Cyclic m-cycle systems of complete graphs minus a 1 -factor

Heather Jordon
Department of Mathematics and Computer Science
Albion College
Albion, MI 49224
U.S.A.
hjordon@albion.edu
Joy Morris
Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge, $A B$
Canada T1K 3M4
joy@cs.uleth.ca
In honour of Dan Archdeacon.

Abstract

In this paper, we provide necessary and sufficient conditions for the existence of a cyclic m-cycle system of $K_{n}-I$ when m and n are even and $m \mid n$.

1 Introduction

Throughout this paper, K_{n} will denote the complete graph on n vertices, $K_{n}-I$ will denote the complete graph on n vertices with a 1 -factor I removed (a 1 -factor is a 1 -regular spanning subgraph), and C_{m} will denote the m-cycle $\left(v_{1}, v_{2}, \ldots, v_{m}\right)$. An m-cycle system of a graph G is a set \mathcal{C} of m-cycles in G whose edges partition the edge set of G. An m-cycle system is called hamiltonian if $m=|V(G)|$.

Several obvious necessary conditions for an m-cycle system \mathcal{C} of a graph G to exist are immediate: $m \leq|V(G)|$, the degrees of the vertices of G must be even, and m must divide the number of edges in G. A survey on cycle systems is given in [4] and necessary and sufficient conditions for the existence of an m-cycle system of K_{n} and $K_{n}-I$ were given in $[1,16]$ where it was shown that an m-cycle system of K_{n} or $K_{n}-I$ exists if and only if $n \geq m$, every vertex of K_{n} or $K_{n}-I$ has even degree, and m divides the number of edges in K_{n} or $K_{n}-I$, respectively.

Throughout this paper, ρ will denote the permutation (01 $\ldots n-1$), so $\langle\rho\rangle=\mathbb{Z}_{n}$. An m-cycle system \mathcal{C} of a graph G with vertex set $V(G)=\mathbb{Z}_{n}$ is cyclic if, for every m-cycle $C=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ in \mathcal{C}, the m-cycle $\rho(C)=\left(\rho\left(v_{1}\right), \rho\left(v_{2}\right), \ldots, \rho\left(v_{m}\right)\right)$ is also in \mathcal{C}. A cyclic n-cycle system \mathcal{C} of a graph G with vertex set \mathbb{Z}_{n} is called a cyclic hamiltonian cycle system. Finding necessary and sufficient conditions for cyclic m cycle systems of K_{n} is an interesting problem and has attracted much attention (see, for example, $[2,3,6,7,10,11,13,15])$. The obvious necessary conditions for a cyclic m-cycle system of K_{n} are the same as for an m-cycle system of K_{n}; that is, $n \geq m \geq 3, n$ is odd (so that the degree of every vertex is even), and m must divide the number of edges in K_{n}. However, these conditions are no longer necessarily sufficient. For example, it is not difficult to see that there is no cyclic decomposition of K_{15} into 15 -cycles. Also, if p is an odd prime and $\alpha \geq 2$, then $K_{p^{\alpha}}$ cannot be decomposed cyclically into p^{α}-cycles [7].

The existence question for cyclic m-cycle systems of K_{n} has been completely settled in a few small cases, namely $m=3$ [14], 5 and 7 [15]. For even m and $n \equiv 1$ $(\bmod 2 m)$, cyclic m-cycle systems of K_{n} are constructed for $m \equiv 0(\bmod 4)$ in [13] and for $m \equiv 2(\bmod 4)$ in [15]. Both of these cases are handled simultaneously in [10]. For odd m and $n \equiv 1(\bmod 2 m)$, cyclic m-cycle systems of K_{n} are found using different methods in $[2,6,11]$. In [3], as a consequence of a more general result, cyclic m-cycle systems of K_{n} for all positive integers m and $n \equiv 1(\bmod 2 m)$ with $n \geq m \geq$ 3 are given using similar methods. In [7], it is shown that a cyclic hamiltonian cycle system of K_{n} exists if and only if $n \neq 15$ and $n \notin\left\{p^{\alpha} \mid p\right.$ is an odd prime and $\left.\alpha \geq 2\right\}$. Thus, as a consequence of a result in [6], cyclic m-cycle systems of $K_{2 m k+m}$ exist for all $m \neq 15$ and $m \notin\left\{p^{\alpha} \mid p\right.$ is an odd prime and $\left.\alpha \geq 2\right\}$. In [17], the last remaining cases for cyclic m-cycle systems of $K_{2 m k+m}$ are settled, i.e., it is shown that, for $k \geq 1$, cyclic m-cycle systems of $K_{2 k m+m}$ exist if $m=15$ or $m \in\left\{p^{\alpha} \mid\right.$ p is an odd prime and $\alpha \geq 2\}$. In [19], necessary and sufficient conditions for the existence of cyclic $2 q$-cycle and m-cycle systems of the complete graph are given when q is an odd prime power and $3 \leq m \leq 32$. In [5], cycle systems with a sharply vertex-transitive automorphism group that is not necessarily cyclic are investigated. As a result, it is shown in [5] that no cyclic m-cycle system of K_{n} exists if $m<n<2 m$ with n odd and $\operatorname{gcd}(m, n)$ a prime power. In [18], it is shown that if m is even and $n>2 m$, then there exists a cyclic m-cycle system of K_{n} if and only if the obvious necessary conditions that n is odd and that $n(n-1) \equiv 0(\bmod 2 m)$ hold.

These questions can be extended to the case when n is even by considering the graph $K_{n}-I$. In [3], it is shown that for all integers $m \geq 3$ and $k \geq 1$, there exists a cyclic m-cycle system of $K_{2 m k+2}-I$ if and only if $m k \equiv 0,3(\bmod 4)$. In [12], it is shown that for an even integer $n \geq 4$, there exists a cyclic hamiltonian cycle system of $K_{n}-I$ if and only if $n \equiv 2,4(\bmod 8)$ and $n \neq 2 p^{\alpha}$ where p is an odd prime and $\alpha \geq 1$. In [8], it was shown that in every cyclic cycle decomposition of $K_{2 n}-I$, the number of cycle orbits of odd length must have the same parity as $n(n-1) / 2$. As a consequence of this result, in [8], it is shown that a cyclic m-cycle system of $K_{2 n}-I$ can not exist if $n \equiv 2,3(\bmod 4)$ and $m \not \equiv 0(\bmod 4)$ or $n \equiv 0,1(\bmod 4)$ and m does not divide $n(n-1)$. In this paper we are interested in cyclic m-cycle systems of $K_{n}-I$ when m and n are even and $m \mid n$. The main result of this paper is the
following.
Theorem 1.1 For an even integer m and integer t, there exists a cyclic m-cycle system of $K_{m t}-I$ if and only if
(1) $t \equiv 0,2(\bmod 4)$ when $m \equiv 0(\bmod 8)$,
(2) $t \equiv 0,1(\bmod 4)$ when $m \equiv 2(\bmod 8)$ with $t>1$ if $m=2 p^{\alpha}$ for some prime p and integer $\alpha \geq 1$,
(3) $t \geq 1$ when $m \equiv 4(\bmod 8)$, and
(4) $t \equiv 0,3(\bmod 4)$ when $m \equiv 6(\bmod 8)$.

Our methods involve circulant graphs and difference constructions. In Section 2, we give some basic definitions and lemmas while the proof of Theorem 1.1 is given in Sections 3, 4 and 5. In Section 3, we handle the case when $m \equiv 0(\bmod 8)$ and show that there is a cyclic m-cycle system of $K_{m t}-I$ if and only if $t \geq 2$ is even. In Section 4 , we handle the case when $m \equiv 4(\bmod 8)$ and show that there is a cyclic m-cycle system of $K_{m t}-I$ if and only if $t \geq 1$. In Section 5 , we handle the case when $m \equiv 2(\bmod 4)$. When $m \equiv 2(\bmod 8)$, we show that there is a cyclic m-cycle system of $K_{m t}-I$ if and only if $t \equiv 0,1(\bmod 4)$. When $m \equiv 6(\bmod 8)$, we show that there is a cyclic m-cycle system of $K_{m t}-I$ if and only if $t \equiv 0,3(\bmod 4)$. Our main theorem then follows.

2 Preliminaries

The notation $[1, n]$ denotes the set $\{1,2, \ldots, n\}$. The proof of Theorem 1.1 uses circulant graphs, which we now define. For $x \not \equiv 0(\bmod n)$, the modulo n length of an integer x, denoted $|x|_{n}$, is defined to be the smallest positive integer y such that $x \equiv y(\bmod n)$ or $x \equiv-y(\bmod n)$. Note that for any integer $x \not \equiv 0(\bmod n)$, it follows that $|x|_{n} \in\left[1,\left\lfloor\frac{n}{2}\right\rfloor\right]$. If L is a set of modulo n lengths, we define the circulant graph $\langle L\rangle_{n}$ to be the graph with vertex set \mathbb{Z}_{n} and edge set $\left\{\{i, j\}\left||i-j|_{n} \in L\right\}\right.$. Notice that in order for a graph G to admit a cyclic m-cycle decomposition, G must be a circulant graph, so circulant graphs provide a natural setting in which to construct cyclic m-cycle decompositions.

The graph K_{n} is a circulant graph, since $K_{n}=\langle\{1,2, \ldots,\lfloor n / 2\rfloor\}\rangle_{n}$. For n even, $K_{n}-I$ is also a circulant graph, since $K_{n}-I=\langle\{1,2, \ldots,(n-2) / 2\}\rangle_{n}$ (so the edges of the 1 -factor I are of the form $\{i, i+n / 2\}$ for $i=0,1, \ldots,(n-2) / 2)$.

Let H be a subgraph of a circulant graph $\langle L\rangle_{n}$. The notation $\ell(H)$ will denote the set of modulo n edge lengths belonging to H, that is,

$$
\ell(H)=\left\{\ell \in L \mid\{g, g+\ell\} \in E(H) \text { for some } g \in \mathbb{Z}_{n}\right\} .
$$

Many properties of $\ell(H)$ are independent of the choice of L; in particular, the next lemma in this section does not depend on the choice of L.

Let C be an m-cycle in circulant graph $\langle L\rangle_{n}$ and recall that the permutation $\rho=(01 \ldots n-1)$, which generates \mathbb{Z}_{n}, has the property that $\rho(C) \in \mathcal{C}$ whenever $C \in$ \mathcal{C}. We can therefore consider the action of \mathbb{Z}_{n} as a permutation group acting on the elements of \mathcal{C}. Viewing matters this way, the length of the orbit of C (under the action of \mathbb{Z}_{n}) can be defined as the least positive integer k such that $\rho^{k}(C)=C$. Observe that such a k exists since ρ has finite order; furthermore, the well-known orbitstabilizer theorem (see, for example [9, Theorem 1.4 A (iii)]) tells us that k divides n. Thus, if G is a graph with a cyclic m-cycle system \mathcal{C} with $C \in \mathcal{C}$ in an orbit of length k, then it must be that k divides $n=|V(G)|$ and that $\rho(C), \rho^{2}(C), \ldots, \rho^{k-1}(C)$ are distinct m-cycles in \mathcal{C}.

The next lemma gives many useful properties of an m-cycle C in a cyclic m-cycle system \mathcal{C} of a graph G with $V(G)=\mathbb{Z}_{n}$ where C is in an orbit of length k. Many of these properties are also given in [7] in the case that $m=n$. The proofs of the following statements follow directly from the previous definitions and are therefore omitted.

Lemma 2.1 Let \mathcal{C} be a cyclic m-cycle system of a graph G of order n and let $C \in \mathcal{C}$ be in an orbit of length k. Then
(1) $|\ell(C)|=m k / n$;
(2) C has n / k edges of length ℓ for each $\ell \in \ell(C)$;
(3) $(n / k) \mid \operatorname{gcd}(m, n)$;

Let $k>1$ and let $P: v_{0}=0, v_{1}, \ldots v_{m k / n}$ be a subpath of C of length $m k / n$. Then
(4) if there exists $\ell \in \ell(C)$ with $k \mid \ell$, then $m=n / \operatorname{gcd}(\ell, n)$,
(5) $v_{m k / n}=k x$ for some integer x with $\operatorname{gcd}(x, n / k)=1$,
(6) $v_{1}, v_{2}, \ldots, v_{m k / n}$ are distinct modulo k,
(7) $\ell(P)=\ell(C)$, and
(8) $P, \rho^{k}(P), \rho^{2 k}(P), \ldots, \rho^{n-k}(P)$ are pairwise edge-disjoint subpaths of C.

Let X be a set of m-cycles in a graph G with vertex set \mathbb{Z}_{n} such that $\mathcal{C}=\left\{\rho^{i}(C) \mid\right.$ $C \in X, i=0,1, \ldots, n-1\}$ is an m-cycle system of G. Then X is called a generating set for \mathcal{C}. Clearly, every cyclic m-cycle system \mathcal{C} of a graph G has a generating set X as we may always let $X=\mathcal{C}$. A generating set X is called a minimum generating set if $C \in X$ implies $\rho^{i}(C) \notin X$ for $1 \leq i \leq n$ unless $\rho^{i}(C)=C$.

Let \mathcal{C} be a cyclic m-cycle system of a graph G with $V(G)=\mathbb{Z}_{n}$. To find a minimum generating set X for \mathcal{C}, we start by adding C_{1} to X if the length of the orbit of C_{1} is maximum among the cycles in \mathcal{C}. Next, we add C_{2} to X if the length of the orbit of C_{2} is maximum among the cycles in $\mathcal{C} \backslash\left\{\rho^{i}\left(C_{1}\right) \mid 0 \leq i \leq n-1\right\}$. Continuing in this manner, we add C_{3} to X if the length of the orbit of C_{3} is maximum among the cycles in $\mathcal{C} \backslash\left\{\rho^{i}\left(C_{1}\right), \rho^{i}\left(C_{2}\right) \mid 0 \leq i \leq n-1\right\}$. We continue in this manner
until $\left\{\rho^{i}(C) \mid C \in X, 0 \leq i \leq n-1\right\}=\mathcal{C}$. Therefore, every cyclic m-cycle system has a minimum starter set. Observe that if X is a minimum generating set for a cyclic m-cycle system \mathcal{C} of the graph $\langle L\rangle_{n}$, then it must be that the collection of sets $\{\ell(C) \mid C \in X\}$ forms a partition of L.

In this paper, we are interested in the cyclic m-cycle systems of $K_{n}-I$ where $n=m t$ for some positive integer t. Suppose K_{n} has a cyclic m-cycle system \mathcal{C} for some $n=m t$. Let X be a minimum generating set for \mathcal{C} and let $C \in X$ be a cycle in an orbit of length k. Then, $\ell(C)$ has $m k / n=k / t$ lengths which implies that $k=\ell t$ for some integer ℓ. Also, since $|\ell(C)|=\ell$, it follows that $\ell \mid m$. The following lemma will be useful in determining the congruence classes of t based on the congruence class of m modulo 8 .

Lemma 2.2 Let m be an even integer and let $K_{m t}-I$ have a cyclic m-cycle system for some positive integer t.
(1) If $\{1,2, \ldots,(m t-2) / 2\}$ has an odd number of even integers, then t is even.
(2) If $\{1,2, \ldots,(m t-2) / 2\}$ has an odd number of odd integers, then t is odd.

Proof: Let m be even and suppose $K_{m t}-I$ has a cyclic m-cycle system \mathcal{C} for some positive integer t. Let $V\left(K_{m t}\right)=\mathbb{Z}_{m t}$, and let X be a minimum generating set for \mathcal{C}.

Suppose first that $\{1,2, \ldots,(m t-2) / 2\}$ has an odd number of even integers. Since the set $\{\ell(C) \mid C \in X\}$ is a partition of $\{1,2, \ldots,(m t-2) / 2\}$, there must be an odd number of cycles C in X with $\ell(C)$ containing an odd number of evens. Let $C \in X$ be a cycle in an orbit of length k with an odd number of even edge lengths. Let $|\ell(C)|=\ell$ and note that $k=\ell t$. From Lemma 2.1, we know that the subpath of C starting at vertex 0 of length ℓ ends at vertex $j k$ with $\operatorname{gcd}(j, m / \ell)=1$.

Suppose first k is odd. Then ℓ and t must both be odd. Thus m / ℓ is even so that $j k$ is odd. Hence, $\ell(C)$ contains an odd number of odd integers and, since $|\ell(C)|$ is odd, an even number of even integers, contradicting the choice of C. Thus, k is even. Since k is even, $j k$ is even. Thus, $\ell(C)$ contains an even number of odd integers. If ℓ is even, then $\ell(C)$ also contains an even number of even integers, contradicting the choice of C. Thus, ℓ is odd. Since k is even and $k=\ell t$, it must be that t is even.

Now suppose $\{1,2, \ldots,(m t-2) / 2\}$ has an odd number of odd integers. Hence there are an odd number of cycles C in X with $\ell(C)$ containing an odd number of odd integers. Again, let $C \in X$ be such a cycle with $|\ell(C)|=\ell$, in an orbit of length $k=\ell t$. Let the subpath of C starting at vertex 0 of length ℓ end at vertex $j k$ with $\operatorname{gcd}(j, m / \ell)=1$. Now, if k is even, then $j k$ is even so that $\ell(C)$ contains an even number of odd integers, contradicting the choice of C. Thus k is odd. Since $k=\ell t$, we have that t is odd.

The following corollary is an immediate consequence of Lemma 2.2 and [12].
Corollary 2.3 For an even integer m and a positive integer t, if there exists a cyclic m-cycle system of $K_{m t}-I$, then
(1) $t \equiv 0,2(\bmod 4)$ when $m \equiv 0(\bmod 8)$,
(2) $t \equiv 0,1(\bmod 4)$ when $m \equiv 2(\bmod 8)$ with $t>1$ if $m=2 p^{\alpha}$ for some prime p and integer $\alpha \geq 1$,
(3) $t \equiv 0,3(\bmod 4)$ when $m \equiv 6(\bmod 8)$, and
(4) $t \geq 1$ when $m \equiv 4(\bmod 8)$.

Let $n>0$ be an integer and suppose there exists an ordered m-tuple $\left(d_{1}, d_{2}, \ldots\right.$, d_{m}) satisfying each of the following:
(i) d_{i} is an integer for $i=1,2, \ldots, m$;
(ii) $\left|d_{i}\right| \neq\left|d_{j}\right|$ for $1 \leq i<j \leq m$;
(iii) $d_{1}+d_{2}+\cdots+d_{m} \equiv 0(\bmod n)$; and
(iv) $d_{1}+d_{2}+\cdots+d_{r} \not \equiv d_{1}+d_{2}+\cdots+d_{s}(\bmod n)$ for $1 \leq r<s \leq m$.

Then an m-cycle C can be constructed from this m-tuple, that is, let $C=\left(0, d_{1}, d_{1}+\right.$ $\left.d_{2}, \ldots, d_{1}+d_{2}+\cdots+d_{m-1}\right)$, and $\{C\}$ is a minimum generating set for a cyclic m-cycle system of $\left\langle\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}\right\rangle_{n}$. Thus, in what follows, to find cyclic m-cycle systems of $\langle L\rangle_{n}$, it suffices to partition L into m-tuples satisfying the above conditions. Hence, an m-tuple satisfying (i)-(iv) above is called a difference m-tuple and it corresponds to the m-cycle $C=\left(0, d_{1}, d_{1}+d_{2}, \ldots, d_{1}+d_{2}+\cdots d_{m-1}\right)$ in $\langle L\rangle_{n}$.

3 The Case when $m \equiv 0(\bmod 8)$

In this section, we consider the case when $m \equiv 0(\bmod 8)$ and show that there exists a cyclic m-cycle system of $K_{m t}-I$ for each even positive integer t. We begin with the case $t=2$.

Lemma 3.1 For each positive integer $m \equiv 0(\bmod 8)$, there exists a cyclic m-cycle system of $K_{2 m}-I$.

Proof: Let m be a positive integer such that $m \equiv 0(\bmod 8)$, say $m=8 r$ for some positive integer r. Then $K_{2 m}-I=\left\langle S^{\prime}\right\rangle_{2 m}$ where $S^{\prime}=\{1,2, \ldots, m-1\}=$ $\{1,2, \ldots, 8 r-1\}$. The proof proceeds as follows. We begin by finding a path P of length $m / 2=4 r$, ending at vertex m, so that $C=P \cup \rho^{m}(P)$ is an m-cycle. Note that $\langle\{2\}\rangle_{2 m}$ consists of two vertex disjoint m-cycles. For the remaining $4 r-2$ edge lengths in $S^{\prime} \backslash(\ell(P) \cup\{2\})$, we find $2 r-1$ paths P_{i} of length 2 , ending at vertex 4 or -4 , so that $C_{i}=P_{i} \cup \rho^{4}\left(P_{i}\right) \cup \rho^{8}\left(P_{i}\right) \cup \cdots \rho^{2 m-4}\left(P_{i}\right)$ is an m-cycle. Then this collection of cycles will give a minimum generating set for a cyclic m-cycle system of $K_{2 m}-I$.
Suppose first that r is odd. For $r=1$, let $P: 0,-3,3,7,8$ and note that the edge lengths of P in the order encountered are $3,6,4,1$. For $r=3$, let

$$
P: 0,-3,3,-7,7,-11,11,23,19,20,-20,-4,24
$$

and note that edge lengths of P in the order encountered are 3, 6, 10, 14, 18, 22, 12, 4, $1,8,16,20$. For $r \geq 5$, let

$$
\begin{aligned}
P: & 0,-3,3,-7,7, \ldots,-(4 r-1), 4 r-1,8 r-1,8 r-5,8 r-4,8 r+4,8 r-8, \\
& 8 r+8, \ldots, 6 r+2,10 r-2,6 r-10,10 r+2,6 r-14, \ldots, 12 r-8,4 r-4,8 r
\end{aligned}
$$

be a path of length $m / 2$ whose edge lengths in the order encountered are $3,6,10$, $14, \ldots, 8 r-6,8 r-2,4 r, 4,1,8,12,16, \ldots, 4 r-4,4 r+8,4 r+12, \ldots, 8 r-8,8 r-4,4 r+4$.
Now suppose that r is even. For $r=2$, let $P: 0,-3,3,-7,7,-1,-5,-4,16$ and note that the edge lengths of P in the order encountered are 3, 6, 10, 14, 8, 4, 1, 12 . For $r \geq 4$, let

$$
\begin{aligned}
P: & 0,-3,3,-7,7, \ldots,-(4 r-1), 4 r-1,-1,-5,-4,4,-8,8, \ldots,-(2 r-4), \\
& 2 r-4,-2 r, 2 r+8,-(2 r+4), 2 r+12, \ldots,-(4 r-8), 4 r,-(4 r-4), 8 r
\end{aligned}
$$

be a path of length $m / 2$ whose edge lengths in the order encountered are $3,6,10$, $14, \ldots, 8 r-6,8 r-2,4 r, 4,1,8,12,16, \ldots, 4 r-8,4 r-4,4 r+8,4 r+12, \ldots, 8 r-8,8 r-$ $4,4 r+4$.
In each case, let $C=P \cup \rho^{m}(P)$ and observe that C is an m-cycle C with $\ell(C)=$ $\{1,3,4,6,8, \ldots, 8 r-2\}$. Let $C^{\prime}=(0,2,4,6, \ldots, 2 m-2)$ and note that C^{\prime} is an m-cycle with $\ell\left(C^{\prime}\right)=\{2\}$.
For $0 \leq i \leq r-2$, let $P_{i}: 0,9+8 i, 4$ be the path of length 2 with edge lengths $9+8 i, 5+8 i$ and let $P_{i}^{\prime}: 0,11+8 i, 4$ be the path of length 2 with edge lengths $11+8 i, 7+8 i$. Let $C_{i}=P_{i} \cup \rho^{4}\left(P_{i}\right) \cup \rho^{8}\left(P_{i}\right) \cup \cdots \cup \rho^{2 m-4}\left(P_{i}\right)$ and $C_{i}^{\prime}=P_{i}^{\prime} \cup \rho^{4}\left(P_{i}^{\prime}\right) \cup$ $\rho^{8}\left(P_{i}^{\prime}\right) \cup \cdots \cup \rho^{2 m-4}\left(P_{i}^{\prime}\right)$ and note that each is an m-cycle with $\ell\left(C_{i}\right)=\{5+8 i, 9+8 i\}$ and $\ell\left(C_{i}^{\prime}\right)=\{7+8 i, 11+8 i\}$.
Finally, let $P^{\prime \prime}: 0,8 r-3,-4$ be the path of length 2 with edge lengths $8 r-3$ and $8 r-1$. Let $C^{\prime \prime}=P^{\prime \prime} \cup \rho^{4}\left(P^{\prime \prime}\right) \cup \rho^{8}\left(P^{\prime \prime}\right) \cup \cdots \cup \rho^{2 m-4}\left(P^{\prime \prime}\right)$ and note that $C^{\prime \prime}$ is an m-cycle with $\ell\left(C^{\prime \prime}\right)=\{8 r-3,8 r-1\}$.
Then $\left\{C, C^{\prime}, C_{0}, \ldots, C_{r-2}, C_{0}^{\prime}, \ldots, C_{r-2}^{\prime}, C^{\prime \prime}\right\}$ is a minimum generating set for a cyclic m-cycle system of $K_{2 m}-I$.

We now consider the case when t is even and $t>2$.
Lemma 3.2 For each positive integer k and each positive integer $m \equiv 0(\bmod 8)$, there exists a cyclic m-cycle system of $K_{2 m k}-I$.

Proof: Let m and k be positive integers such that $m \equiv 0(\bmod 8)$. Lemma 3.1 handles the case when $k=1$ and thus we may assume that $k \geq 2$. Then $K_{2 k m}-I=\left\langle S^{\prime}\right\rangle_{2 k m}$ where $S^{\prime}=\{1,2, \ldots, k m-1\}$. Since $K_{2 m}-I$ has a cyclic m-cycle system by Lemma 3.1 and $\langle\{k, 2 k, \ldots, m k\}\rangle_{2 k m}$ consists of k vertex-disjoint copies of $K_{2 m}-I$, we need only show that $\langle S\rangle_{2 k m}$ has a cyclic m-cycle system where $S=\{1,2, \ldots, m k\} \backslash$ $\{k, 2 k, \ldots, m k\}$.

Let $A=\left[a_{i, j}\right]$ be the $(k-1) \times m$ array

$$
\left[\begin{array}{lllllll}
k-1 & 2 k-1 & 3 k-1 & 4 k-1 & & (m-1) k-1 & m k-1 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
2 & k+2 & 2 k+2 & 3 k+2 & & (m-2) k+2 & (m-1) k+2 \\
1 & k+1 & 2 k+1 & 3 k+1 & & (m-2) k+1 & (m-1) k+1
\end{array}\right]
$$

It is straightforward to verify that A satisfies

$$
\sum_{j \equiv 0,1(\bmod 4)} a_{i, j}=\sum_{j \equiv 2,3(\bmod 4)} a_{i, j},
$$

and

$$
a_{i, 1}<a_{i, 2}<\ldots<a_{i, m}
$$

for each i with $1 \leq i \leq k-1$.
For each $i=1,2, \ldots, k-1$, the m-tuple

$$
\begin{aligned}
\left(a_{i, 1},-a_{i, 3}, a_{i, 5},-a_{i, 7}, \ldots, a_{i, m-3},\right. & -a_{i, m-1},-a_{i, m-2}, a_{i, m-4},-a_{i, m-6}, \ldots, \\
& \left.-a_{i, 6}, a_{i, 4},-a_{i, 2}, a_{i, m}\right)
\end{aligned}
$$

is a difference m-tuple and corresponds to an m-cycle C_{i} with $\ell\left(C_{i}\right)=\left\{a_{i, 1}, a_{i, 2}, \ldots\right.$, $\left.a_{i, m}\right\}$. Hence, $X=\left\{C_{1}, C_{2}, \ldots, C_{k-1}\right\}$ is a minimum generating set for a cyclic m-cycle system of $\langle S\rangle_{2 k m}$.

4 The Case when $m \equiv 4(\bmod 8)$

In this section, we consider the case when $m \equiv 4(\bmod 8)$ and show that there exists a cyclic m-cycle system of $K_{m t}-I$ for each $t \geq 1$. We begin with the case when t is odd, say $t=2 k+1$ for some nonnegative integer k.

Lemma 4.1 For each nonnegative integer k and each $m \equiv 4(\bmod 8)$, there exists a cyclic m-cycle system of $K_{m(2 k+1)}-I$.

Proof: Let m and k be nonnegative integers such that $m \equiv 4(\bmod 8)$. Since $K_{m}-$ I has a cyclic hamiltonian cycle system [12], we may assume that $k \geq 1$. Let $m=4 r$ for some positive integer r. Then $K_{m(2 k+1)}-I=\left\langle S^{\prime}\right\rangle_{(2 k+1) m}$ where $S^{\prime}=$ $\{1,2, \ldots, 4 r k+2 r-1\}$. Again, since $K_{m}-I$ has a cyclic hamiltonian cycle system [12] and $\langle\{2 k+1,4 k+2, \ldots,(2 r-1)(2 k+1)\}\rangle_{(2 k+1) m}$ consists of $2 k+1$ vertex-disjoint copies of $K_{m}-I$, we need only show that $\langle S\rangle_{(2 k+1) m}$ has a cyclic m-cycle system where

$$
S=\{1,2, \ldots, 4 r k+2 r-1\} \backslash\{2 k+1,4 k+2, \ldots,(2 r-1)(2 k+1)\} .
$$

Let r and k be positive integers. Let $A=\left[a_{i, j}\right]$ be the $k \times m$ array

$$
\left.\left[\begin{array}{llllllll}
k & 2 k & 3 k+1 & 4 k+1 & 5 k+2 & & (4 r-2) k+2 r-2 & (4 r-1) k+2 r-1
\end{array}\right) 4 r k+2 r-1\right)
$$

It is straightforward to verify that A satisfies

$$
\sum_{j \equiv 0,1(\bmod 4)} a_{i, j}=\sum_{j \equiv 2,3(\bmod 4)} a_{i, j},
$$

and

$$
a_{i, 1}<a_{i, 2}<\ldots<a_{i, m}
$$

for each i with $1 \leq i \leq k$.
For each $i=1,2, \ldots, k$, the m-tuple

$$
\begin{aligned}
\left(a_{i, 1},-a_{i, 3}, a_{i, 5},-a_{i, 7}, \ldots, a_{i, m-3},\right. & -a_{i, m-1},-a_{i, m-2}, a_{i, m-4},-a_{i, m-6}, \ldots, \\
& \left.-a_{i, 6}, a_{i, 4},-a_{i, 2}, a_{i, m}\right)
\end{aligned}
$$

is a difference m-tuple and corresponds to an m-cycle C_{i} with $\ell\left(C_{i}\right)=\left\{a_{i, 1}, a_{i, 2}, \ldots\right.$, $\left.a_{i, m}\right\}$. Hence, $X=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ is a minimum generating set for a cyclic m-cycle system of $K_{m(2 k+1)}-I$.

We now handle the case when t is even, say $t=2 k$ for some positive integer k.
Lemma 4.2 For each positive integer k and each $m \equiv 4(\bmod 8)$, there exists a cyclic m-cycle system of $K_{2 m k}-I$.

Proof: As before, let m and k be positive integers such that $m \equiv 4(\bmod 8)$. Thus $m=4 r$ for some positive integer r. Then $K_{2 m k}-I=\left\langle S^{\prime}\right\rangle_{2 k m}$ where $S^{\prime}=$ $\{1,2, \ldots, 4 r k-1\}$. Since $K_{m}-I$ has a cyclic hamiltonian cycle system [12] and $\langle\{2 k, 4 k, \ldots,(2 r-1)(2 k)\}\rangle_{2 k m}$ consists of $2 k$ vertex-disjoint copies of $K_{m}-I$, we need only show that $\langle S\rangle_{2 k m}$ has a cyclic m-cycle system where

$$
S=\{1,2, \ldots, 4 r k-1\} \backslash\{2 k, 4 k, \ldots,(2 r-1)(2 k)\} .
$$

Since $|S|=m(k-1)+m / 2$, we will start by partitioning a subset $T \subseteq S$ with $|T|=m(k-1)$ into $k-1$ difference m-tuples.
Let $T=\{1,2, \ldots, 4 r k-1\} \backslash\{1,2 k, 4 k-1,4 k, 4 k+1,6 k, 8 k-1,8 k, 8 k+1, \ldots,(4 r-$ $4) k-1,(4 r-4) k,(4 r-4) k+1,(4 r-2) k, 4 r k-1\}$, and observe that $|T|=(k-1) m$. Let $A=\left[a_{i, j}\right]$, with entries from the set T, be the $(k-1) \times m$ array

$$
\left[\begin{array}{lllllllll}
k & 2 k-1 & 3 k-1 & 4 k-2 & 5 k & 6 k-1 & 7 k-1 & 8 k-2 & 9 k \\
\vdots & \vdots \\
3 & k+2 & 2 k+2 & 3 k+1 & 4 k+3 & 5 k+2 & 6 k+2 & 7 k+1 & 8 k+3 \\
2 & k+1 & 2 k+1 & 3 k & 4 k+2 & 5 k+1 & 6 k+1 & 7 k & 8 k+2
\end{array} .\right.
$$

$$
\left.\begin{array}{lllll}
& (4 r-3) k & (4 r-2) k-1 & (4 r-1) k-1 & 4 r k-2 \\
\cdots & \vdots & \vdots & \vdots & \vdots \\
& (4 r-4) k+3 & (4 r-3) k+2 & (4 r-2) k+2 & (4 r-1) k+1 \\
& (4 r-4) k+2 & (4 r-3) k+1 & (4 r-2) k+1 & (4 r-1) k
\end{array}\right] .
$$

It is straightforward to verify that the array A satisfies

$$
\sum_{j \equiv 0,1(\bmod 4)} a_{i, j}=\sum_{j \equiv 2,3(\bmod 4)} a_{i, j}
$$

and

$$
a_{i, 1}<a_{i, 2}<\ldots<a_{i, m}
$$

for each i with $1 \leq i \leq k-1$.
For each $i=1,2, \ldots, k-1$, the m-tuple

$$
\begin{aligned}
\left(a_{i, 1},-a_{i, 3}, a_{i, 5},-a_{i, 7}, \ldots, a_{i, m-3},\right. & -a_{i, m-1},-a_{i, m-2}, a_{i, m-4},-a_{i, m-6}, \ldots, \\
& \left.-a_{i, 6}, a_{i, 4},-a_{i, 2}, a_{i, m}\right)
\end{aligned}
$$

is a difference m-tuple and corresponds to an m-cycle C_{i} with $\ell\left(C_{i}\right)=\left\{a_{i, 1}, a_{i, 2}, \ldots\right.$, $\left.a_{i, m}\right\}$. Hence, $X=\left\{C_{1}, C_{2}, \ldots, C_{k-1}\right\}$ is a minimum generating set for a cyclic m-cycle system of $\langle T\rangle_{2 k m}$.
It now remains to find a minimum generating set for a cyclic m-cycle system of $\langle B\rangle_{2 k m}$ where $B=\{1,4 k-1,4 k+1,8 k-1,8 k+1, \ldots,(4 r-4) k-1,(4 r-4) k+1,4 r k-1\}$. For $i=1,2, \ldots, r$, define $d_{2 i-1}=4(i-1) k+1$ and $d_{2 i}=4 i k-1$. Observe that $B=\left\{d_{1}, d_{2}, \ldots, d_{2 r}\right\}$ and $d_{j+2}-d_{j}=4 k$ for $j=1,2, \ldots, 2 r-2$. Since $m \equiv 4(\bmod 8)$, it follows that r is odd. Let $P_{1}: 0,1,4 k$, and let $P_{i}: 0, d_{2 i+1}, 4 k$ if i is even and let $P_{i}: 0, d_{2 i}, 4 k$ if i is odd. Let $C_{i}^{\prime}=P_{i} \cup \rho^{4 k}\left(P_{i}\right) \cup \rho^{8 k}\left(P_{i}\right) \cup \cdots \cup \rho^{(2 m-4) k}\left(P_{i}\right)$, and note that C_{i}^{\prime} is an m-cycle with $\ell\left(C_{1}^{\prime}\right)=\{1,4 k-1\}, \ell\left(C_{i}^{\prime}\right)=\left\{d_{2 i-1}, d_{2 i+1}\right\}$ if i is even, and $\ell\left(C_{i}^{\prime}\right)=\left\{d_{2 i-2}, d_{2 i}\right\}$ if i is odd. Then $\ell\left(C_{1}^{\prime}\right) \cup \ell\left(C_{2}^{\prime}\right) \cup \cdots \cup \ell\left(C_{r}^{\prime}\right)=B$ so that $\left\{C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{r}^{\prime}\right\}$ is a minimum generating set for $\langle B\rangle_{2 k m}$.

5 The Case when $m \equiv 2(\bmod 4)$

In this section, we consider the case when $m \equiv 2(\bmod 4)$ and prove parts (2) and (4) of Theorem 1.1. We divide this proof into three parts, each dealt with in its own subsection. First we consider the case $t \equiv 0(\bmod 4)$. Then we consider the case $m \equiv 2(\bmod 8)$ and $t \equiv 1(\bmod 4)$. Finally we consider the case $m \equiv 6(\bmod 8)$ and $t \equiv 3(\bmod 4)$.

5.1 The case when $t \equiv 0(\bmod 4)$.

We consider the case $t \equiv 0(\bmod 4)$, starting with the special case $t=4$.
Lemma 5.1 For each positive integer $m \geq 6$ with $m \equiv 2(\bmod 4)$, there exists a cyclic m-cycle system of $K_{4 m}-I$.

Proof: Let $m \geq 6$ be a positive integer with $m \equiv 2(\bmod 4)$. Then $K_{4 m}-I=\left\langle S^{\prime}\right\rangle_{4 m}$ where $S^{\prime}=\{1,2, \ldots, 2 m-1\}$. The proof proceeds as follows. We begin by finding one difference m-tuple which corresponds to an m-cycle C with $|\ell(C)|=m$. Note that $\langle\{4\}\rangle_{4 m}$ consists of four vertex disjoint m-cycles. For the remaining $m-2$ edge lengths in $S^{\prime} \backslash(\ell(C) \cup\{4\})$, we find $(m-2) / 2$ paths P_{i} of length 2 , ending at vertex 8 or -8 , so that $C_{i}=P_{i} \cup \rho^{8}\left(P_{i}\right) \cup \rho^{16}\left(P_{i}\right) \cup \cdots \cup \rho^{4 m-8}\left(P_{i}\right)$ is an m-cycle. Then this collection of cycles will give a minimum generating set for a cyclic m-cycle system of $K_{4 m}-I$.
Consider the difference m-tuple

$$
(1,-2,6,-10, \ldots, 2 m-6,-(2 m-2),-3,8,-12, \ldots, 2 m-12,-(2 m-8), 2 m-4)
$$

and the corresponding m-cycle C with $\ell(C)=\{1,2,3,6,8, \ldots, 2 m-2\}$. It is straightforward to verify that the odd vertices visited all lie between $-m+1$ and $m-1$ with no duplication. Similarly, the even vertices visited all lie between $-2 m+4$ and -4 , and have no duplication.

Let $C^{\prime}=(0,4,8, \ldots, 4 m-4)$ and note that C^{\prime} is an m-cycle with $\ell\left(C^{\prime}\right)=\{4\}$.
Let $m=8 k+m^{\prime}$, so m^{\prime} is either 2 or 6 . If $k=0$, then $m^{\prime}=6$ and let $P: 0,13,8$ be the path of length 2 with edge lengths 11,5 . Then, $C^{\prime \prime}=P \cup \rho^{8}(P) \cup \rho^{16}(P)$ is a 6 -cycle with $\ell\left(C^{\prime \prime}\right)=\{11,5\}$. Then $\left\{C, C^{\prime}, C^{\prime \prime}\right\}$ is a minimum generating set for cyclic 6 -cycle system of $K_{24}-I$. Now suppose that $k \geq 1$. For $0 \leq i \leq k-1$, let $P_{i}: 0,13+16 i, 8$ be the path of length 2 with edge lengths $13+16 i, 5+16 i$; let $P_{i}^{\prime}: 0,15+16 i, 8$ be the path of length 2 with edge lengths $15+16 i, 7+16 i$; let $P_{i}^{\prime \prime}: 0,17+16 i, 8$ be the path of length 2 with edge lengths $17+16 i, 9+16 i$; and let $P_{i}^{\prime \prime \prime}: 0,19+16 i, 8$ with edge lengths $19+16 i, 11+16 i$. Let $C_{i}=P_{i} \cup \rho^{8}\left(P_{i}\right) \cup \rho^{16}\left(P_{i}\right) \cup \cdots \cup \rho^{4 m-8}\left(P_{i}\right)$, $C_{i}^{\prime}=P_{i}^{\prime} \cup \rho^{8}\left(P_{i}^{\prime}\right) \cup \rho^{16}\left(P_{i}^{\prime}\right) \cup \cdots \cup \rho^{4 m-8}\left(P_{i}^{\prime}\right), C_{i}^{\prime \prime}=P_{i}^{\prime \prime} \cup \rho^{8}\left(P_{i}^{\prime \prime}\right) \cup \rho^{16}\left(P_{i}^{\prime \prime}\right) \cup \cdots \cup \rho^{4 m-8}\left(P_{i}^{\prime \prime}\right)$, and $C_{i}^{\prime \prime \prime}=P_{i}^{\prime \prime \prime} \cup \rho^{8}\left(P_{i}^{\prime \prime \prime}\right) \cup \rho^{16}\left(P_{i}^{\prime \prime \prime}\right) \cup \cdots \cup \rho^{4 m-8}\left(P_{i}^{\prime \prime \prime}\right)$ and note that each is an m-cycle with $\ell\left(C_{i}\right)=\{5+16 i, 13+16 i\}, \ell\left(C_{i}^{\prime}\right)=\{7+16 i, 15+16 i\}, \ell\left(C_{i}^{\prime \prime}\right)=\{9+16 i, 17+16 i\}$, and $\ell\left(C_{i}^{\prime \prime \prime}\right)=\{11+16 i, 19+16 i\}$.
If $m^{\prime}=2$, then $\left\{C, C^{\prime}, C_{0}, C_{0}^{\prime}, C_{0}^{\prime \prime}, C_{0}^{\prime \prime \prime}, \ldots, C_{k-1}, C_{k-1}^{\prime}, C_{k-1}^{\prime \prime}, C_{k-1}^{\prime \prime \prime}\right\}$ is a minimum generating set for a cyclic m-cycle system of $K_{4 m}-I$. If $m^{\prime}=6$, then let $P_{k}: 0,2 m-1,-8$ and $P_{k}^{\prime}: 0,2 m-3,-8$ be paths of length 2 with $\ell\left(P_{k}\right)=\{2 m-1,2 m-7\}$ and $\ell\left(P_{k}^{\prime}\right)=\{2 m-3,2 m-5\}$. Let $C_{k}=P_{k} \cup \rho^{8}\left(P_{k}\right) \cup \rho^{16}\left(P_{k}\right) \cup \cdots \cup \rho^{4 m-8}\left(P_{k}\right)$ and $C_{k}^{\prime}=P_{k}^{\prime} \cup \rho^{8}\left(P_{k}^{\prime}\right) \cup \rho^{16}\left(P_{k}^{\prime}\right) \cup \cdots \cup \rho^{4 m-8}\left(P_{k}^{\prime}\right)$ and observe that each is an m-cycle with $\ell\left(C_{k}\right)=\{2 m-1,2 m-7\}$ and $\ell\left(C_{k}^{\prime}\right)=\{2 m-3,2 m-5\}$. Thus, $\left\{C, C^{\prime}, C_{0}, C_{0}^{\prime}, C_{0}^{\prime \prime}, C_{0}^{\prime \prime \prime}, \ldots, C_{k-1}, C_{k-1}^{\prime}, C_{k-1}^{\prime \prime}, C_{k-1}^{\prime \prime \prime}, C_{k}, C_{k}^{\prime}\right\}$ is a minimum generating set for a cyclic m-cycle system of $K_{4 m}-I$.

We now consider the case when $t \equiv 0(\bmod 4)$ with $t>4$.
Lemma 5.2 For each positive integer k and each positive integer $m \equiv 2(\bmod 4)$ with $m \geq 6$, there exists a cyclic m-cycle system of $K_{4 m k}-I$.

Proof: Let $m \geq 6$ and k be positive integers such that $m \equiv 2(\bmod 4)$. Lemma 5.1 handles the case when $k=1$ and thus we may assume that $k \geq 2$. Then
$K_{4 k m}-I=\left\langle S^{\prime}\right\rangle_{4 k m}$ where $S^{\prime}=\{1,2, \ldots, 2 k m-1\}$. Since $K_{4 m}-I$ has a cyclic m cycle system by Lemma 5.1 and $\langle\{k, 2 k, \ldots, 2 k m\}\rangle_{4 k m}$ consists of k vertex-disjoint copies of $K_{4 m}-I$, we need only show that $\langle S\rangle_{2 k m}$ has a cyclic m-cycle system where $S=\{1,2, \ldots, 2 k m\} \backslash\{k, 2 k, \ldots, 2 k m\}$.
Let $A=\left[a_{i, j}\right]$ be the $2 k \times m$ array

$$
\left[\begin{array}{lllllll}
2 k & 4 k & 6 k & 8 k & & (m-1) 2 k & 2 k m \\
2 k-1 & 2 k+1 & 6 k-1 & 8 k-1 & & (m-1) 2 k-1 & 2 k m-1 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
2 & 4 k-2 & 4 k+2 & 6 k+2 & & (m-2) 2 k+2 & (m-1) 2 k+2 \\
1 & 4 k-1 & 4 k+1 & 6 k+1 & & (m-2) 2 k+1 & (m-1) 2 k+1
\end{array}\right]
$$

(Observe that the second column does not follow the same pattern as the others.)
Let A^{\prime} be the $(2 k-2) \times m$ array obtained from A by deleting rows 1 and $k+1$. Then the entries in A^{\prime} are precisely the elements of S. Also, it is straightforward to verify that A^{\prime} satisfies

$$
a_{i, j}+a_{i, j+3}=a_{i, j+1}+a_{i, j+2}
$$

for each positive integer $j \equiv 3(\bmod 4)$ with $j \leq m-3$,

$$
a_{i, 1}+a_{i, 2}+a_{i, m-3}+a_{i, m-1}=a_{i, m-2}+a_{i, m},
$$

and

$$
a_{i, 1}<a_{i, 2}<\ldots<a_{i, m}
$$

for each i with $1 \leq i \leq 2 k-2$.
For each $i=1,2, \ldots, 2 k-2$, the m-tuple

$$
\begin{gathered}
\left(a_{i, 1}, a_{i, 2},-a_{i, 4}, a_{i, 6},-a_{i, 8}, a_{i, 10}, \ldots,-a_{i, m-2},-a_{i, m}, a_{i, m-3},-a_{i, m-5}, a_{i, m-7}, \ldots,\right. \\
\left.a_{i, 3}, a_{i, m-1}\right)
\end{gathered}
$$

is a difference m-tuple and corresponds to an m-cycle C_{i} with $\ell\left(C_{i}\right)=\left\{a_{i, 1}, a_{i, 2}, \ldots\right.$, $\left.a_{i, m}\right\}$. Hence, $X=\left\{C_{1}, C_{2}, \ldots, C_{2 k-2}\right\}$ is a minimum generating set for a cyclic m-cycle system of $\langle S\rangle_{4 \mathrm{~km}}$.

What remains is to find cyclic m-cycle systems of $K_{m t}-I$ for the appropriate odd values of t, which we do in the following subsections.

5.2 The case when $m \equiv 2(\bmod 8)$ and $t \equiv 1(\bmod 4)$.

In this subsection, we find a cyclic m-cycle system of $K_{m t}-I$ when $m \equiv 2(\bmod 8)$ and $t \equiv 1(\bmod 4)$. We begin with two special cases, namely when $m=10$ or $t=5$.

Lemma 5.3 For each positive integer $t \equiv 1(\bmod 4)$ with $t>1$, there exists a cyclic 10 -cycle system of $K_{10 t}-I$.

Proof: Let $t \equiv 1(\bmod 4)$ with $t>1$, say $t=4 s+1$ where $s \geq 1$. Then $K_{10 t}-I=$ $\left\langle S^{\prime}\right\rangle_{10 t}$ where $S^{\prime}=\{1,2, \ldots, 20 s+4\}$. Consider the paths $P_{1}: 0,5 t-1,2 t$ and P_{2} : $0,5 t-2,2 t$. Then, $\ell\left(P_{1}\right)=\{3 t-1,5 t-1\}$ and $\ell\left(P_{2}\right)=\{3 t-2,5 t-2\}$. For $i \in\{1,2\}$, let $C_{i}=P_{i} \cup \rho^{2 t}\left(P_{i}\right) \cup \rho^{4 t}\left(P_{i}\right) \cup \cdots \cup \rho^{8 t}\left(P_{i}\right)$. Then clearly each C_{i} is an 10-cycle and $X=\left\{C_{1}, C_{2}\right\}$ is a minimum generating set for $\langle\{3 t-2,3 t-1,5 t-2,5 t-1\}\rangle_{10 t}$. Since $3 t-3=12 s$ and $5 t-2=20 s+3$, it remains to find a cyclic 10 -cycle system of $\langle S\rangle_{10 t}$ where $S=\{1,2, \ldots, 12 s, 12 s+3,12 s+4, \ldots, 20 s+2\}$. Let $A=\left[a_{i, j}\right]$ be the $2 s \times 10$ array

$$
\left[\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 8 s+1 & 8 s+3 & 12 s+3 & 12 s+4 & 12 s+5 & 12 s+6 \\
5 & 6 & 7 & 8 & 8 s+2 & 8 s+4 & 12 s+7 & 12 s+8 & 12 s+9 & 12 s+10 \\
\vdots & & \\
8 s-3 & 8 s-2 & 8 s-1 & 8 s & 12 s-2 & 12 s & 20 s-1 & 20 s & 20 s+1 & 20 s+2
\end{array}\right]
$$

Clearly, for each i with $1 \leq i \leq 2 s$,

$$
a_{i, 2}+\sum_{j \equiv 0,1(\bmod 4)} a_{i, j}=a_{i, 1}+\sum_{j \equiv 2,3(\bmod 4)} a_{i, j}(\text { where } 3 \leq j \leq 10)
$$

and

$$
a_{i, 1}<a_{i, 2}<\ldots<a_{i, 10}
$$

Thus the 10-tuple

$$
\left(a_{i, 1},-a_{i, 2}, a_{i, 3},-a_{i, 5}, a_{i, 7},-a_{i, 9},-a_{i, 8}, a_{i, 6},-a_{i, 4}, a_{i, 10}\right)
$$

is a difference 10 -tuple and corresponds to a 10-cycle C_{i}^{\prime} with $\ell\left(C_{i}^{\prime}\right)=\left\{a_{i, 1}, a_{i, 2}, \ldots\right.$, $\left.a_{i, 10}\right\}$. Hence, $X^{\prime}=\left\{C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{2 s}^{\prime}\right\}$ is a minimum generating set for a cyclic 10cycle system of $\langle S\rangle_{10 t}$.

We now consider the case when $t=5$.
Lemma 5.4 For each positive integer $m \equiv 2(\bmod 8)$, there exists a cyclic m-cycle system of $K_{5 m}-I$.

Proof: Let m be a positive integer such that $m \equiv 2(\bmod 8)$, say $m=8 r+2$ for some positive integer r. By Lemma 5.3, we may assume $r \geq 2$. Then $K_{5 m}-I=\left\langle S^{\prime}\right\rangle_{5 m}$ where $S^{\prime}=\{1,2, \ldots, 20 r+4\}$.
Let $2 r=6 q+4+b$ for integers $q \geq 0$ and $b \in\{0,2,4\}$. Let a be a positive integer such that $1+\log _{2}(q+2) \leq a \leq 1+\log _{2}(5 q+2)$, and note that a exists since if $q=0$ then $\log _{2}(q+2)$ is an integer, while if $q \geq 1$ then $2(q+2)=2 q+4 \leq 4 q+2<5 q+2$. For nonnegative integers i and j, define $d_{i, j}=10(2 r-i)+j$. Consider the path $P_{i, j}: 0, d_{i, j}, 5 \cdot 2^{a}$ and observe that $\ell\left(P_{i, j}\right)=\left\{10(2 r-i)+j, 10(2 r-i)+j-5 \cdot 2^{a}\right\}$. If $0<j<10$, then $C_{i, j}=P_{i, j} \cup \rho^{10}\left(P_{i, j}\right) \cup \rho^{20}\left(P_{i, j}\right) \cup \cdots \cup \rho^{5 m-10}\left(P_{i, j}\right)$ is an m-cycle since $m \equiv 2(\bmod 8)$ gives $\operatorname{gcd}\left(5 \cdot 2^{a}, 5 m\right)=10$. Thus, if $0<j<10$, $\ell\left(C_{i, j}\right)=\left\{10(2 r-i)+j, 10(2 r-i)+j-5 \cdot 2^{a}\right\}$. Let
$X=\left\{C_{0, j} \mid 1 \leq j \leq 4\right\} \cup\left\{C_{i, j} \mid 1 \leq i \leq q\right.$ and $\left.1 \leq j \leq 6\right\} \cup\left\{C_{q+1, j} \mid 6-b+1 \leq j \leq 6\right\}$
and let

$$
\begin{aligned}
B= & \left\{20 r+j, 20 r+j-5 \cdot 2^{a} \mid 1 \leq j \leq 4\right\} \\
& \cup\left\{10(2 r-i)+j, 10(2 r-i)+j-5 \cdot 2^{a} \mid 1 \leq i \leq q \text { and } 1 \leq j \leq 6\right\} \\
& \cup\left\{10(2 r-q-1)+j, 10(2 r-q-1)+j-5 \cdot 2^{a} \mid 6-b+1 \leq j \leq 6\right\},
\end{aligned}
$$

where if $q=0$ or $b=0$, we take the corresponding sets to be empty as necessary. Now B will consist of $4 r$ distinct lengths and X will be a minimum generating set for $\langle B\rangle_{5 m}$ if $20 r+4-5 \cdot 2^{a} \leq 10(2 r-q-1)+6-b$. Note that $1+\log _{2}(q+2) \leq a \leq 1+\log _{2}(5 q+2)$ gives $q+2 \leq 2^{a-1} \leq 5 q+2$. So,

$$
20 r+4-[10(2 r-q-1)+6-b]=10 q+8+b \leq 10 q+12
$$

and

$$
(10 q+12) / 10<q+2 \leq 2^{a-1} .
$$

Thus $20 r+4-5 \cdot 2^{a} \leq 10(2 r-q-1)+6-b$ so that B consists of $4 r$ distinct lengths, and X is a minimum generating set for $\langle B\rangle_{5 m}$.
It remains to find a cyclic m-cycle system of $\left\langle S^{\prime} \backslash B\right\rangle_{5 m}$. The smallest length in B is $10(2 r-q-1)+6-b+1-5 \cdot 2^{a}$, and we wish to show $10(2 r-q-1)+6-b-5 \cdot 2^{a} \geq 12$. So,

$$
10(2 r-q-1)+6-b-12=20 r-10 q-16-b \geq 20 r-10 q-20
$$

and $(20 r-10 q-20) / 10 \geq 2 r-q-2$. Now

$$
2 r-q-2=5 q+2+b \geq 5 q+2 \geq 2^{a-1}
$$

Hence, $10(2 r-q-1)+6-b-5 \cdot 2^{a} \geq 12$. Since $|B|=4 r$, we have $\left|S^{\prime} \backslash B\right|=$ $20 r+4-4 r=2(8 r+2)$. Now

$$
\begin{aligned}
& S^{\prime} \backslash B=\left\{1,2, \ldots, 10(2 r-q-1)+6-b-5 \cdot 2^{a}\right\} \\
& \cup\left\{10(2 r-i)-5 \cdot 2^{a}-3,10(2 r-i)-5 \cdot 2^{a}-2,10(2 r-i)-5 \cdot 2^{a}-1,\right. \\
&\left.10(2 r-i)-5 \cdot 2^{a} \mid 0 \leq i \leq q\right\} \\
& \cup\left\{10(2 r)+5-5 \cdot 2^{a}, \ldots, 10(2 r-q-1)+6-b\right\} \\
& \cup\{10(2 r-i)-3,10(2 r-i)-2,10(2 r-i)-1,10(2 r-i) \mid 0 \leq i \leq q\} .
\end{aligned}
$$

Note that each the sets $\left\{1,2, \ldots, 10(2 r-q-1)+6-b-5 \cdot 2^{a}\right\},\{10(2 r-i)-5$. $2^{a}-3,10(2 r-i)-5 \cdot 2^{a}-2,10(2 r-i)-5 \cdot 2^{a}-1,10(2 r-i)-5 \cdot 2^{a} \mid 0 \leq i \leq$ $q\},\left\{10(2 r)+5-5 \cdot 2^{a}, \ldots, 10(2 r-q-1)+6-b\right\}$, and $\{10(2 r-i)-3,10(2 r-$ i) $-2,10(2 r-i)-1,10(2 r-i) \mid 0 \leq i \leq q\}$ has even cardinality and consists of consecutive integers. Therefore, we may partition $S^{\prime} \backslash B$ into sets $T, S_{1}, S_{2}, \ldots, S_{8 r-4}$ where $T=\{1,2, \ldots, 12\}$ and for $i=1,2, \ldots, 8 r-4$, let $S_{i}=\left\{b_{i}, b_{i}+1\right\}$ with $b_{1}<b_{2}<\cdots<b_{8 r-4}$.
Let $A=\left[a_{i, j}\right]$ be the $2 \times m$ array

$$
\left[\begin{array}{ccccccccccccc}
1 & 2 & 3 & 4 & 9 & 11 & b_{1} & b_{1}+1 & b_{2} & b_{2}+1 & \cdots & b_{4 r-2} & b_{4 r-2}+1 \\
5 & 6 & 7 & 8 & 10 & 12 & b_{4 r-1} & b_{4 r-1}+1 & b_{4 r} & b_{4 r}+1 & \cdots & b_{8 r-4} & b_{8 r-4}+1
\end{array}\right]
$$

It is straightforward to verify that, for $1 \leq i \leq 2$,

$$
a_{i, 2}+\sum_{j \equiv 0,1(\bmod 4)} a_{i, j}=a_{i, 1}+\sum_{j \equiv 2,3(\bmod 4)} a_{i, j}(\text { where } 3 \leq j \leq m)
$$

and

$$
a_{i, 1}<a_{i, 2}<\ldots<a_{i, m}
$$

Hence, for $1 \leq i \leq 2$, the m-tuple

$$
\begin{gathered}
\left(a_{i, 1},-a_{i, 2}, a_{i, 3},-a_{i, 5}, a_{i, 7}, \ldots, a_{i, m-3},-a_{i, m-1},-a_{i, m-2}, a_{i, m-4},-a_{i, m-6}, \ldots,\right. \\
\left.a_{i, 6},-a_{i, 4}, a_{i, m}\right)
\end{gathered}
$$

is a difference m-tuple and corresponds to an m-cycle C_{i} with $\ell\left(C_{i}\right)=\left\{a_{i, 1}, a_{i, 2}, \ldots\right.$, $\left.a_{i, m}\right\}$. Hence, $X^{\prime}=\left\{C_{1}, C_{2}\right\}$ is a minimum generating set for a cyclic m-cycle system of $\left\langle S^{\prime} \backslash B\right\rangle_{5 m}$.

We are now ready to prove the main result of this subsection, namely, that $K_{m t}-I$ has a cyclic m-cycle system for every $t \equiv 1(\bmod 4)$ and $m \equiv 2(\bmod 8)$ with $t>1$ if $m=2 p^{\alpha}$ for some prime p and integer $\alpha \geq 1$.

Lemma 5.5 For each positive integer $t \equiv 1(\bmod 4)$ and each $m \equiv 2(\bmod 8)$ with $t>1$ if $m=2 p^{\alpha}$ for some prime p and integer $\alpha \geq 1$, there exists a cyclic m-cycle system of $K_{m t}-I$.

Proof: Let m and t be positive integers such that $m \equiv 2(\bmod 8)$ and $t \equiv 1(\bmod 4)$. Thus $m=8 r+2$ for some positive integer r. Then $K_{m t}-I=\left\langle S^{\prime}\right\rangle_{m t}$ where $S^{\prime}=$ $\{1,2, \ldots,(m t-2) / 2\}$. Since $K_{m}-I$ has a cyclic hamiltonian cycle system [12] if and only if $m \neq 2 p^{\alpha}$ for some prime p and integer $\alpha \geq 1$, we may assume that $t>1$. Thus, let $t=4 s+1$ for some positive integer s. By Lemmas 5.3 and 5.4 , we may assume that $s \geq 2$ and $r \geq 2$.
The proof proceeds as follows. We begin by finding a set $B \subseteq S^{\prime}$ such that $|B|=4 r$ and $\langle B\rangle_{m t}$ has a cyclic m-cycle system with a minimum generating set X consisting of cycles each with two distinct lengths and orbit $2 t$. We then construct an $\left(\mid S^{\prime} \backslash\right.$ $B \mid / m) \times m$ array $A=\left[a_{i, j}\right]$ with the property that for each i with $1 \leq i \leq\left|S^{\prime} \backslash B\right| / m$,

$$
a_{i, 2}+\sum_{j \equiv 0,1(\bmod 4)} a_{i, j}=a_{i, 1}+\sum_{j \equiv 2,3(\bmod 4)} a_{i, j}(\text { where } 3 \leq j \leq m)
$$

and

$$
a_{i, 1}<a_{i, 2}<\ldots<a_{i, m}
$$

Thus for each $i=1,2, \ldots,\left|S^{\prime} \backslash B\right| / m$, the m-tuple

$$
\begin{gathered}
\left(a_{i, 1},-a_{i, 2}, a_{i, 3},-a_{i, 5}, a_{i, 7}, \ldots, a_{i, m-3},-a_{i, m-1},-a_{i, m-2}, a_{i, m-4},-a_{i, m-6}, \ldots,\right. \\
\left.a_{i, 6},-a_{i, 4}, a_{i, m}\right)
\end{gathered}
$$

is a difference m-tuple and corresponds to an m-cycle C_{i} with $\ell\left(C_{i}\right)=\left\{a_{i, 1}, a_{i, 2}, \ldots\right.$, $\left.a_{i, m}\right\}$. Hence, $X^{\prime}=\left\{C_{1}, C_{2}, \ldots, C_{\left|S^{\prime} \backslash B\right| / m}\right\}$ will be a minimum generating set for a cyclic m-cycle system of $\left\langle S^{\prime} \backslash B\right\rangle_{m t}$.
Let $w=\lfloor r / 2\rfloor$, and let $\delta_{r}=2(r / 2-w)$, so that $\delta_{r}=1$ if r is odd and $\delta_{r}=0$ if r is even. Write $w=q s+b$ where q and b are non-negative integers with $0 \leq b<s$ (note that it may be the case that $q=0$). For integers i and j, define $d_{i, j}=4(r-2 i) t+j$. Consider the path $P_{i, j}: 0, d_{i, j}, 4 t$ and observe that $\ell\left(P_{i, j}\right)=\{4(r-2 i) t+j, 4(r-2 i-1) t+j\}$. If $0<j<t$, then $C_{i, j}=P_{i, j} \cup \rho^{2 t}\left(P_{i, j}\right) \cup \rho^{4 t}\left(P_{i, j}\right) \cup \cdots \cup \rho^{(m-2) t}\left(P_{i, j}\right)$ is an m cycle since $m \equiv 2(\bmod 8)$ gives $\operatorname{gcd}(4 t, m t)=2 t$. Thus, if $0<j<t, \ell\left(C_{i, j}\right)=$ $\{4(r-2 i) t+j, 4(r-2 i-1) t+j\}$. Let

$$
X=\left\{C_{i, j} \mid 0 \leq i \leq q-1 \text { and } 1 \leq j \leq t-1\right\} \cup\left\{C_{q, j} \mid t-4 b-2 \delta_{r} \leq j \leq t-1\right\}
$$

and let

$$
\begin{aligned}
B= & \{4(r-2 i) t+j, 4(r-2 i-1) t+j \mid 0 \leq i \leq q-1 \text { and } 1 \leq j \leq t-1\} \\
& \cup\left\{4(r-2 q) t+j, 4(r-2 q-1) t+j \mid t-4 b-2 \delta_{r} \leq j \leq t-1\right\},
\end{aligned}
$$

where we take the appropriate sets to be empty if $q=0$ or $b=0$. Observe that X is a minimum generating set for $\langle B\rangle_{m t}$, and consider the set $S^{\prime} \backslash B$. Now $|X|=4 q s+4 b$ so that $|B|=2(4 q s+4 b)=4 r$. Hence $\left|S^{\prime} \backslash B\right|=(4 r+1) t-1-4 r=2 s(8 r+2)$ and

$$
\begin{aligned}
S^{\prime} \backslash B= & \left\{1,2, \ldots, 4(r-2 q-1) t+t-1-2 \delta_{r}-4 b\right\} \\
& \cup\{4(r-2 q-1) t+t, 4(r-2 q-1) t+t+1, \ldots, \\
& \left.4(r-2 q) t+t-1-2 \delta_{r}-4 b\right\} \\
& \cup\{4 k t+t, 4 k t+t+1, \ldots, 4(k+1) t \mid r-2 q \leq k \leq r-1\} .
\end{aligned}
$$

Note that $S^{\prime} \backslash B$ has been written as the disjoint union of sets, each of which has even cardinality and consists of consecutive integers.
The smallest length in B is $4(r-2 q-1) t+t-4 b-2 \delta_{r}$, and we wish to show this length is at least $12 s+1$. Now $r \geq 2 w=2(q s+b)>2 q+1$ since $s \geq 2$. Next since $0 \leq b<s$ and $t=4 s+1$, we have $t-1-4 b=4 s-4 b \geq 4$. Therefore, $4(r-2 q-1) t \geq 4 t>16 s$, and thus $4(r-2 q-1) t+t-3-4 b>16 s+2>12 s$. Since the smallest length is $S^{\prime} \backslash B$ is at least $12 s+1$ and since $S^{\prime} \backslash B$ consists of sets of consecutive integers of even cardinality, we may partition $S^{\prime} \backslash B$ into sets $T, S_{1}, \ldots, S_{8 r s-4 s}$ where $T=\{1,2, \ldots, 12 s\}$, and for $i=1,2, \ldots, 8 r s-4 s, S_{i}=$ $\left\{b_{i}, b_{i}+1\right\}$ with $b_{1}<b_{2}<\cdots<b_{8 r s-4 s}$. Let $A=\left[a_{i, j}\right]$ be the $2 s \times m$ array

$$
\left[\begin{array}{llllllll}
1 & 2 & 3 & 4 & 8 s+1 & 8 s+3 & b_{1} & b_{1}+1 \\
5 & 6 & 7 & 8 & 8 s+2 & 8 s+4 & b_{4 r-1} & b_{4 r-1}+1 \\
\vdots & \vdots \\
8 s-3 & 8 s-2 & 8 s-1 & 8 s & 12 s-2 & 12 s & b_{8 r s-4 s-4 r+3} & b_{8 r s-4 s-4 r+3}+1
\end{array}\right]
$$

$$
\left.\begin{array}{lllll}
b_{2} & b_{2}+1 & \cdots & b_{4 r-2} & b_{4 r-2}+1 \\
b_{4 r} & b_{4 r}+1 & \cdots & b_{8 r-4} & b_{8 r-4}+1 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
b_{8 r s-4 s-4 r+4} & b_{8 r s-4 s-4 r+4}+1 & \cdots & b_{8 r s-4 s} & b_{8 r s-4 s}+1
\end{array}\right]
$$

Clearly, for each i with $1 \leq i \leq 2 s$,

$$
a_{i, 2}+\sum_{j \equiv 0,1(\bmod 4)} a_{i, j}=a_{i, 1}+\sum_{j \equiv 2,3(\bmod 4)} a_{i, j}(\text { where } 3 \leq j \leq m)
$$

and

$$
a_{i, 1}<a_{i, 2}<\ldots<a_{i, m}
$$

Thus the m-tuple

$$
\begin{gathered}
\left(a_{i, 1},-a_{i, 2}, a_{i, 3},-a_{i, 5}, a_{i, 7}, \ldots, a_{i, m-3},-a_{i, m-1},-a_{i, m-2}, a_{i, m-4},-a_{i, m-6}, \ldots,\right. \\
\left.a_{i, 6},-a_{i, 4}, a_{i, m}\right)
\end{gathered}
$$

is a difference m-tuple and corresponds to an m-cycle C_{i} with $\ell\left(C_{i}\right)=\left\{a_{i, 1}, a_{i, 2}, \ldots\right.$, $\left.a_{i, m}\right\}$. Hence, $X^{\prime}=\left\{C_{1}, C_{2}, \ldots, C_{2 s}\right\}$ is a minimum generating set for a cyclic m-cycle system of $\left\langle S^{\prime} \backslash B\right\rangle_{m t}$.

5.3 The Case when $m \equiv 6(\bmod 8)$ and $t \equiv 3(\bmod 4)$

In this subsection, we find a cyclic m-cycle system of $K_{m t}-I$ when $m \equiv 6(\bmod 8)$ and $t \equiv 3(\bmod 4)$. We begin with three special cases, namely when $m=6, m=14$, or $t=3$. We first consider the case $m=6$.

Lemma 5.6 For all positive integers $t \equiv 3(\bmod 4)$, there exists a cyclic 6 -cycle system of $K_{6 t}-I$.

Proof: Let t be a positive integer such that $t \equiv 3(\bmod 4)$, say $t=4 s+3$ for some non-negative integer s. Then $K_{6 t}-I=\left\langle S^{\prime}\right\rangle_{6 t}$ where $S^{\prime}=\{1,2, \ldots, 12 s+8\}$.
Consider the paths $P_{i}: 0,3 t-i, 2 t$, for $1 \leq i \leq 4$; then $\ell\left(P_{i}\right)=\{3 t-i, t-i\}$. Next, let $C_{i}=P_{i} \cup \rho^{2 t}\left(P_{i}\right) \cup \rho^{4 t}\left(P_{i}\right)$. Then each C_{i} is a 6-cycle and $X=\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$ is a minimum generating set for $\langle B\rangle_{6 t}$ where $B=\{3 t-i, t-i \mid 1 \leq i \leq 4\}$. Now, $t-5=4 s-2$ and thus $S^{\prime} \backslash B=\{1,2, \ldots, 4 s-2,4 s+3,4 s+4, \ldots, 12 s+4\}$, and so we must find a cyclic 6 -cycle system of $\left\langle S^{\prime} \backslash B\right\rangle_{6 t}$. Let $A=\left[a_{i, j}\right]$ be the $2 s \times 6$ array

$$
\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 8 s+5 & 8 s+7 \\
5 & 6 & 7 & 8 & 8 s+6 & 8 s+8 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
4 s-3 & 4 s-2 & 4 s+3 & 4 s+4 & \alpha & \alpha+2 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
8 s+1 & 8 s+2 & 8 s+3 & 8 s+4 & 12 s+2 & 12 s+4
\end{array}\right]
$$

where

$$
\alpha= \begin{cases}10 s+2 & \text { if } \mathrm{s} \text { is even } \\ 10 s+3 & \text { if } \mathrm{s} \text { is odd }\end{cases}
$$

Clearly, for each i with $1 \leq i \leq 2 s$,

$$
a_{i, 2}+\sum_{j \equiv 0,1(\bmod 4)} a_{i, j}=a_{i, 1}+\sum_{j \equiv 2,3(\bmod 4)} a_{i, j} \quad(\text { where } 3 \leq j \leq 6)
$$

and

$$
a_{i, 1}<a_{i, 2}<\ldots<a_{i, 6} .
$$

Thus the 6 -tuple

$$
\left(a_{i, 1},-a_{i, 2}, a_{i, 3},-a_{i, 4},-a_{i, 5}, a_{i, 6}\right)
$$

is a difference 6 -tuple and corresponds to a 6 -cycle C_{i}^{\prime} with $\ell\left(C_{i}^{\prime}\right)=\left\{a_{i, 1}, a_{i, 2}, \ldots, a_{i, 6}\right\}$. Hence, $X^{\prime}=\left\{C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{2 s}^{\prime}\right\}$ is a minimum generating set for a cyclic 6 -cycle system of $\left\langle S^{\prime} \backslash B\right\rangle_{6 t}$.

Next we consider the case when $m=14$.
Lemma 5.7 For all positive integers $t \equiv 3(\bmod 4)$, there exists a cyclic 14 -cycle system of $K_{14 t}-I$.

Proof: Let t be a positive integer such that $t \equiv 3(\bmod 4)$, say $t=4 s+3$ for some non-negative integer s. Then $K_{14 t}-I=\left\langle S^{\prime}\right\rangle_{14 t}$ where $S^{\prime}=\{1,2, \ldots, 28 s+20\}$.
Consider the paths $P_{i}: 0,7 t-i, 2 t$, for $1 \leq i \leq 10$; then $\ell\left(P_{i}\right)=\{7 t-i, 5 t-i\}$. Next, let $C_{i}=P_{i} \cup \rho^{2 t}\left(P_{i}\right) \cup \rho^{4 t}\left(P_{i}\right) \cup \cdots \cup \rho^{12 t}\left(P_{i}\right)$. Then each C_{i} is a 14-cycle and $X=\left\{C_{1}, C_{2}, \ldots, C_{10}\right\}$ is a minimum generating set for $\langle B\rangle_{14 t}$ where $B=\{7 t-i, 5 t-$ $i \mid 1 \leq i \leq 10\}$. Now, $5 t-10=20 s+5$ and thus $S^{\prime} \backslash B=\{1,2, \ldots, 20 s+4,20 s+$ $15,20 s+16, \ldots, 28 s+10\}$, and so we must find a cyclic 14 -cycle system of $\left\langle S^{\prime} \backslash B\right\rangle_{14 t}$. Let $A=\left[a_{i, j}\right]$ be the $2 s \times 14$ array
$\left[\begin{array}{llllllllll}1 & 2 & 3 & 4 & 8 s+1 & 8 s+3 & 12 s+1 & 12 s+2 & 12 s+3 & 12 s+4 \\ 5 & 6 & 7 & 8 & 8 s+2 & 8 s+4 & 12 s+5 & 12 s+6 & 12 s+7 & 12 s+8 \\ 9 & 10 & 11 & 12 & 8 s+5 & 8 s+7 & 12 s+9 & 12 s+10 & 12 s+11 & 12 s+12 \\ \vdots & \vdots \\ 8 s-3 & 8 s-2 & 8 s-1 & 8 s & 12 s-2 & 12 s & 20 s-3 & 20 s-2 & 20 s-1 & 20 s\end{array}\right]$

$$
\left.\begin{array}{llll}
20 s+1 & 20 s+2 & 20 s+3 & 20 s+4 \\
20 s+15 & 20 s+16 & 20 s+17 & 20 s+18 \\
20 s+19 & 20 s+20 & 20 s+21 & 20 s+22 \\
\vdots & \vdots & \vdots & \vdots \\
28 s+7 & 28 s+8 & 28 s+9 & 28 s+10
\end{array}\right] .
$$

Clearly, for each i with $1 \leq i \leq 2 s$,

$$
a_{i, 2}+\sum_{j \equiv 0,1(\bmod 4)} a_{i, j}=a_{i, 1}+\sum_{j \equiv 2,3(\bmod 4)} a_{i, j} \quad(\text { where } 3 \leq j \leq 14)
$$

and

$$
a_{i, 1}<a_{i, 2}<\ldots<a_{i, 14} .
$$

Thus the 14 -tuple

$$
\left(a_{i, 1},-a_{i, 2}, a_{i, 3},-a_{i, 5}, a_{i, 7},-a_{i, 9}, a_{i, 11},-a_{i, 13},-a_{i, 12}, a_{i, 10},-a_{i, 8}, a_{i, 6},-a_{i, 4}, a_{i, 14}\right)
$$

is a difference 14 -tuple and corresponds to a 14 -cycle C_{i}^{\prime} with $\ell\left(C_{i}^{\prime}\right)=\left\{a_{i, 1}, a_{i, 2}, \ldots\right.$, $\left.a_{i, 14}\right\}$. Hence, $X^{\prime}=\left\{C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{2 s}^{\prime}\right\}$ is a minimum generating set for a cyclic 14cycle system of $\left\langle S^{\prime} \backslash B\right\rangle_{14 t}$.

We now consider the case when $t=3$.
Lemma 5.8 For all positive integers $m \equiv 6(\bmod 8)$, there exists a cyclic m-cycle system of $K_{3 m}-I$.

Proof: Let m be a positive integer such that $m \equiv 6(\bmod 8)$, say $m=8 r+6$ for some non-negative integer r. By Lemmas 5.6 and 5.7 , we may assume $r \geq 2$. Then $K_{3 m}-I=\left\langle S^{\prime}\right\rangle_{m t}$ where $S^{\prime}=\{1,2, \ldots, 12 r+8\}$. Write $2 r=4 q+b+2$ for integers $q \geq$ 0 and $b \in\{0,2\}$, and let a be a positive integer such that $1+\log _{2}(q+1) \leq a \leq$ $1+\log _{2}(3 q+4 / 3+5 b / 6)$. For integers i and j, define $d_{i, j}=6(2 r-i)+j$. Then consider the path $P_{i, j}: 0, d_{i, j}, 3 \cdot 2^{a}$; so $\ell\left(P_{i, j}\right)=\left\{6(2 r-i)+j, 6(2 r-i)+j-3 \cdot 2^{a}\right\}$. Now, let $C_{i, j}=P_{i, j} \cup \rho^{6}\left(P_{i, j}\right) \cup \cdots \cup \rho^{3(m-2)}\left(P_{i, j}\right)$. Then $C_{i, j}$ is an m-cycle since $m \equiv 6(\bmod 8)$ implies $\operatorname{gcd}\left(3 \cdot 2^{a}, 3 m\right)=6$. Thus, $\ell\left(C_{i, j}\right)=\ell\left(P_{i, j}\right)$.
Now, let

$$
\begin{aligned}
X= & \left\{C_{0, j} \mid j=7,8\right\} \\
& \cup\left\{C_{i, j} \mid 0 \leq i \leq q-1 \text { and } 1 \leq j \leq 4\right\} \\
& \cup\left\{C_{q, j} \mid 5-b \leq j \leq 4\right\}
\end{aligned}
$$

and let

$$
\begin{aligned}
B= & \left\{12 r+7,12 r+7-3 \cdot 2^{a}, 12 r+8,12 r+8-3 \cdot 2^{a}\right\} \\
& \cup\left\{6(2 r-i)+j, 6(2 r-i)-3 \cdot 2^{a}+j \mid 0 \leq i \leq q-1 \text { and } 1 \leq j \leq 4\right\} \\
& \cup\left\{6(2 r-q)+j, 6(2 r-q)-3 \cdot 2^{a}+j \mid 5-b \leq j \leq 4\right\}
\end{aligned}
$$

where, if $q=0$ or $b=0$, we take the corresponding sets to be empty as necessary. Now B will consists of $4 r$ distinct lengths and X will be a minimum generating set for $\langle B\rangle_{3 m}$ if $12 r+8-3 \cdot 2^{a} \leq 6(2 r-q)+5-b-1$. Note that $1+\log _{2}(q+1) \leq a$ so that $q+1 \leq 2^{a-1}$. Next,
$12 r+8-[6(2 r-q)+5-b-1]=6 q+4+b \leq 6 q+6=6(q+1) \leq 6 \cdot 2^{a-1}=3 \cdot 2^{a}$,
and hence $12 r+8-3 \cdot 2^{a} \leq 6(2 r-q)+5-b-1$. Thus, B consists of $4 r$ distinct lengths, and X is a minimum generating set for $\langle B\rangle_{3 m}$. Now, the smallest length in B is $6(2 r-q)+5-b-3 \cdot 2^{a}$ and we want this length to be greater than 8. Recall that $a \leq 1+\log _{2}(3 q+3 / 2+5 b / 6)$ and thus $2^{a-1} \leq 3 q+3 / 2+5 b / 6$. Hence, $3 \cdot 2^{a} \leq$
$18 q+9+5 b=12 r-6 q-3-b$ since $2 r=4 q+b+2$. Therefore, $6(2 r-q)+5-b-3 \cdot 2^{a} \geq 8$. Since $|B|=4 r$, we have $\left|S^{\prime} \backslash B\right|=8 r+8$. Note that

$$
\begin{aligned}
S^{\prime} \backslash B= & \left\{1,2, \ldots, 6(2 r-q)+5-b-3 \cdot 2^{a}-1\right\} \\
& \cup\left\{6(2 r-i)-3 \cdot 2^{a}+5,6(2 r-i)-3 \cdot 2^{a}+6 \mid 0 \leq i \leq q\right\} \\
& \cup\left\{12 r-3 \cdot 2^{a}+9, \ldots, 6(2 r-q)+5-b-1\right\} \\
& \cup\{6(2 r-i)+5,6(2 r-i)+6 \mid 0 \leq i \leq q\} .
\end{aligned}
$$

Note that $S^{\prime \prime} \backslash B$ has been written as the disjoint union of sets, each of which has even cardinality and consists of consecutive integers. Therefore, we may partition $S^{\prime} \backslash B$ into sets $T, S_{1}, S_{2}, \ldots, S_{4 r}$ where $T=\{1,2, \ldots, 8\}$ and for $i=1,2, \ldots, 4 r$, let $S_{i}=\left\{b_{i}, b_{i}+1\right\}$ with $b_{1}<b_{2}<\cdots<b_{4 r}$.
Consider the m-tuple

$$
\begin{array}{r}
\left(1,-3,6,-7, b_{1},-b_{2}, b_{3},-b_{4}, \ldots, b_{4 r-1},-b_{4 r},-\left(b_{4 r-1}+1\right), b_{4 r-2}+1\right. \\
\left.-\left(b_{4 r-3}+1\right), b_{4 r-4}+1, \ldots, b_{2}+1,-\left(b_{1}+1\right), 8,-5, b_{4 r}+1\right)
\end{array}
$$

which is a difference m-tuple and corresponds to an m-cycle C_{1} with

$$
\ell\left(C_{1}\right)=\left\{1,3,5,6,7,8, b_{1}, b_{1}+1, b_{2}, b_{2}+1, \ldots, b_{4 r}, b_{4 r}+1\right\} .
$$

Then consider the path $P: 0,2,6$; so $\ell(P)=\{2,4\}$. Now, let $C_{2}=P \cup \rho^{6}(P) \cup$ $\cdots \cup \rho^{3(m-2)}(P)$. Then C_{2} is an m-cycle since $m \equiv 6(\bmod 8)$ implies $\operatorname{gcd}(6,3 m)=6$. Thus, $\ell\left(C_{2}\right)=\ell(P)=\{2,4\}$. Hence, $X^{\prime}=\left\{C_{1}, C_{2}\right\}$ is a minimum generating set for a cyclic m-cycle system of $\left\langle S^{\prime} \backslash B\right\rangle_{3 m}$.

We now prove the main result of this subsection, namely that $K_{m t}-I$ has a cyclic m-cycle system for every $t \equiv 3(\bmod 4)$ and $m \equiv 6(\bmod 8)$.
Lemma 5.9 For all positive integers $t \equiv 3(\bmod 4)$ and $m \equiv 6(\bmod 8)$, there exists a cyclic m-cycle system of $K_{m t}-I$.

Proof: Let m and t be positive integers such that $m \equiv 6(\bmod 8)$ and $t \equiv 3(\bmod 4)$. Then $m=8 r+6$ and $t=4 s+3$ for some non-negative integers r and s. Then $K_{m t}-I=\left\langle S^{\prime}\right\rangle_{m t}$ where $S^{\prime}=\{1,2, \ldots,(4 r+3) t-1\}$.
By Lemmas 5.6, 5.7, and 5.8, we may assume $s \geq 1$ and $r \geq 2$. First, write $6 r+4=$ $(2 t-2) q+(t-1) \ell+b$ for integers q, ℓ and b with $q \geq 0,0 \leq b<2 t-2$, and $\ell=0$ if $6 r+4<t-1$, or $\ell=1$ otherwise. For integers i and j, define $d_{i, j}=2 t(2 r-2 i-1)+j$. Consider the path $P_{i, j}: 0, d_{i, j}, 2 t$ and note that $\ell\left(P_{i, j}\right)=\{2 t(2 r-2 i-1)+j, 2 t(2 r-$ $2 i-2)+j\}$. If $0<j<2 t$, then $C_{i, j}=P_{i, j} \cup \rho^{2 t}\left(P_{i, j}\right) \cup \rho^{4 t}\left(P_{i, j}\right) \cup \cdots \cup \rho^{(m-2) t}\left(P_{i, j}\right)$ is an m-cycle since $m \equiv 6(\bmod 8)$ implies $\operatorname{gcd}(2 t, m t)=2 t$. Thus, if $0<j<2 t$, then $\ell\left(C_{i, j}\right)=\ell\left(P_{i, j}\right)$.
Now, let

$$
\begin{aligned}
X= & \left\{C_{-1, j} \mid 1 \leq j \leq t-1\right\} \\
& \cup\left\{C_{i, j} \mid 0 \leq i \leq q-1 \text { and } 1 \leq j \leq 2 t-2\right\} \\
& \cup\left\{C_{q, j} \mid 2 t-1-b \leq j \leq 2 t-2\right\}
\end{aligned}
$$

and let

$$
\begin{aligned}
B= & \{2 t(2 r+1)+j, 2 t(2 r)+j \mid 1 \leq j \leq t-1\} \\
& \cup\{2 t(2 r-2 i-1)+j, 2 t(2 r-2 i-2)+j \mid 1 \leq j \leq 2 t-2 \text { and } 0 \leq i \leq q-1\} \\
& \cup\{2 t(2 r-(2 q+1))+2 t-1-b+j, 2 t(2 r-2 q-2)+2 t-1-b+j \\
& \mid 0 \leq j \leq b-1\} .
\end{aligned}
$$

where we take the first set to be empty if $\ell=0$, the second to be empty if $q=0$, and the third to be empty if $b=0$. Then X is a minimum generating set for $\langle B\rangle_{m t}$. Now we must find a cyclic m-cycle system of $\left\langle S^{\prime} \backslash B\right\rangle_{m t}$. First, $|B|=2[(2 t-2) q+$ $(t-1) \ell+b]=12 r+8$ so that $\left|S^{\prime} \backslash B\right|=(4 r+3) t-1-12 r-8=(8 r+6)(2 s)$. Moreover,

$$
\begin{aligned}
S^{\prime} \backslash B= & \{1,2, \ldots, 2 t(2 r-2 q-1)-b-2\} \\
& \cup\{2 t(2 r-2 q-1)-1,2 t(2 r-2 q-1), \ldots, 2 t(2 r-2 q)-b-2\} \\
& \cup\{2 t(2 r-i)-1,2 t(2 r-i) \mid 0 \leq i \leq 2 q\} \\
& \cup\{4 r t+t, 4 r t+t+1, \ldots, 4 r t+2 t\} .
\end{aligned}
$$

The smallest length in B is $4 t(r-q-1)+(2 t-1)-b$, and we must verify that this length is at least $12 s+1$. Note that we have $2 t-1-b>1$. Thus, it is sufficient to prove that $4 t(r-q-1) \geq 12 s$, or $t(r-q-1) \geq 3 s$. This inequality follows if $r>q+1$. Clearly, this is true if $q=0$ since $r \geq 2$, so assume $q \geq 1$. Then $\ell=1$, and so $6 r+4=2 q(4 s+2)+(4 s+2)+b$, or

$$
\begin{aligned}
3 r+2 & =q(4 s+2)+2 s+1+b / 2 \\
& =4 q s+2 q+2 s+1+b / 2 \\
& \geq 6 q+3 \quad(\text { since } s \geq 1)
\end{aligned}
$$

So, $r \geq 2 q+1 / 3>q+1$ since $q \geq 1$. Since the smallest length in B is at least $12 s+1$ and $S^{\prime} \backslash B$ consists of sets of consecutive integers of even cardinality, we may partition $S^{\prime} \backslash B$ into sets $T, S_{1}, \ldots, S_{8 r s}$ where $T=\{1,2, \ldots, 12 s\}$, and for $i=1,2, \ldots, 8 r s, S_{i}=\left\{b_{i}, b_{i}+1\right\}$ with $b_{1} \leq b_{2} \leq \cdots \leq b_{8 r s}$. Let $A=\left[a_{i, j}\right]$ be the $2 s \times m$ array

$$
\left[\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 8 s+1 & 8 s+3 & b_{1} & b_{1}+1 & \\
5 & 6 & 7 & 8 & 8 s+2 & 8 s+4 & b_{4 r+1} & b_{4 r+1}+1 & \\
\vdots & \cdots \\
8 s-3 & 8 s-2 & 8 s-1 & 8 s & 12 s-2 & 12 s & b_{8 r s-4 r+1} & b_{8 r s-4 r+1}+1 &
\end{array}\right]
$$

$$
\left.\begin{array}{lllll}
b_{2} & b_{2}+1 & \cdots & b_{4 r} & b_{4 r}+1 \\
b_{4 r+2} & b_{4 r+2}+1 & \cdots & b_{8 r} & b_{8 r}+1 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
b_{8 r s-4 r+2} & b_{8 r s-4 r+2}+1 & \cdots & b_{8 r s} & b_{8 r s}+1
\end{array}\right]
$$

Clearly, for each i with $1 \leq i \leq 2 s$,

$$
a_{i, 2}+\sum_{j \equiv 0,1(\bmod 4)} a_{i, j}=a_{i, 1}+\sum_{j \equiv 2,3(\bmod 4)} a_{i, j}(\text { where } 3 \leq j \leq m)
$$

and

$$
a_{i, 1}<a_{i, 2}<\ldots<a_{i, m}
$$

Thus the m-tuple

$$
\begin{gathered}
\left(a_{i, 1},-a_{i, 2}, a_{i, 3},-a_{i, 5}, a_{i, 7}, \ldots, a_{i, m-3},-a_{i, m-1},-a_{i, m-2}, a_{i, m-4},-a_{i, m-6}, \ldots,\right. \\
\left.a_{i, 6},-a_{i, 4}, a_{i, m}\right)
\end{gathered}
$$

is a difference m-tuple and corresponds to an m-cycle C_{i} with $\ell\left(C_{i}\right)=\left\{a_{i, 1}, a_{i, 2}, \ldots\right.$, $\left.a_{i, m}\right\}$. Hence, $X^{\prime}=\left\{C_{1}, C_{2}, \ldots, C_{2 s}\right\}$ is a minimum generating set for a cyclic m-cycle system of $\left\langle S^{\prime} \backslash B\right\rangle_{m t}$.

References

[1] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B 81(2001), 77-99.
[2] A. Blinco, S. El-Zanati and C. Vanden Eynden, On the cyclic decomposition of complete graphs into almost-bipartite graphs, Discrete Math. 284 (2004), 71-81.
[3] D. Bryant, H. Gavlas and A. Ling, Skolem-type difference sets for cycles, Electronic J. Combin. 10 (2003), \#R38.
[4] D. Bryant and C. A. Rodger, Cycle Decompositions, in the CRC Handbook of Combinatorial Designs, 2nd Ed., (eds. C. J. Colbourn and J. H. Dinitz), Chapman \& Hall/CRC, Boca Raton FL (2007).
[5] M. Buratti, Cycle decompositions with a sharply vertex transitive automorphism group, Le Matematiche 59 (2004), 91-105.
[6] M. Buratti and A. Del Fra, Existence on cyclic k-cycle systems of the complete graph. Discrete Math. 261 (2003), 113-125.
[7] M. Buratti and A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph, Discrete Math., 279 (2004), 107-119.
[8] M. Buratti and G. Rinaldi, A non-existence result on cyclic cycle-decompositions of the cocktail party graph, Discrete Math. 309 (2009) 4722-4726.
[9] J. D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag New York, Berlin, Heidelberg, Graduate Texts in Mathematics, 163, 1996.
[10] S. I. El-Zanati, N. Punnim and C. Vanden Eynden, On the cyclic decomposition of complete graphs into bipartite graphs, Australas. J. Combin. 24 (2001), 209219.
[11] H.-L. Fu and S.-L. Wu, Cyclically decomposing the complete graph into cycles, Discrete Math. 282 (2004), 267-273.
[12] H. Jordon and J. Morris, Cyclic hamiltonian cycle systems of the complete graph minus a 1-factor, Discrete Math. 308 (2008), 2440-2449.
[13] A. Kotzig, On decompositions of the complete graph into $4 k$-gons, Mat.-Fyz. Cas. 15 (1965), 227-233.
[14] R. Peltesohn, Eine Losung der beiden Heffterschen Differenzenprobleme, Compos. Math. 6 (1938), 251-257.
[15] A. Rosa, On cyclic decompositions of the complete graph into $(4 m+2)$-gons, Mat.-Fyz. Cas. 16 (1966), 349-352.
[16] M. Šajna, Cycle Decompositions III: Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), 27-78.
[17] A. Veitri, Cyclic k-cycles systems of order $2 k n+k$; a solution of the last open cases, J. Combin. Des. 12 (2004), 299-310.
[18] S.-L. Wu, Cyclic even cycle systems of the complete graph, J. Combin. Des. 20 (2012), 23-29.
[19] S.-L. Wu and H.-L. Fu, Cyclic m-cycle systems with $m \leq 32$ or $m=2 q$ with q a prime power, J. Combin. Des. 14 (2006), 66-81.

