ternary function F(A,B) of Table 2.10 on a two-variable ternary

K-map. 21
2.5 Ternary reversible (a) unary, (b) M-S, (c) Feynman, and (d) Toffoli gates. . 25
2.6 The family of generalized ternary gates (GTGs). 27
2.7 Realization of the TGFSOP expression (2.6). 28

3.1 Realization of generalized ternary gate (GTG) from [12]. 31
3.2 Realization of ternary Feynman gate from [12]. 32
3.3 Realization of a three-input Tofoli gate from [12]. (a) Realization using

GTGs and Feynman gates. (b) Realization after replacing the GTGs and
the Feynman gates by their corresponding realizations using unary and M-
S gates. 32

3.4 Realization of a ternary Feynman gate from [15]. 33
3.5 Realization of a three-input ternary Toffoli gate from [15]. 33
3.6 K-map representing ternary Min(A,B,C) function. 35
3.7 GTG cascade for the expression (3.1). 36
3.8 Reversible realization of a ternary full-adder using the TGFSOP expres-

sions (3.2) and (3.3) using a cascade of unary, M-S, Feynman, and Toffoli
gates from [16]. 39

5.1 Ternary (a) unary and (b) M-S gates. 49
5.2 Ternary single-controlled unary gates with simple control. 50
5.3 Ternary single-controlled unary gates with composite control. 51
5.4 An example ternary triple-controlled unary gate with simple controls and

its quantum-level realization. 53
5.5 An example ternary triple-controlled unary gate with composite controls

and its quantum-level realization. 56
5.6 An example ternary triple-controlled unary gate with mixed controls and its

quantum-level realization. 57

6.1 Reversible realizations of canonical Max-Min expressions from (a) equa-
tion (6.1), (b) equation (6.2), and (c) equation (6.3). 62

6.2 Reversible realization of minimized Max-Min expression (6.4). 63
6.3 Architectures of reversible realizations of ternary logic functions. 65

xi

LIST OF FIGURES

6.4 Reversible realization of the function F(A,B) in Table 6.1 represented by
Max-Min expressions of sub-functions F0(A,B), F1(A,B), and F2(A,B)
of (6.1), (6.4), and (6.3), respectively, using the architecture of Figure 6.3(a). 66

6.5 Quantum-level expansion of circuit of Figure 6.4 for post synthesis quan-
tum cost reduction. 67

7.1 Reversible realizations of Max-Min expressions for (a) equation (7.1) and
(b) equation (7.2). 70

7.2 Reversible realizations of Max-Min expressions for (a) equation (7.3) and
(b) equation (7.4). 71

7.3 (a) A cell with a 1 is overlapped by two groups and (b) a cell with a 1 is
overlapped by four groups on a ternary K-map. 75

7.4 (a) A cell with a 0 is overlapped by two groups and (b) a cell with a 0 is
overlapped by three groups on a ternary K-map. 76

7.5 Four different solutions of the sub-function F1(A,B) in Table 7.1. 77
7.6 Two possible minimization of a three-variable sub-function F1(A,B,C). . . 80
7.7 Two possible minimizations of a four-variable sub-function F1(A,B,C,D). 81
7.8 Two possible minimizations of a two-variable sub-function F1(A,B). 82
7.9 Two possible minimizations of a two-variable sub-function F1(A,B). 83
7.10 Two possible minimizations of a two-variable sub-function F1(A,B). 84
7.11 Examples of (a) a two-variable, (b) a three-variable, and (c) a four-variable

ternary sub-function minimization. 86
7.12 Minimization of Max-Min expression for sub-function Cout1 of a ternary

full-adder from the truth table in Table 7.2. 87
7.13 Minimization of Max-Min expression for sub-function S0 of a ternary full-

adder from the truth table in Table 7.2. 88

8.1 An example chromosome of length eight. 92
8.2 An example population of size four with chromosome length eight. 92
8.3 Crossover operation. 95
8.4 Mutation operation. 95
8.5 Sub-function F1(A,B) of Table 8.2 on a two-variable ternary K-map. 97
8.6 Combination of encoded inputs by doing bit-wise OR. 97
8.7 Partial example of generation of minterms. 99
8.8 Chromosome structure of proposed Genetic Algorithm for minimization of

Max-Min expression. 105
8.9 (a) Minimum solution for the sub-function F1(A,B) in Table 8.2 produced

by the HGA and (b) representation of the minterms of the solution on a
ternary K-map. 110

8.10 The output of the HGA for the sub-function F1(A,B) in Table 8.2 and its
reversible realization using multiple-controlled unary gates. 112

8.11 Post synthesis quantum cost reduction for ternary benchmark sub-function
3cy20. 113

xii

Chapter 1

Introduction

1.1 Motivation of the Thesis

It has been shown in [16] that theoretically ternary encoded realization is more compact

than binary and requires 0.63 times the number of input lines. A more detailed discussion

is given in Section 2.3. Ternary logic circuits are also practically realizable as described

in [7]. Therefore, ternary is an alternative to traditional binary realization and may reduce

the physical resources needed.

Any ternary gate (or circuit) that computes a function which is bijective can be consid-

ered to be a ternary reversible gate (or circuit). The outputs of a ternary reversible circuit are

permutations of the inputs. This also means that a ternary reversible circuit has same num-

ber of inputs and outputs. Another way to describe this is to say that in ternary reversible

circuits an input combination uniquely maps to an output combination, and similarly an out-

put combination also uniquely maps to an input combination. Conventional ternary logic

circuits are irreversible, since they map inputs to outputs in a many-to-one manner; that

is, more than one input combination may map to a single output. A ternary irreversible

circuit may have a different number of inputs and outputs. Advantages of ternary reversible

circuits over irreversible circuits are discussed below.

Landauer [23] theoretically showed that binary irreversible logic operations dissipate

kT ln2 joules of heat energy when a bit of information is lost, where k is Boltzmann’s

constant and T is the operating temperature in kelvin. Bennett [2] showed theoretically that

from a thermodynamic point of view, if a circuit is both logically and physically reversible,

1

1.1. MOTIVATION OF THE THESIS

then there will be no heat dissipation. Thus reversible circuits have been theorized to be

energy lossless circuits. However, DeVos [6] experimentally found that in complementary

metal oxide semiconductor (CMOS) reversible circuits, zero heat dissipation as suggested

by Bennett is not possible. Reversible CMOS circuits still dissipate heat during switching

of CMOS transistors; however the amount of heat dissipation for an equivalent operation

is less than the thermodynamic limit of kT ln2 joules, and DeVos stated that on average

reversible circuits dissipate less heat than irreversible circuits. Thus binary reversible logic

is a promising choice for low-power CMOS circuit design. It is generally believed that the

same phenomena will also hold true for ternary reversible logic circuits [19, 32].

Quantum circuits are inherently reversible and are designed using the concepts of clas-

sical reversible circuit design [34]. Therefore, the study of reversible logic is very impor-

tant in quantum computing and quantum information theory. Ternary quantum circuits are

physically realizable using linear ion trap quantum technology [33]. Therefore, it is theo-

retically possible to develop ternary quantum circuits using ternary reversible circuit design

concepts.

Further details are offered in Section 2.7.

The literature includes a number of works on synthesis of ternary reversible logic cir-

cuits. Generalized design of ternary reversible logic circuits is discussed in Chapter 3.

Among the reported works, ternary Galois field sum of products (TGFSOP) expression-

based design of ternary reversible logic circuits is the most practical method for functions

with many input variables [16]. In this approach, ternary logic functions are first expressed

as minimized TGFSOP expressions and then the TGFSOP expressions are realized as cas-

cades of unary, M-S, Feynman, and Toffoli gates. However, this method requires exponen-

tial time to find an optimal subset of ternary Galois field expansions (TGFE) and, therefore,

an evolutionary algorithm is used to obtain a near optimal solution in [16]. In addition,

realization of the macro-level Feynman and Toffoli gates requires a very high quantum

cost [15], which is the number of elementary quantum gates needed to realize a macro-

2

1.2. OUTCOMES OF THE THESIS

level gate. Realizations of reversible circuits sometimes need use of constant-initialized

working inputs in addition to the primary inputs of the circuit. These constant-initialized

working inputs are known as ancilla inputs. The number of ancilla inputs required in TGF-

SOP expression-based circuit realization is also very high. More detailed discussions on

this approach are given in Section 3.3. Another work close to our proposed approach is the

ternary Max-Min algebra-based synthesis of ternary reversible circuits using generalized

ternary gates (GTGs) [5]. This method requires a large number of GTGs and a very high

number of ancilla inputs. More detailed discussion on this method is given in Section 3.3.

Therefore, new synthesis methods must be developed to reduce the quantum cost and the

number of ancilla inputs of ternary logic circuits.

To address these problems we suggest an alternative ternary Max-Min algebra-based

method for reversible realization of ternary logic circuits. The outcomes of this thesis are

summarized in section 1.2.

1.2 Outcomes of the Thesis

The outcomes of this thesis are summarized below:

• We propose a method of representing ternary logic functions using ternary Max-

Min algebra. For this purpose we use ternary reversible literals to represent input

combinations as minterms. The minterms corresponding to an specified output (0,

1, or 2) are combined by Max operation to form a Max of minterms (Max-Min)

expression. We also propose composite literals to represent minimized Max-Min

expression for ternary logic functions. Three minimized Max-Min expressions are

generated for three sub-functions producing outputs 0, 1, and 2.

• We propose multiple-controlled unary gates to realize Max-Min expressions. We

show realizations of multiple-controlled unary gates using unary and M-S gates.

3

1.3. ORGANIZATION OF THE THESIS

• We propose three architectures for realizing ternary reversible circuits. Two sub-

functions producing outputs 0 and 1; or 0 and 2; or 1 and 2 are realized as cascades

of multiple-controlled unary gates and the other output constant is used as an ancilla

input for realizing the two selected sub-functions.

• We propose a ternary Karnaugh map-based minimization of Max-Min expressions

for ternary functions with up to four variables.

• We propose a hybrid Genetic Algorithm-based method for synthesis of ternary re-

versible circuits and experiment with up to five variable benchmark functions. The

quantum cost and the number of ancilla inputs are much less than those of the TGF-

SOP expression-based method [16]. The proposed method also requires fewer ancilla

inputs than that reported in [5].

From the outcome of the thesis two conference papers are published as listed in refer-

ences [14] and [13].

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows:

• In Chapter 2 we discuss the background concepts on ternary reversible logic. We

introduce conventional binary logic first and then introduce ternary logic by drawing

analogies with binary logic. We also discuss the advantages of reversible logic over

conventional irreversible logic. Finally, we introduce the metrics used for measuring

the realization complexities of a reversible circuit.

• In Chapter 3 we present an extensive review on synthesis methods of ternary re-

versible circuits. We also discuss realizations of macro-level ternary gates using ele-

mentary gates.

4

1.3. ORGANIZATION OF THE THESIS

• In Chapter 4 we discuss our proposed method of representing ternary logic functions

using ternary Max-Min algebra.

• In Chapter 5 we introduce the concept of our proposed macro-level ternary multiple-

controlled unary gates. We also discuss our proposed method for realization of

multiple-controlled unary gates using elementary quantum gates such as unary gates

and M-S gates.

• In Chapter 6 we discuss our proposed method of realizing ternary Max-Min expres-

sions using ternary multiple-controlled unary gates. We also discuss our proposed

architecture for realizing a ternary logic function using two of the three sub-functions

producing outputs 0, 1, and 2.

• In Chapter 7 we discuss our proposed ternary Karnaugh map-based minimization of

ternary logic functions of up to four variables.

• In Chapter 8 we discuss our proposed hybrid Genetic Algorithm-based method for

synthesis of ternary reversible circuits.

• In Chapter 9 we present our hybrid Genetic Algorithm-based synthesis results of up

to five variable ternary benchmark logic functions. We also compare our results with

those of [16] and [5].

• In Chapter 10 we conclude the thesis by summarizing the contributions of this thesis

and discussing possible future works.

5

Chapter 2

Background

2.1 Introduction

In this chapter we introduce the background concepts for ternary reversible logic, which

are useful for understanding the literature review as well as our proposed method of synthe-

sizing ternary reversible circuits using ternary Max-Min algebra in the following chapters.

This chapter is organized as follows:

• In Section 2.2 we introduce conventional binary logic with emphasis on Reed-Muller

representations of binary logic functions. Discussion of Reed-Muller representations

of binary logic functions is helpful for understanding ternary Galois field sum of

products (TGFSOP)-based synthesis of ternary reversible logic. This concept will

also be very helpful for understanding our proposed ternary Karnaugh map (K-map)-

based minimization in Chapter 7.

• In Section 2.3 we introduce ternary logic and discuss the advantages and disadvan-

tages of ternary logic over conventional binary logic.

• In Section 2.4 we introduce ternary Max-Min algebra and ternary logic function rep-

resentation using ternary Max-Min expressions. The knowledge of ternary Max-Min

expressions will be useful for understanding the literature review of work [5], which

makes use of Max-Min expression-based synthesis of ternary reversible circuits.

• In Section 2.5 we introduce ternary Galois field and ternary logic function repre-

sentation using ternary Galois field sum of products (TGFSOP) expressions. The

6

2.2. REED-MULLER REPRESENTATIONS OF BINARY LOGIC FUNCTIONS

knowledge of TGFSOP expressions will be useful for understanding the literature

review of works [20, 21, 22, 16, 18], which make use of TGFSOP-based synthesis of

ternary reversible circuits.

• In Section 2.6 we introduce the structures of ternary Karnaugh maps (K-maps) for

minimization of ternary logic functions. The knowledge of ternary K-maps will be

useful for understanding the literature review of work [5] where ternary K-maps are

used. The knowledge of ternary K-maps will be particularly useful for understanding

our proposed ternary K-map-based minimization in Chapter 7.

• In Section 2.7 we introduce reversible logic. We discuss the concept of an irreversible

function and a reversible function. We then discuss the advantages and disadvantages

of reversible logic over irreversible logic.

• In Section 2.8 we introduce ternary reversible logic. We first introduce commonly

used ternary reversible gates. We then discuss TGFSOP-based ternary reversible

logic synthesis using ternary reversible gates.

• In Section 2.9 we introduce two metrics for measuring the implementation complex-

ities of a reversible circuit.

2.2 Reed-Muller Representations of Binary Logic Functions

Conventional digital circuits use binary logic. A binary logic function is a mapping

F : {0,1}n 7→ {0,1}. Binary logic functions are defined, represented, and realized using

Boolean algebra. Readers are referred to any standard textbook such as [26] for detailed

discussions on binary logic gates, Boolean algebra, representation of binary logic functions

using Boolean algebra, minimization of Boolean functions using K-maps, and realization

of Boolean expressions using logic gates. In this section we discuss Reed-Muller represen-

tations of binary logic functions. Understanding of Reed-Muller representations of binary

7

2.2. REED-MULLER REPRESENTATIONS OF BINARY LOGIC FUNCTIONS

logic functions will be helpful for understanding ternary Galois field sum of products (TGF-

SOP) expression-based ternary logic synthesis of works [20, 21, 22, 16, 18] as well as our

proposed ternary K-map-based method for minimization of ternary Max-Min expressions

in Chapter 7.

In conventional Boolean logic, binary logic functions can be represented as sum of

products (SOP) expressions and realized as AND-OR circuits (see [26]). In Reed-Muller

expressions, binary logic functions are expressed as exclusive-OR sum of products (ESOP)

expressions and realized as AND-EXOR circuits. There are different forms of Reed-Muller

expressions [36]. The most commonly used form of Reed-Muller expression is called the

exclusive-OR sum of products (ESOP) [36, 37].

Small binary logic functions can be minimized as ESOP expressions using K-maps [36].

We know that A⊕A = 0 but A⊕A⊕A = A. This property of the EXOR operation means

that on a K-map we must cover 1s an odd number of times. This property also allows

including a 0 within a group of 1s on a K-map if that 0 is covered an even number of times.

An even number of coverings of a 0 does not have any effect on the value of the function.

Readers can see [36] for more details of K-map-based minimization of ESOP expressions.

A Boolean function can be simplified as an ESOP expression using the following pro-

cedure:

1. Represent the binary logic function on a K-map.

2. Identify the largest possible groups of cells such that a 1 is covered an odd number

of times and a 0 is covered an even number of times. It is desirable to have as small

a number of groups as possible. It may be necessary to form a group within another

larger group to maintain the constraint that a 1 is covered an odd number of times and

a 0 is covered an even number of times.

3. Determine the product terms for each group of cells. Combine the product terms

using EXOR operators to form the simplified ESOP expression.

8

2.3. TERNARY LOGIC

The above procedure is demonstrated using an example 4-variable binary logic function

in Table 2.1 as follows:

1. The binary logic function in Table 2.1 is represented on the K-map in Figure 2.1.

2. The groups of cells are identified as groups 1, 2, 3, and 4, respectively. The cell 0010

containing a 0 is covered by groups 1 and 2; the cell 0100 containing a 0 is covered

by groups 1 and 3; the cell 0101 containing a 0 is covered by groups 1 and 4; and the

cell 0000 containing a 1 is covered by groups 1, 2, and 3. These groupings satisfy the

requirement of ESOP minimization.

3. The product term for group 1 is A ; for group 2 is B D ; for group 3 is A C D ; and

for group 4 is BCD . The simplified ESOP expression for the binary logic function in

Table 2.1 is shown in (2.1).

F(A,B,C,D) = A⊕B D ⊕A C D⊕BCD (2.1)

Figure 2.1: ESOP minimization for the Boolean function in Table 2.1.

It is shown in [37] that the ESOP expression is either smaller or at most equal to the

corresponding SOP expression for a given binary logic function.

The realization of the ESOP expression of (2.1) is shown in Figure 2.2.

9

2.3. TERNARY LOGIC

Table 2.1: An example 4-variable binary logic function.

ABCD F(A,B,C,D)

0000 1
0001 1
0010 0
0011 1
0100 0
0101 0
0110 1
0111 1
1000 1
1001 0
1010 1
1011 0
1100 0
1101 1
1110 0
1111 0

Figure 2.2: Realization of the ESOP expression (2.1).

2.3 Ternary Logic

A ternary logic function is a mapping F : {0,1,2}n 7→ {0,1,2}. In this section, we

discuss the advantages and disadvantages of ternary logic over binary logic.

10

2.4. REPRESENTATION OF TERNARY LOGIC FUNCTIONS

2.3.1 Advantages of Ternary Logic

A ternary logic representation enables a more compact and efficient information encod-

ing than the equivalent binary logic representation [16]. The argument stated in [16] is as

follows: if we assume that a digital circuit has N possible input combinations; then a binary

circuit requires log2N input lines and a ternary circuit requires log3N input lines. Thus we

have

Number of input lines for ternary circuit
Number of input lines for binary circuit

=
log3N
log2N

=

log2N
log23

log2N

=
1

log23

= 0.63

(2.2)

Therefore, a ternary encoded realization of a given binary logic function should require

0.63 times the input lines than the corresponding binary realization.

2.3.2 Disadvantages of Ternary Logic

Although ternary logic circuits should require fewer input lines than the equivalent bi-

nary logic circuits, ternary logic circuits are currently not a practical choice. The reasons are

(i) ternary hardware implementation technology is still in the theoretical, simulation, and

laboratory test levels [7], (ii) representing three ternary logic levels (0, 1, and 2) using volt-

age levels of existing technology is not yet effectively defined, and (iii) no computational

model and programming language is developed. However, [7] gives simulation results of

ternary circuit implementation using complementary metal oxide semiconductor (CMOS),

resonant tunneling diode (RTD), and carbon nano tube technologies, demonstrating that

ternary logic may be a choice for future computing.

11

2.4. REPRESENTATION OF TERNARY LOGIC FUNCTIONS

2.4 Max-Min Algebra-Based Representation of Ternary Logic Func-

tions

In this section we introduce ternary Max-Min algebra and ternary Max-Min algebra-

based representation of ternary logic functions.

2.4.1 Ternary Max-Min Algebra

Ternary Max-Min algebra has the set of values T = {0,1,2} and the following three

operations:

Max (+): For x,y ∈ T,x+ y = max(x,y)

Min (·): For x,y ∈ T,x · y (or xy) = min(x,y)

Complement (or Negation) (−): For x ∈ T,x = 2− x

Ternary Max, Min, and Complement operations are shown in the truth tables of Ta-

bles 2.2, 2.3, and 2.4, respectively.

Table 2.2: Ternary Max operation.

xy x+ y = max(x,y)

00 0
01 1
02 2
10 1
11 1
12 2
20 2
21 2
22 2

Ternary Max-Min algebra satisfies the following properties for x,y,z ∈ T :

Commutativity: (i) x+ y = y+ x and (ii) xy = yx

Associativity: (i) x+(y+ z) = (x+ y)+ z and (ii) x(yz) = (xy)z

Distributivity: (i) x+(yz) = (x+ y)(x+ z) and (ii) x(y+ z) = xy+ xz

12

2.4. REPRESENTATION OF TERNARY LOGIC FUNCTIONS

Table 2.3: Ternary Min operation.

xy x · y = min(x,y)

00 0
01 0
02 0
10 0
11 1
12 1
20 0
21 1
22 2

Table 2.4: Ternary Complement (or Negation) operation.

x x = 2− x

0 2
1 1
2 0

Idempotency: (i) x+ x = x and (ii) xx = x

Identity: (i) x+0 = x, (ii) x+2 = 2, (iii) x ·0 = 0, and (iv) x ·2 = x

Involution: x = x

De Morgan’s Law: (i) (x+ y) = x · y and (ii) (xy) = x+ y

2.4.2 Ternary Max-Min Expression

A ternary logic function can be represented as a Max-Min expression. Ternary Max-

Min expressions are defined as follows:

Variable: Any symbol that takes value from the set T ∈ {0,1,2} is a ternary variable.

Literal: Literals are transformed forms of a variable. They are used to form Max-Min

expressions. In the literature two types of literals are commonly used: 1-reduced Post

literals [5] and 2-reduced post literals [39, 38, 10].

A 1-reduced Post literal of a variable x is represented as xi, where i ∈ {0,1,2}. When

13

2.4. REPRESENTATION OF TERNARY LOGIC FUNCTIONS

x = i, then xi = 1, otherwise xi = 0. The 1-reduced Post literals of a variable are shown in

Table 2.5. A 2-reduced Post literal of a variable x is represented as xi, where i ∈ {0,1,2}.

When x = i, then xi = 2, otherwise xi = 0. The 2-reduced Post literals of a variable are

shown in Table 2.6. This thesis makes use of different sets of literals to form Max-Min

expressions as discussed in Chapter 4.

Table 2.5: 1-Reduced Post literals of a variable.

Variable 1-Reduced Post Literals

x x0 x1 x2

0 1 0 0
1 0 1 0
2 0 0 1

Table 2.6: 2-Reduced Post literals of a variable.

Variable 2-Reduced Post Literals

x x0 x1 x2

0 2 0 0
1 0 2 0
2 0 0 2

Minterm: When literals of variables of a function are combined using the Min operation,

then the term is called a minterm. For example, for a 3-variable ternary logic function

F(x,y,z), xyz and xz are two examples of minterms.

Max-Min Expression: When two or more minterms are combined using Max operations,

then the expression is called a Max of minterms (Max-Min) expression. For example, for

a 3-variable ternary logic function F(x,y,z), F(x,y,z) = xy+ yz+ xyz is an example of a

Max-Min expression.

14

2.4. REPRESENTATION OF TERNARY LOGIC FUNCTIONS

2.4.3 Ternary Logic Function Representation Using Max-Min Expressions

There have been many attempts to represent ternary logic functions using ternary Max-

Min algebra. Among them is the Max-Min algebra using 2-reduced Post literals [39, 38,

10].

In [10], for a given ternary logic function F , two sub-functions F1 (corresponding to the

output 1) and F2 (corresponding to the output 2) are represented as Max-Min expressions.

For determining the minterm for an input combination, an input value is assigned to a 2-

reduced Post literal as shown in Table 2.6. For example, for a 3-variable ternary logic

function F(x,y,z), the minterm corresponding to the input combination 012 is x0y1z2. When

the input combination is x= 0, y= 1, and z= 2, then x0 = 2, y1 = 2, and z2 = 2. In that case,

the minterm x0y1z2 = 2 ·2 ·2 = 2. For other input combinations, the minterm x0y1z2 will be

0. For example, for the input combination 011, x = 0, y = 1, and z = 1, then x0 = 2, y1 = 2,

and z2 = 0. In this case, the minterm x0y1z2 = 2 · 2 · 0 = 0. The total function F(x,y,z) is

represented as shown in (2.3).

F(x,y,z) = F2(x,y,z)+1 ·F1(x,y,z). (2.3)

From (2.3) we see that if an input combination produces output 1, then F1(x,y,z) = 2,

F2(x,y,z) = 0, and F(x,y,z) = F2(x,y,z)+ 1 ·F1(x,y,z) = 0+ 1 · 2 = 1. If an input combi-

nation produces output 2, then F1(x,y,z) = 0, F2(x,y,z) = 2, and F(x,y,z) = F2(x,y,z)+1 ·

F1(x,y,z) = 2+ 1 · 0 = 2. If an input combination produces output 0, then F1(x,y,z) = 0,

F2(x,y,z) = 0, and F(x,y,z) = F2(x,y,z)+1 ·F1(x,y,z) = 0+1 ·0 = 0.

The truth table of a ternary half-adder is shown in Table 2.7. The expressions for the

outputs are shown in (2.4) and (2.5).

Cout = 0+1 · (A1B2 +A2B1 +A2B2) (2.4)

S = A0B2 +A1B1 +A2B0 +1 · (A0B1 +A1B0 +A2B2) (2.5)

15

2.5. GALOIS FIELD-BASED REPRESENTATION OF TERNARY FUNCTIONS

Table 2.7: Truth table of a ternary half-adder.

AB CoutS

00 00
01 01
02 02
10 01
11 02
12 10
20 02
21 10
22 11

In [10], a ternary K-map-based minimization technique for ternary logic functions of

up to 3 variables is presented. The ternary K-map is introduced in Section 2.6. Readers are

referred to [10] for detailed discussion.

In [7], implementations of Max-Min expressions using decoders for generating all three

2-reduced Post literals, Min gates, and Max gates are presented. These gates are imple-

mentable using complementary metal oxide semiconductor (CMOS), resonant tunneling

diode (RTD), and carbon nano tube technologies (see [7] for details).

We will discuss another application of ternary Max-Min algebra in the literature review

of work [5] in Section 3.3, where 1-reduced Post literals are used.

2.5 Galois Field-Based Representation of Ternary Logic Functions

In this section we introduce ternary Galois field (TGF) and TGF-based representation

of ternary logic functions.

2.5.1 Ternary Galois Field

A ternary Galois field (TGF or GF3) is a finite field, which consists of a set of elements

T = {0,1,2} and two binary operations: addition (denoted by ⊕) and multiplication (de-

noted by · or juxtaposition) as defined in Tables 2.8 and 2.9, respectively. Readers should

16

2.5. GALOIS FIELD-BASED REPRESENTATION OF TERNARY FUNCTIONS

note that earlier in this thesis the⊕ symbol is also used to represent the binary EXOR oper-

ation. Both uses are consistent with the standard usages in the literature. For the remainder

of this thesis the ⊕ symbol will denote GF3 addition.

Table 2.8: GF3 addition operation.

xy x⊕ y

00 0
01 1
02 2
10 1
11 2
12 0
20 2
21 0
22 1

Table 2.9: GF3 multiplication operation.

xy x · y

00 0
01 0
02 0
10 0
11 1
12 2
20 0
21 2
22 1

The TGF or GF3 satisfies the following properties for x,y,z ∈ T :

• Associativity: (a) x⊕ (y⊕ z) = (x⊕ y)⊕ z and (b) x · (y · z) = (x · y) · z

• Commutativity: (a) x⊕ y = y⊕ x and (b) x · y = y · x

• Identity: (a) x⊕0 = x and (b) x ·1 = x

17

2.6. TERNARY KARNAUGH MAP

• Distributivity: x · (y⊕ z) = (x · y)⊕ (x · z)

2.5.2 Ternary Galois Field Sum of Products (TGFSOP) Expressions

A ternary logic function can be represented as a ternary Galois field sum of products

(TGFSOP) expression. TGFSOP expressions are inspired by binary ESOP expressions.

TGFSOP expressions are defined as follows:

Variable: Any symbol that takes value from the set T ∈ {0,1,2} is a ternary variable.

Literal: Literals are transformed forms of a variable used to determine TGFSOP expres-

sions. In practice different applications of ternary Galois field use different sets of literals

of a variable. We will discuss literals used in each application during discussions of those

applications.

Product Term: When literals of variables of a function are combined using the product

(or multiplication) operation, then the term is called a product term. For example, for a

3-variable ternary logic function F(x,y,z), xyz and xz are two examples of product terms.

TGFSOP Expression: When two or more product terms are combined using the sum (or

addition) operations, then the expression is called a TGFSOP expression. For example, for

a 3-variable ternary logic function F(x,y,z), F(x,y,z) = xy⊕ yz⊕ xyz is an example of a

TGFSOP expression.

We will further discuss ternary logic function representation using TGFSOP expressions

in the literature review of works [20, 21, 22, 16, 18] in Section 3.3.

2.6 Ternary Karnaugh Map

In this section we discuss ternary Karnaugh maps (K-maps), which are used in ternary

logic synthesis applications for minimizing ternary logic functions. In particular in Chap-

ter 7 we will propose a ternary K-map-based method for minimization of Max-Min expres-

sions for reversible realizations of ternary logic functions.

18

2.6. TERNARY KARNAUGH MAP

2.6.1 Structures of Ternary K-Maps

The structures of two-variable, three-variable, and four-variable ternary K-maps are

shown in Figures 2.3(a), 2.3(b), and 2.3(c), respectively.

Consider the top-left cell of Figure 2.3(a). Here the value of the variable A is 0 and

the value of the variable B is 0. So the variable combination for this cell is AB = 00. In a

similar manner the input combination corresponding to any cell can be determined.

If only one variable varies over two values, then the two cells are adjacent. In Fig-

ure 2.3(a) a cell at the left end of a row and a cell at the right end of the same row are

considered as adjacent cells. Similarly, a cell at the top end of a column and a cell at the

bottom end of the same column are considered as adjacent cells. In general, if two cells

differ over 0 and 1; or 0 and 2; or 1 and 2 in only one variable, then they are adjacent and

form a group of two cells. If four cells form a square, where two variables vary over two

values, then they form a group of four cells. Similarly, if three cells differ over 0, 1, and 2

in only one variable, then they are adjacent and form a group of three cells.

2.6.2 Putting Ternary Logic Functions on a Ternary K-Map

An example two-variable ternary logic function F(A,B) is shown in Table 2.10. A

ternary logic function produces output 0, 1, or 2. But in many practical functions outputs

corresponding to some input combinations are not definitely specified. This situation may

arise for two reasons - (i) some input combinations of a function will never appear at the in-

put of the associated circuit and thus the outputs corresponding to those input combinations

are not definitely specified or (ii) the operation of the associated circuit is such that outputs

corresponding to some input combinations may be either 0, 1, or 2 without affecting the

functional operation of the circuit, thus the outputs corresponding to those input combina-

tions are not definitely specified. These types of outputs are called don’t care outputs and

represented by an x. In Table 2.10 the input combinations 02, 12, and 22 produce don’t care

(x) outputs. This type of function is called an incompletely specified function.

19

2.6. TERNARY KARNAUGH MAP

Figure 2.3: Structures of (a) a two-variable, (b) a three-variable, and (c) a four-variable
ternary K-map.

The function F(A,B) is put on the two-variable ternary K-map in Figure 2.4. The input

combination AB = 00 produces an output 0. A 0 is put in the cell corresponding to the

input combination AB = 00. The input combination AB = 01 produces an output 1. A 1

is put in the cell corresponding to the input combination AB = 01. The input combination

AB = 02 produces a don’t care (x) output. An x is put in the cell corresponding to the input

combination AB = 02. Similarly other values of the function F(A,B) are put on the map.

Grouping of cells on a ternary K-map depends on the specific application of ternary

logic function minimization. We discuss grouping of cells on ternary K-map and corre-

sponding minimization techniques in the literature review (Section 3.3), where an existing

20

2.7. REVERSIBLE LOGIC

Table 2.10: An example two-variable ternary logic function.

AB F(A,B)

00 0
01 1
02 x
10 1
11 0
12 x
20 2
21 1
22 x

Figure 2.4: Putting the ternary function F(A,B) of Table 2.10 on a two-variable ternary
K-map.

approach [5] is described, and in Chapter 7, where we propose our own approach to ternary

Max-Min minimization using ternary K-maps.

2.7 Reversible Logic

In this section we introduce the concept of conventional irreversible logic versus re-

versible logic. We then discuss the advantages and disadvantages of reversible logic over

irreversible logic.

2.7.1 Irreversible Logic Versus Reversible Logic

A binary irreversible function is a many-to-one mapping F : {0,1}n 7→ {0,1}, where n

is the number of variables in the function. For example the EXOR function in Table 2.11

is an irreversible function, since input combinations 00 and 11 map to output 0; and input

21

2.7. REVERSIBLE LOGIC

combinations 01 and 10 map to output 1. A binary irreversible circuit may have a different

number of inputs and outputs. In an irreversible circuit, the input combination correspond-

ing to a given output cannot always be determined uniquely.

Table 2.11: Truth table of the binary EXOR function.

xy x⊕ y

00 0
01 1
10 1
11 0

A ternary irreversible function is a many-to-one mapping F : {0,1,2}n 7→ {0,1,2},

where n is the number of variables in the function. For example, the ternary Max and

Min functions shown in Tables 2.2 and 2.3 are irreversible functions.

A binary reversible function is a bijective mapping F : {0,1}n 7→ {0,1}n, where n is

the number of variables in the function. A binary reversible circuit has same number of

inputs and outputs. Any irreversible function can be converted into reversible function

by adding constant-initialized ancilla inputs (a constant-initialized input that is not part

of the function input but required to realize a reversible circuit is known as ancilla input)

and garbage outputs (the outputs that are not the primary outputs but required to realize

a reversible circuit is known as garbage output) [28]. The irreversible EXOR function in

Table 2.11 can be converted into reversible EXOR function by adding a garbage output

p = x and getting the desired EXOR output as q = x⊕y as shown in Table 2.12 [34]. From

Table 2.12, it can be seen that the number of inputs and outputs are same. It can also be

seen that all inputs uniquely map to outputs and the input corresponding to each output can

be uniquely determined.

The output combinations of a reversible function is a permutation of the input combi-

nations. A function with n inputs has 2n input combinations. Therefore, there are (2n)!

possible binary reversible functions with n inputs and outputs.

22

2.7. REVERSIBLE LOGIC

Table 2.12: Truth table of the binary reversible EXOR function.

xy p = x q = x⊕ y

00 00
01 01
10 11
11 10

A ternary reversible function is a bijective mapping F : {0,1,2}n 7→ {0,1,2}n, where

n is the number of variables in the function. We discuss ternary reversible logic further in

Section 2.8.

2.7.2 Advantages of Reversible Logic Over Irreversible Logic

In a theoretical study, Landauer [23] showed that irreversible logic operations dissipate

kT ln2 joules of heat energy when a bit of information is lost, where k is Boltzmann’s con-

stant and T is the operating temperature in kelvin. In another theoretical study, Bennett [2]

showed that from a thermodynamic point of view, if a circuit is both logically and physi-

cally reversible, then there will be no heat dissipation. Thus reversible circuits have been

theorized to be energy lossless circuits. However, in a laboratory experiment, DeVos [6]

found that in complementary metal oxide semiconductor (CMOS) reversible circuits, zero

heat dissipation as suggested by Bennett is not possible. Reversible CMOS circuits still

dissipate heat during switching of CMOS transistors; however the amount of heat dissipa-

tion for an equivalent operation is less than the thermodynamic limit of kT ln2 joules, and

DeVos stated that on average reversible circuits dissipate less heat than irreversible circuits.

Thus binary reversible logic is a promising choice for low-power CMOS circuit design. It is

generally believed that the same phenomena will also hold true for ternary reversible logic

circuits [19, 32].

In a recent article, DeBenedictis [4] stated that current CMOS circuits use Boolean logic

networks, where the main contributor to heat generation is the energy in the 0 and 1 signals

23

2.7. REVERSIBLE LOGIC

stored on wires. Using communications theory, DeBenedictis showed that when 0 and 1

are transmitted through a wire from the output of a gate and received at an input of another

gate, then CV 2 joules of energy is turned into heat, where C is the capacitance in farads

between the wire and the ground and V is the power supply voltage in volts. DeBenedictis

also mentioned that in the literature different values of CV 2 energy are reported and the

most common cited value is CV 2 ≥ 100kT , where k is Boltzmann’s constant and T is the

ambient temperature in kelvin. DeBenedictis further stated that adiabatic [1] and reversible

logic essentially recycle CV 2 joules of signal energy many times before dissipating it as

heat, and on average the energy drawn from the power supply could be reduced by 100

times. DeBenedictis specifically mentioned that signal energy recycling cannot be done in

irreversible Boolean networks. Therefore, instead of irreversible Boolean logic, reversible

logic is a potential alternative for CMOS technology. Analogous to the case in binary

logic circuits, in ternary logic circuits a signal (0, 1, or 2) propagates through a wire from

the output of a gate to an input of another gate. In irreversible ternary CMOS circuits

similar heat dissipation will happen due to signal propagation through the wires. This

heat dissipation can be reduced by a significant amount by making the ternary logic circuit

reversible.

Another very important attribute of reversible logic is that quantum circuits are inher-

ently reversible. In a quantum algorithm, the corresponding circuits are designed using the

concepts of classical reversible circuit design [34]. Therefore, study of reversible logic is

very important in quantum computing and quantum information.

2.7.3 Disadvantages of Reversible Logic

Although reversible logic is a promising choice for low-power CMOS circuit design, it

has the following disadvantages: (i) CMOS reversible hardware implementation technology

is still in theoretical, simulation, and laboratory test levels [6], (ii) reversible computational

model and programming language is not yet well developed, and (iii) the depth (length of

24

2.8. TERNARY REVERSIBLE LOGIC

the longest signal propagation path) of a CMOS reversible circuit is larger than the equiv-

alent irreversible circuit, and consequently makes the reversible CMOS circuit operation

slower than irreversible circuit. However, as the heat removal from the current CMOS IC

technologies is very difficult, CMOS reversible circuits are promise of future computing

technology.

2.8 Ternary Reversible Logic

In this section we introduce elementary and macro-level ternary reversible gates. We

then briefly discuss realizations of ternary reversible circuits using TGFSOP expressions.

2.8.1 Ternary Reversible Gates

In a one input ternary reversible function, there are three possible input combinations (0,

1, and 2). Therefore, there are 3! = 6 possible single-input (or unary) reversible functions

as shown in Table 2.13. A unary or single-input gate applies a transform from Table 2.13

on the input value. The symbol of the ternary unary gate is shown in Figure 2.5(a), where

x is the input, U is any transform from Table 2.13, that is, U ∈ {+0,+1,+2,01,02,12},

and Ux is the transformed output. Muthukrishnan and Stroud [33] showed that the unary

transforms U ∈ {+0,+1,+2,01,02,12} can be realized using the linear ion trap model

of quantum computing [3]. Thus, the unary gate is an elementary gate and physically

realizable. Ternary unary gates are also called ternary shift gates, ternary single-qutrit gates,

or ternary single-trit gates in the literature [22, 16].

Figure 2.5: Ternary reversible (a) unary, (b) M-S, (c) Feynman, and (d) Toffoli gates.

25

2.8. TERNARY REVERSIBLE LOGIC

Table 2.13: Ternary single-input (unary) reversible operations and their corresponding
reversible literals.

Variable Ternary reversible unary operations and corresponding literals

x x+0 x+1 x+2 x01 x02 x12

0 0 1 2 1 2 0
1 1 2 0 0 1 2
2 2 0 1 2 0 1

Muthukrishnan and Stroud [33] also showed that an input value can be transformed

by any transform U ∈ {+0,+1,+2,01,02,12} if the value of another input is 2 using the

linear ion trap model of quantum computing. This led to the implementation of a family of

2-input controlled gates, commonly called Muthukrishnan-Stroud (M-S) gates. The symbol

of the ternary M-S gate is shown in Figure 2.5(b). In Figure 2.5(b), the input x is called the

control input and is passed unchanged to the output. The input y is called the target input.

The transform U is applied on the target input y if and only if the control input is x = 2,

otherwise the target input y is passed unchanged to the output. The M-S family of ternary

gates is the most well presented and widely used set of elementary ternary gates, which are

physically realizable using linear ion trap quantum technology.

Readers should note that any operation that can be implemented as a single operation

(such as unary transform or controlled unary transform) using quantum technology is con-

sidered to be an elementary or primitive operation and their corresponding implementation

is referred to as an elementary or primitive quantum gate [34]. Theoretically, any unitary

transform [34] can be implemented as an elementary quantum gate [33]. However, in the

majority of work on reversible logic synthesis only unary and M-S gates are used as ele-

mentary quantum gates [12, 15, 16].

A widely used macro-level ternary gate is the 2-input Feynman gate. The symbol of the

ternary Feynman gate is shown in Figure 2.5(c). In Figure 2.5(c), the input x is the control

input and is passed unchanged to the output. The input y is the target input and the target

26

2.8. TERNARY REVERSIBLE LOGIC

output is the GF3 addition of the inputs x and y, that is, x⊕ y. The ternary Feynman gate is

a macro-level gate and must be realized using elementary unary and M-S gates [15].

Another widely used macro-level ternary gate is the multiple-controlled Toffoli gate.

The symbol of the ternary Toffoli gate with n control inputs (n > 1) is shown in Fig-

ure 2.5(d). In Figure 2.5(d), the inputs x1 to xn are control inputs and are passed un-

changed to the outputs. The input xn+1 is the target input and at the output, has the value

x1x2 · · ·xn⊕xn+1, where the product x1x2 · · ·xn is the GF3 product. The ternary Toffoli gates

are macro-level gates and must be realized using elementary unary and M-S gates [15].

The Feynman gate can be thought of as a Toffoli gate with one control input.

Perkowski et al. proposed a family of generalized ternary gates (GTGs) in [35]. The

symbol of the GTG gate family is shown in Figure 2.6. In Figure 2.6, the input A is the

control input and is passed unchanged to the output. The input B is the target input. The

control input A controls a conceptual ternary multiplexer and decides the transform applied

on the target input B. If the value of the control input A is 0, 1, or 2, then an x, y, or z trans-

form is applied on the target input B, respectively, where x,y,z ∈ {+0,+1,+2,01,02,12}.

Depending on the values of x, y, and z, 63 = 216 different GTGs are possible. The GTGs

are macro-level gates and must be realized using elementary unary and M-S gates [12].

Figure 2.6: The family of generalized ternary gates (GTGs).

2.8.2 Realizations of TGFSOP Expressions Using Feynman and Toffoli Gates

An example TGFSOP expression for a ternary logic function F(x,y,z) is given in (2.6).

The implementation of the TGFSOP expression in (2.6) is shown in Figure 2.7. The func-

27

2.9. REVERSIBLE CIRCUIT REALIZATION COMPLEXITIES

tion F(x,y,z) is realized along a 0-initialized ancilla input (a constant-initialized input

that is not part of the function input but required to realize a reversible circuit is known

as ancilla input). The Feynman gate realizes 0⊕ x = x at the target output. The first

Toffoli gate realizes x⊕ yz at the target output. Finally the second Toffoli gate realizes

(x⊕ yz)⊕ xyz = x⊕ yz⊕ xyz along the target output.

F(x,y,x) = x⊕ yz⊕ xyz (2.6)

Figure 2.7: Realization of the TGFSOP expression (2.6).

Different applications of TGFSOP expressions use different sets of literals and also

different sets of reversible gates. Thus their realization techniques are also different. We

will discuss TGFSOP-based synthesis of ternary reversible circits during literature review

in Section 3.3.

2.9 Reversible Circuit Realization Complexities

The complexities of reversible circuit realizations are measured using two metrics -

quantum cost and number of ancilla inputs. In most of the ternary reversible logic synthesis

work, it is assumed that the ternary reversible macro-level gates will be realized using

elementary quantum gates such as unary and M-S gates. The total number of elementary

quantum gates needed for realizing a ternary reversible circuit is called the quantum cost

of that circuit. In most reversible circuit realization techniques the primary inputs are used

as control inputs and the functional output is realized along a constant-initialized working

input (see Figure 2.7). These constant-initialized working inputs are called ancilla inputs.

28

2.9. REVERSIBLE CIRCUIT REALIZATION COMPLEXITIES

In a quantum circuit an increased quantum cost is a result of the implementation requir-

ing more elementary quantum gates. This is likely to produce a larger circuit which may

cause the circuit operation slower. On the other hand, an increased number of ancilla inputs

increases the circuit width (number of quantum wires). In many quantum technologies, the

circuit width is a limitation [19]. Therefore, the goal of synthesis of reversible circuits is to

reduce both the quantum cost and the number of ancilla inputs.

29

Chapter 3

Literature Review

3.1 Introduction

Ternary reversible logic synthesis is a comparatively new research area. Very little

work in this area has been reported in the literature. In this chapter we discuss works on

realizations of macro-level ternary gates using elementary quantum gates. We then present

works on ternary reversible circuit synthesis by sub-categorizing based on the synthesis

techniques used.

Specifically, this chapter is organized as follows:

• In Section 3.2 we discuss previous works on realizations of macro-level ternary re-

versible gates such as generalized ternary gates (GTGs), Feynman gates, and Toffoli

gates using ternary unary and M-S gates.

• In Section 3.3 we discuss previous works on synthesis techniques of ternary reversible

circuits by sub-categorizing based on the synthesis techniques used.

3.2 Realizations of Macro-Level Ternary Reversible Gates

In ternary reversible logic synthesis techniques, primitive quantum gates such as unary

and M-S gates and macro-level gates such as generalized ternary gates (GTGs), Feynman

gates, and Toffoli gates are commonly used. Macro-level gates are larger building blocks

built using primitive quantum gates and used as gates in the logic level synthesis techniques.

As GTGs, Feynman gates, and Toffoli gates are macro-level gates, they must be realized

30

3.2. REALIZATIONS OF MACRO-LEVEL TERNARY REVERSIBLE GATES

using unary and M-S gates. In this section, we discuss previous works on realizations of

these macro-level gates using unary and M-S gates.

In [12] realization of the family of GTGs using unary and M-S gates is reported, which is

reproduced in Figure 3.1. Operation of the circuit in Figure 3.1 can be explained as follows:

The control values of the first, middle, and last M-S gates are A⊕2, A⊕2⊕2 = A⊕1, and

A⊕2⊕2⊕2 = A, respectively. If A = 0, then the control values of the three M-S gates are

2, 1, and 0, respectively. So, the first M-S gate applies the x transform on the target input

B. If A = 1, then the control values of the three M-S gates are 0, 2, and 1, respectively. So,

the middle M-S gate applies the y transform on the target input B. If A = 2, then the control

values of the three M-S gates are 1, 0, and 2, respectively. So, the last M-S gate applies the

z transform on the target input B. The resultant unary transform along the control input A

is 2⊕2⊕2 = 0. So, the control input A is restored at the output. Depending on the choice

of the transforms x, y, and z, 63 = 216 different generalized ternary gates can be realized.

This realization requires a quantum cost of six and no ancilla input.

Figure 3.1: Realization of generalized ternary gate (GTG) from [12].

In [12] realization of the ternary Feynman gate using unary and M-S gates is presented.

This realization is reproduced in Figure 3.2 and can be explained as follows: The control

values of the first and the second M-S gates are x and x⊕ 1, respectively. If the value

of the control input is x = 0, then the control values of the two M-S gates are 0 and 1,

respectively. So, both the M-S gates do not apply any transform on the target input y. Thus,

the target input y is passed unchanged to the target output and the target output value is

y = 0⊕ y = x⊕ y. If x = 1, then the control values of the two M-S gates are 1 and 2,

31

3.2. REALIZATIONS OF MACRO-LEVEL TERNARY REVERSIBLE GATES

respectively. Thus, a +1 transform is applied on the target input y by the second M-S gate

and the target output is y⊕ 1 = 1⊕ y = x⊕ y. If x = 2, then the control values of the two

M-S gates are 2 and 0, respectively. Thus, a +2 transform is applied on the target input y

by the first M-S gate and the target output is y⊕ 2 = 2⊕ y = x⊕ y. The resultant unary

transform along the control input x is 1⊕ 2 = 0 and the control input x is restored at the

output. The quantum cost of this realization is four and it requires no ancilla input.

Figure 3.2: Realization of ternary Feynman gate from [12].

In [12] a three-input Toffoli gate is first realized using GTGs and Feynman gates as

shown in Figure 3.3(a). The GTGs and the Feynman gates are then replaced by their real-

izations using unary and M-S gates. Cascaded unary gates are simplified into a single unary

gate. The resulting realization using unary and M-S gates is reproduced in Figure 3.3(b).

More details of this realization can be found in [12]. The realization requires a quantum

cost of 16 and no ancilla input.

Figure 3.3: Realization of a three-input Tofoli gate from [12]. (a) Realization using GTGs
and Feynman gates. (b) Realization after replacing the GTGs and the Feynman gates by

their corresponding realizations using unary and M-S gates.

32

3.3. PREVIOUS WORKS ON REVERSIBLE SYNTHESIS OF TERNARY CIRCUITS

In [15] an architecture for realizing a multiple-valued (or d-valued with d ≥ 3) Feynman

gate using unary and M-S gates is presented. Realization of a ternary (d = 3) Feynman gate

using that architecture is shown in Figure 3.4. This realization requires a quantum cost of

four and no ancilla input. A detailed discussion of this architecture can be found in [15].

Figure 3.4: Realization of a ternary Feynman gate from [15].

In [15] an architecture for implementing a multiple-valued three-input Toffoli gate using

unary and M-S gates is presented. Realization of a ternary three-input Toffoli gate using

that architecture is shown in Figure 3.5. A more detailed discussion of this architecture can

be found in [15]. The realization of a three-input Toffoli gate requires a quantum cost of 16

and no ancilla input.

Figure 3.5: Realization of a three-input ternary Toffoli gate from [15].

The design for implementing a three-input ternary Toffoli gate is extended for realiza-

tion of an n-input (n > 3) ternary Toffoli gate. Interested readers can see [15] for more de-

tails of realization of n-input (n > 3) ternary Toffoli gate. The quantum cost of an n-input

(n > 3) ternary Toffoli gate realization is 8+ 2× [quantum cost of (n− 1)-input ternary

Toffoli gate] and it does not require any ancilla input.

3.3 Previous Works on Reversible Synthesis of Ternary Logic Circuits

3.3.1 Genetic Algorithm-Based Synthesis of Ternary Reversible Circuits

In [17] a steady-state genetic algorithm (GA) [29] based method is proposed for synthe-

sizing ternary reversible circuits using GTGs. In the proposed method, multi-output ternary

33

3.3. PREVIOUS WORKS ON REVERSIBLE SYNTHESIS OF TERNARY CIRCUITS

functions are realized as cascades of GTGs. Constant-initialized ancilla inputs are used and

the functional outputs are realized along any of the primary inputs or ancilla inputs. The

primary input lines and the ancilla input lines are numbered. A GTG is represented by an

ordered tuple of control wire number, target wire number, x transform number, y transform

number, and z transform number. In the chromosome each gene is a string of digits and

represents a GTG of the circuit. Initially for each chromosome multiple ancilla inputs and

multiple GTGs are used. When the GA converges, then unused ancilla inputs are eliminated

from the resulting circuit. If a GTG has the same line as both control and target, then that

GTG is eliminated from the resulting circuit. If transforms of a GTG is x= y= z=+0, then

that GTG is also eliminated from the resulting circuit. A complex fitness function is used

consisting of number of outputs matched with the given functional outputs, number of total

lines in the resulting circuit, number of GTGs in the resulting circuit, and total number of

non +0 transforms used with the GTGs. Binary tournament selection is used to select two

parents. A one-point crossover is used. The mutation operator randomly changes a gene.

If the generated offspring is better than the lowest fit chromosome, then the lowest fit chro-

mosome is replaced by the offspring and the population size is kept unchanged. Interested

readers can see [17] for more details of the proposed GA.

3.3.2 Max-Min Algebra-Based Synthesis of Ternary Reversible Circuits

In [5] a method for mapping GTG cascades for ternary logic functions using ternary

Max-Min algebra is proposed. The proposed ternary Max-Min algebra uses 1-reduced Post

literals (see Table 2.5) and their compound forms for representing ternary logic functions

using Max-Min expressions. A compound form of 1-reduced Post literal of a variable x

is represented as xi, j, where i, j ∈ {0,1,2} and i 6= j. When x = i or x = j, then xi, j = 1,

otherwise xi, j = 0. The compound forms of 1-reduced Post literals are shown in Table 3.1.

The preliminary idea for deriving a Max-Min expression for a ternary logic function is

illustrated using Min(A,B,C) function as shown in the ternary K-map of Figure 3.6. The

34

3.3. PREVIOUS WORKS ON REVERSIBLE SYNTHESIS OF TERNARY CIRCUITS

Table 3.1: Compound Forms of 1-Reduced Post literals.

Variable Compound Forms of 1-Reduced Post Literals

x x0,1 x0,2 x1,2

0 1 1 0
1 1 0 1
2 0 1 1

input combination 222 producing output 2 is represented using the minterm A2B2C2. The

input combinations 111, 112, 121, 122, 211, 212, and 221 produce output 1. If the input

combination 222 is considered a don’t care for output 1, then the input combinations 111,

112, 121, 122, 211, 212, 221, and 222 form a group, where A = 1 or 2, B = 1 or 2, and

C = 1 or 2. This group is represented using the minterm A1,2B1,2C1,2. The total function

is represented as shown in (3.1). For the input combination 222 producing output 2, the

minterm A2B2C2 = 1 and the minterm A1,2B1,2C1,2 = 1. In that case, Min(A,B,C,) = 2 ·1+

1 ·1 = 2. For the input combination 111 producing output 1, the minterm A2B2C2 = 0 and

the minterm A1,2B1,2C1,2 = 1. In that case, Min(A,B,C,) = 2 ·0+1 ·1 = 1. Similarly, for

other input combinations producing output 1, Min(A,B,C) = 1. For the input combination

000 producing output 0, the minterm A2B2C2 = 0 and the minterm A1,2B1,2C1,2 = 0. In that

case, Min(A,B,C,) = 2 · 0+ 1 · 0 = 0. Similarly, for other input combinations producing

output 0, Min(A,B,C) = 0.

Min(A,B,C) = 2A2B2C2 +1A1,2B1,2C1,2 (3.1)

Figure 3.6: K-map representing ternary Min(A,B,C) function.

35

3.3. PREVIOUS WORKS ON REVERSIBLE SYNTHESIS OF TERNARY CIRCUITS

In [5] the expression of (3.1) is realized using the GTG cascade as shown in Figure 3.7.

Interested readers can see [5] for explanations of the operation of the circuit.

Figure 3.7: GTG cascade for the expression (3.1).

In [5] experimental results of 33 instances of 11 ternary benchmark functions from

Appendix A are reported. In these realizations both the number of GTGs and the number

of ancilla inputs are high. The quantum costs of the circuit realizations are not reported. As

this method requires high numbers of both GTGs and ancilla inputs, it is not considered to

be a practical approach for functions with large number of inputs.

3.3.3 Transformation-Based Synthesis of Ternary Reversible Circuits

In [31, 32] a transformation-based synthesis method for ternary reversible functions is

presented. This method uses five unary operations C1, C2, N, D, and E which correspond

to +1, +2, 02, 12, and 01 unary operations, respectively. Controlled versions of these gates

are also used, where the control value is 2 and there may be one or more control lines.

The transformation method starts with the truth table of the reversible function and then

transforms are applied so that the function becomes an identity function. In every step of the

36

3.3. PREVIOUS WORKS ON REVERSIBLE SYNTHESIS OF TERNARY CIRCUITS

transformation one or more gates are added to the circuit. Interested readers can see [31, 32]

for details of the transformation-based synthesis technique. The major disadvantage of this

method is that it works using the truth table of the reversible function and thus will not be

feasible for use with functions with large number of inputs, since the size of the truth table

is exponential in the number of input variables.

3.3.4 TGFSOP-Based Synthesis of Ternary Reversible Circuits

In [20] a preliminary approach to TGFSOP-based ternary reversible logic synthesis is

presented. In this work TGFSOP expressions suitable for reversible mapping of ternary

logic functions were introduced for the first time. This work uses six reversible unary oper-

ations (called shift operations) and their corresponding literals as shown in Table 2.13 using

different notations. These reversible unary operations are called shift operations and their

corresponding unary gates are called shift gates. In this work xx = x2 is also used as an ir-

reversible composite literal. TGFSOP expressions are realized as cascades of unary (shift),

swap, Feynman, and Toffoli gates. Experimental results of seven arbitrary multi-output

functions expressed as TGFSOP expressions are reported. This work showed a practical

method of mapping TGFSOP expressions into ternary reversible circuits. However, no

method for expressing ternary logic functions as TGFSOP expressions is discussed.

A followup work is presented in [21], where a method for determining minimized TGF-

SOP expressions for ternary logic functions is proposed. In this work three sets of literals

are used for determining TGFSOP expressions: six reversible literals, 12 irreversible com-

posite literals, and three 1-reduced Post literals. In this work 16 ternary Galois field ex-

pansions (TGFEs) are developed. To determine and minimize TGFSOP expression for a

given ternary logic function, a Kronecker ternary Galois field decision diagram (KTGFDD)

is created using a heuristic algorithm and then the TGFSOP expression is determined from

the KTGFDD. Interested readers can see [21] for details of KTGFDD and KTGFDD-based

minimization of TGFSOP expressions for ternary logic functions. Experimental results of

37

3.3. PREVIOUS WORKS ON REVERSIBLE SYNTHESIS OF TERNARY CIRCUITS

50 instances of 12 benchmark functions from Appendix A are reported in terms of number

of nodes in the generated KTGFDD and number of TGF products in the resulting TGF-

SOP expressions. However, mapping of TGFSOP expressions into reversible circuits is not

discussed in this work.

The concepts in [20] and [21] are combined in [22]. Ternary logic functions are first

represented using heuristically minimized KTGFDDs and then TGFSOP expressions are

determined from the KTGFDDs. TGFSOP expressions are then mapped into reversible

circuits as cascades of unary (shift), swap, Feynman, and Toffoli gates. Experimental re-

sults of 54 instances of 12 benchmark functions from Appendix A are reported in terms of

number of nodes in the generated KTGFDD and number of TGF products in the resulting

TGFSOP expressions. Experimental results of mapping TGFSOP expressions of these 54

benchmark function instances into reversible circuits are also reported in terms of numbers

of copying (Feynman) gates, unary (shift) gates, swap gates, and Toffoli gates. Interested

readers can see [22] for more details.

The concepts in [20, 21, 22] are extended in [16]. This method uses three 1-reduced

Post literals as shown in Table 2.5 and six reversible literals as shown in Table 2.13 for de-

termining TGFSOP expressions for ternary logic functions. It is shown that if a reversible

literal is GF3 multiplied by 2, then the result is also a reversible literal. 55 ternary Galois

field expansions (TGFEs) including 16 from [21, 22] are used for minimization of TGFSOP

expressions. Applications of 55 TGFEs on a variable of a ternary logic function produce

55 different TGFSOP expressions. The minimum TGFSOP expression among these 55

possible TGFSOP expressions leads towards the minimization of TGFSOP expression. For

each variable of the given ternary logic function one TGFE is selected so that applications

of those TGFEs on all variables produce the minimized TGFSOP expression. A quantum-

inspired evolutionary algorithm (QEA) [11] is used for selecting a suitable TGFE for each

variable. The function is represented using its output vector. The don’t care outputs are

assumed to be 0. The TGFEs are applied on the output vector. The minimized TGF-

38

3.3. PREVIOUS WORKS ON REVERSIBLE SYNTHESIS OF TERNARY CIRCUITS

SOP expression is generated from the final transformed vector . The minimized TGFSOP

expressions for the sum output S(A,B,C) and the carry output Co(A,B,C) of a ternary full-

adder are given in (3.2) and (3.3), respectively. Readers can see [16] for details of the

proposed QEA, application of transforms on the output vector, and generating the TGFSOP

expression from the transformed output vector.

S(A,B,C) = A02C+1C02⊕B02C+1C01⊕C+1 (3.2)

Co(A,B,C) = A0B12B+2C1⊕ABC1⊕A12BB+2C+1⊕A12A+2B+2B+2C1⊕A12A+2BC+1

(3.3)

In [16] a method for mapping TGFSOP expressions into reversible circuits as cascades

of unary, M-S, Feynman, and Toffoli gates is presented. Using that mapping technique

the reversible realizations of TGFSOP expressions (3.2) and (3.3) are shown in Figure 3.8.

Interested readers can see [16] for more details of mapping TGFSOP expressions into re-

versible circuits.

Figure 3.8: Reversible realization of a ternary full-adder using the TGFSOP
expressions (3.2) and (3.3) using a cascade of unary, M-S, Feynman, and Toffoli gates

from [16].

In [16] experimental results of a ternary half-adder (ha), half-subtractor (hs), full-adder

(fa), and full-subtractor (fs) are reported as number of products in the canonical TGFSOP

expression, number of products in the minimized TGFSOP expression, population size,

39

3.3. PREVIOUS WORKS ON REVERSIBLE SYNTHESIS OF TERNARY CIRCUITS

and generation required in the QEA. Quantum cost and the number of ancilla inputs are not

reported. However, from [15] it can be noted that the quantum costs of Toffoli gates are

very high. Therefore, the quantum costs of the cascades of Toffoli gates generated from

TGFSOP expressions will also be very high. Another drawback of this approach is that

suitable TGFEs for the variables are determined among 55 TGFEs using the QEA, which

is usually a very time consuming process. However, the most important advantage of this

approach is that a ternary logic function with a large number of inputs can be expressed

as a TGFSOP expression and the TGFSOP expression can be mapped into a reversible

circuit. Thus this method is an efficient technique for ternary reversible logic synthesis in

comparison to other methods proposed in the literature.

3.3.5 Projection Operation-Based Synthesis of Ternary Reversible Circuits

In [25] a projection operation-based method is presented for synthesis of ternary re-

versible circuits. Six projection operations are introduced. These projection operations are

basically three 2-reduced Post operations and three 1-reduced Post operations as shown in

Tables 2.5 and 2.6, respectively. Implementations of the projection gates using GTGs are

discussed. The projection gates may have more than one input. Implementations of the

multiple-input projection gates using GTGs are also discussed. A ternary logic function is

represented as a disjunction of minterms. The minterms are formed using projection liter-

als. The product operation of the minterms is the Min operation. The disjunction operation

is the Max operation. Ten simplification rules are proposed for minimization of the dis-

junction of minterms expressions. This work presented synthesis of a ternary half-adder

and full-adder. However in these implementations the projection operations are manipu-

lated in a way to express the sum outputs of the half-adder and the full-adder as a⊕b and

a⊕ b⊕ cin, respectively. These expressions make it possible to implement the half-adder

and the full-adder using Feynman gates with few ancilla inputs and gate counts. These ma-

nipulations are function specific and, therefore, cannot be considered to be a general design

40

3.3. PREVIOUS WORKS ON REVERSIBLE SYNTHESIS OF TERNARY CIRCUITS

technique; rather they are customized implementations.

3.3.6 Group Theory-Based Synthesis of Ternary Reversible Circuits

In [24] a method for synthesizing a ternary logic circuit using a truth table is presented.

This method transforms the irreversible truth table of the given function into a reversible

truth table by adding constant-initialized ancilla inputs and garbage outputs (outputs that

are not used as the output of the given function but are needed to make the circuit reversible

are called garbage outputs). Using an algorithm based on group theory [8], the reversible

truth table is mapped to a reversible circuit using ternary swap gates, NOT gates (three

NOT operations are defined in this work), and Toffoli gates (a Toffoli gate is proposed in

this work, where a 1 is GF3 added to the target input if and only if all the control inputs

are 2). Experimental results for a ternary half-adder and full-adder are reported. The main

claim of the work is that it reduces the ancilla inputs in comparison to the work in [25].

From Table V in [24], it can be seen that for the ternary half-adder, this method reduces

ancilla inputs from 2 to 1, but increases the total gate count from 4 to 122 in comparison

to the results in [25]. Similarly, for the ternary full-adder, this method reduces the ancilla

inputs from 4 to 1, but increases the total gate count from 8 to more than 150. In addition,

because this method works with the truth table of the given function, it cannot be used for

functions with a large number of inputs.

41

Chapter 4

Ternary Logic Function Representation
Using Max-Min Algebra

4.1 Introduction

In this thesis we propose a ternary Max-Min algebra for representing ternary logic

functions for reversible realizations. Generic definition of ternary Max-Min algebra and

representations of ternary logic functions as Max-Min expressions are discussed in Sec-

tion 2.4. Different applications from the literature have used different set of literals to form

Max-Min expressions. For example, in [10] 2-reduced Post literals are used and in [5] 1-

reduced Post literals are used to form Max-MIn expressions. In this chapter we discuss our

proposed ternary Max-Min algebra with different sets of literals and then discuss our pro-

posed method of representing ternary logic functions as Max-Min expressions. In Chapter 6

we will propose reversible realizations of Max-Min expressions using multiple-controlled

unary gates proposed in Chapter 5.

This chapter is organized as follows:

• In Section 4.2 we discuss two sets of literals that we use to form ternary Max-Min

expressions for representing ternary logic functions for reversible realizations.

• In Section 4.3 we discuss our proposed method of representing ternary logic functions

as Max-Min expressions .

42

4.3. TERNARY LOGIC FUNCTION REPRESENTATION

4.2 Literals of the Proposed Ternary Max-Min Algebra

For reversible realizations of ternary logic functions, we use two types of unary opera-

tors (also called literal operators), which change the logic value of a variable and represent

different literals of the variable.

The first type of operators that we primarily use for representing a ternary logic function

as a Max-Min expression is the reversible operators [16]. There are 3!= 6 ternary reversible

operations as shown in Table 4.1. These operations result in six reversible literals as shown

in the table. Like a variable, these reversible literals satisfy all the properties of ternary

Max-Min algebra stated in Section 2.4. In this thesis we use only the reversible literals x+0,

x+1, and x+2, which satisfy the following property:

x+0 + x+1 + x+2 = 2 (4.1)

Table 4.1: Ternary unary reversible operations and their corresponding literals.

Variable Unary reversible operations and corresponding literals

x x+0 x+1 x+2 x01 x02 x12

0 0 1 2 1 2 0
1 1 2 0 0 1 2
2 2 0 1 2 0 1

The second type of unary operators we use are three non-reversible operators and their

corresponding literals as shown in Table 4.2. These operations give the Max of two unary

reversible operations and satisfy all the properties of ternary Max-Min algebra stated in

Section 2.4. These non-reversible literals are used to minimize Max-Min expressions so

that the quantum cost of the resulting reversible circuit is reduced (see Chapter 7).

43

4.3. TERNARY LOGIC FUNCTION REPRESENTATION

Table 4.2: Ternary unary non-reversible operations and their corresponding literals.

Variable Unary non-reversible operations and corresponding literals

x x(0+1) = x+0 + x+1 x(0+2) = x+0 + x+2 x(1+2) = x+1 + x+2

0 1 2 2
1 2 1 2
2 2 2 1

4.3 Ternary Logic Function Representation using Max-Min Algebra

4.3.1 Sub-Functions of a Ternary Logic Function

A ternary logic function F produces either 0, 1, or 2 as output. Let F0, F1, and F2 be

three ternary-input binary-output sub-functions producing output 0, 1, and 2, respectively.

In the proposed method of representing ternary logic function using Max-Min algebra, we

split a ternary logic function F into three sub-functions F0, F1, and F2. In each sub-

function the corresponding outputs are represented by 1, the don’t care outputs remain

unchanged, and the other two output values are represented by 0. An example two-variable

ternary logic function and its three sub-functions are shown in the truth table in Table 4.3.

Table 4.3: An example two-variable ternary logic function and its three sub-functions.

AB F(A,B) F0(A,B) F1(A,B) F2(A,B)

00 0 1 0 0
01 1 0 1 0
02 x x x x
10 1 0 1 0
11 0 1 0 0
12 x x x x
20 2 0 0 1
21 1 0 1 0
22 x x x x

44

4.3. TERNARY LOGIC FUNCTION REPRESENTATION

4.3.2 Canonical Max-Min Expression for a Sub-Function

In our proposed method of representing a ternary logic function using Max-Min algebra

the sub-functions F0, F1, and F2 are separately represented by three canonical Max-Min

expressions comprising of canonical minterms of input combinations.

An input combination of a sub-function is represented by a canonical minterm (literals

combined using the Min operation), where the input value is assigned to a reversible literal

as shown in Table 4.4. Consider the sub-function F1(A,B) in Table 4.3. The input combina-

tion 01 producing output 1 is represented by the canonical minterm A+2B+1; the input com-

bination 10 producing output 1 is represented by the canonical minterm A+1B+2; and the

input combination 21 producing output 1 is represented by the canonical minterm A+0B+1.

The reversible literals are chosen such that the corresponding input value is changed to 2 and

the value of the canonical minterm becomes 2. The choice of the logic value of a minterm

to be 2 for the corresponding input combination will be evident during reversible circuit

mapping of the Max-Min expression in Chapter 6, and is related to the gate implementation

discussed in Chapter 5. Thus the sub-function F1(A,B) is represented as in (4.2).

F1(A,B) = A+2B+1 +A+1B+2 +A+0B+1 (4.2)

Table 4.4: Reversible literal assignment to input values for determining the canonical
minterm for an input combination.

Input Literal

0 x+2

1 x+1

2 x+0

For the input combination 21 the first minterm A+2B+1 = 1 · 2 = 1; the second minterm

A+1B+2 = 0 ·0 = 0; and the third minterm A+0B+1 = 2 ·2 = 2. Thus F1(A,B) = 1+0+2 =

2. Similarly it can be shown that for the input combinations 01 and 10 the functional output

of the sub-function F1(A,B) is 2.

45

4.3. TERNARY LOGIC FUNCTION REPRESENTATION

Three properties of this representation method are important to note:

• The minterm for the input combination 01 is A+2B+1. For the input combination 01

the minterm A+2B+1 becomes 2 · 2 = 2; for the input combination 00 the minterm

A+2B+1 becomes 2 · 1 = 1; and for the input combination 02 the minterm A+2B+1

becomes 2 ·0 = 0. Therefore, a minterm becomes 2 for its corresponding input com-

bination and becomes 0 or 1 for other input combinations.

• Consider the Max-Min expression of (4.2). For the input combination 01 the first

minterm A+2B+1 becomes 2; the second minterm A+1B+2 becomes 0; and the third

minterm A+0B+1 becomes 0. Thus F1(A,B) = 2+0+0 = 2. For the input combina-

tion 10 the first minterm A+2B+1 becomes 0; the second minterm A+1B+2 becomes

2; and the third minterm A+0B+1 becomes 1. Thus F1(A,B) = 0+ 2+ 1 = 2. For

the input combination 21 the first minterm A+2B+1 becomes 1; the second minterm

A+1B+2 becomes 0; and the third minterm A+0B+1 becomes 2. Thus F1(A,B) =

1+0+2= 2. In general, the canonical Max-Min expressions for the sub-functions Fi

(i ∈ {0,1,2}) is formed by determining the canonical minterms corresponding to the

input combinations producing output i and then combining the canonical minterms

by Max operations resulting in a canonical Max-Min expression for Fi. For an input

combination producing an output i, the minterm for Fi corresponding to the given

input combination becomes 2 and the other minterms of Fi become either 0 or 1.

Thus, their Max operation produces a 2. Therefore, a Max-Min expression of a sub-

function becomes 2 for its corresponding input combinations and becomes 0 or 1 for

other input combinations.

• For the input combinations 01, 10, and 21 the sub-function F1(A,B) of (4.2) be-

comes 2 as discussed earlier. For the input combination 00 the functional output is

F1(A,B) = 2 · 1+ 1 · 2+ 0 · 1 = 1+ 1+ 0 = 1 and for the input combination 22 the

functional output is F1(A,B) = 1 · 0+ 0 · 1+ 2 · 0 = 0+ 0+ 0 = 0. Thus for the in-

46

4.3. TERNARY LOGIC FUNCTION REPRESENTATION

put combinations 01, 10, and 21 the sub-function F1(A,B) becomes 2 and for other

input combinations the sub-function F1(A,B) becomes either 0 or 1. In general, for

an input combination producing output i the sub-function Fi (i ∈ {0,1,2}) becomes

2 and for an input combination producing an output other than i the sub-function Fi

becomes either 0 or 1.

The canonical Max-Min expressions for the sub-functions F0(A,B) and F2(A,B) from

Table 4.3 are given in (4.3) and (4.4), respectively.

F0(A,B) = A+2B+2 +A+1B+1 (4.3)

F2(A,B) = A+0B+2 (4.4)

In Chapter 7 we will see that the canonical Max-Min expression can be minimized to

smaller Max-Min expressions using composite literals.

In Chapter 6 we will see that a reversible ternary circuit corresponding to a ternary logic

function F can be synthesized using any two of the three sub-functions F0, F1, and F2.

47

Chapter 5

Ternary Multiple-Controlled Unary
Gates

5.1 Introduction

In Chapter 4 we proposed a ternary Max-Min algebra with two sets of literals and

demonstrated how to represent ternary logic functions as Max-Min expressions. In Chap-

ter 6 we will discuss reversible realizations of Max-Min expressions using our proposed

multiple-controlled unary gates. In this chapter we introduce our proposed macro-level

ternary multiple-controlled unary gates. We also show their realizations using elementary

quantum gates. This will allow us to compare quantum costs of our realizations with that

of the previous works.

This chapter is organized as follows:

• In Section 5.2 we discuss ternary elementary quantum gates such as ternary unary

gates and M-S gates.

• In Section 5.3 we propose ternary single-controlled unary gates and discuss their

realizations using unary and M-S gates.

• In Section 5.4 we propose ternary multiple-controlled unary gates and discuss their

realizations using unary and M-S gates.

48

5.3. TERNARY SINGLE-CONTROLLED UNARY GATES

5.2 Ternary Elementary Quantum Gates

Widely used ternary reversible gates are discussed in Section 2.8. Two elementary

ternary quantum gates are briefly reintroduced here.

The symbol of the non-controlled ternary unary gate is shown in Figure 5.1(a), where x

is the input, U ∈ {+1,+2,01,02,12} is a transform from Table 2.13, and Ux is the trans-

formed output.

The symbol of the ternary M-S gate is shown in Figure 5.1(b). The input x is called the

control input and is passed unchanged to the output. The input y is called the target input.

The transform U ∈ {+1,+2,01,02,12} is applied on the target input y if and only if the

control input is x = 2, otherwise the target input y is passed unchanged to the output. The

M-S gate is a single-controlled unary gate.

Figure 5.1: Ternary (a) unary and (b) M-S gates.

In this thesis we use only +1 and +2 transforms for U . It should be noted that the

addition operation associated with +1 and +2 transforms are GF3 addition [22, 16].

5.3 Ternary Single-Controlled Unary Gates

5.3.1 Ternary Single-Controlled Unary Gates with Simple Control

In a single-controlled unary gate with simple control there is one control input and the

control value is either 0, 1, or 2. Symbols and quantum-level realizations of three single-

controlled unary gates are shown in Figure 5.2. In Figure 5.2(a), when x = 0, then the

control value of the M-S gate becomes 0 + 2 (GF3) = 2 and the U transform is applied

on the target input y. For other values of x, the control value of the M-S gate is not 2

and the target input y is passed unchanged. The input value of x is restored at the output,

since x+2+1 (GF3) = x. In Figure 5.2(b), when x = 1, then the control value of the M-S

49

5.3. TERNARY SINGLE-CONTROLLED UNARY GATES

gate becomes 1 + 1 (GF3) = 2 and the U transform is applied on the target input y. For

other values of x, the control value of the M-S gate is not 2 and the target input y is passed

unchanged. The input value of x is restored at the output, since x+ 1+ 2 (GF3) = x. In

Figure 5.2(c), when x = 2, then the control value of the M-S gate is 2 and the U transform

is applied on the target input y. For other values of x, the control value of the M-S gate

is not 2 and the target input y is passed unchanged. Readers should note that the single-

controlled unary gate with control value 2 of Figure 5.2(c) is actually the M-S gate. The

quantum costs of single-controlled unary gates with control values 0 and 1 is three and that

of control value 2 is one. These realizations do not require any ancilla input.

Figure 5.2: Ternary single-controlled unary gates with simple control.

5.3.2 Ternary Single-Controlled Unary Gates with Composite Control

In a single-controlled unary gate with composite control there is one control input and

the control value is either 01, 02, or 12. For a composite control value, the single-controlled

unary gate becomes active when either of the control values appears at the control point.

Symbols and quantum-level realizations of three single-controlled unary gates with com-

posite control values 01, 02, and 12 are shown in Figure 5.3(a), 5.3(b), and 5.3(c), respec-

tively. In Figure 5.3(a), when x = 0, then the control values of the first and the second M-S

gates are 0 + 2 (GF3) = 2 and 0 + 2 + 2 (GF3) = 1, respectively and the first M-S gate

applies the U transform on the target input y. When x = 1, then the control values of the

first and the second M-S gates are 1 + 2 (GF3) = 0 and 1 + 2 + 2 (GF3) = 2, respectively and

the second M-S gate applies the U transform on the target input y. When x = 2, then the

control values of the first and the second M-S gates are 2 + 2 (GF3) = 1 and 2 + 2 + 2 (GF3)

= 0, respectively and both the M-S gates are inactive passing the target input y unchanged to

50

5.4. TERNARY MULTIPLE-CONTROLLED UNARY GATES

the target output. The control input is restored at the output, since x+2+2+2 (GF3) = x.

In Figure 5.3(b), when x = 0, then the control values of the first and the second M-S gates

are 0 and 0 + 2 (GF3) = 2, respectively and the second M-S gate applies the U transform

on the target input y. When x = 2, then the control values of the first and the second M-S

gates are 2 and 2 + 2 (GF3) = 1, respectively and the first M-S gate applies the U transform

on the target input y. When x = 1, then the control values of the first and the second M-S

gates are 1 and 1 + 2 (GF3) = 0, respectively and both the M-S gates are inactive passing

the target input y unchanged to the target output. The control input is restored at the output,

since x+2+1 (GF3) = x. In Figure 5.3(c), when x = 1, then the control values of the first

and the second M-S gates are 1 and 1 + 1 (GF3) = 2, respectively and the second M-S gate

applies the U transform on the target input y. When x = 2, then the control values of the

first and the second M-S gates are 2 and 2 + 1 (GF3) = 0, respectively and the first M-S gate

applies the U transform on the target input y. When x = 0, then the control values of the first

and the second M-S gates are 0 and 0 + 1 (GF3) = 1, respectively and both the M-S gates

are inactive passing the target input y unchanged to the target output. The control input is

restored at the output, since x+ 1+ 2 (GF3) = x. The quantum costs of single-controlled

unary gates with composite controls 01, 02, and 12 are five, four, and four, respectively.

These realizations do not require any ancilla input.

Figure 5.3: Ternary single-controlled unary gates with composite control.

5.3.3 Realization Complexities of Ternary Single-Controlled Unary Gates

The quantum costs and the number of ancilla inputs for realizations of ternary single-

controlled unary gates are summarized in Table 5.1.

51

5.4. TERNARY MULTIPLE-CONTROLLED UNARY GATES

Table 5.1: Quantum costs and number of ancilla inputs for ternary single-controlled unary
gate realizations.

Control Value Quantum Cost Ancilla Input

0 3 0
1 3 0
2 1 0

01 5 0
02 4 0
12 4 0

5.4 Ternary Multiple-Controlled Unary Gates

5.4.1 Ternary Multiple-Controlled Unary Gates with Simple Controls

In a multiple-controlled unary gate with simple controls there are two or more control

inputs and the control values are either 0, 1, or 2. Symbol and quantum-level realization

of an example triple-controlled unary gate with control values 0, 1, and 2, respectively, are

shown in Figure 5.4. The principle of this realization is stated below:

1. The value of the top two control input lines are made 2 using unary gates. If the

control value is 0, then a unary gate with +2 transform is used to make the value to

be 0 + 2 (GF3) = 2. If the control value is 1, then a unary gate with +1 transform is

used to make the value to be 1 + 1 (GF3) = 2. If the control value is 2, then no unary

gate is used.

2. The transformed values of the top two control input lines are used as control values

of two M-S gates with +1 transform. These two M-S gates make the value of the top

0-initialized ancilla input line to be 0 + 1 + 1 (GF3) = 2.

3. The value of the third control input line is made 2 using unary gate with appropriate

transform. The transformed values of the top ancilla input line and the third control

input line are used as control values of two M-S gates with +1 transform. These two

M-S gates make the value of the second 0-initialized ancilla input line to be 0 + 1 +

52

5.4. TERNARY MULTIPLE-CONTROLLED UNARY GATES

1 (GF3) = 2.

4. For each successive input control line one 0-initialized ancilla input is added and the

value of that ancilla input line is made 2 using two M-S gates with +1 transform,

whose control lines are the control input line and the previous 0-initialized ancilla

input line.

5. An M-S gate with U ∈ {+1,+2} transform and the last ancilla input line as the

control is used to realize the U transform.

6. The control input lines and the 0-initialized ancilla input lines are restored in the Input

Restore part using inverse gates of the gates in the Control Implementation part. It

should be noted that +1 and +2 transforms are the inverse of each other, since +1 + 2

(GF3) = 0.

Figure 5.4: An example ternary triple-controlled unary gate with simple controls and its
quantum-level realization.

The operation of the circuit in Figure 5.4 can be explained as follows. When x1 = 0,

then the control value of the first M-S gate is 0 + 2 (GF3) = 2 along the x1 input line.

When x2 = 1, then the control value of the second M-S gate is 1 + 1 (GF3) = 2 along the

x2 input line. The first and the second M-S gates make the control value of the third M-

S gate 0 + 1 + 1 (GF3) = 2 along the top 0-initialized ancilla input line. When x3 = 2,

then the control value of the fourth M-S gate is 2 along the x3 input line. The third and

the fourth M-S gates then make the control value of the fifth M-S gate 0 + 1 + 1 (GF3) =

53

5.4. TERNARY MULTIPLE-CONTROLLED UNARY GATES

2 along the bottom 0-initialized ancilla input line. As the fifth M-S gate becomes active,

the U transform is applied on the target input y. For all other values of x1, x2, and x3 the

control value of the fifth M-S gate is not 2 and the U transform is not applied on the target

input y. The Input Restore part restores the control inputs and the ancilla input constants at

the output. Thus the circuit realizes a triple-controlled unary gate with control values 0, 1,

and 2, respectively. This realization requires a quantum cost of 13 and two ancilla inputs.

Using this technique any multiple-controlled unary gate with simple control values can be

realized.

5.4.2 Ternary Multiple-Controlled Unary Gates with Composite Controls

In a multiple-controlled unary gate with composite controls there are two or more con-

trol inputs and the control values are either 01, 02, or 12. Symbol and quantum-level

realization of an example triple-controlled unary gate with control values 01, 02, and 12,

respectively, are shown in Figure 5.5. The principle of this realization is stated below:

1. The value of the top two control input lines are made 2 using unary gates. If the

control value is 01, then two unary gates with +2 transform are used. When the

control input value is 0, then the output of the first unary gate becomes 0 + 2 (GF3)

= 2. When the control input value is 1, then the output of the second unary gate

becomes 1 + 2 + 2 (GF3) = 2. If the control value is 02, then a unary gate with +2

transform is used. When the control input value is 2, then it is directly used. When

the control input value is 0, then the output of the unary gate is 0 + 2 (GF3) = 2. If

the control value is 12, then a unary gate with +1 transform is used. When the control

input value is 2, then it is directly used. When the control input value is 1, then the

output of the unary gate is 1 + 1 (GF3) = 2.

2. The two transformed values of the top control line are used as control values of two

M-S gates with +1 transform. Either of them is active depending on the transformed

values and apply a +1 transform on the top 0-initialized ancilla input. Similarly the

54

5.4. TERNARY MULTIPLE-CONTROLLED UNARY GATES

two transformed values of the second control line are used as control values of two

M-S gates with +1 transform. Either of them is active depending on the transformed

values and apply a +1 transform on the top 0-initialized ancilla input. Thus when

both the two top control input lines match the control values, then the value of the top

0-initialized ancilla input line becomes 0 + 1 + 1 (GF3) = 2.

3. The top 0-initialized ancilla input line is used as the control line of a M-S gate with

+1 transform, whose target line is the second 0-initialized ancilla input. The value of

the third control input line is made 2 using necessary unary gate. The transformed

values of the third control input line are used as controls of two M-S gates with +1

transform, whose target line is the second ancilla input line. Thus when the value of

the top three control input lines match the control values, then the value of the second

ancilla input line becomes 0 + 1 + 1 (GF3) = 2.

4. For each successive control input line one 0-initialized ancilla input is added and the

value of that ancilla input line is made 2 using three M-S gates with +1 transform.

The control line of the first M-S gate is connected to the previous ancilla input. The

control lines of the other two M-S gates are connected to the transformed values of

the control input.

5. An M-S gate with U ∈ {+1,+2} transform and the last ancilla input line as the

control is used to realize the U transform.

6. The control input lines and the 0-initialized ancilla input lines are restored in the Input

Restore part using inverse gates of the gates in the Control Implementation part.

The operation of the circuit in Figure 5.5 can be explained as follows. When x1 = 0 or

x1 = 1, then the control value of either the first or the second M-S gate is 2 along the x1 input

line. When x2 = 0 or x2 = 2, then the control value of either the third or the fourth M-S gate

is 2 along the x2 input line. When x1 and x2 input lines match their corresponding control

55

5.4. TERNARY MULTIPLE-CONTROLLED UNARY GATES

values, then the control value of the fifth M-S gate becomes 2 along the top 0-initialized

ancilla input line. When x3 = 1 or x3 = 2, then the control value of either the sixth or

the seventh M-S gate is 2 along the x3 input line. When x1, x2, and x3 input lines match

their corresponding control values, then the control value of the eighth M-S gate becomes 2

along the bottom 0-initialized ancilla input line. As the eighth M-S gate becomes active, the

U transform is applied on the target input y. For all other values of x1, x2, and x3 the control

value of the eighth M-S gate is not 2 and the U transform is not applied on the target input

y. The Input Restore part restores the control inputs and the ancilla input constants at the

output. Thus the circuit realizes a triple-controlled unary gate with control values 01, 02,

and 12, respectively. This realization requires a quantum cost of 23 and two ancilla inputs.

Using this technique any multiple-controlled unary gate with composite control values can

be realized.

Figure 5.5: An example ternary triple-controlled unary gate with composite controls and
its quantum-level realization.

5.4.3 Ternary Multiple-Controlled Unary Gates with Mixed Controls

A ternary multiple-controlled unary gate with mixed controls, that is, controls from the

set {0,1,2,01,02,12} can be realized using the concepts discussed above. The symbol

and the quantum-level realization of an example ternary triple-controlled unary gate with

controls 01, 1, and 12, respectively, is shown in Figure 5.6. The operation of the circuit

can be explained in a similar manner as done for the circuits of Figures 5.4 and 5.5. The

realization requires a quantum cost of 21 and two ancilla inputs.

56

5.4. TERNARY MULTIPLE-CONTROLLED UNARY GATES

Figure 5.6: An example ternary triple-controlled unary gate with mixed controls and its
quantum-level realization.

5.4.4 Realization Complexities of Multiple-Controlled Unary Gates

From the discussions of Figures 5.4 and 5.5, we see that the first and the second control

input lines together require one 0-initialized ancilla input and each of the remaining control

input lines requires one 0-initialized ancilla input. Thus the total number of ancilla inputs

required to realize a multiple-controlled unary gate with n control input lines is

Ancilla Input = n−1. (5.1)

From Figure 5.4 we see that a 0 control requires two elementary gates in the Control

Implementation part and two elementary gates in the Input Restore part totaling four el-

ementary gates; a 1 control requires two elementary gates in the Control Implementation

part and two elementary gates in the Input Restore part totaling four elementary gates; and

a 2 control requires one elementary gate in the Control Implementation part and one el-

ementary gate in the Input Restore part totaling two elementary gates. From Figure 5.5

we see that a 01 control requires four elementary gates in the Control Implementation part

and four elementary gates in the Input Restore part totaling eight elementary gates; a 02

control requires three elementary gates in the Control Implementation part and three el-

ementary gates in the Input Restore part totaling six elementary gates; and a 12 control

requires three elementary gates in the Control Implementation part and three elementary

gates in the Input Restore part totaling six elementary gates. From Figures 5.4 and 5.5 we

57

5.4. TERNARY MULTIPLE-CONTROLLED UNARY GATES

see that each 0-initialized ancilla input but the last one requires one elementary gate in the

Control Implementation part and one elementary gate in the Input Restore part totaling two

elementary gates. That is, each of the ((n− 1)− 1) = (n− 2) ancilla inputs requires two

elementary gates. Another elementary gate is required to implement the U transform. Thus

the quantum cost for realizing a multiple-controlled unary gate with n control input lines is

Quantum Cost = n0×4+n1×4+n2×2+n01×8+n02×6+n12×6+(n−2)×2+1,

(5.2)

where, n0, n1, n2, n01, n02, and n12 are the number of control positions of 0, 1, 2, 01, 02,

and 12, respectively and n > 1 is the number of control inputs.

58

Chapter 6

Ternary Reversible Circuit Synthesis
Using Max-Min Algebra

6.1 Introduction

In Chapter 4 we proposed a ternary Max-Min algebra with two new sets of literals and

showed the method of representing ternary logic functions as Max-Min expressions. In

Chapter 5 we proposed ternary multiple-controlled unary gates for reversible realizations

of ternary Max-Min expressions. In this chapter we propose a method for reversible real-

izations of ternary Max-Min expressions using ternary multiple-controlled unary gates.

This chapter is organized as follows:

• In Section 6.2 we discuss reversible circuit realizations from ternary Max-Min ex-

pressions using ternary multiple-controlled unary gates.

• In Section 6.3 we discuss architectures for reversible realizations of ternary logic

functions.

• In Section 6.4 we show one example of reversible realization of a ternary logic

function expressed as ternary Max-Min expressions using ternary multiple-controlled

unary gates.

• In Section 6.5 we discuss post synthesis quatum cost reduction after quantum-level

expansions of reversible circuits of ternary multiple-controlled unary gates.

59

6.2. MAPPING OF MAX-MIN EXPRESSIONS INTO REVERSIBLE CIRCUITS

6.2 Mapping of Ternary Max-Min Expressions into Reversible Cir-

cuits

Ternary logic function representation using ternary Max-Min algebra is discussed in

Section 4.3. Each of the sub-functions F0, F1, and F2 is represented as canonical Max-

Min expression. An example two-variable ternary logic function and its three sub-functions

are shown in Table 4.3, which are reproduced here in Table 6.1. The canonical Max-Min ex-

pressions of F0(A,B), F1(A,B), and F2(A,B) are given in equations (4.3), (4.2), and (4.4),

respectively, which are reproduced here in equations (6.1), (6.2), and (6.3).

Table 6.1: An example two-variable ternary logic function and its three sub-functions.

AB F(A,B) F0(A,B) F1(A,B) F2(A,B)

00 0 1 0 0
01 1 0 1 0
02 x x x x
10 1 0 1 0
11 0 1 0 0
12 x x x x
20 2 0 0 1
21 1 0 1 0
22 x x x x

F0(A,B) = A+2B+2 +A+1B+1 (6.1)

F1(A,B) = A+2B+1 +A+1B+2 +A+0B+1 (6.2)

F2(A,B) = A+0B+2 (6.3)

Each sub-function is realized as reversible circuit using multiple-controlled unary gates

separately. Reversible realization of a ternary Max-Min expression using ternary multiple-

controlled unary gates is done as follows:

1. Realize each minterm using a ternary multiple-controlled unary gate. Map a literal

60

6.2. MAPPING OF MAX-MIN EXPRESSIONS INTO REVERSIBLE CIRCUITS

into a control value using the mapping shown in Table 6.2.

2. Place all the multiple-controlled unary gates in cascade putting the control positions

along the corresponding input variable lines and the target position along a constant-

initialized ancilla input. Choose the ancilla constant and the target transform of all

multiple-controlled unary gates as follows:

(a) For the sub-function F0 choose ancilla constant 1 and transform +2 so that 1 +

2 (GF3) = 0 or ancilla constant 2 and transform +1 so that 2 + 1 (GF3) = 0.

(b) For the sub-function F1 choose ancilla constant 0 and transform +1 so that 0 +

1 (GF3) = 1 or ancilla constant 2 and transform +2 so that 2 + 2 (GF3) = 1.

(c) For the sub-function F2 choose ancilla constant 0 and transform +2 so that 0 +

2 (GF3) = 2 or ancilla constant 1 and transform +1 so that 1 + 1 (GF3) = 2.

Table 6.2: Literal to control value mapping for realization of a minterm using a ternary
multiple-controlled unary gate.

Literal Control Value

x+0 2
x+1 1
x+2 0

x(0+1) 12
x(0+2) 02
x(1+2) 01

Reversible realizations of canonical Max-Min expressions of (6.1), (6.2), and (6.3) are

shown in Figures 6.1(a), 6.1(b), and 6.1(c), respectively. Each canonical mintrem is realized

using a ternary multiple-controlled unary gate, where each reversible literal is mapped to a

control value as shown in Table 6.2. All multiple-controlled unary gates are then placed in

cascade with constant-initialized ancilla input as target input line of all gates.

The circuit of Figure 6.1(a) can be explained as follows: The first minterm of (6.1) is

A+2B+2. So the control value of the variable A is 0 and the control value of the variable B

61

6.2. MAPPING OF MAX-MIN EXPRESSIONS INTO REVERSIBLE CIRCUITS

Figure 6.1: Reversible realizations of canonical Max-Min expressions from (a)
equation (6.1), (b) equation (6.2), and (c) equation (6.3).

is 0. Therefore, the two control values of the first multiple-controlled unary gate are 0 and

0, respectively. The second minterm is A+1B+1. So the control value of the variable A is 1

and the control value of the variable B is 1. Therefore, the two control values of the second

multiple-controlled unary gate are 1 and 1, respectively. These two multiple-controlled

unary gates are cascaded. In the first circuit of Figure 6.1(a) the ancilla input constant is

1 and the target transforms of the multiple-controlled unary gates are +2. When the input

value is AB = 00, then the first multiple-controlled unary gate is active and the second

multiple-controlled unary gate is inactive. Therefore, the output is F0 = 1+2 (GF3) = 0.

When the input value is AB = 11, then the first multiple-controlled unary gate is inactive

and the second multiple-controlled unary gate is active. Therefore, the output is F0 =

1+ 2 (GF3) = 0. When the input value is other than AB = 00 or AB = 11, then both the

multiple-controlled unary gates are inactive and the output is F0 = 1 (other than 0). Thus

the sub-function F0 is realized (see Table 6.1). In the second circuit of Figure 6.1(a) the

62

6.3. ARCHITECTURES OF TERNARY REVERSIBLE CIRCUIT SYNTHESIS

ancilla input constant is 2 and the transforms of the multiple-controlled unary gates are +1.

Operation of this circuit can be explained similarly. Reversible realizations of canonical

Max-Min expressions (6.2) and (6.3) by the circuits of Figure 6.1(b) and Figure 6.1(c),

respectively, can be explained in a similar manner.

The quantum costs of the circuits of Figures 6.1(a), 6.1(b), and 6.1(c) are calculated

using formula (5.2) and are 18, 25, and 7, respectively.

In Chapter 7 we will discuss ternary K-map-based minimization of Max-Min expres-

sions. The canonical Max-Min expressions for the sub-functions F0(A,B) and F2(A,B)

in Table 6.1 cannot be minimized as smaller Max-Min expressions. However, the canon-

ical Max-Min expression for the sub-function F1(A,B) in Table 6.1 can be minimized as

smaller Max-Min expressions, which is shown in (6.4) (see Chapter 7). Reversible realiza-

tion of the minimized Max-Min expression of (6.4) is shown in Figure 6.2. The quantum

cost of the circuit of Figure 6.2 is calculated using the quantum cost data in Table 5.1 and

formula (5.2) and is 15. In comparison, the realization of the canonical Max-Min expres-

sion (6.2) representing the same sub-function requires a quantum cost of 25.

F1(A,B) = A+1 +B+1 +A+1B+1 (6.4)

Figure 6.2: Reversible realization of minimized Max-Min expression (6.4).

6.3 Architectures of Ternary Reversible Circuit Synthesis

We propose the architectures of Figure 6.3 for reversible realizations of ternary logic

functions. Let QC0, QC1, and QC2 are quantum costs of reversible realizations of sub-

63

6.3. ARCHITECTURES OF TERNARY REVERSIBLE CIRCUIT SYNTHESIS

functions F0, F1, and F2, respectively, of a ternary logic function F . The rules of selecting

the architecture are as follows:

1. If QC0 = max(QC0,QC1,QC2), then the architecture of Figure 6.3(a) is used. In

this architecture the ancilla input is 0. If any input combination produces output 0,

then the multiple-controlled unary gates of circuits of F1 and F2 do not apply any

transform on the ancilla input constant 0. Thus the output is F = 0. If any input

combination produces output 1, then one of the multiple-controlled unary gates of

circuit of F1 applies a +1 transform on the ancilla input constant 0 and the multiple-

controlled unary gates of circuit of F2 do not apply any transform on the ancilla

input constant 0. Thus the output is F = 0+1 (GF3) = 1. If any input combination

produces output 2, then the multiple-controlled unary gates of circuit of F1 do not

apply any transform on the ancilla input constant 0 and one of the multiple-controlled

unary gates of circuit of F2 applies a +2 transform on the ancilla input constant 0.

Thus the output is F = 0+2 (GF3) = 2. Thus the function F is realized.

2. If QC1 = max(QC0,QC1,QC2), then the architecture of Figure 6.3(b) is used. In this

architecture the ancilla input is 1. If any input combination produces output 0, then

one of the multiple-controlled unary gates of circuit of F0 applies a +2 transform

on the ancilla input constant 1 and the multiple-controlled unary gates of circuit of

F2 do not apply any transform on the ancilla input constant 1. Thus the output is

F = 1+2 (GF3) = 0. If any input combination produces output 1, then the multiple-

controlled unary gates of circuits of F0 and F2 do not apply any transform on the

ancilla input constant 1. Thus the output is F = 1. If any input combination produces

output 2, then the multiple-controlled unary gates of circuit of F0 do not apply any

transform on the ancilla input constant 1 and one of the multiple-controlled unary

gates of circuit of F2 applies a +1 transform on the ancilla input constant 1. Thus the

output is F = 1+1 (GF3) = 2. Thus the function F is realized.

64

6.4. TERNARY REVERSIBLE CIRCUIT SYNTHESIS EXAMPLE

3. If QC2 = max(QC0,QC1,QC2), then the architecture of Figure 6.3(c) is used. In this

architecture the ancilla input is 2. If any input combination produces output 0, then

one of the multiple-controlled unary gates of circuit of F0 applies a +1 transform

on the ancilla input constant 2 and the multiple-controlled unary gates of circuit of

F1 do not apply any transform on the ancilla input constant 2. Thus the output is

F = 2+1 (GF3) = 0. If any input combination produces output 1, then the multiple-

controlled unary gates of circuits of F0 do not apply any transform on the ancilla input

constant 2 and one of the multiple-controlled unary gates of circuit of F1 applies a

+2 transform on the ancilla input constant 2. Thus the output is F = 2+2 (GF3) = 1.

If any input combination produces output 2, then the multiple-controlled unary gates

of circuits of F0 and F1 do not apply any transform on the ancilla input constant 2.

Thus the output is F = 2. Thus the function F is realized.

4. If there is a tie between any two of QC0, QC1, and QC2, then the tie is broken by

selecting any one of the two corresponding architectures. If there is a tie among all

three of QC0, QC1, and QC2, then the tie is broken by selecting any one of the three

architectures.

Figure 6.3: Architectures of reversible realizations of ternary logic functions.

The architecture of Figure 6.3 is selected in such a way that two sub-functions with

lower quantum costs are implemented and the sub-function with the maximum quantum

cost is not realized, instead the functional output of the sub-function is used as the ancilla

constant in the realization process. This technique reduces the quantum costs of the realized

circuits.

65

6.5. POST SYNTHESIS QUANTUM COST REDUCTION

6.4 Ternary Reversible Circuit Synthesis Example

The quantum cost of realization of Max-Min expression (6.1) for the sub-function

F0(A,B) is QC0 = 18. The quantum cost of realization of Max-Min expression (6.4) for

the sub-function F1(A,B) is QC1 = 15. The quantum cost of realization of Max-Min ex-

pression (6.3) for the sub-function F2(A,B) is QC2 = 7. From the values of QC0, QC1,

and QC2, we see that QC0 = max(QC0,QC1,QC2). Thus the architecture of Figure 6.3(a)

is used for reversible realization of the function F(A,B) in Table 6.1. The reversible real-

ization of F(A,B) is shown in Figure 6.4. The circuit of Figure 6.4 requires a quantum cost

of 22 and two ancilla inputs (one ancilla input required in multiple-controlled unary gate

realization and another ancilla input required for function realization).

Figure 6.4: Reversible realization of the function F(A,B) in Table 6.1 represented by
Max-Min expressions of sub-functions F0(A,B), F1(A,B), and F2(A,B) of (6.1), (6.4),

and (6.3), respectively, using the architecture of Figure 6.3(a).

6.5 Post Synthesis Quantum Cost Reduction

Quantum-level expansion of the circuit in Figure 6.4 is shown in Figure 6.5. In the first

and the third multiple-controlled unary gates, the control values along the input variable

A are 1 and 1, respectively, and they are adjacent. The transform of the unary gate in the

Input Restore part of the first multiple-controlled unary gate is +2. The transform of the

unary gate in the Control Implementation part of the third multiple-controlled unary gate

is +1. These two unary gates are adjacent along the input variable line A and they can be

omitted, since 2 + 1 (GF3) = 0. In the second and the third multiple-controlled unary gates,

the control values along the input variable B are 1 and 1, respectively, and they are adjacent.

The transform of the unary gate in the Input Restore part of the second multiple-controlled

66

6.5. POST SYNTHESIS QUANTUM COST REDUCTION

unary gate is +2. The transform of the unary gate in the Control Implementation part of

the third multiple-controlled unary gate is +1. These two unary gates are adjacent along

the input variable line B and they can be omitted, since 2+ 1 (GF3) = 0. In the third and

the fourth multiple-controlled unary gates, the control values along the input variable B are

1 and 0, respectively, and they are adjacent. The transform of the unary gate in the Input

Restore part of the third multiple-controlled unary gate is +2. The transform of the unary

gate in the Control Implementation part of the fourth multiple-controlled unary gate is +2.

These two unary gates can be replaced by a single unary gate with transform +1, since 2

+ 2 (GF3) = 1. Thus five unary gates in Figure 6.5 can be eliminated resulting in quantum

cost of 22−5 = 17.

Figure 6.5: Quantum-level expansion of circuit of Figure 6.4 for post synthesis quantum
cost reduction.

We have exhaustively determined all possible adjacent pair of control values and their

quantum cost reduction as listed in Table 6.3.

67

6.5. POST SYNTHESIS QUANTUM COST REDUCTION

Table 6.3: Post synthesis quantum cost reduction.

Adjacent Controls Quantum Cost Reduction

0, 0 2
0, 1 1

0, 01 2
1, 0 1
1, 1 2

1, 01 1
01, 0 1
01, 1 2

01, 01 1
02, 0 2
02, 1 1

02, 01 2
12, 0 1
12, 1 2

12, 01 1

68

Chapter 7

Ternary K-map-Based Minimization of
Ternary Max-Min Expressions

7.1 Introduction

In Chapter 4 we proposed ternary canonical Max-Min expressions for reversible circuit

realizations of ternary logic functions. We devoted Chapters 5 and 6 to discuss our proposed

method for quantum-level realizations of Max-Min expressions. In this chapter we discuss

our proposed ternary K-map-based minimization of ternary Max-Min expressions. Since

the goal of our ternary K-map-based minimization technique is to reduce quantum costs

of the resulting reversible circuits, the concept of our proposed method for reversible real-

izations of Max-Min expressions is essential for understanding our proposed minimization

method. We introduced the structures of ternary K-maps in Section 2.6. In the proposed

ternary K-map-based minimization method, each of the three sub-functions F0, F1, and

F2 of a ternary logic function F is minimized separately.

This chapter is organized as follows:

• In Section 7.2 we discuss the motivation of minimization of ternary Max-Min expres-

sions to reduce the quantum costs of the resulting reversible circuits.

• In Section 7.3 we discuss grouping of adjacent cells on a ternary K-map for mini-

mization of Max-Min expressions.

• In Section 7.4 we discuss minimization of ternary sub-functions and expressing them

as minimized Max-Min expressions using ternary K-map-based method.

69

7.2. MOTIVATION OF MINIMIZATION OF TERNARY MAX-MIN EXPRESSIONS

• In Section 7.5 we show several examples of ternary K-map-based minimization.

• In Section 7.6 we discuss similarities between the K-map-based ESOP (Chapter 2)

and the proposed ternary K-map-based Max-Min expression minimizations.

7.2 Motivation of Minimization of Ternary Max-Min Expressions

Consider the Max-Min expression for an example sub-function F1(A,B) shown in (7.1).

The reversible realization of the Max-Min expression (7.1) is shown in Figure 7.1(a), which

requires a quantum cost of 16 and two ancilla inputs (one for gate realization and another

for target function realization). The Max-Min expression (7.1) can be rewritten as in (7.2)

(see Table 4.2). The reversible realization of the Max-Min expression (7.2) is shown in

Figure 7.1(b), which requires a quantum cost of 11 and two ancilla inputs (one for gate

realization and another for target function realization). From Table 4.2, Max-Min expres-

sions (7.1) and (7.2), and Figure 7.1, we see that if a variable varies over two values (0 and

1; or 0 and 2; or 1 and 2), then two minterms of a canonical Max-Min expression can be

replaced by a single minterm and in the resulting reversible circuit realization two multiple-

controlled unary gates with simple-control values can be replaced by a single multiple-

controlled unary gate with composite control value resulting into a significant quantum

cost reduction.

F1(A,B) = A+1B+0 +A+1B+2 (7.1)

F1(A,B) = A+1B+0 +A+1B+2 = A+1(B+0 +B+2) = A+1B(0+2) (7.2)

Figure 7.1: Reversible realizations of Max-Min expressions for (a) equation (7.1) and (b)
equation (7.2).

70

7.3. GROUPING OF CELLS ON A TERNARY K-MAP

Consider the Max-Min expression for an example sub-function F1(A,B) shown in (7.3).

The reversible realization of the Max-Min expression (7.3) is shown in Figure 7.2(a), which

requires a quantum cost of 25 and two ancilla inputs (one for gate realization and another for

target function implementation). The Max-Min expression (7.3) can be rewritten as in (7.4).

The reversible realization of the Max-Min expression (7.4) is shown in Figure 7.2(b), which

requires a quantum cost of only 3 and one ancilla input (for target function realization; a

single controlled unary gate does not require any ancilla input for gate realization). From

the property of reversible literals that x+0 + x+1 + x+2 = 2 (see equation (4.1)), Max-Min

expressions (7.3) and (7.4), and Figure 7.2, we see that if a variable varies over 0, 1, and

2, then three minterms of a canonical Max-Min expression can be replaced by a single

minterm where the varying variable is missing and in the resulting reversible circuit real-

ization three multiple-controlled unary gates with simple-control values can be replaced by

a single multiple-controlled unary gate with one less control points resulting into a signifi-

cant reduction of both quantum cost and ancilla inputs.

F1(A,B) = A+2B+0 +A+2B+1 +A+2B+2 (7.3)

F1(A,B) = A+2B+0+A+2B+1+A+2B+2 = A+2(B+0+B+1+B+2) = A+2 ·2 = A+2 (7.4)

Figure 7.2: Reversible realizations of Max-Min expressions for (a) equation (7.3) and (b)
equation (7.4).

We use the ternary K-map method introduced in sections 7.3 and 7.4 to identify the

above two cases of variation of values of a variable and simplify the Max-Min expression

from the ternary K-map. The ternary K-maps are discussed in section 2.6.

71

7.3. GROUPING OF CELLS ON A TERNARY K-MAP

7.3 Grouping of Cells on a Ternary K-Map

7.3.1 Sizes of Groups

The sizes of groups of cells on a ternary K-map are as follows:

1. If a cell with a 1 is isolated (cannot be grouped with other adjacent cells), then that

cell forms a group of one-cell, which represents a canonical minterm. This group size

can be represented as 2m or 3m, where m = 0.

2. If two adjacent cells with 1s vary in 1-variable, then the two cells can be grouped.

A non-reversible literal from Table 4.2 is used for the varying variable. Using the

product rule of counting, the possible sizes of groups are as follows:

1-variable variation:

Group of 2 cells

2-variable variation:

Group of 2×2 = 4 cells

3-variable variation:

Group of 2×2×2 = 8 cells

4-variable variation:

Group of 2×2×2×2 = 16 cells

These group sizes can be represented as 2m, where 0 < m≤ 4.

3. If three adjacent cells with 1s vary in one variable, then the three cells can be grouped

and the varying variable will be missing. Using the product rule of counting, the

possible sizes of groups are as follows:

1-variable variation:

Group of 3 cells

2-variable variation:

Group of 3×3 = 9 cells

3-variable variation:

72

7.3. GROUPING OF CELLS ON A TERNARY K-MAP

Group of 3×3×3 = 27 cells

4-variable variation:

Group of 3×3×3×3 = 81 cells

These group sizes can be represented as 3m, where 0 < m≤ 4.

4. Two adjacent cells with 1s may vary in one variable and three adjacent cells with

1s may vary in another variable forming a group of 2× 3 = 6 adjacent cells. The

variable varying in two adjacent cells appear as non-reversible literal in the minterm

and the variable varying in three adjacent cells does not appear in the minterm. Using

the product rule of counting, the possible sizes of groups are as follows:

2-variable variation:

Group of 2×3 = 3×2 = 6 cells

3-variable variation:

Group of 2×2×3 = 2×3×2 = 3×2×2 = 12 cells

Group of 2×3×3 = 3×2×3 = 3×3×2 = 18 cells

4-variable variation:

Group of 2×2×2×3 = 2×2×3×2 = 2×3×2×2 = 3×2×2×2 = 24 cells

Group of 2×2×3×3= 2×3×2×3= 2×3×3×2= 3×2×2×3= 3×2×3×2=

3×3×2×2 = 36 cells

Group of 2×3×3×3 = 3×2×3×3 = 3×3×2×3 = 3×3×3×2 = 54 cells

These group sizes can be represented as 2i×3 j, where i, j ≥ 1 and 0 < (i+ j)≤ 4.

Let us assume that in a four-variable ternary logic sub-function F1(A,B,C,D) the

variable A varies in two values (0 and 1), the variable B varies in three values (0, 1,

and 2), the variable C varies in two values (0 and 1), and the variable D varies in

three values (0, 1, and 2), then the associated cells of the function form a group of

2×3×2×3 = 36 cells as shown in Figure 2.3(c).

73

7.4. MINIMIZATION OF TERNARY MAX-MIN EXPRESSION

7.3.2 Grouping Rules

Two grouping rules are stated below with explanations:

1. Consider an example two-variable sub-function F1(x,y) represented on the ternary

K-map of Figure 7.3(a). Please note that a blank cell contains a 0. In Figure 7.3(a) the

cell 11 containing a 1 is covered twice, once by Group 1 and once by Group 2. For

the input combination 11 both the groups will be active and the functional output will

be 1+1 (GF3) = 2, which is incorrect. Also consider another example four-variable

sub-function F1(w,x,y,z) represented on the ternary K-map of Figure 7.3(b), where

the cell 0011 containing a 1 is covered four times by Groups 1, 2, 3, and 4. For the

input combination 0011 all the four groups will be active and the functional output

will be 1+ 1+ 1+ 1 (GF3) = (1+ 1+ 1)+ 1 (GF3) = 0+ 1 (GF3) = 1, which is

correct. As 1+1+1 GF(3) = 0, to produce a correct output a cell with a 1 must be

covered by multiple of three plus one groups.

2. Consider an example two-variable sub-function F1(x,y) represented on the ternary

K-map of Figure 7.4(a). In this ternary K-map 0s are explicitly shown. When a cell

containing a 0 is included within a group of 1s, then that cell behaves like a cell

containing a 1. In Figure 7.4(a) the cell 11 containing a 0 is covered two times by

Groups 1 and 2. For the input combination 11 both the groups will be active and

the functional output will be 1 + 1 (GF3) = 2, which is incorrect. Also consider

another example two-variable sub-function F1(x,y) represented on the ternary K-

map of Figure 7.4(b), where the cell 11 containing a 0 is covered three times by

Groups 1, 2, and 3. For the input combination 11 all the three groups will be active

and the functional output will be 1+ 1+ 1 (GF3) = 0, which is correct. As 1+ 1+

1 (GF3)= 0, a cell containing a 0 can be included in a group of 1s with the restriction

that it should be covered by a multiple of three groups. This type of inclusions of

0s within groups of 1s will help reduce the Max-Min expression but the functional

output will not be changed.

74

7.4. MINIMIZATION OF TERNARY MAX-MIN EXPRESSION

Figure 7.3: (a) A cell with a 1 is overlapped by two groups and (b) a cell with a 1 is
overlapped by four groups on a ternary K-map.

7.4 Minimization of Ternary Max-Min Expression of a Ternary Sub-

Function Using Ternary K-Map

7.4.1 Grouping and Determining Max-Min Expression

An example two-variable ternary logic function F(A,B) and its three sub-functions

F0(A,B), F1(A,B), and F2(A,B) are shown in Table 7.1. The sub-function F1(A,B) is

represented on the ternary K-maps in Figure 7.5, where four possible groupings of cells are

shown.

In Figure 7.5(a), cells corresponding to input combinations 10 and 11 are grouped as

a group of two-cells. In this group A = 1 and B varies over 0 and 1. The minterm corre-

sponding to this group is A+1B(1+2). Cells corresponding to input combinations 01 and 11

are grouped as a group of two-cells. In this group A varies over 0 and 1; and B = 1. The

minterm corresponding to this group is A(1+2)B+1. Cells corresponding to input combina-

75

7.4. MINIMIZATION OF TERNARY MAX-MIN EXPRESSION

Figure 7.4: (a) A cell with a 0 is overlapped by two groups and (b) a cell with a 0 is
overlapped by three groups on a ternary K-map.

Table 7.1: An example two-variable ternary logic function and its three sub-functions.

AB F(A,B) F0(A,B) F1(A,B) F2(A,B)

00 0 1 0 0
01 1 0 1 0
02 x x x x
10 1 0 1 0
11 0 1 0 0
12 x x x x
20 2 0 0 1
21 1 0 1 0
22 x x x x

tions 11 and 21 are grouped as a group of two-cells. In this group A varies over 1 and 2;

and B = 1. The minterm corresponding to this group is A(0+1)B+1. The cell corresponding

to the input combination 11 is a cell with a 0 and it is grouped thrice in all three groups

satisfying the grouping rule. The Max-Min expression from this K-map is given in (7.5).

F1(A,B) = A+1B(1+2)+A(1+2)B+1 +A(0+1)B+1 (7.5)

In Figure 7.5(b), cells corresponding to input combinations 01 and 02 are grouped as

a group of two-cells. In this group A = 0 and B varies over 1 and 2. The minterm corre-

sponding to this group is A+2B(0+1). Cells corresponding to input combinations 10 and 12

are grouped as a group of two-cells. In this group A = 1 and B varies over 0 and 2. The

minterm corresponding to this group is A+1B(0+2). Cells corresponding to input combina-

tions 21 and 22 are grouped as a group of two-cells. In this group A = 2 and B varies over 1

76

7.4. MINIMIZATION OF TERNARY MAX-MIN EXPRESSION

Figure 7.5: Four different solutions of the sub-function F1(A,B) in Table 7.1.

and 2. The minterm corresponding to this group is A+0B(0+1). In all three groups one cell

with a 1 and one cell with an x are grouped together. The Max-Min expression from this

K-map is given in (7.6).

F1(A,B) = A+2B(0+1)+A+1B(0+2)+A+0B(0+1) (7.6)

In Figure 7.5(c), the cell corresponding to input combination 01 is grouped as a group

of one-cell. In this group A = 0 and B = 1. The canonical minterm corresponding to this

group is A+2B+1. The cell corresponding to input combination 10 is grouped as a group

of one-cell. In this group A = 1 and B = 0. The canonical minterm corresponding to this

group is A+1B+2. The cell corresponding to input combination 21 is grouped as a group

77

7.4. MINIMIZATION OF TERNARY MAX-MIN EXPRESSION

of one-cell. In this group A = 2 and B = 1. The canonical minterm corresponding to this

group is A+0B+1. The Max-Min expression from this K-map is given in (7.7).

F1(A,B) = A+2B+1 +A+1B+2 +A+0B+1 (7.7)

In Figure 7.5(d), cells corresponding to input combinations 10, 11, and 12 are grouped

as a group of three-cells. In this group A = 1 and B varies over 0, 1, and 2. The minterm

corresponding to this group is A+1. In this group one cell with a 1, one cell with a 0, and one

cell with an x are grouped together. Cells corresponding to input combinations 01, 11, and

21 are grouped as a group of three-cells. In this group A varies over 0, 1, and 2; and B = 1.

The minterm corresponding to this group is B+1. In this group two cells with 1s and one cell

with a 0 are grouped together. Cell corresponding to input combination 11 is grouped as a

group of one-cell. In this group A = 1 and B = 1. The canonical minterm corresponding

to this group is A+1B+1. The cell with a 0 corresponding to the input combination 11 is

grouped thrice satisfying the grouping rule. The Max-Min expression from this K-map is

given in (7.8).

F1(A,B) = A+1 +B+1 +A+1B+1 (7.8)

7.4.2 Some Observations

Four possible minimizations of the sub-function F1(A,B) in Table 7.1 are shown in

Figure 7.5. In Figure 7.5, Max-Min expressions, corresponding reversible circuits, and

quantum costs (QCs) of the reversible circuits for all four minimization are shown. From

Figure 7.5 we see that the quantum costs for four possible minimization are different and

the quantum cost for the minimization of Figure 7.5(d) is the minimum. Therefore we need

to develop intuitive methods to directly determine the minimum solution from the ternary

K-map. After experimenting with several example functions we arrive at the following

observations:

78

7.4. MINIMIZATION OF TERNARY MAX-MIN EXPRESSION

1. In the ternary K-map of Figure 7.5(a) three groups of two cells are formed having one

cell with a 1 and another cell with a 0. The corresponding circuit requires a quan-

tum cost of 37. In Figure 7.5(c) the same function is minimized without including

the cell with a 0. The corresponding circuit requires a quantum cost of 25. In Fig-

ure 7.5(a) each group has exactly 50% cells with a 0, which increases the quantum

cost. Consider another three-variable example sub-function F1(A,B,C) represented

in Figure 7.6. In Figure 7.6(a) three groups are formed with 50% or more cells

with 0s in all three groups. The resulting circuit requires a quantum cost of 51. In

Figure 7.6(b) three groups are formed without including any cell with a 0. The re-

sulting circuit requires a quantum cost of 49. Again we see that inclusion of 50%

or more cells with 0s in groups of 1s increases the quantum cost. Consider another

four-variable example sub-function F1(A,B,C,D) represented in Figure 7.7. In Fig-

ure 7.7(a) three groups are formed with less than 50% cells with 0s in all three groups.

The resulting circuit requires a quantum cost of 71. In Figure 7.7(b) four groups are

formed without including any cell with a 0. The resulting circuit requires a quan-

tum cost of 96. Here we see that inclusion of less than 50% cells with 0s in groups

of 1s reduces the quantum cost. We tested five more artificially generated example

functions and found experimentally that if the number of cells with 0s in a group is

less than 50%, then the quantum cost of the resulting circuit is decreased. We are

theorizing that when 50% or more cells with 0s are included in a group, then the

resulting Max-Min expression requires more composite literals; however this has not

been proven. Circuits with more composite literals will require multiple-controlled

unary gates with more composite controls. As the quantum cost of realization of com-

posite controls are higher than those of simple controls (see Section 5.4), inclusion

of 50% or more cells with 0s in a group increases the quantum cost. Thus we have

developed our technique assuming that in a group on the ternary K-map the number

of cells with 0s must be less than 50%.

79

7.4. MINIMIZATION OF TERNARY MAX-MIN EXPRESSION

Figure 7.6: Two possible minimization of a three-variable sub-function F1(A,B,C).

2. In the ternary K-map of Figure 7.5(b) three groups of two cells are formed having one

cell with a 1 and another cell with an x. The corresponding circuit requires a quantum

cost of 31. In comparison the circuit for the minimization of Figure 7.5(c) without

including cells with xs requires a quantum cost of 25. In Figure 7.5(b) all three

groups have 50% cells with an x, which increases the quantum cost. Consider another

two-variable example incompletely specified sub-function F1(A,B) represented in

Figure 7.8. In Figure 7.8(a) the group has 50% cells with xs. The resulting circuit

requires a quantum cost of 15. In Figure 7.8(b) the group is formed without including

any cell with an x. The resulting circuit requires a quantum cost of 11. Again we

80

7.4. MINIMIZATION OF TERNARY MAX-MIN EXPRESSION

Figure 7.7: Two possible minimizations of a four-variable sub-function F1(A,B,C,D).

81

7.4. MINIMIZATION OF TERNARY MAX-MIN EXPRESSION

see that inclusion of 50% cells with xs in groups of 1s increases the quantum cost.

Consider another two-variable example incompletely specified sub-function F1(A,B)

represented in Figure 7.9. In Figure 7.9(a) the group contains less than 50% cells

with an x. The resulting circuit requires a quantum cost of 15. In Figure 7.9(b)

two groups are formed without including any cell with an x. The resulting circuit

requires a quantum cost of 16. Here we see that inclusion of less than 50% cells

with xs in groups of 1s reduces the quantum cost. We tested five more artificially

generated example functions and found experimentally that if the number of cells

with xs in a group is less than 50%, then the quantum cost of the resulting circuit

is decreased. We are theorizing that when 50% or more cells with xs are included

in a group, then the resulting Max-Min expression requires more composite literals;

however this has not been proven. Circuits with more composite literals will require

multiple-controlled unary gates with more composite controls. As the quantum cost

of realization of composite controls are higher than those of simple controls (see

Section 5.4), inclusion of 50% or more cells with xs in a group increases the quantum

cost. Thus we have developed our technique assuming that in a group on the ternary

K-map the number of cells with xs must be less than 50%.

Figure 7.8: Two possible minimizations of a two-variable sub-function F1(A,B).

82

7.4. MINIMIZATION OF TERNARY MAX-MIN EXPRESSION

Figure 7.9: Two possible minimizations of a two-variable sub-function F1(A,B).

3. In Figure 7.5(d) a group of one-cell with a 0 is used. The minimization of Fig-

ure 7.5(d) produces the optimum solution. Consider another two-variable example

sub-function F1(A,B) represented in Figure 7.10. In Figure 7.10(a) a group of two-

cells with 0s is used. The resulting circuit requires a quantum cost of 18. In Fig-

ure 7.10(b) only the cells with 1s are grouped. The resulting circuit requires a quan-

tum cost of 22. Again we see that inclusion of group of cells with only 0s reduces

the quantum cost. We tested five more artificially generated example functions and

found experimentally that inclusion of cells with only 0s in groups reduces the quan-

tum cost. We are theorizing that inclusion of cells with 0s in groups provided that

those cells are covered by a multiple of three groups reduces the quantum cost. Thus

we have developed our technique assuming that a group of cells with only 0s is useful

in minimization of Max-Min expressions. A group of cells with only 0s is formed

within another larger group to make sure that cells with 0s are covered a multiple of

three times.

7.4.3 K-Map-Based Minimization Method

Based on the two grouping rules of Section 7.3 and the three observations discussed

above, the K-map-based minimization of Max-Min expression for a sub-function is as fol-

lows:

83

7.5. TERNARY K-MAP-BASED MINIMIZATION EXAMPLES

Figure 7.10: Two possible minimizations of a two-variable sub-function F1(A,B).

1. Put the ternary-input binary-output sub-function on a ternary K-map.

2. Form the largest possible groups of cells maintaining the following restrictions:

• A cell with a 1 must be covered by a multiple of three plus one groups.

• A cell with a 0 must be covered by a multiple of three groups.

• The number of cells with 0s in a group should be less than 50%.

• The number of cells with xs in a group should be less than 50%.

• A group of cells with only 0s is included within another larger group, if needed.

At the same time select smallest possible number of groups.

3. Determine minterms for all groups and then combine them using Max operations to

form the minimized Max-Min expression.

We show some examples of K-map-based minimization in the next section.

7.5 Ternary K-Map-Based Minimization Examples

In Figure 7.11(a) minimization of a two-variable sub-function F1(x,y) is shown, where

a group of two-cells with input combinations xy = 01 and xy = 21 and a group of three-cells

with input combinations xy = 10, xy = 11, and xy = 12 are used. For the group of two-cells

84

7.5. TERNARY K-MAP-BASED MINIMIZATION EXAMPLES

the variable x varies over 0 and 2 and the variable y = 1. So, the minterm for this group is

x(0+2)y+1. For the group of three cells the variable x = 1 and the variable y varies over 0,

1, and 2. So, the minterm of this group is x+1. The resulting Max-Min expression from the

K-map of Figure 7.11(a) is given in (7.9).

F1(x,y) = x+1 + x(0+2)y+1. (7.9)

In Figure 7.11(b) minimization of a three-variable sub-function F1(x,y,z) is shown.

Here three groups of three-cells (the first group with input combinations 010, 011, 012;

the second group with input combinations 001, 011, 021; and the third group with input

combinations 011, 111, 211) are used, where the cell with a 0 corresponding to the input

combination 011 is overlapped thrice. The resulting Max-Min expression from the K-map

of Figure 7.11(b) is given in (7.10).

F1(x,y,z) = x+2y+1 + x+2z+1 + y+1z+1. (7.10)

In Figure 7.11(c) minimization of a four-variable sub-function F1(w,x,y,z) is shown,

where a group of 27-cells with 1s is used and the resulting Max-Min expression from the

K-map of Figure 7.11(c) is given in (7.11).

F1(w,x,y,z) = y+2. (7.11)

The truth table for a ternary full-adder and corresponding sub-functions are shown in

Table 7.2.

The minimization of the Max-Min expression for the sub-function Cout1 of a ternary

full-adder from the truth table in Table 7.2 is shown in Figure 7.12. In Figure 7.12 one

group of three-cells and one group of six-cells are used, where the group of three-cells and

the group of six-cells contain less than 50% cells with xs. However, the cells corresponding

85

7.5. TERNARY K-MAP-BASED MINIMIZATION EXAMPLES

Figure 7.11: Examples of (a) a two-variable, (b) a three-variable, and (c) a four-variable
ternary sub-function minimization.

to the input combinations 021, 111, and 201 cannot be grouped with other cells, since in

that case the other cell with a 1 will be overlapped twice and the function will be changed.

The cells with 1s also cannot be grouped with cells with xs satisfying the grouping rule

of don’t care (x) cells. Thus three groups of one-cell are used. The resulting Max-Min

expression from the K-map of Figure 7.12 is shown in (7.12).

Cout1 = A+0B(0+1)+A+1B+0 +A+2B+0C+1
in +A+1B+1C+1

in +A+0B+2C+1
in (7.12)

The minimization of sub-function S0 of a ternary full-adder from the truth table in

Table 7.2 is shown in Figure 7.13. In Figure 7.13 cells with 1s cannot be grouped with

other cells with 0s or xs, since in that case the condition of including cells with 0s and xs

will not be satisfied. The resulting Max-Min expression from the K-map of Figure 7.13 is

86

7.5. TERNARY K-MAP-BASED MINIMIZATION EXAMPLES

Table 7.2: Truth table for a ternary full-adder with all sub-functions.

ABCin CoutS Cout0 Cout1 S0 S1 S2

000 00 1 0 1 0 0
001 01 1 0 0 1 0
002 xx x x x x x
010 01 1 0 0 1 0
011 02 1 0 0 0 1
012 xx x x x x x
020 02 1 0 0 0 1
021 10 0 1 1 0 0
022 xx x x x x x
100 01 1 0 0 1 0
101 02 1 0 0 0 1
102 xx x x x x x
110 02 1 0 0 0 1
111 10 0 1 1 0 0
112 xx x x x x x
120 10 0 1 1 0 0
121 11 0 1 0 1 0
122 xx x x x x x
201 10 0 1 1 0 0
200 02 1 0 0 0 1
202 xx x x x x x
210 10 0 1 1 0 0
211 11 0 1 0 1 0
212 xx x 1 x x x
220 11 0 1 0 1 0
221 12 0 1 0 0 1
222 xx x x x x x

Figure 7.12: Minimization of Max-Min expression for sub-function Cout1 of a ternary
full-adder from the truth table in Table 7.2.

87

7.6. COMPARISON BETWEEN ESOP AND TERNARY MAX-MIN MINIMIZATIONS

shown in (7.13).

S0 = A+2B+2C+2
in +A+2B+0C+1

in +A+1B+1C+1
in +A+1B+0C+2

in +A+0B+2C+1
in +A+0B+1C+2

in

(7.13)

Figure 7.13: Minimization of Max-Min expression for sub-function S0 of a ternary
full-adder from the truth table in Table 7.2.

In the K-map-based minimization of Max-Min expressions, groupings of cells are done

while attempting to maintain the grouping constraints of cells with 1s and 0s and also satisfy

the other observations. Thus manual minimization is very difficult.

7.6 Comparison Between K-Map-Based ESOP and Ternary Max-Min

Minimizations

The ESOP expression is based on GF2 arithmetic and the ternary Max-Min expression

is based on GF3 arithmetic (see Chapter 2). Therefore, both the minimization methods are

similar. These similarities are summarized below:

1. The K-map-based ESOP function minimization is based on GF2 and a 1 can only be

covered by an odd number of groups. The proposed ternary K-map-based Max-Min

function minimization is based on GF3 and a 1 can only be covered by a multiple of

3 plus 1 groups.

88

7.6. COMPARISON BETWEEN ESOP AND TERNARY MAX-MIN MINIMIZATIONS

2. In the K-map-based ESOP function minimization a 0 can be included in a group

provided that 0 is covered by an even number of groups. In the proposed ternary K-

map-based Max-Min function minimization a 0 can be included in a group provided

that 0 is covered by a multiple of 3 groups.

3. In the K-map-based ESOP function minimization a smaller group can be formed

within another larger group to ensure that a 1 is covered by an odd number of groups

and a 0 is covered by an even number of groups. Similarly, in the proposed ternary

K-map-based Max-Min function minimization a smaller group can be formed within

another larger group to ensure that a 1 is covered by a multiple of 3 plus 1 groups and

a 0 is covered by a multiple of 3 groups.

4. In the K-map-based ESOP function minimization the group size is 2m, where 0 ≤

m ≤ n for an n-variable K-map. Thus the possible group sizes are 1, 2, 4, 8, 16, 32,

and 64 for up to 6 variables. In the proposed ternary K-map-based Max-Min function

minimization the possible group sizes are 2m or 3m, where m = 0; or 2m, where

0 < m≤ 4; or 3m, where 0 < m≤ 4; or 2i×3 j, where i, j ≥ 1 and 0 < (i+ j)≤ 4 as

discussed in Section 7.3. Thus the possible group sizes are 1, 2, 3, 4, 6, 8, 9, 12, 16,

18, 24, 27, 36, 54, and 81 for up to 4 variables.

89

Chapter 8

Hybrid Genetic Algorithm-Based
Synthesis of Ternary Reversible Circuits
Using Max-Min Algebra

8.1 Introduction

In Chapter 7 we proposed a ternary K-map-based minimization of ternary Max-Min

expressions of up to four variables. From the discussions in Chapter 7 it is clear that the K-

map-based method is very difficult to use for three and four variable functions. Moreover,

using a ternary K-map for more than four variables is more difficult. For example a five-

variable K-map will consist of three four-variable K-maps (see Figure 2.3(c) for structure

of a four-variable K-map). Identifying adjacent cells in a five-variable ternary K-map will

be very difficult. Therefore, a computer-aided method must be developed for minimization

of ternary Max-Min expressions.

In a computer-aided method of minimizing Max-Min expressions, the following types

of groups are potential groups for determining the minimum solution:

• All possible groups of 1s.

• All possible groups of 0s.

• All possible groups of 1s and 0s such that the number of 0s is less than 50% of the

group size.

• All possible groups of 1s and xs such that the number of xs is less than 50% of the

90

8.2. BRIEF INTRODUCTION TO GENETIC ALGORITHMS (GAS)

group size.

• All possible groups of 1s, 0s, and xs such that both the numbers of 0s and xs are less

than 50% of the group size.

The number of such potential candidate groups is very high. Thus, an exhaustive search for

the minimum solution is an exponential time problem and will not be practically feasible.

Therefore, we need to use some heuristic method for finding the minimum or near minimum

solution.

It is well known that Genetic Algorithms (GAs) can be used for optimization of com-

plex problems [29, 30]. In this chapter we propose a hybrid Genetic Algorithm [9] for

minimization of ternary Max-Min expressions and then synthesis of the corresponding re-

versible circuits.

This chapter is organized as follows:

• In Section 8.2 we briefly introduce GAs.

• In Section 8.3 we discuss the process of generating potential minterms, which are the

used as candidates for GA-based minimization of ternary Max-Min expressions.

• In Section 8.4 we discuss encoding of the Max-Min minimization problem into the

GA domain; that is, we discuss the structure of the chromosome of the proposed GA

for minimization of ternary Max-Min expressions.

• In Section 8.5 we propose a hybrid GA (HGA) for minimization of ternary Max-Min

expressions.

• In Section 8.6 we discuss ternary reversible circuit synthesis from output of the HGA.

8.2 Brief Introduction to Genetic Algorithms (GAs)

A GA is a population-based meta-heuristic method for search and optimization prob-

lems. The basic unit of a GA is a chromosome. A chromosome is a collection of genes.

91

8.2. BRIEF INTRODUCTION TO GENETIC ALGORITHMS (GAS)

In binary encoded GAs each gene is either a 1 or a 0. When a gene is 1, then that gene

is present in the solution. When a gene is 0, then that gene is absent in the solution. The

solution of a search or optimization problem (called a phenotype) is encoded in such a way

that it can be represented by a chromosome (called a genotype). The number of genes in a

chromosome is called the chromosome length. Figure 8.1 shows an example chromosome

of length eight.

Figure 8.1: An example chromosome of length eight.

A collection of chromosomes is called the population. The number of chromosomes in

a population is called the population size. Figure 8.2 shows an example population of size

four with chromosome length eight.

Figure 8.2: An example population of size four with chromosome length eight.

The structure of a steady-state GA [29] is shown in Algorithm 1. Each operation of a

steady-state GA is discussed below.

In line 2 the procedure initialPopulation(populationSize, chromosomeLength) gener-

ates the initial population randomly. For determining the structure of the chromosome

the problem specific solution (phenotype) is encoded into suitable chromosome structure

(genotype). The encoding from phenotype to genotype is problem specific.

In lines 3 to 5 the procedure determineFitness(chromosome) determines the fitness of

all the chromosomes. Fitness is the measure of “goodness” of the chromosome. The fitness

function is problem specific. For determining the fitness the chromosome (genotype) is

92

8.2. BRIEF INTRODUCTION TO GENETIC ALGORITHMS (GAS)

Algorithm 1 Steady-State Genetic Algorithm
1: procedure STEADY-STATE GENETIC ALGORITHM

2: population=initialPopulation(populationSize, chromosomeLength)
3: for (each chromosome in the population) do
4: determineFitness(chromosome)
5: end for
6: maximumFitness=determineMaximumFitness(population)
7: while (Termination Condition Not Reached) do
8: parent1=selection(population)
9: parent2=selection(population)

10: {offspring1, offspring2}=crossover(parent1, parent2, PC)
11: offspring1=mutation(offspring1, PM)
12: offspring2=mutation(offspring2, PM)
13: determineFitness(offspring1)
14: determineFitness(offspring2)
15: duplicate1=duplicateChecking(population, offspring1)
16: duplicate2=duplicateChecking(population, offspring2)
17: if (duplicate1 = False) then
18: replace(population, offspring1)
19: end if
20: if (duplicate2 = False) then
21: replace(population, offspring2)
22: end if
23: newMaximumFitness=determineMaximumFitness(population)
24: if (newMaximumFitness > maximumFitness) then
25: maximumFitness=newMaximumFitness
26: end if
27: end while
28: end procedure

decoded to problem specific solution (phenotype) and then from the solution the fitness is

calculated.

In line 6 the procedure determineMaximumFitness(population) determines the maxi-

mum fitness of the population and stores the maximum fitness along with the corresponding

chromosome.

The while loop of lines 7 to 27 constitute a generation in the evolution process. The

loop is terminated when the termination condition is reached. Three termination techniques

are normally used in GAs [30] as discussed below:

93

8.2. BRIEF INTRODUCTION TO GENETIC ALGORITHMS (GAS)

1. The GA is terminated after a fixed number of generations. This technique does not

always produce optimal results.

2. The GA is terminated when the result satisfies an optimal criteria. This technique

requires prior knowledge of the solution.

3. The GA is terminated when the highest fit solution reaches a saturation condition; that

is, the highest fitness value does not change for a predefined number of consecutive

generations.

In lines 8 and 9 the procedure selection(population) selects two parents from the popu-

lation. Three parent selection methods are normally used [29]:

1. Roulette Wheel Selection

2. Stochastic Universal Selection

3. Binary Tournament Selection

Roulette wheel selection and stochastic universal selection methods select a parent having

higher fitness value with higher probability. These methods provide a way to exploit the

properties of higher fit chromosomes, but do not provide means to explore the search space

by creating diversification in the selection process. The highest diversification in parent

selection can be provided by randomly selecting the parents. However, random selection

of parents limits the opportunity of exploiting the properties of the higher fit chromosomes.

Binary tournament selection combines the advantages of both the approaches and creates a

balance between exploitation of the properties of higher fit chromosomes and exploration

of the search space by providing diversity in the selection process. In binary tournament

selection two chromosomes are randomly selected and the better fit chromosome is selected

as parent1. Similarly parent2 is selected.

In line 10 the procedure crossover(parent1, parent2, PC) generates two offspring from

two parents using the crossover operation. The crossover operation is applied on two par-

94

8.2. BRIEF INTRODUCTION TO GENETIC ALGORITHMS (GAS)

ents with high crossover probability Pc. In one-point crossover, a crossover point is ran-

domly determined and then either the left part or the right part of the crossover point of the

two parents are swapped. One example of crossover operation is shown in Figure 8.3.

Figure 8.3: Crossover operation.

In line 11 the procedure mutation(offspring1, PM) changes bits of offspring1 using the

mutation operation. The mutation operation is applied with low mutation probability PM.

The mutation operation is illustrated in Figure 8.4. In line 12 offspring2 is similarly mu-

tated.

Figure 8.4: Mutation operation.

In line 13 the procedure determineFitness(offspring1) determines the fitness of the off-

spring1. Similarly in line 14 the procedure determineFitness(offspring2) determines the

fitness of the offspring2.

In line 15 the procedure duplicateChecking(population, offspring1) determines whether

offspring1 already exists in the population or not. If offspring1 already exists in the popu-

lation, then duplicate1 is TRUE otherwise duplicate1 is FALSE. Similarly, in line 16 dupli-

cation status of offspring2 is determined.

In lines 17 to 19 if duplicate1 is FALSE, then the procedure replace(population, off-

spring1) replaces one chromosome of the population by offspring1. In the replace proce-

95

8.3. GENERATION OF POTENTIAL CANDIDATE MINTERMS FOR SOLUTION

dure the minimum fitness of the population and the corresponding chromosome are deter-

mined. If the fitness of offspring1 is greater than the minimum fitness of the population,

then the corresponding chromosome is replaced by offspring1. Similarly in lines 20 to 22

another chromosome in the population with minimum fitness is replaced by offspring2.

In lines 23 to 26 the chromosome with the maximum fitness in the new population is

determined and saved.

8.3 Generation of Potential Candidate Minterms for Solution

8.3.1 Encoding of Variable Value Variation

The changes of values of a variable in a group of cells on a K-map are encoded using

three bits as shown in Table 8.1. The leftmost bit represents the value 2, the middle bit

represents the value 1, and the rightmost bit represents the value 0. A 0 in a bit position

for a variable represents that in the given group the variable does not correspond to that

value. A 1 in a bit position for a variable represents that in the given group the variable

corresponds to that value. In a group, if a variable varies over more than one value, then the

encoded representation of the variable has more than one 1.

Table 8.1: Variable value encoding in a group of cells.

Encoded form Variable value in a group of cells

000
001 0
010 1
011 01
100 2
101 02
110 12
111 012

An example two-variable ternary logic function and its three sub-functions are shown

in Table 8.2. The sub-function F1(A,B) is represented on a ternary K-map in Figure 8.5.

96

8.3. GENERATION OF POTENTIAL CANDIDATE MINTERMS FOR SOLUTION

In Figure 8.5 the encoded input combinations of the cells containing 1s and xs are shown.

Consider the cell corresponding to the input combination AB = 01 containing a 1. Here

A = 0 and is encoded as 001 and B = 1 and is encoded as 010. The two codes are concate-

nated as 001 010 as the encoded input combination for the cell corresponding to the input

combination AB = 01.

Table 8.2: An example two-variable ternary logic function and its three sub-functions.

AB F(A,B) F0(A,B) F1(A,B) F2(A,B)

00 0 1 0 0
01 1 0 1 0
02 x x x x
10 1 0 1 0
11 0 1 0 0
12 x x x x
20 2 0 0 1
21 1 0 1 0
22 x x x x

Figure 8.5: Sub-function F1(A,B) of Table 8.2 on a two-variable ternary K-map.

The motivation of this encoding is that if a variable varies over two or three values, then

the encoded representation can be determined by doing bit-wise OR of the individual codes.

Two examples are shown in Figure 8.6.

Figure 8.6: Combination of encoded inputs by doing bit-wise OR.

Readers should note that this variable value encoding is not chromosome encoding for

97

8.3. GENERATION OF POTENTIAL CANDIDATE MINTERMS FOR SOLUTION

GA. This variable value encoding is used in the minterm generation process discussed be-

low.

8.3.2 Minterm Generation

From the discussions of Chapter 7 we see that any group except those containing a

mix of 0s and xs are useful for minimization of Max-Min expressions. In the GA-based

minimization process we need to generate all possible minterm candidates for a solution.

The generation process of candidate minterms for a solution is as follows:

1. In Stage-0 list all 3n canonical minterms irrespective of functional output, where n is

the number of variables in the function.

2. In Stage-1 generate all minterms corresponding to all groups of two-cells. Two cells

can be grouped together if and only if they differ in only one variable.

3. In Stage-2 generate all minterms corresponding to all groups of three or four cells.

Two groups of two cells can be grouped together if and only if they differ in only one

variable.

4. In a similar manner generate all minterms of groups of Stage-n from groups of Stage-

(n−1).

5. Finally, to reduce the search space, eliminate groups less likely to contribute towards

finding the solution (less potential groups) and determine the list of groups most likely

to contribute towards finding the solution (potential candidate groups for solution).

A partial example of generating groups considering only three cells is shown in Fig-

ure 8.7. In Figure 8.7 the input combinations are shown in decimal notation. For example,

consider the cell with input combination AB = 00. The corresponding input combination is

denoted as (0)(0). Also consider the group of two-cells corresponding to A = 0 and B = 0

and 1. The corresponding input combination is written as (0)(01). Consider the group of

98

8.3. GENERATION OF POTENTIAL CANDIDATE MINTERMS FOR SOLUTION

three cells corresponding to A = 0 and B = 0, 1, and 2. The corresponding input combina-

tion is written as (0)(012) = (0)(-). Here the missing variable is represented as (-). However

in our minterm generation program the input combinations are represented in encoded form

so that variation in only one variable can be easily detected and two encoded terms can be

combined by bit-wise OR to get the resulting encoded term for the larger group.

Figure 8.7: Partial example of generation of minterms.

In Figure 8.7 Stage-0 represents three canonical minterms. Stage-1 minterms (group

size two) are generated from Stage-0 minterms. Stage-2 minterm (group size three) is

generated from Stage-1 minterms.

8.3.3 Reducing the Number of Potential Minterms

From Chapter 7 we see that the minimization of a Max-Min expression is a difficult

process. Therefore any minterm containing 1 to n literals, where n is the number of variables

in the function, may be a potential candidate for final solution. For this reason we generate

all possible minterms. However, from Section 7.4 we see that two types of minterms are

less likely to contribute towards finding the optimum solution for obtaining an optimal

minimization of Max-Min expressions. There are three more observations which identify

three more types of minterms with lower potential for obtaining optimal solution using

GAs. All five types of lower potential minterms are listed below:

99

8.3. GENERATION OF POTENTIAL CANDIDATE MINTERMS FOR SOLUTION

1. A minterm corresponding to a group with equal to or more than 50% cells with 0s

is a minterm with lower potential for obtaining an optimal (or near optimal) solution

(observation from Section 7.4).

2. A minterm corresponding to a group with equal to or more than 50% cells with xs

is a minterm with lower potential for obtaining an optimal (or near optimal) solution

(observation from Section 7.4).

3. A minterm corresponding to a group with all cells with xs is redundant, since a

minterm generated from a group with only cells with xs is not needed for the func-

tion. Thus a minterm corresponding to a group with all cells with xs is a minterm

with lower potential.

4. A minterm corresponding to a group with cells containing only 0s and xs is a minterm

with lower potential, since such a group does not properly match with cells with 0s

of a valid group with cells containing a mix of 1, 0, and x.

5. A group of 3n cells, where n is the number of variables in the function, is not needed.

Thus this minterm is a minterm with lower potential.

In our proposed hybrid Genetic Algorithm (HGA) we excluded the above five types of

minterns to reduce the search space so the HGA finds a good (optimal or near optimal)

solution within a reasonable time.

8.3.4 Example of Minterm Generation

The concepts discussed above are illustrated in Tables 8.3 and 8.4 by generating all

minterms for the sub-function F1(A,B) in Table 8.2. In Tables 8.3 and 8.4, we also list the

quantum cost (QC) of multiple-controlled unary gates corresponding to all minterms. The

minterms are numbered from 0 for referencing purposes.

After elimination of minterms with lower potential we get the minterms listed in Ta-

ble 8.5 as potential candidates for the optimal (or near optimal) solution.

100

8.3. GENERATION OF POTENTIAL CANDIDATE MINTERMS FOR SOLUTION

Table 8.3: Minterm generation for sub-function F1(A,B) in Table 8.2.

Initial Input: Stage-0

Term No Minterm Output Less Potential QC

0 001 001 0 9
1 001 010 1 9
2 001 100 x y 7
3 010 001 1 9
4 010 010 0 9
5 010 100 x y 7
6 100 001 0 7
7 100 010 1 7
8 100 100 x y 5

Stage-1

Term No Minterm Combining Minterms Less Potential QC

9 001 011 0,1 y 13
10 001 101 0,2 y 11
11 011 001 0,3 y 13
12 101 001 0,6 11
13 001 110 1,2 y 11
14 011 010 1,4 y 13
15 101 010 1,7 11
16 011 100 2,5 y 11
17 101 100 2,8 y 9
18 010 011 3,4 y 13
19 010 101 3,5 y 11
20 110 001 3,6 y 11
21 010 110 4,5 y 11
22 110 010 4,7 y 11
23 110 100 5,8 y 9
24 100 011 6,7 y 11
25 100 101 6,8 y 9
26 100 110 7,8 y 9

8.3.5 Algorithm for Minterm Generation

A generalized algorithm for minterm generation is shown in Algorithm 2. In the algo-

rithm for generating minterms the input is the list of 3n input combinations represented in

101

8.3. GENERATION OF POTENTIAL CANDIDATE MINTERMS FOR SOLUTION

Table 8.4: Minterm generation for sub-function F1(A,B) in Table 8.2 (continued).

Stage-2

Term No Minterm Combining Minterms Less Potential QC

27 001 111 9,10/9,13/10,13 3
28 011 011 9,18/11,14 y 17
29 101 011 9,24/12,15 y 15
30 011 101 10,19/11,16 y 15
31 101 101 10,25/12,17 y 13
32 111 001 11,12/11,20/12,20 y 3
33 011 110 13,21/14,16 y 15
34 101 110 13,26/15,17 y 13
35 111 010 14,15/14,22/15,22 3
36 111 100 16,17/16,23/17,23 y 1
37 010 111 18,19/18,21/19,21 3
38 110 011 18,24/20,22 y 15
39 110 101 19,25/20,23 y 13
40 110 110 21,26/22,23 y 13
41 100 111 24,25/24,26/25,26 1

Stage-3

42 011 111
27,37/28,30/
28,33/30,33

5

43 101 111
27,41/29,31/
29,34/31,34

4

44 111 011
28,29/28,38/
29,38/32,35

y 5

45 111 101
30,31/30,39/
31,39/32,36

y 4

46 111 110
33,34/33,40/
34,40/35,36

y 4

47 110 111
37,41/38,39/
38,40/39,40

4

Stage-4

48 111 111
42,43/42,47/43,47/
44,45/44,46/45,46

y 0

102

8.4. PROBLEM ENCODING INTO GENETIC ALGORITHM DOMAIN

Table 8.5: List of minterms which are potential candidates for optimal (or near optimal)
solution.

Term No Minterm QC

0 001 001 9
1 001 010 9
2 010 001 9
3 010 010 9
4 100 001 7
5 100 010 7
6 101 001 11
7 101 010 11
8 001 111 3
9 111 010 3

10 010 111 3
11 100 111 1
12 011 111 5
13 101 111 4
14 110 111 4

encoded form and their corresponding outputs, where n is the number of input variables of

the function. The output of the algorithm is the list of potential minterms candidates for

optimal solution.

8.4 Problem Encoding into Genetic Algorithm Domain

Table 8.5 shows 15 minterms which are potential candidates for minimization of the

sub-function F1(A,B) in Table 8.2. In our proposed GA the length of the chromosome

is equal to the number of potential minterms of the sub-function to be minimized. For

the case of sub-function F1(A,B) in Table 8.2 the length of the chromosome is 15. The

genes of the chromosome are numbered from 0. The potential minterms are also numbered

from 0 (see Table 8.5). The genes corresponding to the solution of the sub-function are

made 1 and other genes are made 0. Two possible solutions of the sub-function F1(A,B)

in Table 8.2 and their corresponding chromosome are shown in Figure 8.8. In Figure 8.8(a)

103

8.5. PROPOSED HYBRID GENETIC ALGORITHM (HGA)

Algorithm 2 Algorithm for Min-term Generation
1: procedure MIN-TERM GENERATION

2: prevStart=0 // index of the first term of the list
3: prevEnd=3n−1 // index of the last term of the list
4: while (TRUE) do
5: start=prevStart // index of the first term of the current Stage
6: end=prevEnd // index of the last term of the current State
7: currentLoc=end // index of the last generated term
8: for (i=start; i<end; i=i + 1) do // first term at start to (end - 1)
9: for (j=i + 1; j<= end; j=j + 1) do // second term at (i + 1) to end

10: if (term[i] and term[j] varies in one variable) then
11: newTerm=term[i] bit-wise-OR term[j]
12: duplicate=0
13: for (m=end + 1; m<=currentLoc; m=m + 1) do
14: if (newTerm==term[m] then // duplicate term
15: duplicate=1
16: break
17: end if
18: end for
19: if (duplicate==0) then // non-duplicate term. add to list
20: currentLoc=currentLoc + 1 // location of new term
21: term[currentLoc]=newTerm
22: end if
23: end if
24: end for
25: end for
26: if (currentLoc==end) then // no new term generated
27: break
28: else // new term generated. continue for next Stage
29: prevStart=end + 1 // index of first term of last Stage
30: prevEnd=currentLoc // index of last term of last Stage
31: end if
32: end while
33: for (i=0; i<=end; i=i +1) do
34: if (term[i] is less potential) then
35: delete term[i] from list
36: end if
37: end for
38: end procedure

the solution consists of the minterms 001 010, 010 001, and 100 010 with Term No 1, 2,

and 5, respectively. Therefore the genes numbered 1, 2, and 5 are made 1 and the other

genes are made 0. Similarly the chromosome of Figure 8.8(b) is created.

104

8.5. PROPOSED HYBRID GENETIC ALGORITHM (HGA)

Figure 8.8: Chromosome structure of proposed Genetic Algorithm for minimization of
Max-Min expression.

8.5 Proposed Hybrid Genetic Algorithm (HGA)

We have experimented with the generic GA as shown in Algorithm 1 for minimiza-

tion of Max-Min expressions. The GA produces optimal solutions for some benchmark

sub-functions from Appendix A; produces non-optimal solutions for some benchmark sub-

function; and terminates with incorrect solutions for some benchmark sub-functions. The

GA is a probability-based method and in many cases it fails to determine the correct solu-

tion. The experimental results are summarized in Table 8.6. In this table the interpretations

of the column headings are as follows:

• The column Function represents the names of the ternary benchmark sub-functions

from Appendix A.

• The column Variable represents the number of input variables of the sub-function.

• The column Term represents the number of minterms generated by the minterm gen-

eration program.

105

8.5. PROPOSED HYBRID GENETIC ALGORITHM (HGA)

• The column Minterms and the column Quantum Cost under the heading Generic GA

represent the number of minterms and the corresponding quantum cost generated by

the generic GA.

• The column Minterms and the column Quantum Cost under the heading Optimum

Solution from Table 9.1 represent the number of minterms and the corresponding

quantum cost of the optimum solutions generated by the HGA from Table 9.1.

In Table 8.6 the entry× represents that the generic GA terminates with incorrect results for

the corresponding benchmark sub-functions. From Table 8.6 we see the following:

• The generic GA produces optimum solutions for the benchmark sub-functions ha-

Cout1, haS0, haS1, haS2, hsCout1, hsS0, hsS1, hsS2, faS0, faS0, fsS1, and fsS2.

• The generic GA produces non-optimal solutions for the benchmark sub-functions

haCout0 and hsCout0.

• The generic GA terminates with incorrect solutions for the benchmark sub-functions

faCout0, faCout1, faS1, faS2, fsCout0, and fsCout1.

The generic GA does not produce optimal solutions for some benchmark sub-functions

because the generic GA traps at a local optima for these sub-functions. The generic GA also

terminates with incorrect solutions for some sub-functions because the generic GA does not

explore a large enough search space to find correct solutions for these sub-functions.

To overcome the problem we propose a hybrid Genetic Algorithm (HGA) [9] for min-

imization of Max-Min expression. In a HGA a deterministic local optimization technique

is used with the GA [9]. Our proposed HGA for minimization of Max-Min expression is

shown in Algorithm 3.

The proposed HGA is similar to the generic GA as shown in Algorithm 1. However

here the mutation operator is not used. Instead a local optimization is applied on the two

offspring obtained from the crossover operation.

106

8.5. PROPOSED HYBRID GENETIC ALGORITHM (HGA)

Table 8.6: Experimental results of generic GA-based minimization of some ternary
benchmark sub-functions from Appendix A.

Generic GA
Optimum Solution

from Table 9.1

Function Variable Terms Minterms Quantum Cost Minterms Quantum Cost

haCout0 2 25 13 119 3 23
haCout1 2 7 2 16 2 16
haS0 2 3 3 23 3 23
haS1 2 3 3 23 3 23
haS2 2 3 3 23 3 23

hsCout0 2 25 13 113 3 19
hsCout1 2 8 2 18 2 18
hsS0 2 3 3 23 3 23
hsS1 2 3 3 23 3 23
hsS2 2 3 3 23 3 23

faCout0 3 64 × × 5 63
faCout1 3 64 × × 5 57
faS0 3 11 6 82 6 82
faS1 3 11 × × 6 82
faS2 3 11 × × 6 82

fsCout0 3 64 × × 5 71
fsCout1 3 64 × × 5 59
fsS0 3 11 6 82 6 82
fsS1 3 11 6 82 6 82
fsS2 3 11 6 82 6 82

In the fitness determination procedure, we first generate the truth table of the func-

tion represented by the minterms of the chromosome. Then we compare the generated

truth table with the truth table of the given function and determine the number of outputs

matched (denoted by out putMatched). Our goal is to first realize the function by making

out putMatched = 3n, where n is the number of input variables in the given function, and

then reduce the quantum cost of the generated circuit that realizes the function. Keeping

these two goals in mind our targets are: (i) If the chromosome does not realize the given

107

8.5. PROPOSED HYBRID GENETIC ALGORITHM (HGA)

Algorithm 3 Hybrid Genetic Algorithm for Reversible Synthesis of Ternary Logic
Function using Max-Min Algebra

1: procedure HYBRID GA-BASED SYNTHESIS

2: population=initialPopulation(populationSize, chromosomeLength)
3: for (each chromosome in the population) do
4: determineFitness(chromosome)
5: end for
6: maximumFitness=determineMaximumFitness(population)
7: noChangeCount=1
8: while (noChangeCount ≤ maximumNoChangeCount) do
9: parent1=binaryTournamentSelection(population)

10: parent2=binaryTournamentSelection(population)
11: {offspring1, offspring2}=crossover(parent1, parent2, PC)
12: determineFitness(offspring1)
13: determineFitness(offspring2)
14: offspring1=localOptimization(offspring1)
15: offspring2=localOptimization(offspring2)
16: duplicate1=duplicateChecking(population, offspring1)
17: duplicate2=duplicateChecking(population, offspring2)
18: if (duplicate1 = False) then
19: replace(population, offspring1)
20: end if
21: if (duplicate2 = False) then
22: replace(population, offspring2)
23: end if
24: newMaximumFitness=determineMaximumFitness(population)
25: if (newMaximumFitness > maximumFitness) then
26: maximumFitness=newMaximumFitness
27: noChangeCount=1
28: else
29: noChangeCount=noChangeCount+1
30: end if
31: end while
32: end procedure

function, then increase out putMatched and (ii) if the chromosome realizes the given func-

tion, then reduce quantum cost of the circuit. Therefore, the fitness function is defined as

in (8.1), where quantumCost is the quantum cost of the circuit generated by the chromo-

108

8.5. PROPOSED HYBRID GENETIC ALGORITHM (HGA)

some. Our goal is to maximize the fitness.

f itness =


out putMatched

3n if out putMatched < 3n

1+ 1
quantumCost if out putMatched = 3n

(8.1)

In our HGA the generations are terminated when the highest fit solution reaches a satu-

ration condition; that is, the highest fitness value does not change for a predefined number

of consecutive generations. Before beginning to generate solutions we set noChangeCount

to 1 in line 7. If the maximumFitnessValue does not change in any generation, then we

increment noChangeCount by 1 in line 29. If the maximumFitnessValue increases in any

generation, then we reset noChangeCount to 1 in line 27. If noChangeCount reaches the

predefined maximumNoChangeCount value, then we terminate the generations.

In our HGA we use binary tournament selection method as discussed in Section 8.2 for

selecting two parents. For generating two offspring from the two parents we use one-point

crossover as discussed in Section 8.2.

In the local optimization process, we deterministically identify three 1s such that if

they are flipped to 0s, then the fitness of the offspring is increased. Then those three 1s are

flipped, and all possible groups of three 1s are flipped. The motivation behind this technique

is that a cell with a 1 must be covered by a multiple of three plus one groups. It may happen

that a cell with a 1 is covered by four groups causing a higher quantum cost. It may happen

that three groups can be omitted and the solution remains valid. Omission of these three

groups will reduce the quantum cost and increase the fitness value. On the other hand, a

cell with a 0 must be covered by a multiple of three groups. It may happen that a cell with a

0 is covered by three groups. Omission of these three groups does not change the solution.

Thus, omission of these three groups will likely reduce the quantum cost and increase the

fitness value. The algorithm for local optimization is shown in Algorithm 4.

The proposed HGA produces the minimum solution for the sub-function F1(A,B) in

Table 8.2 as shown in Figure 8.9, which requires 15 quantum cost.

109

8.6. CIRCUIT SYNTHESIS FROM OUTPUTS OF HYBRID GENETIC ALGORITHM

Algorithm 4 Local Optimization of Offspring
1: procedure LOCAL OPTIMIZATION OF OFFSPRING

2: fitnessOffspring=determineFitness(offspring) // initial fitness of the offspring
3: for (i=0; i<(chromosomeLength - 2); i=i + 1) do // first index
4: for (j=i + 1; j<(chromosomeLength - 1); j=j + 1) do // second index
5: for (k=j + 1; k<chromosomeLength; k=k + 1) do // third index
6: if (offspring[i]==1 AND offspring[j]==1 AND offspring[k]==1) then
7: //three genes are 1, flip them to 0
8: offspring[i]=0
9: offspring[j]=0

10: offspring[k]=0
11: fitness=determineFitness(offspring) // fitness of new offspring
12: if (fitness>fitnessOffspring) then // fitness of offspring improved
13: fitnessOffspring=fitness // update fitness of offspring
14: else // fitness of offspring not improved, flip the genes to 1 back
15: offspring[i]=1
16: offspring[j]=1
17: offspring[k]=1
18: end if
19: end if
20: end for
21: end for
22: end for
23: end procedure

Figure 8.9: (a) Minimum solution for the sub-function F1(A,B) in Table 8.2 produced by
the HGA and (b) representation of the minterms of the solution on a ternary K-map.

We discuss the performance of the proposed HGA in Chapter 9.

110

8.6. CIRCUIT SYNTHESIS FROM OUTPUTS OF HYBRID GENETIC ALGORITHM

8.6 Ternary Reversible Circuit Synthesis From Outputs of Hybrid Ge-

netic Algorithm

8.6.1 Logic-Level Ternary Circuit Synthesis Using Multiple-Controlled Unary Gates

from Output of the Hybrid Genetic Algorithm

If we combine Tables 4.4, 6.2, and the concept of value changes of a variable in a

ternary K-map, then we get Table 8.7. Table 8.7 shows that the value changes of a variable

are exactly the same as the control values of the multiple-controlled unary gate.

Table 8.7: Mapping of value change of a variable to literal and mapping of literal to
control value of the multiple-controlled unary gate.

Value Change of a Variable x Literal Control Value of Multiple-Controlled Unary Gate

0 x+2 0
1 x+1 1
2 x+0 2

01 x(1+2) 01
02 x(0+2) 02
12 x(0+1) 12

As the value changes of a variable is directly shown in the output of the HGA in encoded

form, the control value of the multiple-controlled unary gate can directly be determined

from the output of the HGA by one-to-one mapping. The output of the HGA for the sub-

function F1(A,B) in Table 8.2 and its reversible realization using multiple-controlled unary

gates is shown in Figure 8.10. The first minterm is 010 010. So the control value for the

variable A is 1 and the control value for the variable B is 1. Therefore, the control values

of the first multiple-controlled unary gate are 1 and 1, respectively. The second minterm

is 111 010. As the variable A varies over 0, 1, and 2, the variable A will be missing in the

minterm. The control value of the variable B is 1. Therefore, the second multiple-controlled

unary gate has only one control value 1 along the input line B. The readers should note that

a single-controlled unary gate is generalized as multiple-controlled unary gate with a single

control. The third minterm is 010 111. The variable B varies over 0, 1, and 2; and the

111

8.6. CIRCUIT SYNTHESIS FROM OUTPUTS OF HYBRID GENETIC ALGORITHM

value of the variable A is 1. Therefore, the third multiple-controlled unary gate has a single

control value 1 along the input line A.

Figure 8.10: The output of the HGA for the sub-function F1(A,B) in Table 8.2 and its
reversible realization using multiple-controlled unary gates.

8.6.2 Post Synthesis Quantum Cost Reduction

Post synthesis quantum cost reduction aims to find adjacent elementary quantum gate

pairs that cancel each other out, or can be combined to a single elementary quantum

gate. This depends on the relative positions of the multiple-controlled unary gates (see

Section 6.5). One example of post synthesis quantum cost reduction is illustrated in Fig-

ure 8.11 for the output generated by the HGA for the ternary benchmark (see Appendix A)

sub-function 3cy20. In Figure 8.11(a) the output of the HGA for the sub-function 3cy20

and its corresponding reversible realization using multiple-controlled unary gates is shown.

Quantum cost of this realization is calculated using formula (5.2) which gives us a value of

66. In the circuit of Figure 8.11(a) the control values of the first and the second multiple-

controlled unary gates along the input line A are 0 and 1, respectively, and they are adjacent.

These two adjacent 0 and 1 controls produce a quantum cost reduction of 1 (see Table 6.3).

The control values of the fourth and the fifth multiple-controlled unary gates along the input

line A are 0 and 0, respectively, and produce a quantum cost reduction of 2. The control

values of the first and the second multiple-controlled unary gates along the input line B are

0 and 1, respectively, and produce a quantum cost reduction of 1. The control values of

the fourth and the sixth multiple-controlled unary gates along the input line B are 0 and 0,

respectively, and produce a quantum cost reduction of 2. The control values of the first and

the second multiple-controlled unary gates along the input line C are 0 and 1, respectively,

112

8.6. CIRCUIT SYNTHESIS FROM OUTPUTS OF HYBRID GENETIC ALGORITHM

and produce a quantum cost reduction of 1. The control values of the fifth and the sixth

multiple-controlled unary gates along the input line C are 0 and 0, respectively, and pro-

duce a quantum cost reduction of 2. Thus, the total post synthesis quantum cost reduction

is 9; and the final quantum cost of the realization is 66−9 = 57.

Figure 8.11: Post synthesis quantum cost reduction for ternary benchmark sub-function
3cy20.

Post synthesis quantum cost reduction depends on relative positions of the multiple-

controlled unary gates. The minimum solution of 3cy20 benchmark sub-function has six

minterms. An exhaustive test of maximum post synthesis quantum cost reduction requires

testing of 6! = 720 permutations of the minterms. For a large sub-function such exhaustive

testing is not practical. Therefore, heuristic methods for reordering of the minterms should

be developed. From Table 6.3 we see that adjacent control values 0, 0 (001, 001); 0, 01 (001,

011); 1,1 (010, 010) produce maximum quantum cost reduction of 2. If we sort the encoded

minterms in ascending order, then these control values will be adjacent and contribute to

more quantum cost reduction. Thus as a heuristic approach we sorted the minterms in

ascending order. In Figure 8.11(b) the sorted minterms for the sub-function 3cy20 and

the corresponding reversible circuit using multiple-controlled unary gates is shown. In this

113

8.6. CIRCUIT SYNTHESIS FROM OUTPUTS OF HYBRID GENETIC ALGORITHM

case the post synthesis quantum cost reduction is 11 and the circuit realization cost becomes

66−11 = 55. Thus we see that the post synthesis quantum cost reduction is improved after

sorting the minterms because sorting of the encoded minterms in ascending order brings

the control pairs 0, 0; 0, 01; and 1,1 to adjacent positions.

114

Chapter 9

Experimental Results

9.1 Introduction

In Section 8.3 we proposed an algorithm for generating minterms which are potential

candidates for minimization of Max-Min expression. In Section 8.5 we proposed a hy-

brid genetic algorithm (HGA) for synthesis of ternary reversible circuits. In this chapter

we show experimental results of ternary sub-function synthesis using the proposed HGA.

In Section 6.3 we discussed architectures for reversible synthesis of a ternary logic func-

tion using any two of its three sub-functions. In Section 6.5 we discussed post synthesis

quantum cost reduction of ternary reversible circuits synthesized using multiple-controlled

unary gates. In Section 8.6 we proposed a heuristic to reorder the minterms in order to

improve post synthesis quantum cost reduction. In this chapter we show experimental re-

sults for synthesis of ternary benchmark logic functions used in [17, 21, 27, 5] as defined in

Appendix A using the proposed architectures of Section 6.3. We also show the experimen-

tal results after the post synthesis quantum cost reduction using the heuristic proposed in

Section 8.6. Finally we compare our ternary reversible circuit synthesis results with those

of [16] and [5].

This chapter is organized as follows:

• In Section 9.2 we show the experimental results of ternary benchmark sub-function

synthesis using Algorithm 2 for minterm generation and Algorithm 3 (HGA) for syn-

thesizing ternary benchmark sub-functions.

• In Section 9.3 we show the experimental results of synthesizing ternary benchmark

115

9.2. RESULTS OF TERNARY BENCHMARK SUB-FUNCTION SYNTHESIS

logic functions from Appendix A using the architectures proposed in Section 6.3

and after post synthesis quantum cost reduction using the heuristics proposed in Sec-

tion 8.6.

• In Section 9.4 we compare our results with those of [16] and [5].

9.2 Results of Ternary Benchmark Sub-Function Synthesis Using Hy-

brid Genetic Algorithm (HGA)

Algorithm 2 (for generating minterms) and Algorithm 3 (the proposed HGA) are imple-

mented using C++. The programs were compiled and run using the Microsoft Visual C++

6.0 compiler. In Algorithm 2 the minterms are stored as an array of strings and manipulated

using C++ string functions. In Algorithm 3 the population is stored as a two-dimensional

array of short integers, where rows represent chromosomes and columns represent genes.

The programs were run on a Personal Computer with Intel core-i7 processor, 2.4 GHz

speed, 6 GB RAM, and Windows 7 Ultimate operating system.

The experimental results are summarized in Tables 9.1, 9.2, and 9.3. In these tables the

interpretations of the column headings are as follows:

• The column Function represents the names of the ternary benchmark sub-functions

from Appendix A.

• The column Var represents the number of input variables of the sub-function.

• The column Terms represents the number of minterms generated by the minterm

generation program.

• The column Term Generation Time (sec) represents the time in sec required by the

minterm generation program.

• The column Minterms or Gates represents the number of minterms selected by the

proposed HGA to represent the sub-function using the minimized Max-Min expres-

116

9.2. RESULTS OF TERNARY BENCHMARK SUB-FUNCTION SYNTHESIS

sion, which is exactly equal to the number of multiple-controlled unary gates to real-

ize the Max-Min expression (see Section 6.2).

• The column QC represents the quantum cost for realizing the resultant Max-Min

expression using multiple-controlled unary gates.

• The column Number of Generations represents the number of generation required by

the proposed HGA to converge to a minimum solution.

• The column HGA Time (sec) represents the time in sec required by the HGA to

converge to the minimum solution.

We have experimented with 24 ternary benchmark logic functions from Appendix A.

We refer to the number of minterms generated by the minterm generation program as

noTerms. In the HGA the length of the chromosome is chromosomeLength = noTerms.

The genetic algorithm (GA) parameters of population size, crossover probability, and max-

imum number of consecutive generations to test for the saturation condition each will in-

fluence the solution quality. Thus development of the GA is somewhat experimental and

in practice these parameters are fine tuned through a number of experiments with different

values of the parameters. Through these experiments a set of values are chosen to produce

good (optimum or near optimum) solutions. After experiments we selected a population

size of 10×noTerms, noChangeCount = 10× populationSize (see Algorithm 3 for termi-

nation condition of the proposed HGA), and crossover probability PC = 1.0.

The HGA did not converge within 9 hours for the sub-functions mul3c0, mul3m0,

prod40, 4cy20, prodMin40, sumMax40, prod50, sqsum51, and prodMin50. The reason

is that the number of minterms are very high (from 158 to 9,862) and the search space is

exponentially large. For example for the sub-function mul3m0 (see Table 9.2) the num-

ber of minterms is 158 and the size of the search space is 2158 = 3.653754093× 1047. In

this case the HGA does not explore a reasonable portion of the search space to find a so-

lution. The HGA converged for sub-functions prod30, prodMin30, sumMax32, sqsum50,

117

9.2. RESULTS OF TERNARY BENCHMARK SUB-FUNCTION SYNTHESIS

Table 9.1: Experimental results of minterm generation and HGA-based synthesis of
ternary reversible logic circuits.

Minterm Generation HGA-Based Synthesis

Function Var Terms
Term

Generation
Time (sec)

Minterms
or

Gates
QC

Number of
Generations

HGA
Time (sec)

haCout0 2 25 0.00 3 23 5,294 0.62
haCout1 2 7 0.00 2 16 1,399 0.00
haS0 2 3 0.00 3 23 599 0.00
haS1 2 3 0.00 3 23 599 0.00
haS2 2 3 0.00 3 23 599 0.00

hsCout0 2 25 0.00 3 19 5,708 0.61
hsCout1 2 8 0.00 2 18 1,606 0.02
hsS0 2 3 0.00 3 23 599 0.00
hsS1 2 3 0.00 3 23 599 0.00
hsS2 2 3 0.00 3 23 599 0.00

faCout0 3 64 0.08 5 63 38,512 42.82
faCout1 3 64 0.08 5 57 32,138 35.23
faS0 3 11 0.08 6 82 2,351 0.06
faS1 3 11 0.09 6 82 2,351 0.05
faS2 3 11 0.08 6 82 2,351 0.06

fsCout0 3 64 0.13 5 71 31,098 42.33
fsCout1 3 64 0.12 5 59 33,548 44.97
fsS0 3 11 0.13 6 82 2,351 0.09
fsS1 3 11 0.12 6 82 2,351 0.09
fsS2 3 11 0.12 6 82 2,351 0.09

prod30 3 158 0.08 3 33 33,771 299.57
prod31 3 4 0.08 4 48 799 0.00
prod32 3 4 0.08 4 48 799 0.00

sum30 3 9 0.08 9 117 1,857 0.11
sum31 3 9 0.08 9 117 1,857 0.11
sum32 3 9 0.08 9 117 1,857 0.11

3cy20 3 33 0.08 6 66 9,336 1.12
3cy21 3 6 0.08 6 78 1,199 0.02
3cy22 3 60 0.08 6 72 16,127 6.68

118

9.2. RESULTS OF TERNARY BENCHMARK SUB-FUNCTION SYNTHESIS

Table 9.2: Experimental results of minterm generation and HGA-based synthesis of
ternary reversible logic circuits (continued).

Minterm Generation HGA-Based Synthesis

Function Var Terms
Term

Generation
Time (sec)

Minterms
or

Gates
QC

Number of
Generations

HGA
Time (sec)

sqsum30 3 39 0.08 3 51 8,051 1.25
sqsum31 3 12 0.08 3 27 2,403 0.05
sqsum32 3 39 0.08 3 57 7,823 1.16

avg30 3 62 0.08 6 88 58,683 56.25
avg31 3 130 0.08 17 227 180,656 2,194.03
avg32 3 1 0.08 1 9 199 0.00

a2bcc0 3 25 0.08 4 56 5,981 0.49
a2bcc1 3 53 0.08 4 56 12,344 4.21
a2bcc2 3 10 0.08 4 60 2,192 0.05

mul3c0 3 264 0.08 - - - -
mul3c1 3 3 0.08 3 33 599 0.00
mul3c2 3 1 0.08 1 9 199 0.00
mul3m0 3 158 0.08 - - - -
mul3m1 3 4 0.08 4 48 799 0.00
mul3m2 3 4 0.08 4 48 799 0.00

prodMin30 3 158 0.10 3 33 33,771 303.85
prodMin31 3 32 0.09 3 45 7,098 1.05
prodMin32 3 1 0.09 1 9 199 0.00

sumMax30 3 1 0.08 1 15 199 0.00
sumMax31 3 32 0.08 3 57 7,788 1.05
sumMax32 3 158 0.08 3 33 35,331 285.80

3cyM20 3 31 0.08 4 42 6,530 0.63
3cym21 3 90 0.08 7 109 34,837 55.12
3cyM22 3 31 0.08 4 24 8,152 0.82

a2bccM0 3 7 0.09 1 9 1,402 0.01
a2bccM1 3 44 0.09 2 22 8,912 1.98
a2bccM2 3 102 0.08 2 12 20,569 33.80

119

9.2. RESULTS OF TERNARY BENCHMARK SUB-FUNCTION SYNTHESIS

Table 9.3: Experimental results of minterm generation and HGA-based synthesis of
ternary reversible logic circuits (continued).

Minterm Generation HGA-Based Synthesis

Function Var Terms
Term

Generation
Time (sec)

Minterms
or

Gates
QC

Number of
Generations

HGA
Time (sec)

prod40 4 1,280 4.40 - - - -
prod41 4 8 4.48 8 136 1,599 0.09
prod42 4 8 4.51 8 136 1,599 0.09

sum40 4 27 4.65 27 495 6,071 34.73
sum41 4 27 4.65 27 495 6,071 34.65
sum42 4 27 4.65 27 495 6,071 34.78

4cy20 4 428 4.78 - - - -
4cy21 4 18 4.54 18 330 3,747 5.13
4cy22 4 18 4.60 18 330 3,747 5.20

sqsum40 4 157 4.56 5 129 35,907 148.73
sqsum41 4 128 4.51 6 120 28,725 73.48
sqsum42 4 78 4.54 6 150 17,304 15.43

prodMin40 4 1,280 4.30 - - - -
prodMin41 4 104 4.47 4 84 27,981 42.21
prodMin42 4 1 4.47 1 13 199 0.00

sumMax40 4 1 4.72 1 21 100 0.00
sumMax41 4 104 4.49 4 108 26,027 40.01
sumMax42 4 1,280 4.32 - - - -

prod50 5 9,862 261.97 - - - -
prod51 5 16 265.51 16 352 6,705 12.12
prod52 5 16 252.10 16 352 6,705 11.81

sqsum50 5 391 290.91 11 357 209,211 15,399.00
sqsum51 5 585 641.76 - - - -
sqsum52 5 452 248.81 12 378 222,157 31,160.10

prodMin50 5 9,862 230.85 - - -
prodMin51 5 312 242.46 5 135 123,722 3,510.83
prodMin52 5 1 253.50 1 17 199 0.00

120

9.3. RESULTS OF TERNARY BENCHMARK CIRCUIT SYNTHESIS

sqsum52, and prodMin51 (see Tables 9.1, 9.2, and 9.3) which also had a high number of

minterms (from 158 to 452). The GA is a probability-based method, and so the nature of

these sub-functions helps the HGA to reach an optimum solution although the search space

is exponentially large.

All solutions for the three and four variable sub-functions generated by the proposed

HGA were manually tested using ternary K-map-based method and found to be the mini-

mum solutions.

9.3 Results of Ternary Benchmark Circuit Synthesis

In Section 6.3 we proposed three architectures for synthesis of ternary logic functions. A

ternary logic function F is realized using two of three sub-functions F0, F1, and F2 chosen

depending on the quantum cost of the sub-functions. Consider the three-variable benchmark

function sqsum3 in Table 9.2. Here QC0 = 51, QC1 = 27, and QC2 = 57. As QC2 =

max(QC0,QC1,QC2), the ancilla input constant is selected to be 2 and the sub-functions

sqsum30 and sqsum31 are realized using multiple-controlled unary gates (see architecture

of Figure 6.3(c)). The quantum cost of this realization is 51+ 27 = 78. In Section 8.6

we proposed a heuristic of rearranging the minterms for better post synthesis quantum cost

reduction. After post synthesis quantum cost reduction the quantum cost for reversible

realization of sqsum3 function becomes 69. This realization requires multiple-controlled

unary gates with three control lines. So the multiple-controlled unary gates require two

ancilla inputs (see Section 5.4). Output realization requires one ancilla input. Thus three

ancilla inputs are required.

Consider the benchmark function prod3 in Table 9.1. Here QC0 = 33, QC1 = 48, and

QC2 = 48. As QC1 = QC2 = max(QC0,QC1,QC2), either of the architectures of Fig-

ure 6.3(b) or (c) can be used. Consider the benchmark function sum3 in Table 9.1. Here

QC0 = QC1 = QC2 = 117. So any of the three architectures of Figure 6.3 can be used.

Consider the benchmark function prod4 in Table 9.3. Here sub-function prod40 could

121

9.4. COMPARISON OF CIRCUIT SYNTHESIS RESULTS WITH PREVIOUS WORK

not be solved using the proposed HGA. However as sub-functions prod41 and prod42 could

be solved, prod4 can be synthesized using the architecture of Figure 6.3(a), where the

ancilla input constant is 0 and sub-functions prod41 and prod42 are synthesized. Other

benchmark functions, where one of the three sub-functions could not be solved, can be

synthesized similarly.

Reversible circuit synthesis results of 24 benchmark functions of Tables 9.1, 9.2, and 9.3

are summarized in Table 9.4. The table headings are interpreted as follows:

• The column Function represents the name of the benchmark function.

• The column Input represents the number of input variables of the benchmark func-

tion.

• The column Output represents the number of outputs of the benchmark function.

• The column Gates represents the number of multiple-controlled unary gates required

to synthesize the benchmark function.

• The column Initial QC represents the quantum cost of initial synthesis.

• The column Reduced QC represents the quantum cost after post synthesis quantum

cost reduction.

• The column Ancilla Inputs represents the number of ancilla inputs required to syn-

thesize the benchmark functions.

9.4 Comparison of Circuit Synthesis Results With Previous Work

The TGFSOP-based synthesis method of reversible ternary logic circuits is claimed to

be the most pragmatic method [16]. In [16] only four ternary benchmark function synthesis

results were given. We have compared our synthesis results with those of [16] in Table 9.5.

The table headings are interpreted as follows:

122

9.4. COMPARISON OF CIRCUIT SYNTHESIS RESULTS WITH PREVIOUS WORK

Table 9.4: Ternary reversible circuit realization results.

Function Input Output Gates Initial QC Reduced QC Ancilla Inputs

ha 2 2 8 62 54 3
hs 2 2 8 64 59 3
fa 3 2 17 221 184 4
fs 3 2 17 223 181 4

prod3 3 1 7 81 75 3
sum3 3 1 18 234 205 3
3cy2 3 1 12 138 121 3

sqsum3 3 1 6 78 69 3
avg3 3 1 7 97 81 3
a2bcc 3 1 8 112 100 3
mul3 3 2 12 138 136 4

prodMin3 3 1 4 42 40 3
sumMax3 3 1 4 48 43 3

3cyM2 3 1 8 66 66 3
a2bccM 3 1 3 21 19 2
prod4 4 1 16 272 248 4
sum4 4 1 54 990 830 4
4cy2 4 1 36 660 557 4

sqsum4 4 1 11 249 230 4
prodMin4 4 1 5 97 93 4
sumMax4 4 1 5 129 107 4

prod5 5 1 32 704 626 5
sqsum5 5 1 23 735 662 5

prodMin5 5 1 6 152 148 5

• The column Function represents the benchmark function name.

• The column In represents the number of inputs of the benchmark function.

• The column Out represents the number of outputs of the benchmark function.

• The columns QC and Ancilla under TGFSOP-based Method [16] represent the quan-

tum cost (QC) and the number of ancilla inputs (Ancilla) required in TGFSOP-based

method.

123

9.4. COMPARISON OF CIRCUIT SYNTHESIS RESULTS WITH PREVIOUS WORK

• The columns QC and Ancilla under Max-Min Expression-based Method represent

the quantum cost (QC) and the number of ancilla inputs (Ancilla) required in our

Max-Min expression-based method.

• The columns QC and Ancilla under % Reduction over TGFSOP-based Method rep-

resent the % reduction of the quantum cost (QC) and the number of ancilla inputs

(Ancilla) in our method over the TGFSOP-based method. The % Reduction is calcu-

lated using the formula of (9.1).

% Reduction =
PreviousValue−OurValue

PreviousValue
×100 (9.1)

Table 9.5: Comparison of our Max-Min expression-based synthesis results with those of
TGFSOP-based method [16].

TGFSOP-based
Method [16]

Max-Min
Expression-based

Method

% Reduction over
TGFSOP-based

Method

Function In Out QC Ancilla QC Ancilla QC Ancilla

ha 2 2 44 4 54 3 -22.73 25.00
fa 3 2 636 7 184 4 71.07 42.86
hs 2 2 119 4 59 3 50.42 25.00
fs 3 2 543 8 181 4 66.67 50.00

From Table 9.5 we see that a significant reduction of quantum cost and number of ancilla

inputs are achieved in our proposed method over the TGFSOP-based method, except the

quantum cost for the ha benchmark function, which requires 22.73% more quantum cost

than the TGFSOP-based method. In the TGFSOP-based method the sum output of the ha

benchmark function is represented as s = a⊕b, which allows to implement the sum output

using only one ternary Feynman gate resulting in a lower quantum cost of the circuit.

A ternary Max-Min expression-based method of synthesizing reversible ternary circuits

was reported in [5]. In [5] Max-Min expressions are formed using 1-reduced Post-literals

and the Max-Min expressions are realized using generalized ternary gates (GTGs) (see

124

9.4. COMPARISON OF CIRCUIT SYNTHESIS RESULTS WITH PREVIOUS WORK

Section 2.8 for description of GTGs). In contrast we form our Max-Min expressions using

reversible literals and non-reversible literals and the Max-Min expressions are then realized

using multiple-controlled unary gates. In [5] experimental results of 33 ternary benchmark

functions were reported in terms of number of GTGs and constant inputs (ancilla inputs).

Quantum costs of the realizations are not reported, so we cannot compare our quantum

costs with those of [5]. We compare our number of ancilla inputs with those of [5] for 14

common benchmark functions in Table 9.6. From Table 9.6 we see that our method saves a

large number of ancilla inputs over [5].

Table 9.6: Comparison of number of ancilla inputs required in our method with those
of [5].

Function Input Output Method in [5] Our Method % Reduction over [5]

prod3 3 1 11 3 72.73
sum3 3 1 37 3 91.89
3cy2 3 1 21 3 85.71

sqsum3 3 1 15 3 80.00
avg3 3 1 15 3 80.00
a2bcc 3 1 14 3 78.57

prodMin3 3 1 5 3 40.00
sumMax3 3 1 9 3 66.67

3cyM2 3 1 11 3 72.73
a2bccM 3 1 13 2 84.62
prod4 4 1 28 4 85.71

sqsum4 4 1 30 4 86.67
prodMin4 4 1 7 4 42.86
sumMax4 4 1 15 4 73.33

125

Chapter 10

Conclusion and Future Work

10.1 Conclusion

A number of papers have been published on generalized synthesis of ternary reversible

logic circuits. Among the reported works, ternary Galois field sum of products (TGF-

SOP) expression-based design of ternary reversible logic circuits is claimed to be the most

practical method for functions with many input variables [16]. However, this method re-

quires exponential time to generate TGFSOP expressions and the realization of TGFSOP

expressions requires a high quantum cost and large number of ancilla inputs [16]. Ternary

Max-Min algebra with 1-reduced Post literals is used to synthesize ternary reversible cir-

cuits using generalized ternary gates (GTGs) in [5]. This approach requires a large number

of GTGs and the number of ancilla inputs required is very high. Unfortunately the quantum

costs of circuit realizations are not reported in [5], and so we cannot compare our results to

their work.

To address these problems we propose an alternative ternary Max-Min algebra-based

method of synthesizing ternary reversible circuits. We propose a method of representing

ternary logic functions using ternary Max-Min algebra, which uses ternary reversible lit-

erals and composite literals to represent minimized Max-Min expressions for ternary logic

functions. For a ternary logic function F we generate three minimized Max-Min expres-

sions for three sub-functions F0, F1, and F2 producing outputs 0, 1, and 2, respectively.

The difference between the ternary Max-Min algebra-based method of [5] and our pro-

posed ternary Max-Min algebra-based method is that in [5] 1-reduced post literals are used

126

10.2. FUTURE WORK

to form ternary Max-Min expressions while in our method we use reversible and composite

literals to form ternary Max-Min expressions.

For reversible realizations of Max-Min expressions we propose macro-level multiple-

controlled unary gates, which are realized using elementary quantum gates such as unary

and M-S gates.

We propose three architectures for realizing ternary reversible circuits using any two

sub-functions; either sub-functions F0 and F1, or F0 and F2, or F1 and F2 are realized as

cascades of multiple-controlled unary gates and the other output constant is used as ancilla

input for realizing the two selected sub-functions.

We propose a ternary K-map-based method for minimization of Max-Min expressions

for ternary logic functions with up to four variables.

Finally, we propose a hybrid genetic algorithm-based method for synthesis of ternary

reversible circuits. Our process was tested with 24 ternary benchmark function with up to

five variables. On average our method requires 41.36% less quantum cost and 35.72% less

ancilla inputs than those of TGFSOP expression-based method of [16] for four benchmark

functions common in experimental results of both the methods. Our method also requires

on average 74.39% less ancilla inputs than that of [5] for 14 benchmark functions common

in experimental results of both the methods.

10.2 Future Work

Although our proposed method of reversible ternary logic circuit synthesis using ternary

Max-Min algebra outperformed the two previous approaches [16, 5], still there is room for

improvement.

In Section 6.3, to reduce the quantum cost of the synthesized circuit, we proposed three

architectures. In the proposed architectures, two of the three sub-functions F0, F1, and F2

of a function F are realized and the output corresponding to the other sub-function is used

as the ancilla input. Discussions on correctness of the architectures are presented. However,

127

10.2. FUTURE WORK

an end-to-end verification process would be a useful future addition.

In Section 7.4 we identified three observations for grouping cells on a ternary K-map to

directly determine the minimum solution. These observations are implemented as heuristics

to simplify the K-map-based minimization of Max-Min expressions. More experimentation

or mathematical proofs to establish the effectiveness of these observations would be a future

addition.

The search space of minterms that could form a good (optimal or near optimal) solution

is very large, thus in Chapter 8, we used a hybrid Genetic Algorithm (HGA), which is a

meta-heuristic algorithm, to minimize the Max-Min expressions. However, other heuristic

algorithms such as 0-1 programming can also be investigated.

The algorithm for minterm generation in Section 8.3 is not optimized. There is scope to

improve this algorithm.

In the proposed HGA-based minimization of Max-Min expressions, to reduce the search

space, we identified some minterms to have lower potential for generating a good (optimal

or near optimal) solution and excluded them from the solution generation process. More

rigorous study is needed to further reduce the search space of the HGA and then ternary

logic functions with more inputs can be solved.

In Section 8.5, we propose an algorithm for local optimization. The algorithm is not

optimized and there is a room to redefine this algorithm in a more efficient way. In addition,

further attempt can be made to develop more effective local optimization processes.

Post synthesis quantum cost reduction is very important for reducing the circuit re-

alization complexity in terms of quantum costs. The ordering of the minterms selected

by the HGA is very important for post synthesis quantum cost reduction. If the number

of minterms in the minimum solution is N, then an exhaustive search requires testing N!

permutations of the minterms, which is not practical for large functions. In Section 8.6 we

proposed a preliminary heuristic by sorting the encoded minterms in ascending order, which

produced a significant post synthesis quantum cost reduction over unsorted minterms (see

128

10.2. FUTURE WORK

Table 9.4). Still there is a huge scope for developing other heuristics for minterm ordering

for additional post synthesis quantum cost reduction.

Comparison between complexities of binary reversible designs and equivalent ternary-

encoded reversible designs does not yet exist in the literature, and will be an important

aspect of future research.

Finally, the proposed concepts can be extended for reversible circuit synthesis of logic

functions with higher radix such as quaternary logic functions (radix four) and quinary logic

functions (radix five).

129

Bibliography

[1] W. C. Athas, L. Svensson, J. G. Koller, N. Tzartzanis, and E. Y. Chou. Low-power dig-
ital systems based on adiabatic-switching principles. IEEE Trans. VLSIS, 2(4):398–
407, 1994.

[2] C. Bennett. Logical reversibility of computations. IBM J. Res. Develop., 17(6):525–
532, 1973.

[3] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Physical
Review Letters, 74:4091, 1995.

[4] E. P. DeBenedictis. The Boolean logic tax. Computer, 49(4):79–82, 2016.

[5] N. Denler, B. Yen, M. Perkowski, and P. Kerntopf. Synthesis of reversible circuits
from a subset of Muthukrishnan-Stroud quantum multivalued gates. In Proc. Interna-
tional Workshop on Logic Synthesis (IWLS 2004), Tamecula, California, June 2004.

[6] A. DeVos and Y. V. Rentergem. Power consumption in reversible logic addressed by
a ramp voltage. In Proc. 15th Int. Workshop Power Timing Model., Optim. Simul.,
LNCS 3728, pages 207–216, 2005.

[7] A. P. Dhande, V. T. Ingole, and V. R. Ghiye. Ternary Digital System: Concepts and
Applications. SM Medical Technologies Private Limited, 2014.

[8] J. Dixon and B. Mortimer. Permutation Groups, volume 163. Springer Verlag, 1996.

[9] T. A. El-Mihoub, A. A. Hopgood, L. Nolle, and A. Battersby. Hybrid genetic algo-
rithms: A review. Engineering Letters, 13(2), 2006.

[10] V. R. Ghiye, A. P. Dhande, and S. H. Bonde. Ternary function minimization by map
method. International Journal of Computer Science and Electronics Engineering
(IJCSEE), 1(5):614–620, 2013.

[11] K. H. Han and J. H. Kim. Quantum-inspired evolutionary algorithm for a class of
combinatorial optimization. IEEE Trans. Evolutionary Computation, 6(6):580–593,
2002.

[12] A. I. Khan, N. Nusrat, S. M. Khan, M. Hasan, and M. H. A. Khan. Quantum realiza-
tion of some ternary circuits using Muthukrishnan-Stroud gates. In Proc. 37th IEEE
International Symposium on Multiple-Valued Logic (ISMVL 2007), page 20, Oslo,
Norway, 14-16 May 2007.

130

BIBLIOGRAPHY

[13] M. Khan and J. E. Rice. Synthesis of reversible logic functions using ternary Max-Min
algebra. In Proc. IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1674–1677, Montreal, Canada, May 2016.

[14] M. Khan and J. E. Rice. Ternary Max-Min algebra for representation of reversible
logic functions. In Proc. IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1670–1673, Montreal, Canada, May 2016.

[15] M. H. A. Khan. Quantum realization of multiple-valued Feynman and Toffoli gates
without ancilla input. In Proc. 39th IEEE International Symposium on Multiple-
Valued Logic (ISMVL 2009), pages 103–108, Naha, Okinawa, Japan, 21-23 May 2009.

[16] M. H. A. Khan. GFSOP-based ternary quantum logic synthesis. In Proc. Optics and
Photonics for Information Processing IV (SPIE Conference 7797), San Diego, CA,
USA, August 2010.

[17] M. H. A. Khan and M. A. Perkowski. Genetic algorithm based synthesis of multi-
output ternary functions using quantum cascade of generalized ternary gates. In Proc.
2004 IEEE Congress of Evolutionary Computing (CEC), pages 2194–2201, Portland,
Oregon, USA, June 2004.

[18] M. H. A. Khan and M. A. Perkowski. GF(4) based synthesis of quaternary re-
versible/quantum logic circuits. Journal of Multiple-Valued Logic and Soft Comput-
ing, 13:583–603, 2007.

[19] M. H. A. Khan and M. A. Perkowski. Quantum ternary parallel adder/subtractor with
partially-look-ahead carry. Journal of Systems Architecture, 53(7):453–464, 2007.

[20] M. H. A. Khan, M. A. Perkowski, and P. Kerntopf. Multi-output Galois field sum
of products synthesis with new quantum cascades. In Proc. 33rd IEEE International
Symposium on Multiple-Valued Logic (ISMVL 2003), pages 146–153, Tokyo, Japan,
16-19 May 2003.

[21] M. H. A. Khan, M. A. Perkowski, and M. R. Khan. Ternary Galois field expansions for
reversible logic and Kronecker decision diagrams for ternary GFSOP minimization. In
Proc. 34th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2004),
pages 58–67, Toronto, Canada, 19-22 May 2004.

[22] M. H. A. Khan, M. A. Perkowski, M. R. Khan, and P. Kerntopf. Ternary GFSOP
minimization using Kronecker decision diagrams and their synthesis with quantum
cascades. Journal of Multiple-Valued Logic and Soft Computing, 11(5-6):567–602,
2005.

[23] R. Landauer. Irreversibility and heat generation in the computation process. IBM J.
Res. Develop., 44:183–191, 2000.

[24] X. Li, G. Yang, and D. Zheng. Logic synthesis of ternary quantum circuits with
minimal qutrits. Journal of Computers, 8(8):1941–1946, 2013.

131

BIBLIOGRAPHY

[25] S. B. Mandal, A. Chakrabarti, and S. Sur-Kolay. Synthesis techniques for ternary
quantum logic. In 41st IEEE International Symposium on Multiple-Valued Logic (IS-
MVL), pages 218–223, 2011.

[26] M. Morris Mano and Michael D. Ciletti. Digital Design With an Introduction to the
Verilog HDL. Pearson, 5th edition, 2013.

[27] http://web.cecs.pdx.edu/˜mperkows/.

[28] D. Maslov and G. W. Dueck. Reversible cascades with minimal garbage. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 23(11):1497–
1509, Nov. 2004.

[29] P. Mazumder and E. M. Rudnick. Genetic Algorithms for VLSI Design, Layout & Test
Automation. Pearson Education Asia, 2002.

[30] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer, 3rd edition, 1996.

[31] D. M. Miller, G. W. Dueck, and D. Maslov. A synthesis method for MVL reversible
logic. In Proc. 34th IEEE International Symposium on Multiple-Valued Logic (ISMVL
2004), pages 74–80, Toronto, Canada, 19-22 May 2004.

[32] D. M. Miller, D. Maslov, and G. W. Dueck. Synthesis of quantum multiple-valued
circuits. Journal of Multiple-Valued Logic and Soft Computing, 12(5-6):431–450,
2006.

[33] A. Muthukrishnan and C. R. Stroud. Multivalued logic gates for quantum computa-
tion. Physical Review A, 62(5):052309/1–8, 2000.

[34] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[35] M. Perkowski, A. Al-Rabadi, and P. Kerntopf. Multiple valued quantum logic syn-
thesis. In Proc. 2002 International Symposium on New Paradigm VLSI Computing,
pages 41–47, Sendai, Japan, December 2002.

[36] T. Sasao. Logic Synthesis and Optimization, chapter AND-EXOR Expressions and
Their Optimization, pages 287–312. Kluwer Academic Publishers, 1993.

[37] T. Sasao. Logic Synthesis and Optimization, chapter Logic Synthesis with EXOR
Gates, pages 259–286. Kluwer Academic Publishers, 1993.

[38] R. J. Spillman and S. Y. H. Su. Detection of single, stuck-type failures in multivalued
combinational networks. IEEE Transactions on Computers, C-16(12):1242–1251,
1977.

[39] M. Yoeli and G. Rosenfeld. Logical design of ternary switching circuits. IEEE Trans-
actions on Electronic Computers, EC-14(1):19–29, 1965.

132

Appendix A

Ternary Benchmark Functions

The following ternary benchmark functions are defined in [17, 21, 27]:
prodn: Input x0,x1, · · · ,xn−1; output y = (x0x1 · · ·xn−1) mod 3. [Output is the GF3 product
of n input variables.]
sumn: Input x0,x1, · · · ,xn−1; output y = (x0 + x1 + · · ·+ xn−1) mod 3. [Output is the GF3
sum of n input variables.]
ncyr: Input x0,x1, · · · ,xn−1; output y = [∑n−1

i=0 +(∏r−1
j=0 x(i+ j)mod n)] mod 3. [A TGFSOP

function of n input variables, where the product terms consist of r input variables in cyclic
order. Example: 3cy2 is y(a,b,c) = (ab+bc+ ca) mod 3.]
sqsumn: Input x0,x1, · · · ,xn−1; output y = (x2

0+x2
1+ · · ·+x2

n−1) mod 3. [Output is the GF3
sum of squares of n input variables.]
avgn: Input x0,x1, · · · ,xn−1; output y = int[(x0 + x1 + · · ·+ xn−1)/n] mod 3. [Output is the
integer part of the average of n input variables expressed as mod 3 value.]
a2bcc: Input a,b,c; output y = (a2 + bc+ c) mod 3. [An arbitrary function a2 + bc+ c
expressed as mod 3 value.]
thadd: Input a,b; output co = int[(a+b)/3], s = (a+b) mod 3. [Ternary half-adder.]
tfadd: Input a,b,c; output co = int[(a+ b+ c)/3], s = (a+ b+ c) mod 3. [Ternary full-
adder.]
mul2: Input a,b; output co = int(ab/3), m = ab mod 3. [2-input ternary multiplier.]
mul3: Input a,b,c; output co = int(abc/3), m = abc mod 3. [3-input ternary multiplier.]
mami4: Input a,b,c,d; output y = max(a,b), z = min(c,d). [4-input arbitrary function,
where the output y is maximum of the first two inputs and the output z is the minimum of
the last two inputs.]
tsg: Input a,b; output b,a. [Ternary swap gate.]

In [5] the benchmark functions prodn, sumn, ncyr, sqsumn, avgn, and a2bcc are re-
named as prodGn, sumGn, ncyGr, sqsumGn, avgGn, and a2bccG, respectively, to indicate
that the associated operations are GF3 operations. Max-Min equivalent of these benchmark
functions are defined in [5] as follows:
prodMinn: Input x0,x1, · · · ,xn−1; output y = (x0x1 · · ·xn−1). [Output is the minimum of n
input variables.]
sumMaxn: Input x0,x1, · · · ,xn−1; output y = (x0 + x1 + · · ·+ xn−1). [Output is the maxi-
mum of n input variables, where + is the Max operation.]
ncyMr: Input x0,x1, · · · ,xn−1; output y = [∑n−1

i=0 +(∏r−1
j=0 x(i+ j)mod n)]. [A Max-Min func-

tion of n input variables, where the minterms consist of r input variables in cyclic order.

133

A. TERNARY BENCHMARK FUNCTIONS

Example: 3cyM2 is y(a,b,c) = (ab+bc+ ca), where the product is the Min operation and
the + is the Max operation.]
sqsumMn: Input x0,x1, · · · ,xn−1; output y = (x2

0 + x2
1 + · · ·+ x2

n−1). [Output is the Max
of squares of n input variables. sqsumMn is equivalent to sumMaxn, since x2 = x · x =
min(x,x) = x.]
a2bccM: Input a,b,c; output y= (a2+bc+c). [An arbitrary function a2+bc+c expressed
as Max-Min expression.]

134

