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Abstract. We propose a method to extract connectivity between neurons for extracellularly
recorded multiple spike trains. The method removes pseudo-correlation caused by propagation of
information along an indirect pathway, and is also robust against the influence from unobserved
neurons. The estimation algorithm consists of iterations of a simple matrix inversion, which is
scalable to large data sets. The performance is examined by synthetic spike data.

1. Introduction
Due to recent advances in experimental technologies, we can record activities of a large number
of neurons simultaneously. It has been suggested that cell assemblies can be formed dynamically
in the course of motor and cognitive functions [1]. In order to understand how the cell assemblies
contribute to brain functions, it is important to clarify the relationship between neurons.
For example, Wilson and McNaughton estimated a functional connection in the hippocampal
CA1 network using a cross-correlation function [2]. Recently, researchers have also started
investigating higher-order interactions using information-theoretic approaches [3–5]. However,
many of the existing methods have the following difficulties:

(i) Pseudo-correlation: Neuron activities can propagate to other neurons via indirect pathways.
This causes pseudo correlation.

(ii) Direction of connection: Functional connectivity estimated by correlation-based methods is
often symmetric. It is not possible to extract information about the direction of connections.

(iii) Openness of the system: In neurophysiological experiments, only a limited number of
neurons can be recorded. The activity of measured neurons is also affected by other neurons
that are not observed.

(iv) Positive and negative connectivity: The previously proposed method based on diffusion
process [6] was developed to analyze a network of excitatory (positive) connections.
However, there are also inhibitory (negative) connections in the brain.
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Figure 1. An example of a graph structure representing direct connectivity Λ

To overcome these difficulties, we propose a novel method to extract dependency from
multivariate time series data.

2. Model
Suppose there are N neurons measured, membrane potential vi(t +∆) of the neuron i at time
t+∆ is affected by the neuron j at time t by

vi(t+∆) = bi(t) + θijYj(t), (1)

where ∆ is a small period of time, Yj(t) is a binary random variable representing spike of the
neuron j, and bi(t) is input from all other neurons including unmeasured ones except the neuron
j. The coefficient θij represents the connection from the neuron j to the neuron i, including not
only a direct connection but also indirect connection through two-steps, three-steps and longer
pathways through other neurons. Let λij be the direct connection from the neuron j to the
neuron i. We assume that indirect connection propagates in a multiplicative way. For instance,
the strength of connection from the neuron j to the neuron i through the neuron k is equal

to ξ
(1)
k λikλkj , where ξ

(1)
k denotes a decaying factor. Therefore θij is decomposed as the sum of

multi-step connections,

θij = λij +
∑
k

ξ
(1)
k λikλkj +

∑
k,l

ξ
(2)
kl λikλklλlj + · · · , (2)

where in this paper we assume there are no direct self-connection, hence λii = 0. For simplicity,

we further assume decaying factors ξ
(1)
k , ξ

(2)
kl , . . . are all equal to one by constraining λij < 1

to incorporate the decaying effect in λij . As a result, we have a simple relation between the
accumulated total connection θij and the direct connection λij ,

Θ = Λ + Λ2 + · · · = (I − Λ)−1 − I, (3)

where Θ and Λ are matrices whose ij elements are θij and λij respectively.
In this paper, we assume that we can construct a matrix X whose off-diagonal element is

related to Θ as
xij = αθij + ϵij , i ̸= j (4)

where xij is the ij element of X, α is a scalar parameter, and ϵij is a random noise. We assume
the diagonal elements of X are not obtained, and let diagX = O, then we have

X +D ≃ αΘ = α
{
(I − Λ)−1 − I

}
, (5)
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where D is a diagonal matrix representing unknown diagonal elements.
As a consequence, the problem is to obtain the connectivity matrix Λ for given X by

estimating parameters D, α and solving eq. (5). An example of Λ is shown in figure 1, which
can be regarded as weighted edges of a graphical structure.

In the rest of the paper, first we propose an iterative algorithm to find α, D, Λ for a given
X. Next, we give a way of constructing X from measured neural spike data, and show some
simulation results.

3. Optimization algorithm
The objective function to be minimized is the squared loss defined from eq. (5),

J(α,D,Λ) =
∥∥X +D − α{(I − Λ)−1 − I}

∥∥2
F

(6)

where ∥ ∥F denotes the Frobenius norm.
We further introduce sparsity of the connectivity matrix Λ as a constraint. Otherwise, most

neurons are connected each other, which makes it difficult to interpret the results. The sparsity
constraint is also consistent with a neuroscientific finding that approximately 10% of excitatory
neurons are connected [7]. Here we use L0 norm constraint as sparsity, then the problem is to
minimize the objective function J(α,D,Λ) under the constraint

∥Λ∥0 ≤M. (7)

In this paper, the hyperparameterM , which represents an upperbound of the number of nonzero
components of Λ, is estimated by StARS criterion as described later.

3.1. Objective minimization
We apply alternating iterative procedures to minimize the objective function J(α,D,Λ), i.e.,
each parameter α, D or Λ is optimized by fixing the other parameters. For sparsity, we apply a
greedy approach.

First, D is initialized by rI, where r is a constant so that det(X + D) ̸= 0. α is randomly

initialized from uniform distribution on (0, 1]. Fixing D and α, we obtain Λ̂′, which is an
estimator of Λ, by solving eq. (5) and taking λii = 0 into account,

Λ̂′ = offdiag

[
−
(
1

α
(X +D) + I

)−1
]
, (8)

where offdiag[A] is an operator that sets A’s diagonal elements to zero. Since Λ̂′ is not a sparse

matrix, we obtain a sparse estimate of Λ by cutting off the small values of Λ̂′,

λ̂ij =

{
λ̂′ij if |λ̂′ij | ≥ ζ

0 otherwise
(9)

where ζ is the M -th largest value among {|λ̂′ij |}.
In order to optimize α for a fixed λ̂ij , by letting D = diag

(
α(I − Λ̂)−1 − I

)
in J(α,D, Λ̂),

we have a quadratic optimization function, and the solution is given by

α̂ =

∑
i̸=j xij

[
(I − Λ̂)−1 − I

]
ij∑

i̸=j

[
(I − Λ̂)−1 − I

]2
ij

. (10)

Then D is updated by

D = diag
(
α̂
{
(I − Λ̂)−1 − I

})
, (11)

and the procedures above are repeated for a predefined number of times.
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Figure 2. Two time-windows for measuring spikes

3.2. Hyperparameter optimization
In order to determine the number of nonzero elements M in Λ, AIC and BIC are often used.
However, in this paper, we apply StARS (Stability Approach to Regularization Selection) [8]
because neural data is noisy and thus the criterion is required to be robust against noise. StARS
tends to give rise to less sparse graphs than AIC and BIC. Thus it is more suitable if we want
to avoid relevant connections are omitted.

Since the original proposal of StARS is formulated for undirected graph, in the following, we
describe the method extended to the case of directed graph.

Suppose we have multidimensional neural spike time series (N neurons × time length T ).
We randomly extract K subsequences S1, S2, . . . , SK , where each Si has time length b (i.e., Si
is N × b matrix), and Si and Sj can be overlapped.

We apply the algorithm described in the subsection above for a subsequence Sk with a fixed
number of connections M , and we define the indicator variable,

ψM
ij (Sk) =

{
1 if a connection from j to i exists,
0 otherwise.

(12)

Collecting those values for all subsequences, we estimate the probability of existence of the
connection,

ϕbij(M) =
1

K

∑
k

ψM
ij (Sk). (13)

We also calculate
ξbij(M) = 2ϕbij(M)(1− ϕbij(M)) (14)

which represents instability of the estimation. This is twice as large as the variance of Bernoulli
probability of existence of the connection. Let us define average of ξbij(M) by

Db(M) =

∑
i,j ξ

b
ij(M)

N(N − 1)
. (15)

We choose a maximal number of M so that the value of Db(M
′) is less than a certain threshold

γ for all M ′ ≤M .

4. Construction of statistics
The algorithm described in the section above assumes that off-diagonal elements of X is given.
In this section, we propose to estimate those values from observed neural spike data.

In eq. (1), we formulated a generative model of neuron connectivity. However, since neuron
spike trains are point processes, we have to observe them within a certain width of time window.
Here we consider two time windows [t− ϵ, t] and [t, t+ ϵ′] as shown in figure 2, where the former
corresponds to the firing Yj(t) in eq. (1) and the latter corresponds to the time for propagation
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Figure 3. Time lag for multi-step propagation

to the i-th neuron vi(t + ∆). For simplicity, we use the notation Yi(t) = 1 for the event
{Yi(τ) = 1, ∃τ ∈ [t− ϵ, t]}, and Yi(t+∆) = 1 for the event {Yi(τ) = 1, ∃τ ∈ [t, t+ ϵ′]}.

The values of ϵ and ϵ′ are determined based on the characteristics of neuron’s behavior. ϵ
should be taken a little longer than refractory period. On the other hand, for ϵ′, since multi-step
propagation through other neurons requires more time as shown in figure 3, it should be long
enough to capture the time-lag of the propagation.

In eq. (1), the i-th neuron fires at time t+∆ randomly depending on the membrane potential
vi(t + ∆). Although this relation is typically modelled by a sigmoidal function, for simplicity,
we assume it is a linear function, thus eq. (1) can be written as

Pr[Yi(t+∆) = 1 | Yj(t)] ∝ vi(t) = bi(t) + θijYj(t). (16)

For Yj(t) = 0 and 1, the expected values of eq. (16) are

E[Yi(t+∆) | Yj(t) = 0] ∝ E[bi(t)], (17)

E[Yi(t+∆) | Yj(t) = 1] ∝ E[bi(t)] + θij . (18)

By taking difference between eq. (17) and eq. (18), we have

E[Yi(t+∆) | Yj(t) = 1]− E[Yi(t+∆) | Yj(t) = 0] ∝ θij . (19)

The left hand side of eq. (19) can be estimated from observed time sequence, and can be used
as an estimator of xij that is proportional to θij . Remark that the influence bi(t) from other
neurons including unmeasured neurons is cancelled out by taking difference.

5. Simulations
5.1. Synthetic data
We apply the proposed method to synthetic data generated by neural models proposed by
Izhikevich [9]. The Izhikevich model is known to be able to simulate various types of realistic
neuron behaviors even though the model can be formulated by small number of parameters.

Let vi(t)[mV] (i = 1, . . . , N ′) be the membrane potential of the neuron i, ui(t) be the
inactivator giving negative feedback, Ii(t) be the post-synaptic current with random external
input Iexti , Wij be the connection weight from the neuron j to the neuron i, Yi(t) be the binary
state (0 or 1) of neuron i. Izhikevich model is described by the following difference equations:
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For vi(t) ≥ 30[mV],

Yi(t) = 1 (20)

Ii(t) = Iexti (t) +
∑
j

WijYj(t) (21)

vi(t+ dt) = ci (22)

ui(t+ dt) = ui(t) + di (23)

Yi(t+ dt) = 0, (24)

and for vi(t) < 30[mV],

vi(t+ dt) = vi(t) + 0.04v2i (t) + 5vi(t) + 140− ui(t) + Ii(t) (25)

ui(t+ dt) = ui(t) + ai{bivi(t)− ui(t)}, (26)

where dt is a small time step(0.5[msec]), ai, bi, ci, di are parameters specifying neuron behavior
(excitatory or inhibitory).

In the numerical simulation, the total number of neurons is set as N ′ = 50, among which
40 neurons are excitatory and 10 neurons are inhibitory based on the biological evidence. In
addition, the number of connections from one neuron is limited to at most 10. The strengths
of connections are randomly generated from uniform distribution on (0, 1] for excitatory
connections and [−1, 0) for inhibitory connections.

To investigate the performance for partial observations, we assume only N = 32 neurons (all
excitatory) among 50 neurons are observable and used for estimation.

The resting membrane potential vi(t) is set to be between −70[mV] and −60[mV], and the
neuron fires when vi(t) exceeds 30[mV] and it is reset to ci. In this simulation, we do not take
into account the signal delay and the synaptic plasticity.

For the time window parameters ϵ and ϵ′, we fixed ϵ by 3.0[msec] and we examined 4 different
length of ϵ′, 3.0, 4.0, 5.0, 6.0[msec].

The number of iterations of the algorithm is set to 5.

5.2. Results
Since the resulting connection matrix represents a weighted graph structure, we evaluate the
performance by two kinds of consistency: (1) topology of graph structure, and (2) strength of
connection weights.

5.2.1. Topology of graph structure Suppose Λ̂ and Λ∗ be the estimation and the ground truth
of connection weight matrices respectively. Here we define the TP (true positive) by the number

of connections correctly estimated that satisfy both λ̂ij ̸= 0 and λ∗ij ̸= 0, and the FN (false

negative) by the number of connections that satisfy λ̂ij = 0 and λ∗ij ̸= 0. The sensitivity is
calculated by Sensitivity = TP / (TP + FN), which represents the ratio of correctly extracted
connections among all existing connections.

It has been demonstrated that the majority of cortical excitatory connections is weak [7] and
therefore long term continuous recordings (e.g., 25 hours or longer) would be necessary to detect
weak connections from extracellular spike data [10]. The sensitivity using a small amount of
spiking data (eg., 1 hour or less) like this investigation would be unavoidably low because of
these weak connections. However, in terms of appropriate scientific inference of connections,
it would be more important to avoid large FP (false positive) that is the number of estimated
connections that do not exist, because FP suggests an effect that is not actually there. In the
following, we calculate FP rate, which is defined by FP / (FP + TN), where TN denotes true
negative.
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Figure 4. Performance of the proposed algorithm. Upper-left: False positive rate, upper-right:
Sensitivity, and lower: Kendall’s τ

5.2.2. Evaluation of connection weights In order to evaluate how the proposed method extract
strengths of connections correctly, we use Kendall rank correlation coefficient (Kendall’s τ) that

measures the degree of coincidence of rank statistics between Λ̂ and Λ∗. To focus on nonzero
connections, first we exclude the pairs with no connections (λij = 0). However, since the nonzero
components are not always the same in the two matrices, we calculate Kendall’s τ by choosing
the connections included both in Λ̂ and in Λ∗.

5.3. Evaluation
We performed the simulation for 20 different networks generated by different random seeds.
Boxplots of FP rate, Sensitivity and Kendall’s τ are plotted in figure 4. Horizontal axis represents
the length of window size ϵ′. For ϵ′ = 5 and 6, FP rate is quite small, which means that the
proposed method correctly estimates the absence of connections in the true network. We see
relatively lower values of sensitivity mainly caused by the sparsity of the graph. Kendall’s τ
is quite high for ϵ′ = 5 and 6, so the strong connections are extracted correctly. In figure 5,
examples of true and estimated network structures are shown.
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Figure 5. Examples of graph structure. Left: True, Right: Estimated. Red edges represent
excitatory connections, and blue edges represent inhibitory connections.

6. Conclusion
In this paper, we proposed a method to extract directed connectivity between neurons based
on a simple generative model. Using the synthetic data that were generated by the Izhikevich
neuron model, we demonstrated that the proposed method successfully detected the direction
and strength of both excitatory and inhibitory connections. In neuroscience, cross-correlation
has been widely used to assess synaptic connections [10, 11]. Our method would complement the
existing methods and can be easily applied to real data because it does not involve many tuning
parameters. By designing appropriate statistics, the proposed method would be also applicable
to other application areas.
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[7] Song S, Sjöström P J, Reigl M, Nelson S and Chklovskii D B 2005 PLoS Biol. 3 e68
[8] Roeder K, Liu H and Wasserman L 2010 Advances in Neural Information Processing Systems 23 1432–40
[9] Izhikevich E M 2003 IEEE Trans. on Neural Networks 14 1569–72

[10] Schwindel C D, Ali K, McNaughton B L and Tatsuno M 2014 Journal of Neuroscience 34 5454–67
[11] Ostojic S, Brunel N and Hakim V 2009 Journal of Neuroscience 29 10234–53

International Meeting on High-Dimensional Data-Driven Science (HD3-2015) IOP Publishing
Journal of Physics: Conference Series 699 (2016) 012012 doi:10.1088/1742-6596/699/1/012012

8




