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The characterization of functional network structures among multiple neurons is essential
to understanding neural information processing. Information geometry (IG), a theory
developed for investigating a space of probability distributions has recently been applied
to spike-train analysis and has provided robust estimations of neural interactions. Although
neural firing in the equilibrium state is often assumed in these studies, in reality, neural
activity is non-stationary. The brain exhibits various oscillations depending on cognitive
demands or when an animal is asleep. Therefore, the investigation of the IG measures
during oscillatory network states is important for testing how the IG method can be
applied to real neural data. Using model networks of binary neurons or more realistic
spiking neurons, we studied how the single- and pairwise-IG measures were influenced
by oscillatory neural activity. Two general oscillatory mechanisms, externally driven
oscillations and internally induced oscillations, were considered. In both mechanisms, we
found that the single-IG measure was linearly related to the magnitude of the external
input, and that the pairwise-IG measure was linearly related to the sum of connection
strengths between two neurons. We also observed that the pairwise-IG measure was not
dependent on the oscillation frequency. These results are consistent with the previous
findings that were obtained under the equilibrium conditions. Therefore, we demonstrate
that the IG method provides useful insights into neural interactions under the oscillatory
condition that can often be observed in the real brain.
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INTRODUCTION
The dynamics of neural interactions have been conjectured to
play an important role in neural information processing. One way
to investigate the neural interactions is to record multi-neuronal
firing activity from a freely behaving animal, and analyze the cor-
relations between individual units. In past decades, electrophys-
iological studies have significantly been advanced by the use of
multi-electrode recording techniques (Wilson and McNaughton,
1993; Chapin et al., 1999; Kudrimoti et al., 1999; Laubach et al.,
2000; Hoffman and McNaughton, 2002; Buzsaki, 2004; Tatsuno
et al., 2006; Euston et al., 2007; Davidson et al., 2009; Peyrache
et al., 2009b; Dragoi and Tonegawa, 2011, 2013). In order to ana-
lyze such high-dimensional multi-neuronal datasets, a number of
statistical methods have also been developed (Gerstein and Perkel,
1969; Abeles and Gerstein, 1988; Aertsen et al., 1989; Zhang et al.,
1998; Panzeri and Schultz, 2001; Grun et al., 2002a,b; Brown et al.,
2004; Fellous et al., 2004; Czanner et al., 2005; Shimazaki and
Shinomoto, 2007; Amari, 2009; Gilestro et al., 2009; Peyrache
et al., 2009a; Shimokawa and Shinomoto, 2009; Lopes-Dos-
Santos et al., 2011). Recently, a method based on information
geometry (IG) has been applied to the analysis of neural data
(Amari and Nagaoka, 2000; Amari, 2001; Nakahara and Amari,
2002; Amari et al., 2003; Tatsuno and Okada, 2004; Eleuteri et al.,
2005; Ikeda, 2005; Miura et al., 2006; Nakahara et al., 2006;

Gilestro et al., 2009; Tatsuno et al., 2009; Ince et al., 2010; Lovette
et al., 2011; Nie and Tatsuno, 2012). It has been demonstrated
that IG provides a powerful statistical tool for analyzing spiking
data. Some of the advantages of IG approach include the orthogo-
nal decomposition of neural interactions (Amari, 2001; Nakahara
and Amari, 2002), and its direct relationship to underlying con-
nections (Tatsuno and Okada, 2004; Tatsuno et al., 2009; Nie and
Tatsuno, 2012); the single-IG measure is related to the amount
of external inputs and the pairwise-IG measure is related to the
amount of direct neural interactions between two neurons.

These IG properties were often investigated under the assump-
tion that the network is in an equilibrium state. However, in the
brain, the equilibrium assumption does not hold true. Instead,
the brain undergoes a variety of non-equilibrium states such
as oscillations. For example, the slow-wave oscillation (∼1 Hz)
was discovered during non-REM sleep (Steriade et al., 1993;
Crunelli and Hughes, 2010), and evidence suggests that it plays
an important role in memory consolidation (Huber et al., 2004;
Stickgold, 2005; Diekelmann and Born, 2010). The theta (6–
10 Hz) rhythm is a prominent coherent oscillation observed
in the hippocampus, and its surrounding area during rat spa-
tial navigation (Vanderwolf, 1969; Bland, 1986; Buzsaki, 2002).
The theta rhythm has also been observed in various human
neocortical areas during the delay period of working memory
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tasks (Raghavachari et al., 2001; Meltzer et al., 2008). The beta
(15–30 Hz) oscillation is conjectured to play a key role in action
preparation and inhibitory control in the motor system (Baker
et al., 1997). The gamma (30–80 Hz) oscillation has been shown
to play a role in the integration of sensory information (Gray
et al., 1989; Singer and Gray, 1995). The fast hippocampal sharp
wave ripples (100–200 Hz) were also reported during an animal’s
awake immobility and slow-wave sleep (Buzsaki et al., 1992).
Therefore, it is important to investigate if the IG measures can
be applied to neural data under oscillatory conditions.

In this study, we investigated how the single- and pairwise-
IG measures are influenced by a network oscillation. Under an
equilibrium assumption, previous studies have shown that the
single- and pairwise-IG measures provide a robust estimation of
the magnitude of external input and direct neural interactions
(Tatsuno et al., 2009; Nie and Tatsuno, 2012). We also focused on
these IG measures in this study because the external inputs and
intrinsic neural interactions are the two main factors for char-
acterizing network dynamics. For the oscillation mechanisms, we
have considered two representative cases; one is an external driven
oscillation where a network is influenced by external oscillatory
inputs. The other is an internally induced oscillation where inter-
actions between excitatory and inhibitory neuron populations
produce an oscillation. By computer simulations using simple
binary model neurons or more biologically plausible spiking neu-
rons, we investigated whether the properties of the IG measures
that were established with the equilibrium condition still hold
true under oscillatory network states.

In section Methods, we briefly introduce an information-
geometric analysis of neural spikes. In section Results, we
describe the model and network structure used in the numeri-
cal simulation. In section Discussion, the simulation results for
both externally driven and internally induced oscillations are
described in detail. In section Acknowledgments, we summarize
our findings and discuss future directions of research on this
topic.

METHODS
INFORMATION-GEOMETRIC METHOD
We briefly introduce the information-geometric method for spik-
ing data analysis (for details see Amari and Nagaoka, 2000).
Generally, in an N-neuron system, the state of i-th(i = 1, . . . , N)

neuron is represented by a binary random variable xi, where
xi = 1 or 0 representing neuronal firing or silence, respectively.
The joint probability distribution of the N-neuron system can be
described by a fully expanded N-th order log-linear model (LLM)

log px1x2···xN =
∑

i

θ
(N, N)
i xi +

∑
i<j

θ
(N, N)
ij xixj + · · ·

+ θ
(N, N)
12,···N x1x2 · · · xN −ψ(θ)(N, N), (1)

where θ
(N, N)
ij,···m (1 ≤ m ≤ N) represents the m-neuron interaction

and ψ(θ)(N, N) with θ =
{
θ
(N, N)
i , θ

(N, N)
ij , . . . , θ

(N, N)
12,···N

}
is a nor-

malization constant such that
∑

px1x2 · · · xN = 1. The first and

the second superscripts in θ
(N, N)
ij,···m represent the order of the LLM

and the number of neurons in the system. We use θ
(N, N)
i , θ(N, N)

ij ,

and θ
(N, N)
ij,···m to describe the single-IG measure, the pairwise-IG

measure and the m-neuron IG measure with the N-th order LLM
for a N-neuron system, respectively, (Nie and Tatsuno, 2012). The
joint probability of N neurons is calculated by

px1x2,...,xN =
cx1x2,...,xN∑

x1x2,...,xN
cx1x2,...,xN

, (2)

where cx1x2,...,xN is the count of events (X1 = x1, X2 =
x2, . . . , XN = xN) that occur.

However, in reality, it is difficult to calculate the statistical
information from all neurons in a large network. Therefore, the
partially expanded LLM is often used for the estimation of neu-
ronal interactions. The partially expanded k-th order LLM in an
N-neuron network is given by

log px1x2···xk, ∗ ··· ∗ =
∑

i

θ
(k, N)
i xi +

∑
i<j

θ
(k, N)
ij xixj + · · ·

+ θ
(k, N)
12,···kx1x2 · · · xk −ψ(θ)(k, N) (3)

where θ =
{
θ
(k, N)
i , θ

(k, N)
ij , . . . , θ

(k, N)
12,··· k

}
. The first few terms of θ

and normalization factor are given as follows:

θ
(k, N)
i = log

px1 = 0, ··· , xi = 1, ··· , xk = 0,∗···∗
px1 = 0,··· ,xk = 0,∗ ··· ∗

,

θ
(k, N)
ij = log

px1 = 0,..., xi = 1,..., xj = 1,··· ,xk = 0,∗ ··· ∗
px1 = 0,··· , xk = 0,∗···∗

px1 = 0,..., xi = 1,..., xj = 0,..., xk = 0, ∗ ··· ∗
px1 = 0,..., xi = 0,..., xj = 1,..., xk = 0, ∗···∗·········

(4)

ψ(k, N) = − log px1 = 0,..., xk = 0, ∗ ··· ∗,

where ‘ ∗ · · · ∗′, represents the marginalization over the (N − k)
neurons.

The single-IG measure θ
(k, N)
i and the pairwise-IG measure

θ
(k, N)
ij are the two main focuses in this study because θ

(k, N)
i is

related to the amount of external inputs and θ
(k, N)
ij is related

to the amount of direct neural interactions between two neu-
rons (Tatsuno and Okada, 2004; Tatsuno et al., 2009; Nie and
Tatsuno, 2012). Using a network of simple binary neurons, and
the assumption of an equilibrium state, the previous study has

shown that the single-IG measure θ
(2, N)
i and the pairwise-IG

measure θ
(2, N)
ij with the 2nd-order LLM are related to the net-

work parameters as

θ
(2, N)
i ∝ 2hi + O

(
1

N

)
, θ

(2, N)
ij ∝ (Jij + Jji)+ O

(
1

N

)
, (5)

where hi represents the magnitude of constant external input to
a neuron i, and Jij (Jji) is the connection weight from a neuron j
to i (from a neuron i to j), respectively, (Tatsuno et al., 2009). If a

network receives correlated inputs, the relationship for θ
(2, N)
ij in
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Equation 5 does not hold true anymore. However, we have also

shown that θ
(k, N)
ij with the higher k-th order LLM provides a bet-

ter estimation of neural interactions (Nie and Tatsuno, 2012). For
example, θ(4, N)

ij was shown to have the relationship

θ
(4, N)
ij ∝ (

Jij + Jji
)
, (6)

within approximately a 10% error if the number of neurons N
is ∼ 103 or larger; a typical size of network in a cortical column
(Urban et al., 2001). We have also confirmed that the relation-
ship θ

(4, N)
i α2hi holds true within approximately a 10% error

(unpublished data).
These properties could be useful for the field of neuroscience

because the IG measures can estimate the changes of underlying
network parameters (hi and Jij) separately, while other correla-
tion measures have not yet been shown to have such a property
(Amari, 2009). However, these results were derived under the
equilibrium limit, and little is known if the similar relationship
holds under the oscillatory condition.

NEURON MODEL AND NETWORK STRUCTURE
Neuron model
We investigated the influence of oscillations using a network of
simple binary neurons with stochastic dynamics (Ginzburg and
Sompolinsky, 1994) and biologically plausible spiking neurons
(Izhikevich, 2003). Using simple binary model neurons, we first
investigated whether the property of the IG measures that were
shown under the equilibrium condition also held true for the
oscillatory condition. We then extended our investigation to more
realistic spiking neurons.

For a binary model neuron, the transition between the binary
states is given by the transition rate w as

w(xi = 0→ xi = 1) = g(ui)

τ0
,

w(xi = 1→ xi = 0) = 1− g(ui)

τ0
,

w(xi = 0→ xi = 0) = 1− w(0→ 1),

w(xi = 1→ xi = 1) = 1− w(1→ 0),

(7)

where τ0 is a microscopic characteristic time and ui represents the
total input to the i-th neuron.

g(ui) = 1+ tanh(ui −m)

2
(8)

is the sigmoidal function in the bounded interval [0, 1] where m is
a parameter controlling the firing probability of a model neuron.

For a biologically more plausible neuron model, we adopted
the Izhikevich model because it is known to be computation-
ally efficient and biologically plausible (Izhikevich, 2003). The
Izhikevich model reduced the complex dynamics of the Hodgkin–
Huxley (HH) neuronal models to two coupled differential equa-
tions as

dVi

dt
= 0.04V2

i + 5Vi + 140− Ui + Ii,
dUi

dt
= ai(biVi − Ui).

(9)

Here the variable Vi represents the membrane potential of neu-
ron i, and Ui represents a membrane recovery variable which
correlates with the activation of K+ ionic currents and inacti-
vation of Na+ [for detail see (Izhikevich, 2003)]. Ui and Vi are
reset after a spike: if Vi ≥ 30 mV, then Vi ← ci, Ui ← Ui + di. Ii

represents a total input to neuron i; ai, bi, ci, di are dimension-
less adjustable parameters which are usually taken as (ai, bi) =
(0.02, 0.2) and (ci, di) = (−65, 8)+ (15, −6)r2

i for excitatory
neurons, (ai, bi) = (0.02, 0.25)+ (0.08, −0.05ri) and (ci, di) =
(−65, 2) for inhibitory neurons. ri is a uniformly distributed
random variable on the interval [0, 1] (Izhikevich, 2003).

Network structure
We considered two mechanisms for generating oscillatory net-
work states; one is the oscillation driven by external inputs
(Figure 1A), and the other is the oscillation induced by the
intrinsic interaction between excitatory and inhibitory neuron
populations (Figure 1B). The former mechanism can be a model
for hippocampal theta oscillation in which the projections from
the medial septum to the hippocampus play a central role (Dragoi
et al., 1999). The latter structure where excitatory and inhibitory
neuron pools interact is widely observed in cortical areas (Buzsaki
and Wang, 2012). It can be a model for cortical oscillations (such
as in a gamma-range) that rely on the interplay between excitatory
and inhibitory neuron pools.

In the first scenario (externally driven oscillation, Figure 1A), a
sinusoidal external input hi(t) = h0 sin(ωt + ϕi) for the i-th neu-
ron was used to generate oscillatory states in a network, where
h0, ω, and upvarphii represent the amplitude, angular speed,
and phase of sinusoidal signals, respectively. Note that h0 and
ω are common to all neurons, but ϕi can be different for indi-
vidual neurons. The explicit expression of an input signal allows
one to produce different network oscillations systematically. For
the binary neuron model, the total input to the i-th neuron is
written as,

ui(t) =
∑

j

Jijxj(t)+ hi(t). (10)

where Jij represents a connection weight from the j-th neuron to
the i-th neuron. The neuronal state xi(t) was then updated follow-
ing the transition rate w in Equation 7. Note that model neurons
are identical, whether they are excitatory or inhibitory.

For the Izhikevich model in the first scenario, we considered a
population of excitatory neurons. Although it has been demon-
strated that a network of excitatory neurons can synchronize, a
network of Izhikevich neurons that were connected in this par-
ticular way cannot produce an intrinsic oscillation (Mirollo and
Strogatz, 1990; Hansel et al., 1995). This allows us to investi-
gate the relationship between the IG measures and an externally
driven oscillation in a more realistic setting. The total input to an
Izhikevich neuron i is given by,

IE
i (t) =

∑
j

JEE
ij sE

j (t)+ hi(t), (11)

where JEE represent positive weights between excitatory neurons

and sE
j = δ(t − t

f
j ) is the delta function representing the existence
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FIGURE 1 | A schematic of two mechanisms for generating network

oscillations. (A) Oscillation is generated by an external oscillatory input
(externally driven oscillation). A neuron i in the network of N neurons
with recurrent connections Jij receives a sinusoidal external input
hi = h0 sin(ωt + ϕi ) where h0, ω, and ϕi represent the amplitude,
angular speed, and phase of the sinusoidal input, respectively. (B)

Oscillation is generated by the interaction between excitatory and

inhibitory neuron pools (internally induced oscillation). Excitatory neurons
are connected by positive connections JEE , inhibitory neurons are
connected by negative connections JII , inhibitory neurons receive positive
connections JIE from excitatory neurons, and excitatory neurons receive
negative connections JEI from inhibitory neurons. In addition, excitatory
and inhibitory neurons receive external constant input HE

i and HI
k ,

respectively.

of a spike emitted from an excitatory neuron j at time t
f
j . The

neuronal state was then updated by Equation 9 and the associ-
ated reset dynamics. In the numerical simulation, we used a small
bin width of 1 ms so that it would contain no more than one
spike.

Figures 2A–C show example spike trains and multi-unit
activity of binary model neurons driven by external sinu-
soidal inputs of 1, 6, and 100 Hz oscillations, respectively.
Izhikevich neurons also exhibited very similar activity (data
not shown). It can be clearly seen that neural activity is
entrained to external input. Using these two models, we inves-
tigated how the IG measures are affected by externally driven
oscillations.

In the second scenario (internally induced oscillation,
Figure 1B), interaction between excitatory and inhibitory neuron
pools generates an oscillation. For the binary neuron model, the
total input to the i-th excitatory neuron and the k-th inhibitory
neuron are written as,

uE
i (t) =

∑
j

JEE
ij xE

j (t)+
∑

j

JEI
ij xE

j (t)+HE
i ,

uI
k(t) =

∑
j

JII
kj x

I
j (t)+

∑
j

JIE
kj xI

j (t)+HI
k, (12)

where JII, JIE, and JEI represent negative weights between
inhibitory neurons, positive weights from excitatory neurons
to inhibitory neurons, and negative weights from inhibitory
neurons to excitatory neurons, respectively. The excitatory
and inhibitory neurons receive constant external inputs HE

i
and HI

i , and maintain sustained oscillatory activity. The neu-
ronal state was updated following the transition rate w in
Equation 7.

For the Izhikevich model in the second scenario, a similar rela-
tionship exists for the total inputs for the i-th excitatory neuron

and the k-th inhibitory neuron,

IE
i (t) =

∑
j

JEE
ij sE

j (t)+
∑

j

JEI
ij sE

j (t)+HE
i ,

II
k(t) =

∑
j

JII
kj s

I
j (t)+

∑
j

JIE
kj sI

j (t)+HI
k. (13)

The neuronal state was then updated following Equation 9 and
the associated reset dynamics. Figures 2D,E provide examples of
spike trains and multi-unit activity of Izhikevich neurons that
exhibited ∼6 and 40 Hz oscillations, respectively. Binary neurons
also exhibited a very similar activity (data not shown). Neural
activity was synchronized, but the degree of entrainment was
weaker than the externally driven mechanisms. Using these two
models, we investigated how the IG measures were influenced by
the internally induced oscillation.

RESULTS
EXTERNALLY DRIVEN OSCILLATION
We investigated the relationship between the IG measures, θ(4, N)

i

and θ
(4, N)
ij , and the connection weights, (Jij + Jji), using a net-

work of 1000 binary neurons and 1000 Izhikevich neurons.
We focused on the IG measures with 4th-order LLM because
they have been shown to estimate connection weights (Nie and
Tatsuno, 2012) and external inputs (unpublished data) within
a 10% error under an equilibrium assumption. In the simula-
tion, we kept the amplitude of external input at a value such that
the overall network firing probability is relatively low (pxi ∼ 0.1).
Connection weights were set to the order of 1/N to prevent sat-
uration of neuronal activity. For a binary neuron model, we used
Jij = 1/N + εij where εij is a random variable from a normal dis-
tribution N(0, 1/N) with a mean of 0 and the standard deviation
of 1/
√

N. For the Izhikevich model, we restricted the simulations
to a pool of only excitatory neurons to ensure that no inter-
nally induced oscillation occurred. The connection weights were
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FIGURE 2 | Average firing probability and raster plot of

representative oscillatory activity. (A) Average firing probability of
1000 binary neurons (top panel) and a raster plot of 100 randomly
sampled neurons (bottom panel) over 1000 ms under the influence of
an external sinusoidal input of 1 Hz (slow oscillation) are shown. (B)

Average firing probability of 1000 binary neurons (top panel) and a
raster plot of 100 randomly sampled neurons (bottom panel) for an
external sinusoidal input of 6 Hz (theta oscillation) are shown. (C)

Average firing probability of 1000 binary neurons (top panel) and a

raster plot of 100 randomly sampled neurons (bottom panel) for an
external sinusoidal input of 100 Hz (ripple oscillation) are shown. (D)

1000 ms of average firing probability of 1250 Izhikevich neurons (top
panel) and a raster plot (bottom panel) with approximately a 6-Hz
oscillation are shown. In the top panel, spikes from an excitatory
neuron and an inhibitory neuron are represented by a black dot and a
gray dot, respectively. (E) 1000 ms of average firing probability of 1250
Izhikevich neurons (top panel) and a raster plot (bottom panel) with
approximately a 40-Hz oscillation are shown.

assigned as JEE
Ij = 1/N + ε′ij where ε′ij is a random variable fol-

lowing uniform distribution U(0, 1/N) within the interval of

[0, 1/N]. θ
(4, N)
i and θ

(4, N)
ij were calculated by 106 updates of

the network. With the time resolution of 1 ms, the simulation
corresponds to ∼15 min of recordings. To obtain the mean and
variances of the IG measures, we performed 100 independent
simulations. Error bars in the figure represent the standard error
of mean (SEM).

We investigated the oscillation frequencies that have often been
observed in the brain; slow oscillation (∼1 Hz), theta oscillation

(6–10 Hz), and ripple oscillation (100–200 Hz). The left column
of (Figures 3A,D,G) shows the results for the slow oscillation.
The multi-unit activity of the binary neurons exhibits a slow
oscillation of the frequency of external input (Figure 3A) and
the neurons were entrained to this frequency (Figure 2A). The
spiking activity of Izhikevich neurons also showed almost iden-

tical activity (data not shown). To investigate how θ
(4, N)
i and

θ
(4, N)
ij are related to the change of connection weights, we sys-

tematically modified the sum of connection weights between two
neurons (1 and 2) from −9/N to 9/N. Due to the randomness
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FIGURE 3 | Relationship between the IG measures and the sum of

connection weights for an externally driven oscillation. (A) Average firing
probability of 1000 binary neurons with a 1-Hz oscillatory modulation is
shown. (B) Average firing probability of 1000 binary neurons with a 6-Hz
oscillatory modulation is shown. (C) Average firing probability of 1000 binary
neurons with a 100-Hz oscillatory modulation is shown. (D) Relationship
between the pairwise IG measure (θ

(4, 1000)
12 ) and the sum of connection

weights (J12 + J21) under a 1-Hz oscillation. Black and gray lines represent
the simulation results by binary neurons and Izhikevich neurons, respectively.
(E) Relationship between the pairwise IG measure (θ(4, 1000)

12 ) and the sum of

connection weights (J12 + J21) under a 6-Hz oscillation. (F) Relationship
between the pairwise IG measure (θ(4, 1000)

12 ) and the sum of connection
weights (J12 + J21) under a 100-Hz oscillation. (G) Relationship between the
single IG measure (θ

(4, 1000)
1 ) and the sum of connection weights (J12 + J21)

under a 1-Hz oscillation. Black and gray lines represent the simulation results
by binary neurons and Izhikevich neurons, respectively. (H) Relationship
between the single IG measure (θ

(4, 1000)
1 ) and the sum of connection

weights (J12 + J21) under a 6-Hz oscillation. (I) Relationship between the
single IG measure (θ

(4, 1000)
1 ) and the sum of connection weights (J12 + J21)

under a 100-Hz oscillation.

of the connectivity, focusing the neurons (1 and 2) did not

affect the generality. We found that θ
(4, N)
12 was linearly related

to the sum of the connection weights, and that the values of
θ
(4, N)
12 for both the binary and Izhikevich models were very close

(Figure 3D, black line for a binary model and gray line for the
Izhikevich model). On the other hand, θ

(4, N)
1 and θ

(4, N)
2 were

independent from the change of synaptic weights (Figure 3G).
These results are consistent with the previous findings under
the equilibrium assumption; showing that IG measures can also
provide useful insights in conditions where the network oscil-
lates. The middle and right columns of Figure 3 show the results

for theta oscillations (Figures 3B,E,H) and ripple oscillations
(Figures 3C,F,I), respectively. We found that the relationship
between the IG measures and connection weights was robust
against a different frequency of external inputs. This confirmed
that the IG measures can also provide useful information for
externally driven theta and ripple oscillations.

To further investigate if the robust property of the IG measures
for slow, theta, and ripple oscillations holds true for other fre-
quencies, we varied the frequency over 1–200 Hz, the range that
can be typically observed in the brain. We set (J12 + J21) = 2J.

Figure 4 shows that θ
(4, N)
12 and θ

(4, N)
1 did not depend on

Frontiers in Neural Circuits www.frontiersin.org February 2014 | Volume 8 | Article 11 | 6

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Nie et al. IG estimation of neural interactions

FIGURE 4 | Dependency of the IG measures for an oscillation frequency

for an external drive oscillation. The values of the single-IG measure
θ
(4, 1000)
1 and the pairwise-IG measure θ

(4, 1000)
12 were calculated for different

oscillatory frequencies (1, 5, 6, 10, 20, 50, 100, and 200 Hz). Parameters were
set as J12 + J21 = 2J, h0 = 0.05, and ϕi = 0. (A) The relationship between

θ
(4, 1000)

12 and the oscillation frequency by binary model neurons. (B) The

relationship between θ
(4, 1000)
12 and the oscillation frequency by Izhikevich

neurons. (C) The relationship between θ
(4, 1000)
1 and the oscillation frequency

by binary model neurons. (D) The relationship between θ
(4, 1000)

1 and the
oscillation frequency by Izhikevich neurons.

oscillation frequencies (Figures 4A,C for a binary model, and
Figures 4B,D for Izhikevich model). The results confirmed that
the IG measures would be useful for neural data analysis when
the brain exhibits a variety of oscillations depending on cognitive
demands and the sleep stages.

The previous analyses (Figures 3, 4) were performed under the
zero relative phase difference between two neurons i and j, namely
δϕij =

∣∣ϕi − ϕj

∣∣ = 0. This corresponds to the synchronous neural
firings that were depicted in Figures 2A–C. Neurons can, how-
ever, exhibit phase differences. For instance, sequential neural
activity was observed in the natural and anesthetized brain states
(Lee and Wilson, 2002; Euston et al., 2007; Luczak et al., 2007;
Bermudez Contreras et al., 2013). Therefore, we calculated IG
measures with phase differences. Figure 5 shows the results of
the 6-Hz simulations in which the phase difference between sinu-
soidal inputs to the neurons 1 and 2 was set to π/6 (Figures 5A,C)
and π/2 (Figures 5B,D). The rest of the neuron pairs have ran-
dom phases in the range of [0, 2π]. Figures 5A,B show that

θ
(4, 1000)
12 is linearly related to the sum of synaptic weights, sug-

gesting that the relationship observed in zero phase difference
condition also holds for the non-zero phase difference condition.

Similarly, Figures 5C,D show that θ
(4, 1000)
1 does not depend on

the connection weights, even when neurons fire with phase dif-
ferences. By comparing these results with Figures 3E,H where
there was no phase difference, we also found that phase differ-
ence produced the shift of the actual values of IG measures. This
suggests that if the phase relationship drastically changes between

the two recording epochs, the values of the IG measures cannot
be directly comparable. However, if their difference is not large or
if phase difference can be estimated beforehand, we could use the
information for adjusting the IG values. We also confirmed that
these relationships held true for slow (1 Hz) and ripple (100 Hz)
frequencies (data not shown).

So far we have focused on the relationship between the IG
measures and the connection weights. Another important param-
eter is the magnitude of sinusoidal input h0. Therefore, we have

analyzed how θ
(4, 1000)
1 and θ

(4, 1000)
12 are related to h0. Figure 6

shows the result when the external sinusoidal input has a fre-

quency of 6 Hz (theta oscillation). We found that θ
(4, 1000)
12 was

nearly independent from the change of h0 (Figure 6A), but

θ
(4, 1000)
1 was almost linearly related to it (Figure 6B). We also

confirmed that almost identical relationship holds true for other
frequencies such as slow oscillation and ripple oscillation if there
is no phase difference. For non-zero phases between neurons, we
observed that the IG values were shifted, like the case for the IG
values and connection weights, but that the same linear and inde-
pendent relationship in Figure 6 was sustained. The results under
the oscillatory condition are consistent with the previous findings

under the equilibrium condition; θ(4, N)
i was linearly related to the

magnitude of the constant input and that θ
(4, N)
ij was almost inde-

pendent from it (Nie and Tatsuno, 2012). The investigation here

provides further evidence that θ
(4, N)
i is useful for the estimation

of the magnitude of external input.
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FIGURE 5 | Relationship between the IG measures and the sum of

connection weights for non-zero phase differences. An external oscillation
mechanism was used, and the oscillation frequency was set to 6 Hz. (A)

Relationship between the pairwise IG measure
(
θ
(4, 1000)

12

)
and the sum of

connection weights (J12 + J21) for the phase difference of δϕ12 = π/6. Black
and gray curves represent the simulation by binary neurons and Izhikevich
neurons, respectively. (B) Relationship between the pairwise IG measure

(
θ
(4, 1000)
12

)
and the sum of connection weights, (J12 + J21) for the phase

difference of δϕ12 = π/2. (C) Relationship between the single-IG measure(
θ
(4, 1000)
1

)
and the sum of connection weights (J12 + J21) for the phase

difference of δϕ12 = π/6. (D) Relationship between the single-IG measure(
θ
(4, 1000)
1

)
and the sum of connection weights (J12 + J21) for the phase

difference of δϕ12 = π/2.

FIGURE 6 | Relationship between the IG measures and the amplitude of

an external sinusoidal input for an externally driven oscillation.

Oscillation frequency was set to 6 Hz and phase difference was δϕ12 = 0. (A)

Relationship between the pairwise-IG measure, θ
(4, 1000)
12 , and the amplitude

of a sinusoidal input, h0. Black and gray lines represent the simulation results
by binary neurons and Izhikevich neurons, respectively. (B) Relationship
between the single-IG measure, θ

(4, 1000)

1 , and the amplitude of a sinusoidal
input, h0.

In summary, we investigated how the IG measures were
influenced by an externally driven oscillation. Using a simple
binary neuron model, and a more realistic Izhikevich model,

we found that θ
(4, N)
ij had a linear relationship with the sum

of the connection weights, and that it was almost independent

from the magnitude of a sinusoidal input. In contrast, θ
(4, N)
i was

almost independent from the connection weights, but was linearly

related to the magnitude of the sinusoidal input. These proper-
ties were not affected by the frequency of the oscillations or the
relative phase differences between neurons.

INTERNALLY INDUCED OSCILLATION
As another mechanism for generating an oscillatory network
behavior, we also investigated the interactions between excitatory
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and inhibitory neuron pools. We analyzed the network structure
in Figure 1B by simple binary model neurons and Izhikevich neu-
rons. Unlike the first oscillation mechanism, where an oscillation
frequency and phase differences could be explicitly controlled, it
was not easy to generate an oscillation with desired parameters.
However, we were able to generate two examples that were often
observed in the brain. Figures 7A,B show multi-unit activity cor-
responding to theta frequency (∼8 Hz) and gamma frequency
(∼40 Hz), respectively. The same examples with a raster plot were
also depicted in Figures 2D,E. To avoid saturation in neural activ-
ity, we have set the connection weights to the order of 1/N. For
a theta oscillation, we set the connection as JEE

ij = J1 · ε′ij, JIE
ij =

5J1 · ε′ij, JII
ij = −J2 · ε′ij and JEI

ij = −J2 · ε′ij where J1 = 1/Ne, J2 =
1/Ni, and ε′ij is a random variable following a uniform distri-
bution U(0, 1) within the interval [0,1]. For a gamma oscil-
lation, we used JEE

ij = J1 · ε′ij, JIE
ij = 6J1 · ε′ij, JII

ij = −J2 · ε′ij and

JEI
ij = −2J2· ε′ij. The stronger JIE was necessary to induce oscilla-

tion (Adini et al., 1997). The external constant inputs to excitatory
and inhibitory neurons were set as HE

i = 0.05 and HI
i = 0.02,

respectively. The simulation of 106 update was performed with
Ne = 1000 excitatory neurons and Ni = 250 inhibitory neurons.
The mean and variance was estimated using 100 independent
simulations.

To investigate the relationship between the IG measures and
the sum of connection weights, without losing the general-
ity, we modified (J12 + J21) between the neurons (1 and 2)
in the range of [−9J, 9J]. Firstly, we focused on the connec-
tions within the excitatory neuron population and within the
inhibitory neuron population. In other words, both connections,
J12 and J21, were positive for the range of (J12 + J21) ≥ 0 and
both were negative for (J12 + J21) < 0. Figures 7C,E show the

relationship between θ
(4, 1250)
12 and θ

(4, 1250)
1 , and the sum of con-

nection strengths (J12 + J21) under the theta oscillation. The

results clearly show that θ
(4, 1250)
12 is linearly related to the sum

of the connection weights and that θ
(4, 1250)
1 was independent

from the modulation of the connection weights. Furthermore,
the dependency of the IG measures on the connection weights
was continuous in both positive and negative ranges. This sug-
gests that IG measures can be applicable to both positive and
negative connections. Figures 7D,F show results for gamma oscil-

lation. Similar results were obtained for both θ
(4, 1250)
12 and

θ
(4, 1250)
1 .

Secondly, we investigated the interaction between excitatory
and inhibitory neurons. Namely, we selected the neuron 1 from
the excitatory neuron pool and the neuron 2 from the inhibitory
neuron pool. The sum of connection weights was modified
from −9J to 9J. Figures 8A,B are the same with Figures 7A,B,
showing the multi-unit activity for theta and gamma oscillation,
respectively. Figures 8C,E show the relationship between the IG
measures and the sum of the connection weights under the theta
oscillation. Similarly, Figures 8D,F are for gamma oscillation. The

results show that the linear dependency of θ
(4, 1250)
12 on the sum of

the connection weights holds true for an excitatory and inhibitory

neuron pair. We also found that θ
(4, 1250)
1 had almost no rela-

tionship with the sum of connection weight. For the relationship

between the IG measures and the magnitude of constant input HE
i

and HI
i , we confirmed that θ

(4, 1250)
1 was linearly related to their

magnitude, but θ
(4, 1250)
12 was independent from them (data not

shown).
In summary, for internally generated oscillations, we demon-

strated that the relationship between the IG measures and the
connection weights that were found under equilibrium assump-
tion also held true.

DISCUSSION
Previous studies have shown that the IG measures provided use-
ful information about network structures (Tatsuno and Okada,
2004; Tatsuno et al., 2009; Nie and Tatsuno, 2012). Specifically,

the single-IG measure θ
(4, N)
i was related to the magnitude of

external constant input, and the pairwise-IG measure θ
(4, N)
ij was

related to the sum of the connection strengths. Although these
studies were conducted under the equilibrium assumption, the
real neural signals exhibit various oscillations depending on cog-
nitive demand of the task or the state of the brain. Therefore, we
studied the relationship between the IG measures and the neural
network parameters under oscillatory network states.

We have considered two general oscillation mechanisms; one
was the oscillation driven by external input, and the other was the
oscillation induced internally due to interactions between exci-
tatory and inhibitory neuron pools. Numerical simulation was
performed by the network of a simple binary neuron model and
the Izhikevich neuron model. The former model was used so as
to compare the results with that of previous studies, and the latter
was used to investigate the relationship with more realistic model
neurons.

For the external oscillation, our investigation showed that

θ
(4, N)
ij was linearly related to the sum of the connection strengths,

and that θ
(4, N)
i was independent from it over a wide range of fre-

quency from 1 to 200 Hz. We also showed that the relationship
holds true when there are phase differences between neurons. In

addition, we demonstrated that θ
(4, N)
i was almost linearly related

to the magnitude of sinusoidal input, but that θ
(4, N)
ij was almost

independent from it. For the internally induced oscillation, we

have also confirmed that θ
(4, N)
ij was linearly related to the sum of

the connection strengths, and that θ
(4, N)
i was independent from

it. We have also shown that the same relationship holds true for
any neuron pairs (within excitatory population, within inhibitory
population, and across excitatory and inhibitory populations).

In summary, this study and previous studies have demon-
strated that the IG measure provides useful information for
analyzing neural circuits; not only for the equilibrium condition,
but also for the oscillatory condition. The single-IG measure is
useful for estimating the relative strength of external inputs. In
addition, the single-IG measure is better than using the change in
firing rate because the firing rate can be modulated both by the
change in synaptic coupling strength and the magnitude of exter-
nal inputs. Studies show that the appropriately selected single-IG
measure is capable of estimating the external inputs with rela-
tively small influence from synaptic interactions. Similarly, the
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FIGURE 7 | Relationship between the IG measures and the sum of

connection weights for an internally induced oscillation. Both
connections, J12 and J21, were positive for the range of (J12 + J21) ≥ 0 and
they were negative for (J12 + J21) < 0. (A) Average firing probability of 1250
Izhikevich neurons with approximately a 6-Hz oscillatory oscillation is shown.
(B) Average firing probability of 1250 Izhikevich neurons with approximately a
40-Hz oscillatory oscillation is shown. (C) Relationship between the
pairwise-IG measure (θ(4, 1000)

12 ) and the sum of connection weights

(J12 + J21) under a 6-Hz oscillation. Black and gray lines represent the
simulation results by binary neurons and Izhikevich neurons, respectively. (D)

Relationship between the pairwise-IG measure (θ(4, 1000)
12 ) and the sum of

connection weights (J12 + J21) under a 6-Hz oscillation. (E) Relationship
between the single-IG measure (θ

(4, 1000)
1 ) and the sum of connection

weights (J12 + J21) under a 6-Hz oscillation. (F) Relationship between the
single-IG measure (θ

(4, 1000)
1 ) and the sum of connection weights (J12 + J21)

under a 40-Hz oscillation.

pairwise-IG measure can provide more direct information about
the synaptic interactions between neurons than other correlation
measures (Amari, 2009). It has been also shown that the pairwise-
IG measure is statistically independent from the change in firing
rate and that it provides pure neural interactions (Amari, 2001;
Nakahara and Amari, 2002). Together with the findings in this
study, the pairwise-IG measure is a very useful measure to study
direct neural interactions between neurons.

This study suggests that the actual values of the IG mea-
sures depend on the mechanisms of oscillation. For an externally

driven oscillation, θ
(4, N)
12 ∼ 0.2 was obtained for (J12 + J21) ∼

1/N. For an internally induced oscillation, the same connection

strength produced θ
(4, N)
12 ∼ 0.002. Within the same oscillation

mechanism, the selection of model neurons (binary model or
Izhikevich model), or a small difference in network parame-
ters such as phase differences also produced a difference in the
actual value of the IG measures. Nonetheless, as long as the net-
work is in one of the oscillation mechanisms, and the phase

difference is kept the same, the IG measures can provide use-
ful insights into network structures regardless of the oscillation
frequencies.

In the study of memory consolidation, one of the key ques-
tions is to understand how the changes in synaptic connections
are related to learning and memory formation. Evidence suggests
that neural activity during slow-wave sleep plays an important
role in learning (Diekelmann and Born, 2010). Specifically, there
is increasing evidence supporting the hypothesis that replay of
neural activity during subsequent sleep is positively correlated
with memory formation (Pavlides and Winson, 1989; Wilson and
McNaughton, 1994; Kudrimoti et al., 1999; Lee and Wilson, 2002;
Euston et al., 2007; Girardeau et al., 2009; Peyrache et al., 2009b;
Ego-Stengel and Wilson, 2010). However, the direct information
about synaptic change is not available from multi-unit recordings
of a freely behaving animal because spikes and local field poten-
tials are the two main observables. In this study, we showed that

θ
(4, N)
ij was linearly related to the sum of the connection weights,
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FIGURE 8 | Relationship between the IG measures and the sum of

connection weights for an internally induced oscillation. Neuron 1
was selected from the excitatory neuron pool and Neuron 2 was
selected from the inhibitory neuron pool. In other words, one of the
connections in J12 + J21 was positive and the other was negative. (A)

Average firing probability of 1250 Izhikevich neurons with approximately
a 6-Hz oscillatory oscillation is shown. (B) Average firing probability of
1250 Izhikevich neurons with approximately a 40-Hz oscillatory oscillation
is shown. (C) Relationship between the pairwise-IG measure (θ(4, 1000)

12 )

and the sum of connection weights (J12 + J21) under a 6-Hz oscillation.
Black and gray lines represent the simulation results by binary neurons
and Izhikevich neurons, respectively. (D) Relationship between the
pairwise-IG measure (θ(4, 1000)

12 ) and the sum of connection weights
(J12 + J21) under a 6-Hz oscillation. (E) Relationship between the
single-IG measure (θ

(4, 1000)

1 ) and the sum of connection weights
(J12 + J21) under a 6-Hz oscillation. (F) Relationship between the
single-IG measure (θ

(4, 1000)

1 ) and the sum of connection weights
(J12 + J21) under a 40-Hz oscillation.

and that θ
(4, N)
i was linearly related to the magnitude of external

inputs, even under the oscillatory conditions. We have also ver-
ified these relationships not only with a simple binary model
neuron, but also with a more realistic spiking model neuron. This
finding would allow us to analyze neural activity during slow-

wave sleep before and after the task; θ
(4, N)
ij would be a good

measure for the change of connection weight, and θ
(4, N)
i for

the magnitude of background input that would be influenced
by local field potentials. By comparing the relative change of

θ
(4, N)
ij between slow-wave sleeps before and after the task, and

the strength of memory replay/improvement of behavior per-
formance, the IG measure may provide a way to estimate the
relationship between the synaptic modification and memory for-
mation without having direct access to information of synaptic
change.

As a related approach to the IG method, the maximum entropy
(MaxEnt) has attracted much attention recently (Schneidman

et al., 2006; Tang et al., 2008; Tyler et al., 2012). The philoso-
phy of the MaxEnt approach is not to assume anything other
than what we know from the data. For example, if firing rate
and pairwise correlation are the only information we have, the
distribution with maximum entropy is given as the Boltzmann
distribution,

P(2) {x} = 1

Z
exp

⎛
⎝∑

i

h′ixi +
∑
i<j

J′ijxixj

⎞
⎠ , (14)

where h′i is a bias term for the neuron i, J′ij is the symmetric cou-
pling strength between neurons i and j, and the partition function
Z is given by,

Z =
∑
{x}

exp

⎛
⎝∑

i

h′ixi +
∑
i<j

J′ijxixj

⎞
⎠ . (15)
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We see that the MaxEnt is equivalent to the IG with the 2nd-order
LLM,

log px1x2∗ ··· ∗ =
∑

i

θ
(2, N)
i xi +

∑
i<j

θ
(2, N)
ij xixj −ψ(θ)(2, N),

(16)
where the relationship between the parameters are given as,

θ
(2, N)
i = h′i, θ

(2, N)
ij = J′ij,ψ(θ)(2, N) = log Z. (17)

As was discussed in Tatsuno and Okada (2004) and in Tatsuno
et al. (2009), it is possible to relate these IG measures, θ

(2, N)
i and

θ
(2, N)
ij , to the network structure even for a network with asym-

metric connections (Equation 5). However, under the influence
of correlated inputs, we have also shown that the relationship
in Equation 5 broke down, and that it was necessary to use the
IG measures with the higher-order LLM such as the 4th-order
(Equation 6) (Nie and Tatsuno, 2012). In other words, it was
necessary to take into account neural activity of two additional
neurons to estimate the direct neural interaction between neuron
i and j. In summary, we see that the MaxEnt approach and the
IG method are closely related. In addition, we also see that the
MaxEnt can be considered a part of the IG method that provides
a more general analysis framework for the space of the probability
distributions.

In this study, we used the synchronous neural activity for esti-
mating the direct neural interaction as the form of (Jij + Jji).
However, in the real learning processes such as sequential learn-
ing, it is possible that synaptic modification occurs differently
for each direction; e.g., Jij increases, while Jji decreases. The
proposed method is not able to estimate the directed synaptic
change. As one possible remedy for this difficulty, calculation of
the pairwise-IG measure using the time-lagged spiking activity
between neurons was suggested (Tatsuno and Okada, 2004; Nie
and Tatsuno, 2012). Another limitation of the present study is
not including the effect of delay; e.g., axonal conduction delay
or synaptic transmission delay. It is possible that these delays
dramatically change the firing patterns as well as increase a vari-
ety of coexisting patterns (Izhikevich, 2006). Little is known
about the relationship between the IG measures and direct neu-
ral interactions with conduction delay. In addition, it has not
been clear how IG measures with more neuronal interactions
such as triplewise-IG measures θ

(k, N)
ijk or quadruple-IG measures

θ
(k, N)
ijkl behave under oscillatory conditions. It would be inter-

esting to extend the current study to include more neuronal
interactions.

Despite these limitations, the IG method is one of the most
promising statistical tools for spike train analysis (Amari, 2001;
Nakahara and Amari, 2002). Its direct relationship with the net-
work parameters would provide useful information for the esti-
mation of structural changes (Tatsuno and Okada, 2004; Tatsuno
et al., 2009; Nie and Tatsuno, 2012). We hope that an advance-
ment of novel analysis methods including IG will lead to a
break-through finding in neuroscience.
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