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Abstract

In this thesis, we have developed several techniques for tackling both the extractive and

abstractive text summarization tasks. We implement a rank based sentence selection which

can retain the most important and non-redundant contents to form the summary. For ensur-

ing a pure sentence abstraction, we propose several novel sentence abstraction techniques

which jointly perform sentence compression, fusion and paraphrasing at the sentence level.

We also model abstractive compression generation as a sequence-to-sequence (seq2seq)

problem using an encoder-decoder framework, which is also a novel inclusion according

to the state-of-the-art text summarization systems. We propose simple yet effective solu-

tions to several common problems in neural seq2seq models such as redundant repetition

and unknown token replacement. Our sentence level models improve the informativity as

well as the grammaticality of the generated sentences. Furthermore, we applied our sen-

tence abstraction techniques to the multi-document text summarization. We also propose a

greedy sentence ordering algorithm to maintain the summary coherence for increasing the

readability. We introduce an optimal solution to the summary length limit problem. For

the sentence level tasks, we conduct our experiments on human generated abstractive com-

pression datasets and evaluate our system on several newly proposed Machine Translation

(MT) evaluation metrics. In the case of the document level summary, we conduct exper-

iments on the Document Understanding Conference (DUC) 2004 datasets using ROUGE

toolkit. Our experiments demonstrate that the methods bring significant improvements over

the state-of-the-art methods. At the end of this thesis, we also introduced a new concept

called “Reader Aware Summary” which can generate summaries for some critical readers

(e.g. Non-Native Reader).
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Chapter 1

Introduction

1.1 Motivation

“Text Summarization is the process of distilling the most important information from

one or more texts to produce an abridged version for a particular task and user.” (Section

23.3 of Jurafsky and Martin (2008))

Today’s world is all about information, most of it online. The internet contains billions

of textual documents and is growing at an exponential rate. Search engines such as Google,

Bing, Yahoo usually return thousands of pages for a single query. As a result, we are fac-

ing a challenging problem of information overload. Moreover, the internet provides large

collections of text on a variety of topics. This accounts for the redundancy in the texts and

difficulty to obtain concise information. Users get so over-whelmed reading large amounts

of text that they may skip reading many important and interesting documents. These con-

cerns have initiated interest in the development of automatic summarization systems. Such

systems are designed to take a single article, a cluster of news articles, a broadcast news

show, user reviews or an email thread as input, and produce a concise and fluent summary

of the most important information while being non-redundant, coherent and grammatically

readable. A good summary can largely benefit individuals and organizations to achieve

better decisions. For example, individual customers can consult reviews about the prod-

ucts written by other users to decide whether to buy or not. On the other hand, companies

can leverage these reviews about their products to improve the products and the marketing

strategy. However, it is almost impossible to read all the reviews given their sheer number.

1



1.3. OVERVIEW OF THESIS ORGANIZATION

1.2 Contributions of this Thesis

• We implemented an ILP (Integer Linear Programming) based sentence selection along

with TextRank (Mihalcea and Tarau, 2004) scores and key phrases for extractive

multi-document summarization. We further model the coherence using a greedy al-

gorithm to increase the readability of the generated summary.

• We designed a novel abstractive sentence generation model which jointly performs

sentence fusion and paraphrasing using the skipgram word embedding model. Fur-

thermore, we applied our model to the abstractive multi-document summarization

and got competitive results.

• We designed a neural paraphrastic compression model which jointly performs com-

pression and paraphrasing in a single sentence in order to produce abstractive com-

pression using a seq2seq encoder decoder model. According to the state of the art,

this is the first neural model to jointly tackle compression and paraphrase in a single

sentence. We propose simple yet effective solutions to several common problems in

neural seq2seq models such as redundant repetition and unknown token replacement.

• We further proposed to use our neural paraphrastic compression at the document

level. To the best of our knowledge, this is the first model to generate multi-sentence

abstractive summary using a seq2seq encoder decoder model in a multi-document

setting. Furthermore, we also introduced a new concept called “Reader Aware Sum-

mary” which can generate summaries for some critical readers (e.g. Non-Native

Reader). Finally, we designed an optimal solution for the classical summary length

limit problem which was not addressed in the past text summarization research in

particular.

2



1.3. OVERVIEW OF THESIS ORGANIZATION

1.3 Overview of Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we provide an overview of

automatic text summarization. We will also provide a brief introduction of the deep learning

techniques especially used in text summarization. In Chapter 3, we will present our model

for extractive coherent summarization in multi-document setting. Chapter 4 is devoted to

our paraphrastic fusion model at the sentence level as well as the document level summary

generation. Chapter 5 & 6 describe our novel approaches for the abstractive compression

generation using a neural seq2seq encoder decoder model at the sentence, multi-document

and reader level. Chapter 7 concludes and proposes directions for future research.

3



Chapter 2

Background

2.1 Automatic Text Summarization : A Recent Overview

The task of automatic document summarization aims at finding the most relevant in-

formation in a text and presenting them in a condensed form. A good summary should

retain the most important contents of the original document or a cluster of document, while

being coherent, non-redundant and grammatically readable. There are two types of sum-

marizations: abstractive summarization and extractive summarization. Abstractive meth-

ods, which are still a growing field are highly complex as they need extensive natural lan-

guage generation to rewrite the sentences. Therefore, the research community is focusing

more on extractive summaries, which selects salient (important) sentences from the source

document without any modification to create a summary. Summarization is classified as

single-document or multi-document based upon the number of source documents. The in-

formation overlap between the documents from the same topic makes the multi-document

summarization more challenging than the task of summarizing single documents.

2.1.1 Extractive Summarization

Over the past few decades, several extractive approaches have been developed for au-

tomatic summary generation that implements a number of machine learning, graph-based

and optimization techniques. LexRank (Erkan and Radev, 2004) and TextRank (Mihalcea

and Tarau, 2004) are graph-based methods of computing sentence importance for text sum-

marization. The RegSum system (Hong and Nenkova, 2014) employs a supervised model

4



2.1. AUTOMATIC TEXT SUMMARIZATION : A RECENT OVERVIEW

for predicting word importance. Treating multi-document summarization as a submodular

maximization problem has proven successful by (Lin and Bilmes, 2011). Instead of greed-

ily adding sentences to form a summary. The most widely used practice is to formulate the

problem as integer linear programming (ILP). Therefore, concept-based ILP (Gillick and

Favre, 2009) has been proposed where the goal is to maximize the sum of the weights of

the concepts (usually implemented as bigrams) that appear in the summary. Unfortunately,

none of the above systems cares about the coherence of the final extracted summary.

In the very recent works using a neural network, Cheng and Lapata (2016) proposed

an attentional encoder-decoder and (Nallapati et al., 2017) used a simple recurrent network

based sequence classifier to solve the problem of extractive summarization. However, they

are limited to single document settings, where sentences are implicitly ordered according

to the sentence position in the original document. Parveen and Strube (2015); Parveen et al.

(2015) proposed graph-based techniques to tackle coherence, which is also limited to single

document summarization. Moreover, a recent work (Wang et al., 2016) actually proposed a

multi-document summarization system that combines both coherence and informativeness

but this system is limited to syntactic linkages between named entities.

2.1.2 Abstractive Summarization

Abstractive summarization is generally much more difficult. It involves sophisticated

techniques for meaning representation, content organization, sentence compression, sen-

tence fusion and paraphrasing. There has been a huge interest in compressive document

summarization that tries to compress original sentences to form a summary (Clarke and La-

pata, 2006, 2008; Filippova, 2010) as a first intermediate step towards abstractive summa-

rization. Compression summarization techniques include sentences which are compressed

from original sentences without further modifications other than word deletion. Sentence

compression involving two or more sentences is called MSC (Multi-Sentence Compres-

sion). Most of the previous MSC approaches rely on syntactic parsing to build a depen-

5



2.1. AUTOMATIC TEXT SUMMARIZATION : A RECENT OVERVIEW

dency tree for each related sentence in a cluster for producing grammatical compressions

(Filippova and Strube, 2008). Unfortunately, syntactic parsers are not available for all the

languages. As an alternative, word graph-based approaches that only require a Parts-of-

Speech (POS) tagger and a list of stopwords have been proposed first by (Filippova, 2010).

A directed word graph is constructed in which nodes represent words and edges repre-

sent the adjacency between words in a sentence. Compressed sentences are generated by

finding k-shortest paths in the word graph. Boudin and Morin (2013) improved Filippova’s

approach by re-ranking the fusion candidate paths according to keyphrases to generate more

informative sentences. However, grammaticality is sacrificed to improve informativity in

these works.

Banerjee et al. (2015) proposed an abstractive multi-document summarization system

using Filippova’s sentence fusion approach (Filippova, 2010) combined with Integer Linear

Programming (ILP) sentence selection. They chose random k-shortest paths generated from

word graph and fed them into the ILP objective function. They used a 3-gram (Tri Gram)

language model to ensure the linguistic quality of the compressed sentences. Following

Banerjee’s work, several recent approaches have been proposed with slight modifications.

Multiword Expressions (MWE) was exploited in (ShafieiBavani et al., 2016) to produce

more informative compressions. Recently, Tuan et al. (2017) use syntax factor along with

Banerjee’s model to generate compressions. However, all the above mentioned systems

try to produce compressions by copying the source sentence words and no paraphrasing is

involved in the process.

Recently end-to-end training with encoder-decoder neural networks has achieved huge

success in the case of abstractive summarization. These systems have adopted techniques

such as encoder-decoder with attention neural network models (Bahdanau et al., 2015; Lu-

ong et al., 2015) from the field of machine translation to model the sentence summarization

task. Rush et al. (2015) was the first to use neural sequence-to-sequence learning in the

headline generation task from a single document, the classical (DUC 2004, Task-1). Un-

6



2.1. AUTOMATIC TEXT SUMMARIZATION : A RECENT OVERVIEW

fortunately, this line of research under the term sentence summarization (Rush et al., 2015),

which can generate only a single sentence, is somewhat misleadingly called text summa-

rization in some follow-up research works. Nallapati et al. (2016) from IBM also uses the

same deep learning framework for the same task. However, it has extremely interesting ad-

ditional techniques to improve performance like copying words from the source document.

Chopra et al. (2016) extended (Rush et al., 2015) to keep the CNN (Convolutional Neural

Networks) encoder but replace the decoder with Recurrent Neural Networks (RNN). Their

experiments show that the CNN encoder with RNN decoder model performs better than

(Rush et al., 2015). There are some limitations to the above mentioned models. One is

that the source documents are quite small (about 1 paragraph or 500 words in the training

dataset of the Annotated English Gigaword (Napoles et al., 2012)) and the produced out-

put is also very short (about 75 characters). Rush et al. (2015) uses the first sentence of

a document to pair with the headline of that document. It is argued that the first sentence

is enough to capture the gist of a document, but it is not perfect. Like the headlines, their

model produces some ungrammatical sentences.

In the case of seq2seq models, summarization tasks can benefit from copying words

from input sentences shown in (Gu et al., 2016; Gulcehre et al., 2016). Gu et al. (2016) pro-

pose CopyNet to model the copying mechanism in response generation, which also applies

for sentence summarization task. Gulcehre et al. (2016) propose a switch gate to control

whether to copy from a source sentence or generate from the target decoder vocabulary.

Unfortunately, there is still much to be done to adapt such encoder-decoder architectures to

document summarization instead of single sentence generation. Encoding for generic doc-

uments, which typically contains multiple paragraphs or a collection of related documents,

still lacks satisfactory solutions. Very recently, there are a few attempts (See et al., 2017;

Paulus et al., 2017) which can generate multiple sentences from a single document. In this

thesis, we will propose a model which can eventually generate multiple sentences from a

collection of related documents.

7
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2.1.3 Automatic Summary Evaluation

ROUGE (Recall-Oriented Understudy for Gisting Evaluation)1 is an automatic tool to

determine the quality of a machine generated summary by comparing it against a refer-

ence or a set of reference summaries (typically human-produced) (Lin, 2004). There are

4 different ROUGE metrics - namely ROUGE-N (1,2,3,4), ROUGE-L, ROUGE-W, and

ROUGE-S.

• ROUGE-N applies co-occurrence statistics to evaluate a summary which measures

unigram (one word), bigram (two word), trigram (three word) and higher order n-

gram overlap.

• ROUGE-L measures the longest matching sequence of words using LCS (Longest

Common Sub-sequence).

• ROUGE-W assigns different weights to consecutive in-sequence matches in LCS.

• ROUGE-S is any pair of word in their sentence order which allows for arbitrary gaps.

This can also be called skip-gram co-occurrence. For example, skip-bigram measures

the overlap of word pairs that can have a maximum of two gaps in between words2.

As an example, for the phrase “cat in the hat” the skip-bigrams would be “cat in, cat

the, cat hat, in the, in hat, the hat”.

Among these above mentioned measures, ROUGE-N is used the most in multi-document

summarization research. It counts the number of overlapping n-grams between the system

summary and human written reference summaries. We can define ROUGE-N as follows:

ROUGE-N =
∑S∈R ∑gn∈SCountmatch(gn)

∑S∈R ∑gn∈SCount(gn)

where n is the length of the n-gram, gn and Countmatch(gn) is the maximum number

of n-grams co-occurring in a candidate summary and a set of reference summaries (Lin,
1ROUGE package link: http://www.berouge.com
2http://www.rxnlp.com/how-rouge-works-for-evaluation-of-summarization-tasks/
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2004). When multiple reference summaries are used for evaluation, pairwise summary-

level ROUGE-N between a candidate machine generated summary s and every human

produced reference ri from the reference set R = {r1,r2, . . . ,rn} is computed. The final

ROUGE-N score is then obtained by taking the maximum of the summary-level ROUGE-

N scores as follows:

ROUGE-Nmulti = argmaxi (ROUGE-N(ri,s))

Let us assume, we have the following system and reference summaries:

System Summary (machine generated): A man with a helmet painted red is riding a

blue motorcycle.

Reference Summary (human produced): A man with a helmet is riding a blue mo-

torcycle.

If we consider just the individual words (uni-gram), the number of overlapping words

between the system summary and reference summary is 10. However, to get a good quan-

titative value, we can actually compute the precision and recall using the overlap of words.

Recall in the context of ROUGE simply means how much of the reference summary the

system summary is capturing. If we are only considering the individual words (uni-gram),

the recall can be computed as:

ROUGE-1 (recall) =
num o f overlapping words

total words in re f erence summary
=

10
10

= 1.0

This means that all the words in the human produced reference summary has been cap-

tured by the machine generated system summary. However, a machine generated summary

(system summary) can be extremely long, capturing all words in the human produced ref-

erence summary. But, much of the words in the system summary may be useless, resulting

a summary with redundant and repetitive information. This is where precision comes into

9
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play3. In terms of precision, what you are essentially measuring is, how much of the system

summary was in fact relevant or needed? For the same example, precision is measured as:

ROUGE-1 (precision) =
num o f overlapping words

total words in system summary
=

10
12

= 0.83

This simply means that 10 out of the 12 words in the system summary were relevant.

Let us assume, we had the following system summary instead of the previous example:

System Summary 2 (machine generated): A man with a helmet painted red is riding

a blue motorcycle down the road.

The Precision now becomes:

ROUGE-1 (precision) =
10
15

= 0.66

Now, the precision score has decreased, this is because we have quite a few redundant

words in the system summary. The precision is really crucial when we try to generate

summaries that are concise in nature. Therefore, it is always best to compute both the

Precision and Recall and then report the F-Measure. If the system summaries are forced

to be concise through some constraints (such as length limit constraint), then we could

consider using just the recall since precision is of less concern in this scenario. In this

thesis, we report only the limited length recall measure in our experiment. Moreover, we

also report the performance in terms of ROUGE-SU4, where S means skip-bigram (match

2 non contiguous words with other words in between) which allows rephrasing and sentence

reorganization. As the ROUGE score is supposed to evaluate abstractive summaries, its a

good measure. For other in between words, we use U4 which means maximum of 4 unigram

words are allowed within a skip-bigram.

3http://text-analytics101.rxnlp.com/2017/01/how-rouge-works-for-evaluation-of.html
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2.2 Word Embedding

This section introduces the concept of word embedding, which is a vector representation

of words. It is a popular method used in many natural language processing applications,

such as document classification, text summarization and question answering.

2.2.1 One-Hot Vectors

Building the above applications requires us to measure the similarity between two

words, sentences or even paragraphs. One-hot vector is a representation of all the words

through a vector space model. For each word, its vector representation has the correspond-

ing entry in the vector as 1 (presence), and all other entries as 0 (absence). The lengths of

one-hot vectors match the size of the dictionary or in more technical terms, vocabulary. Co-

sine similarity4 on one-hot vectors cannot capture semantic information when documents

say the same thing in completely different words. For instance, consider these two follow-

ing news headlines:

• Obama speaks to the media in Illinois

• The President greets the press in Chicago

These have no content words in common (except for the stopwords such as the and in,

which don’t carry much information for a semantic similarity measurement), so according

to the one-hot vectors representation, their cosine distance would be maximal. To calculate

their semantic similarity accurately, we need further information, which we can learn from

the large amounts of data through machine learning models (Kusner et al., 2015). The

Figure 2.1 taken from (Kusner et al., 2015) visualizes the word to word similarity of the

example headlines.

4https://en.wikipedia.org/wiki/Cosine similarity

11



2.2. WORD EMBEDDING

Figure 2.1: Visualization of word to word similarity of all non-stop words from both head-
lines are embedded into a word2vec space.

2.2.2 Word2Vec Embedding

Vector space models have been used in distributional semantics since the 1990s for esti-

mating continuous representations of words, Latent Dirichlet Allocation (LDA) (Blei et al.,

2003) and Latent Semantic Analysis (LSA) (Landauer et al., 1998) are two such examples.

The term word embedding was originally introduced by Bengio et al. (2003) by training a

neural language model. The language models build the joint probability P(w1, . . . ,wT ) of a

sentence, where wi is the ith word in the sentence. The language model assigns higher prob-

abilities to grammatical and meaningful sentences, and lower probabilities to meaningless

sentence constructions. Consider that we are searching something in the internet, from Fig-

ure 2.25, if we write “How long is a”, the search engine would suggest the word “football”.

This is because the probability of “How long is a football” is very high according to the

language model among all the words in the target vocabulary.

Word2vec (Mikolov et al., 2013b,a) is particularly the most popular of the word em-

bedding models for learning word embeddings from large amount of texts to create high-

dimensional (50 to 300 dimensional) representations of words in an unsupervised manner.

5Figure collected from http://book.paddlepaddle.org/04.word2vec/, this figure is under
https://creativecommons.org/licenses/by-sa/4.0/
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Figure 2.2: N-gram neural language model.

Word2Vec embeds words in a continuous vector space where semantically similar words are

placed as nearby points to each other as illustrated in the Figure 2.3. It was recently shown

that the word vectors capture many linguistic regularities. For example, vector arithmetic

operations [vector(“Paris”) - vector(“France”) + vector(“Italy”)] results in a vector that is

very close to vector(“Rome”), and [vector(“king”) - vector(“man”) + vector(“woman”)]

is close to vector(“queen”)6. Mikolov et al. (2013b) defined two architectures for learn-

ing word embeddings, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram

model.

Continuous Bag-of-Words model (CBOW): Unlike a language model that can only

base its predictions on past words, the CBOW model predicts the current word based on the

N words both before and after it. When N=2, the model is as the Figure 2.4 (left).

Skip-gram model: Instead of using the surrounding words, skip-gram uses the centre

word to predict the surrounding words as can be seen in Figure 2.4 (right).

6https://code.google.com/archive/p/word2vec/
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Figure 2.3: Visualization of semantic relationships, e.g. male-female, verb tense and even
country-capital relationships between words (Mikolov et al., 2013b).

Figure 2.4: CBOW model (left) and Skip-gram model (right) from (Mikolov et al., 2013b).
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Figure 2.5: An unrolled recurrent neural network (Image is taken from the source:
http://colah.github.io/posts/2015-08-Understanding-LSTMs)

2.2.3 GloVe Embedding

In contrast to word2vec, GloVe7 (Pennington et al., 2014) takes advantage of two pri-

mary families of word vectors, i.e. global matrix factorization methods (e.g. LSA (Lan-

dauer et al., 1998)) and local context window based methods (e.g. skip-gram (Mikolov

et al., 2013b)). Moreover, word2vec is a “predictive” model, whereas GloVe is a “count-

based” model. GloVe builds a co-occurrence matrix for the entire corpus first, then factor-

izes it to yield matrices for word vectors and context vectors.

2.3 Recurrent Neural Network (RNN)

In a traditional neural network, we assume that all the inputs and outputs are not de-

pendant on each other. But for many tasks it is not a good idea. If we want to predict the

next word in a sentence we need to know which words came before it. Recurrent neural

networks are generally good for data where there is a relation between previous inputs and

the current input in a sequence. As Natural Language Processing (NLP) is a classical prob-

lem on sequential data, the RNNs have shown great success in many NLP tasks in the last

few years, such as language modeling, syntax parsing, image captioning, dialog generation,

machine translation, summarization and question answering.

As shown in Figure 2.5, by unfolding an RNN at the t-th time step, the network takes

two inputs: the t-th input vector ~xt (Normally, the embedded input word goes through an

RNN as e(~xt) at every time step) and the hidden state from the last time-step ~ht−1. From

7https://github.com/stanfordnlp/GloVe
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those, it computes the hidden state of the current time-step ~ht . This process is repeated until

all inputs are processed in sequence. Considering the RNN as function f , the formulation

is:

~ht = f (~xt , ~ht−1)

2.3.1 Long Short Term Memory (LSTM)

One of the essential properties of RNNs is that they are able to connect previous infor-

mation to the present situation. Sometimes, we only need to look at recent information to

describe the present situation. For example, consider a language model trying to predict

the last word based on the previous ones in a sentence “How long is a football match”. We

actually do not need any further context, the next word is going to be match. In such cases,

where the gap between the relevant information and the place that it is needed is small,

RNNs can learn to use the past information. In contrast, we try to predict the last word of

the sentence “I grew up in Bangladesh, I can speak fluent Bengali”. Recent information

suggests that the next word is probably the name of a language, but if we want to narrow

down which language, we need some context of Bangladesh, which is further back from

the last word. Unfortunately, as that gap grows, RNNs become unable to learn to connect

the information8.

Long Short Term Memory networks usually called LSTMs (Hochreiter and Schmidhu-

ber, 1997) are a special kind of RNN, capable of avoiding the long-distance dependencies

problem (Bengio et al., 1994). They work exceptionally well, and are widely used on a

large variety of NLP problems recently.

In comparison to the structure of a RNN, an LSTM includes a memory cell c, an input

gate i, a forget gate f and an output gate o. These gates and memory cells have the ability

to avoid the long term dependencies problem. We can formulate the LSTM denoted as a

function f , as follows:

8http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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ht = f (xt ,ht−1)

f contains following formulations from (Hochreiter and Schmidhuber, 1997),

it = σ(Wxixt +Whihh−1 +Wcict−1 +bi) (2.1)

ft = σ(Wx f xt +Wh f hh−1 +Wc f ct−1 +b f ) (2.2)

ct = ft� ct−1 + it� tanh(Wxcxt +Whchh−1 +bc) (2.3)

ot = σ(Wxoxt +Whohh−1 +Wcoct +bo) (2.4)

ht = ot� tanh(ct) (2.5)

In the above equations, it , ft ,ct ,ot stand for input gate, forget gate, memory cell and

output gate respectively. W and b are model parameters, tanh is the hyperbolic tangent,

and � denotes an element-wise product operation as shown in Figure 2.6.

2.3.2 Gated Recurrent Unit (GRU)

GRU (Cho et al., 2014b) is related to a LSTM, but both uses a different gating mech-

anism to prevent long-distance dependencies problem. GRUs are relatively new, have a

less complex structure, train faster, computationally more efficient and perform better than

a LSTM on less training data (Chung et al., 2014). GRU also controls the flow of infor-

mation like the LSTM unit, but without having to use a memory unit, and combines the

forget and input gates into a single “update gate”. GRU just exposes the full hidden content

without any control (Cho et al., 2014b).

A GRU layer is quite similar to a LSTM layer, the following equations are for a single

GRU layer (Cho et al., 2014b):

z = σ(xtU z + st−1W z)
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Figure 2.6: LSTM at time step t (Hochreiter and Schmidhuber, 1997)

r = σ(xtU r + st−1W r)

h = tanh(xtUh +(st−1� r)W h)

st = (1− z)�h+ z� st−1

In the above equations, a GRU has two gates, a reset gate r, and an update gate z. Intu-

itively, the reset gate determines how to combine the new input with the previous memory,

and the update gate defines how much of the previous memory to keep as shown in Figure

2.7. For all recurrent units the general formulation is,

ht = Recurrent(xt ,ht−1)

where Recurrent is a unit which can be a simple RNN, GRU or LSTM.
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Figure 2.7: GRU Gating Mechanism (Chung et al., 2014)

2.4 Extensions of Recurrent Neural Network (RNN)

2.4.1 Bi-directional RNNs

RNNs can summarize the history of all the previous inputs seen up untill now. How-

ever, they can not see the future input tokens. Because most NLP tasks provide the entire

sentence as input, sequential learning can benefit from having the future encoded tokens as

well as the history seen so far.

The bidirectional recurrent neural network (bi-RNN) (Schuster and Paliwal, 1997) has

been successfully used recently in speech recognition (Graves et al., 2013) and machine

translation (Bahdanau et al., 2015). In a bi-RNN, a backward RNN layer (can be a simple

RNN, LSTM or GRU) processes the sequence in the reversed direction with regards to

its immediate forward RNN layer. The forward RNN encodes the source sequence in its

original order (x1,x2, . . . ,xT ) from left-to-right and generates a sequence of hidden states

(
−→
h1,
−→
h2, . . . ,

−→
hT ). The backward RNN encodes the source sequence in reverse order, from

right-to-left (xT ,xT−1, . . . ,x1) and generates (
←−
h1,
←−
h2, . . . ,

←−
hT ). Then for each word xi, its

complete hidden state is the concatenation of the corresponding hidden states from the two

RNNs, i.e., hi =
[−→
hT

i ,
←−
hT

i

]T
. Therefore, RNN layers at time-step t can see both the history
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Figure 2.8: Bi-Directional Recurrent Neural Network (bi-RNN) (Schuster and Paliwal,
1997)

and the future. Figure. 2.8 illustrates the bidirectional recurrent neural networks.

2.4.2 Stacking multiple RNNs

An additional important modification we can do for providing more expressive power to

the model is by stacking multiple RNNs, LSTMs, GRUs, or any other neural network layer,

to process the data. The output of the first layer will become the input of the second and

so on. Figure 2.9 shows an example of stacked RNNs. For example, in a 3-layer stacked

RNN, the calculation at time step t would look as follows:

h1,t = RNN1(xt ,h1,t−1)

h2,t = RNN2(h1,t ,h2,t−1)

h3,t = RNN3(h2,t ,h3,t−1)
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Figure 2.9: 3-layer stacked RNN (Neubig, 2017)

where hn,t is the hidden state for the nth layer at time step t of a RNN. Similarly, we

could substitute RNN with LSTM(.), GRU(.), or any other recurrent unit (Neubig, 2017).

2.5 Neural Machine Translation (NMT)

Machine translation (MT) is the process of translating from the source language to the

target language. We call the input language to the machine translation system the source

language, and the output language as the target language. Therefore, machine translation is

actually the task of converting a sequence of words in the source language into a sequence

of words in the target language. It is one of the most important research topics in the field

of natural language processing (Neubig, 2017).

Statistical machine translation (SMT) techniques have been developed for early auto-

matic MT systems (Brown et al., 1993). However, these statistical machine translation

models have many shortcomings. The SMT models heavily rely on pre-processing tech-

niques like word alignment, word segmentation and tokenization, rule-extraction and syn-

tactic parsing. The error introduced in any of these steps could accumulate and impact the
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translation quality. Moreover, human designed features cannot cover all possible linguistic

variations and cannot use all global features9. The recent development of deep learning

provides new solutions to these aforementioned problems of SMT. Neural Machine Trans-

lation (NMT) (Sutskever et al., 2014) does not rely on pre-designed features. Rather, the

goal of NMT is to design a fully trainable model of which every component is tuned based

on large parallel training corpora to maximize its translation performance.

A fully trainable NMT model M starts from a raw representation of a source sentence

and finishes by generating a raw representation of a target sentence, considering a sequence

of words as the most raw representation of a sentence. Recently, there are some meth-

ods which consider characters as the basic representation of a sentence (Costa-jussà and

Fonollosa, 2016; Lee et al., 2017). In our case, each word in a sequence is represented

by its integer index in a fixed numbered vocabulary. For instance, in the vocabulary V

of English words sorted according to their frequency of appearance in a training corpus,

the first most frequent word is represented as an integer 1. Let, X = (x1,x2, . . . ,xN) be a

source sentence, and Y = (y1,y2, . . . ,yM) be a target sentence (Note that, N and M are not

necessarily the same number of words) (Sutskever et al., 2014). Given a source sequence

X = (x1,x2, . . . ,xN) of word indices, the NMT model M tries to find an output sequence Y

that maximizes the conditional probability of Y given an input sequence X :

arg max
Y∈V

P(Y|X)

The sequence-to-sequence networks (or seq2seq for short) has received great attention

from the NLP community to solve the problem of NMT (Sutskever et al., 2014; Bahdanau

et al., 2015). In seq2seq, we have input and output sequences of different lengths (N and M

in the case of NMT).

As illustrated in the Figure 2.10, we have “ABC” as the input sequence, and “WXYZ”

as the output sequence. The lengths of the two sequences are different. So, how does the

9http://book.paddlepaddle.org/08.machine translation/
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Figure 2.10: Sequence to Sequence Learning with Neural Networks (Sutskever et al., 2014)

seq2seq approach solve that problem of different sequence lengths? The answer is: they

create a model which consists of two separate recurrent neural networks called Encoder

and Decoder respectively.

2.5.1 Encoder-Decoder Framework

The Encoder-Decoder framework (Cho et al., 2014b) solves the mapping of a sequence

to another sequence, for sequences with different lengths. The encoder turns a source se-

quence of words into a fixed size feature vector, which is then decoded by a decoder as a

target sequence by maximizing the predictive probability. Both the encoder and the decoder

are typically implemented via a simple RNN, LSTM or GRU.

Encoder

There are three steps for encoding a sentence as a sequence through an encoder:

1. In the case of the one-hot vector representation of a word where each word xi in

the source sentence x = {x1,x2, . . . ,xN} is represented as a vector wiε{0,1}|V | , i =

1,2, . . . ,N where wi has the same dimension as the size of the full word dictionary

|V |, and has an element of one at the location corresponding to the location of the

word in the dictionary and zero elsewhere.

2. As described earlier, there are two problems with the one-hot vector representation.

• The dimension of each individual word vector is very large.
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• It is hard to capture semantic relationship between words in a source sentence.

Therefore, it is useful to project the one-hot vector into a low-dimensional se-

mantic space as a dense vector with fixed dimensions. For instance, si =Cwi for

the i-th word, with CεRK×|V | as the projection matrix and K is the dimensional-

ity of the word embedding vector and |V | is the size of the fixed vocabulary.

3. The source sequence of words is encoded via RNN: This can be described mathemat-

ically as:

hi =∅θ (hi−1,si)

where, h0 is a zero vector, ∅θ is a non-linear activation function (e.g. sigmoid, ReLU,

tanh), and h = {h1, . . . ,hN} is the sequential encoding of the first N words from the

input source sequence. After the last words continuous vector sN is read, the RNNs

internal state hn represents a summary of the whole source sentence.

Decoder

The task of the decoder is to maximize the probability of the next correct word in the

target language sequence. The main idea of a decoder is as follows:

1. At each time step i, given the encoding vector or summary vector (or context vector)

c of the source sentence sequence, the current i-th word ui and the hidden state zi, the

next hidden state zi+1 is computed as:

zi+1 = φθ (c,ui,zi)

where φθ is a non-linear activation function and c = qh is the context vector of the

source sentence sequence, c can be defined as c = hT .ui denotes the ith word from

the target language sequence and u0 denotes the beginning of the target language
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sequence (i.e., usually denoted by < s >), which indicates the beginning of the de-

coding. z0 is an all zero vector and zi is the RNN hidden state at time step i.

2. By calculating the probability pi+1 for the i+ 1-th word in the target language se-

quence as follows:

p(ui+1|u<i+1,x) = so f tmax(Wszi+1 +bz)

where, Wszi+1 + bz scores each possible words in the vocabulary |V | and then the

scores are normalized via softmax to convert the scores into probability pi+1 for the

i+1-th word in the whole target sequence.

3. Compute the cost according to pi+1 and ui+1.

4. Repeat the steps 1-3, until all the words in the target sentence have been processed

which usually terminated by a < eos > token.

2.5.2 Training: Maximum Likelihood Estimation (MLE)

After establishing the neural translation model, one needs to train the model with a suf-

ficient amount of parallel data. Maximum log-likelihood estimation (MLE)10 is a common

statistical technique to train a previously described encoder-decoder model. Consider a

parallel corpus D, where each sample in the corpus is a pair (Xn,Y n) of source and target

sentences. Each sentence is a sequence of integer indices corresponding to words in the

full vocabulary set |V |, which is equivalent to a sequence of one-hot vectors. Multiplying

an one-hot vector with a embedding matrix (from the left) is equivalent to taking the ith

column of the matrix, where the ith element of the one-hot vector is 1. Given any pair from

the corpus, the NMT model can compute the conditional log-probability of Y n given Xn:

logP(Y n|Xn,θ), where, θ is the training parameter and we write the log-likelihood of the

whole training corpus as,
10https://en.wikipedia.org/wiki/Maximum likelihood estimation
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2.5. NEURAL MACHINE TRANSLATION (NMT)

Figure 2.11: Attention Model (Bahdanau et al., 2015)

Lt(θ) = ∑
(x,y)∈D

log P(Y|X;θ)

P(Y|X;θ) = ∏
t=1

P(yt |y1:t−1,X)

The generation process of machine translation is to translate the source sentence into

a sentence in the target language according to a pre-trained model. In the decoding step,

there are different strategies for generating next word in the output sequence such as greedy

search and beam search (see section 2.5.4 and section 2.5.5 for details).

2.5.3 Attention Mechanism

There are a few problems associated with the fixed dimensional word vector represen-

tation from the encoding stage:

1. It seems unreasonable to encode all the information (e.g. syntactic and semantic) for

a sentence with a fixed dimensional vector representation regardless of the length of
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2.5. NEURAL MACHINE TRANSLATION (NMT)

the sentence to be encoded. In theory, architectures like LSTMs should be able to

deal with this, but in practice long-range dependencies are still problematic due to

the vanishing gradient problem11.

2. While translating a source input sentence, we generally pay more attention or concen-

tration to the parts (e.g. in our case words) in the source sentence more relevant to the

output translation, which is currently in the decoding stage. Moreover, the focus in

the source sentence changes along the process of the translation. With a fixed dimen-

sional vector, all the words or tokens from the source sentence are treated equally.

This is not reasonable in any circumstances. Therefore, (Bahdanau et al., 2015) in-

troduced attention mechanism for the first time in NMT (see Figure 2.11), which

can decode based on different fragments of the context sequence in order to address

the difficulty of feature learning for long sentences12. With an attention mechanism

we no longer try to encode the full source input sentence into a fixed-length vector.

Rather, we allow the decoder to attend the different parts of the source sentence at

each time step of the output generation. In the case of a decoder with attention, the

zi+1 is computed as:

zi+1 = φθ (ci,ui,zi)

During each time step in the decoder, instead of using a fixed context (last hidden

state of encoder), a distinct context vector ci is used for generating word yi. This

context vector ci is basically the weighted sum of the RNN hidden states (h j) of the

encoder. The weight ai j denotes the strength of attention of the ith word in the target

language sentence to the jth word in the source sentence.

11https://www.quora.com/What-is-the-vanishing-gradient-problem
12http://book.paddlepaddle.org/08.machine translation/
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2.5. NEURAL MACHINE TRANSLATION (NMT)

ci =
N

∑
j=1

ai jh j

ai = [ai1,ai2, . . . ,aiN ]

ai j =
exp(ei j)

∑
N
k=1 exp(eik)

ei j = align(zi,h j)

where, align is an alignment model that measures the fitness between the i-th word in

the target language sentence and the j-th word in the source sentence. Hard align-

ment is used in the conventional alignment model, which means each word in the

target language explicitly corresponds to one or more words from the target language

sentence. On the other hand, soft alignment is used, where any word in source in-

put sentence is related to any word in the target language output sentence, where

the strength of the relation or attention is a real number computed via the alignment

model. It solely depends on the task we are currently solving whether to use a hard

or soft alignment model.

2.5.4 Greedy 1-Best Search

Greedy 1-Best output generation is useful in machine translation, and many other ap-

plications where we simply want to output the best according to the model. The simplest

way of doing so is greedy 1-best search, in which we simply calculate pt at every time step,

select the word that gives us the highest probability (1-best), and use it as the next word in

our sequence (Neubig, 2017). Greedy search is not guaranteed to find the output translation

with the highest probability due to local optimum. One possible solution to this problem is

to consider n-best words at each time step of the decoder.
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2.5. NEURAL MACHINE TRANSLATION (NMT)

Figure 2.12: Google’s Recent Neural Machine Translation (NMT) Model (Wu et al., 2016)

2.5.5 Beam Search Algorithm

Beam Search13 is a heuristic search algorithm that explores a graph by expanding the

most probable node in a limited set (usually called beam search size). It is often used when

the solution space is significantly very large for the applications such as machine translation,

speech recognition and natural language generation. It is extremely useful where there is

not enough memory available for all the possible solutions to consider.

Beam search builds a search tree using breadth first search algorithm14 and sorts the

nodes according to a heuristic cost (sum of the log probability of the generated words) at

each level of the tree. Beam search is similar to greedy search, but instead of considering

only the 1-best word, we consider b best words at each time step of the decoder, where b

is the width of the beam or sometimes called beam search size. Thus, b best nodes with

highest scores are expanded in the next level. This reduces the space and time requirements

significantly. However, there is no guarantee of a global optimum solution in case of beam

search. In the decoding step, the search process usually stops when the end-of-sentence

token < eos > is generated or the maximum length of the sentence is reached.

13https://en.wikipedia.org/wiki/Beam search
14https://en.wikipedia.org/wiki/Breadth-first search
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2.6. SUMMARY

The Figure 2.12 is an example of the Google’s recent machine translation framework

which uses almost all the techniques described in this chapter.

2.6 Summary

In this chapter, we presented the necessary background information and discussed re-

cent related work in summarization research. As a background information, we believe that

a solid understanding of the terms such as summary evaluation, word embedding, Recur-

rent Neural Network (RNN), Neural Machine Translation (NMT), seq2seq encoder decoder

framework and beam search decoder is necessary, as our proposed models heavily depend

on these concepts. This chapter explains these terms from a computational linguists per-

spective. From the next chapters, we will start introducing our proposed text summarization

models.
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Chapter 3

Extractive Coherent Multi-Document
Summarization

3.1 Introduction

In this chapter, we aim at developing an extractive summarizer in the multi-document

setting. We implement a rank based sentence selection using continuous vector represen-

tations along with key-phrases. Furthermore, we propose a model to tackle summary co-

herence using semantic relations between entities and sentences to increase the readability.

We conduct experiments on the Document Understanding Conference (DUC) 2004 datasets

using the ROUGE toolkit. Our experiments demonstrate that the methods bring significant

improvements over the state of the art methods in terms of information coverage and coher-

ence.

3.2 Sentence Extraction

We here successively describe each of the steps involved in the sentence extraction

process such as sentence ranking, sentence clustering, and sentence selection.

3.2.1 Preprocessing

Our system first takes a set of related texts as input and preprocesses them, which in-

cludes tokenization, Part-Of-Speech (POS) tagging, Named Entity (NE) extraction, removal

of stopwords, filtering punctuation marks and Lemmatization. We use the NLTK toolkit15

15http://www.nltk.org/
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3.2. SENTENCE EXTRACTION

to preprocess each sentence to obtain a more accurate representation of the information.

Here we describe each of the pre-processing steps in detail.

Tokenization

Tokenization is the process of splitting a stream of text into a list of pieces or tokens. A

token can be a word or a sentence. For examples, each word is a token when a sentence is

tokenized into words. Each sentence can also be a token, if the sentences are tokenized out

of a paragraph.

• Sentence tokenization is the process of splitting a paragraph into a list of sentences.

For a given input text as following, the output will be:

Input Text: “The CPP fell short of the two-thirds majority needed to form a gov-

ernment alone. Ranariddh and Sam Rainsy have remained outside the country since

the Sept. 24 ceremonial convening of parliament. The agreement will make Hun Sen

prime minister and Ranariddh president of the National Assembly.”

Sentence Tokenization Output: [‘The CPP fell short of the two-thirds majority

needed to form a government alone.’ , ‘Ranariddh and Sam Rainsy have remained

outside the country since the Sept. 24 ceremonial convening of parliament.’ , ‘The

agreement will make Hun Sen prime minister and Ranariddh president of the National

Assembly.’]

• Word tokenization is the process of splitting a sentence into a list of individual

words. For a given sentence, the output will be:

Input Sentence: “Ranariddh and Sam Rainsy have remained outside the country

since the Sept. 24 ceremonial convening of parliament.”

Word Tokenization Output: [‘Ranariddh’ , ‘and’ , ‘Sam’ , ‘Rainsy’ , ‘have’ , ‘re-

mained’ , ‘outside’ , ‘the’ , ‘country’ , ‘since’ , ‘the’ , ‘Sept.’ , ‘24’ , ‘ceremonial’ ,

‘convening’ , ‘of’ , ‘parliament’ , ‘.’]
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Removing punctuation

We also remove punctuation from the sentence as they do not contribute anything to the

meaning of the sentence.

Removal of stopwords

Stopwords are common words that generally do not contribute to the meaning of a

sentence. Most search engines will filter stopwords out of search queries and documents

in order to save space. NLTK comes with a stopwords corpus that contains 128 word list

for English language. In this thesis, we remove stopwords and focus more on the important

and topic-related words. We used a stop word list of 571 words to obtain only topic-related

important words from the documents which is shown in Appendix A, we name it as smart

stop-word list16.

Input Sentence: “Israel radio quoted officials saying the Cabinet would also decide

to renew construction of the Har Homa neighborhood in the traditionally Arab sector of

Jerusalem.”

Sentence after filtering stopword: [’Israel’, ’radio’, ’quoted’, ’officials’, ’Cabinet’,

’decide’, ’renew’, ’construction’, ’Har’, ’Homa’, ’neighborhood’, ’traditionally’, ’Arab’,

’sector’, ’Jerusalem’, ’.’]

Lemmatization

Lemmatization is the process of grouping together the different inflected forms of a

word to its common base form, which is useful for many text-processing applications.

Lemmatization process involves first determining the part of speech of a word, and ap-

plying different normalization rules for each part of speech. Words can appear in several

inflected forms depending on the context. For example, the verb “talk” may appear as,

“talked”, “talks”, “talking”. The base form, “talk”, that one might look up in a dictionary,

16http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
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is called the lemma for the word17 .

Input Sentence: “Gingrich’s vision seems to have blurred this time around, costing Re-

publicans a net of five seats in Tuesday’s election and leaving the party’s narrow governing

majority even narrower.”

Sentence after Lemmatization: [’Gingrich’, “’s”, ’vision’, u’seem’, ’to’, ’have’, u’blur’,

’this’, ’time’, ’around’, ’,’, u’cost’, ’Republicans’, ’a’, ’net’, ’of’, ’five’, u’seat’, ’in’, ’Tues-

day’, “’s”, ’election’, ’and’, u’leave’, ’the’, ’party’, “’s”, ’narrow’, u’govern’, ’majority’,

’even’, ’narrower’, ’.’]

Part-Of-Speech (POS) tagging

Part-of-speech Tagging is the process of marking up a word in a text (corpus) as corre-

sponding to a particular part of speech. Each word in a sentence is classified as a Part Of

Speech (POS) that depends on the way the word is being used. We used NLTK (Natural

Language ToolKit) POS tagger (Bird et al., 2009) which uses the most popular Penn Tree-

bank POS tag set18. NLTK converts a list of words into a list of tuples, where each tuple is

of the form (word, tag). The tag is a part-of-speech tag, and signifies whether the word is a

noun, adjective, verb, and so on. An example of part of speech tagging is illustrated below.

Input Text: “The Israeli Cabinet had convened for a second day in an attempt to ap-

prove the Wye agreement. Israel radio quoted officials saying the Cabinet would also de-

cide to renew construction of the Har Homa neighborhood in the traditionally Arab sector

of Jerusalem. Groundbreaking there in March 1997 led to a break-off in negotiations with

the Palestinians.”

Input Text after POS Tagging: [[(’The’, ’DT’), (’Israeli’, ’NNP’), (’Cabinet’, ’NNP’),

(’had’, ’VBD’), (’convened’, ’VBN’), (’for’, ’IN’), (’a’, ’DT’), (’second’, ’JJ’), (’day’,

’NN’), (’in’, ’IN’), (’an’, ’DT’), (’attempt’, ’NN’), (’to’, ’TO’), (’approve’, ’VB’), (’the’,

’DT’), (’Wye’, ’NNP’), (’agreement’, ’NN’), (’.’, ’.’)] , [(’Israel’, ’NNP’), (’radio’, ’NN’),

17https://en.wikipedia.org/wiki/Lemmatisation
18http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html
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Figure 3.1: Extracted Named Entity (NE) for the example sentence

(’quoted’, ’VBD’), (’officials’, ’NNS’), (’saying’, ’VBG’), (’the’, ’DT’), (’Cabinet’, ’NNP’),

(’would’, ’MD’), (’also’, ’RB’), (’decide’, ’VB’), (’to’, ’TO’), (’renew’, ’VB’), (’con-

struction’, ’NN’), (’of’, ’IN’), (’the’, ’DT’), (’Har’, ’NNP’), (’Homa’, ’NNP’), (’neigh-

borhood’, ’NN’), (’in’, ’IN’), (’the’, ’DT’), (’traditionally’, ’RB’), (’Arab’, ’NNP’), (’sec-

tor’, ’NN’), (’of’, ’IN’), (’Jerusalem’, ’NNP’), (’.’, ’.’)] , [(’Groundbreaking’, ’VBG’),

(’there’, ’RB’), (’in’, ’IN’), (’March’, ’NNP’), (’1997’, ’CD’), (’led’, ’VBD’), (’to’, ’TO’),

(’a’, ’DT’), (’break-off’, ’NN’), (’in’, ’IN’), (’negotiations’, ’NNS’), (’with’, ’IN’), (’the’,

’DT’), (’Palestinians’, ’NNPS’), (’.’, ’.’)]]

Named Entity (NE) extraction

Named-entity extraction is a subtask of information extraction from natural language

documents, that seeks to identify elements or entities in the text into pre-defined categories

such as the names of persons, organizations, locations and expressions of times.19 (see

Figure 3.1 for details)

Input Sentence: Wang plans to sign the International Covenant on Monday at the

United Nations.

Extracted NE (Named Entity): (S (PERSON Wang/NNP) plans/VBZ to/TO sign/VB

the/DT (ORGANIZATION International/NNP Covenant/NNP) on/IN Monday/NNP at/IN

the/DT (ORGANIZATION United/NNP Nations/NNPS) ./.)
19https://en.wikipedia.org/wiki/Named-entity recognition
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3.2.2 Sentence Similarity

We take the pre-trained word embeddings20 (Mikolov et al., 2013b) of all the non stop-

words in a sentence and take the weighted vector sum according to the term-frequency (T F)

of a word (w) in a sentence (S). We define E as the word embedding model and idx(w) as

the index of the word w. More formally, for a given sentence S in the document D, the

weighted sum becomes,

S = ∑
w∈S

T F(w,S) ·E[idx(w)]

Then we calculate the cosine similarity21 between the sentence vectors obtained from

the above equation to find the relative distance between Si and S j. We also calculate

NESim(Si,S j) by finding the Named Entities present in Si and S j using the NLTK Toolkit,

then calculating their overlap.

CosSim(Si,S j) =
Si ·S j

||Si|| ||S j||

NESim(Si,S j) =
|NE(Si)∩NE(S j)|

min(|NE(Si)|, |NE(S j)|)

Sim(Si,S j) = λ ·NESim(Si,S j)+(1−λ) ·CosSim(Si,S j) (3.1)

The overall similarity calculation involves both CosSim(Si,S j) and NESim(Si,S j) where,

0 ≤ λ ≤ 1 decides the relative contributions of them to the overall similarity computation.

This standalone similarity function can be used in this work with different λ values to ac-

complish different tasks. The main challenge is finding an optimal λ threshold, we here use

a hold out dataset to measure the value.
20https://code.google.com/archive/p/word2vec/
21https://en.wikipedia.org/wiki/Cosine similarity
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Table 3.1: Results in terms precision (P), recall (R), f-measure (F) on SICK dataset for
finding optimal threshold λ.

λ P R F
0.1 0.88 0.94 0.91
0.2 0.88 0.94 0.91
0.3 0.89 0.95 0.92
0.4 0.86 0.92 0.89
0.5 0.82 0.88 0.85

To find the optimal threshold λ for the similarity function Sim(Si,S j) described earlier,

we use the SICK dataset22 of SemEval-2014. The SICK (Marelli et al., 2014) data set

consists of about 10,000 English sentence pairs which is annotated with a relatedness score

[1, 5] by means of crowd sourcing techniques. A higher relatedness score indicates the close

relatedness between two sentences, 1 (completely unrelated) and 5 (very related). As we

are interested in finding related sentences, we filter out the partially related sentences. The

pair of sentences in which the relatedness scores is lower than 2 are dissimilar; on the other

hand the scores higher than 4 are considered similar. The other sentences in between are

filtered out as they are partially related sentences. The remaining dataset consists of 923

dissimilar sentence pairs and 3305 similar sentence pairs. The results in terms precision

(P), recall (R) and f-measure (F) on the SICK dataset for finding an optimal threshold λ

are presented in Table 3.1. We observe that the performance of the Sim(Si,S j) measure is

slightly better when λ = 0.3, that is why we use λ = 0.3 in our similarity measure.

3.2.3 Sentence Ranking

Next, we rank the sentences by applying the TextRank algorithm (Mihalcea and Ta-

rau, 2004) which involves constructing an undirected graph where sentences are vertices,

and weighted edges are formed by connecting sentences by a similarity metric. TextRank

determines the similarity based on the lexical overlap between two sentences. However,

this algorithm has a serious drawback: If two sentences are talking about the same topic

22http://clic.cimec.unitn.it/composes/sick.html
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without using any overlapped words, there will be no edge between them. Instead, we use

the continuous skip-gram model introduced by (Mikolov et al., 2013b) to measure the se-

mantic similarity along with the entity overlap. We use the similarity function described in

Equation (3.1) by setting λ = 0.3.

After we have our graph, we can run the main TextRank algorithm (Mihalcea and Tarau,

2004) on it. This involves initializing a score of 1 for each vertex, and repeatedly applying

the TextRank update rule until convergence. The update rule is:

Rank(Si) = (1−d)+d ∗ ∑
S j∈N(Si)

Sim(Si,S j)

∑Sk∈N(S j) Sim(S j,Sk)
Rank(S j) (3.2)

Where, Rank(Si) indicates the importance score assigned to sentence Si. N(Si) is the set

of neighboring sentences of Si, and 0 ≤ d ≤ 1 is a dampening factor, which the literature

suggests its setting to 0.85. After reaching convergence, we extract the sentences along

with TextRank scores.

3.2.4 Sentence Clustering

The sentence clustering step allows us to group similar sentences. We use a hierarchical

agglomerative clustering (Murtagh and Legendre, 2014) with a complete linkage criteria.

This method proceeds incrementally, starting with each sentence considered as a cluster,

and merging the pair of similar clusters after each step using bottom up approach. The

complete linkage criteria determines the metric used for the merge strategy, which means

largest distance between a sentence in one cluster and a sentence in the other candidate

cluster are selected for merging. In building the clusters, we use the similarity function

described in Equation (3.1) with λ = 0.3. We set a similarity threshold (τ = 0.5) to stop the

clustering process. If we cannot find any cluster pair with a similarity above the threshold

(τ = 0.5), the process stops, and the clusters are released. The clusters may be small, but

are highly coherent as each sentence they contain must be similar to every other sentence

in the same cluster. The whole process is presented in Figure 3.2.
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Figure 3.2: Hierarchical Agglomerative Sentence Clustering

This sentence clustering step is very important due to two main reasons: (1) Selecting

at most one sentence from each cluster of related sentences will decrease redundancy from

the summary side (2) Selecting sentences from the diverse set of clusters will increase the

information coverage from the document side as well.

3.2.5 Sentence Selection

In our work, we use the concept-based ILP (Integer Linear Programming)23 framework

introduced in (Gillick and Favre, 2009) with some suitable changes to select the best subset

of sentences. This approach aims to extract sentences that cover as many important con-

cepts as possible, while ensuring the summary length is within a given budgeted constraint.

Unlike (Gillick and Favre, 2009) which uses bigrams as concepts, we use keyphrases as

concepts. Keyphrases are the words or phrases that represent the main topics of a docu-

ment. Sentences containing the most relevant keyphrases are important for the summary

generation. We extracted the keyphrases from the document cluster using RAKE24 (Rose

23https://en.wikipedia.org/wiki/Integer programming
24https://github.com/aneesha/RAKE
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et al., 2010). We assign a weight to each keyphrase using the score returned by RAKE.

Let wi be the weight of keyphrase i and ki a binary variable that indicates the presence

of keyphrase i in the extracted sentences. Let l j be the number of words in sentence j, s j a

binary variable that indicates the presence of sentence j in the extracted sentence set and L

the length limit for the set. Let Occi j indicate the occurrence of keyphrase i in sentence j,

the ILP formulation is,

Maximize : (∑
i

wiki +∑
j

Rank(S j) · s j) (3.3)

Sub ject to : ∑
j

l js j ≤ L (3.4)

s jOcci j ≤ ki, ∀i, j (3.5)

∑
j

s jOcci j ≥ ki, ∀i (3.6)

∑
j∈gc

s j ≤ 1, ∀gc (3.7)

ki ∈ {0,1} ∀i (3.8)

s j ∈ {0,1} ∀ j (3.9)

We try to maximize the weight of the keyphrases (3.3) in the extracted sentences, while

avoiding repetition of those keyphrases (3.5, 3.6) and staying under the maximum number

of words allowed for the sentence extraction (3.4).
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In addition to the ILP formulation of (Gillick and Favre, 2009), we put some extra

features such as maximizing the sentence rank scores returned from the sentence ranking

section in our ILP objective function. In order to ensure only one sentence per cluster in

the extracted sentences we add an extra constraint (3.7), this will ensure non-redundancy

from the summary side. In this process, we extract the optimal combination of sentences

that maximize information coverage while minimizing redundancy (Figure 3.3 illustrates

our sentence extraction process in brief).

3.3 Sentence Ordering

One crucial step in generating a coherent summary is to order the sentences in a logical

manner to increase the readability. A wrong order of sentences convey an entirely different

idea to the reader of the summary and also make it difficult to understand. In a single doc-

ument, summary information can be presented by preserving the sentence position in the

original document. In multi-document summarization, the sentence position in the original

document does not provide any clues to the sentence arrangement. Hence it is a very chal-

lenging task to perform the arrangement of sentences in the summary. Classic reordering

approaches include inferring order from a weighted sentence graph (Barzilay et al., 2002),

or perform a chronological ordering algorithm (Cohen et al., 1999) that sorts sentences

based on timestamp and position.

We here propose a simple greedy approach to sentence ordering in a multi-document

setting. Our assumption is that a good sentence order implies the similarity between all

adjacent sentences since word repetition (more specifically, named entity repetition) is one

of the formal signs of text coherence (Barzilay et al., 2002). We define coherence of docu-

ment D which consists of sentences from S1 to Sn in the following equation. For calculating

Sim(Si ,Si+1), we use the similarity function described in equation (3.1) with λ = 0.5, giv-

ing the named entities a little more preference.
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Figure 3.3: Sentence Extraction Process
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Coherence(D) =
∑

n−1
i=1 Sim(Si ,Si+1)

n−1

We propose a greedy algorithm for placing a sentence in a document based on the

coherence score we discussed above25. At the beginning, we randomly select a sentence

from the extracted sentences without any position information and place the sentence in the

ordered set D. We then incrementally add each extracted sentences to the document set D

using Algorithm below to get the final order of summary sentences.

Algorithm 1: Place a sentence in a document
Procedure SentencePositioning(D,Sn)

Data: Input document D which is assumed sorted. New sentence Sn which we will place
in the document D.

Result: Return new document Dn after placing the sentence Sn.
t← 1;
Cohmax← 0 ;
Dtmp← D ;
l← DocLength(D) ;
while t ≤ l +1 do
⇒Place the Sn in tth position of Dtmp ;
Cohtmp←Coherence(Dtmp);
if Cohtmp >Cohmax then

Dn← Dtmp;
Cohmax←Cohtmp;
⇒ Remove Sn from the tth position of the document Dtmp ;

end
t← t +1;

end
return Dn;

3.4 Evaluation

We evaluate our system ILPRankSumm (ILP based sentence selection with TextRank

for Extractive Summarization) using ROUGE26 (Lin, 2004) on the DUC 2004 document

set (Task-2, Length limit (L) = 100 words). However, ROUGE scores are biased towards

25Note that, we didn’t take any position information of the original sentences to be extracted from the
document.

26ROUGE-1.5.5 with options: -n 2 -m -u -c 95 -x -r 1000 -f A -p 0.5 -t 0
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lexical overlap at the surface level and insensitive to summary coherence. Moreover, sophis-

ticated coherence evaluation metrics are seldom adopted for summarization, and therefore

many of the previous systems used human evaluation for measuring readability. For this

reason, we evaluate our summary coherence using (Lapata and Barzilay, 2005; Barzilay

and Lapata, 2008) which defines coherence probabilities for an ordered set of sentences.

3.4.1 Baseline Systems

We compare our system with the following baseline (LexRank, GreedyKL) and state-of-

the-art systems (Submodular, ICSISumm). LexRank (Erkan and Radev, 2004) represents

input texts as a graph where nodes are the sentences and the edges are formed between

two sentences if the cosine similarity is above a certain threshold. Sentence importance

is calculated by running the PageRank algorithm on the graph. GreedyKL (Haghighi and

Vanderwende, 2009) iteratively selects the next sentence for the summary that will mini-

mize the KL divergence between the estimated word distributions. Lin and Bilmes (2011)

treat the document summarization problem as maximizing a Submodular function under a

budget constraint. They achieved a near-optimal information coverage and non-redundancy

using a modified greedy algorithm (Carbonell and Goldstein, 1998). On the other hand,

ICSISumm (Gillick and Favre, 2009) employs a global linear optimization framework,

finding the globally optimal summary rather than choosing sentences according to their

importance in a greedy fashion.

The summaries generated by the baselines and the state-of-the-art extractive summariz-

ers on the DUC 2004 dataset were collected from (Hong et al., 2014).

3.4.2 Results

Our results include R-1, R-2, and R-SU4, which counts matches in unigrams, bigrams,

and skip-bigrams respectively. The skip-bigrams allow four words in between. Accord-

ing to Table 3.2, R-1, R-2 scores obtained by our system outperform all the baseline and

state-of-the-art systems on the DUC 2004 datasets. One of the main reasons for getting the
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Table 3.2: Results on DUC 2004 (Task-2) for the baseline, state-of-the-art and our proposed
system ILPRankSumm.

System Models R-1 R-2 R-SU4 Coherence

Baseline
LexRank 35.95 7.47 12.48 0.39

GreedyKL 37.98 8.53 13.25 0.46

State-of-the-art
Submodular 39.18 9.35 14.22 0.51
ICSISumm 38.41 9.78 13.31 0.44

Proposed System ILPRankSumm 39.45 10.12 14.09 0.68

Table 3.3: System’s output (100 words) for the document set d30015t from DUC 2004.

Summary Generated (After Sentence Extraction)
But U.S. special envoy Richard Holbrooke said the situation in the southern Serbian
province was as bad now as two weeks ago. A Western diplomat said up to 120 Yugoslav
army armored vehicles, including tanks, have been pulled out. On Sunday, Milosevic met
with Russian Foreign Minister Igor Ivanov and Defense Minister Igor Sergeyev, Serbian
President Milan Milutinovic and Yugoslavia’s top defense officials. To avoid such an
attack, Yugoslavia must end the hostilities, withdraw army and security forces, take urgent
measures to overcome the humanitarian crisis, ensure that refugees can return home and
take part in peace talks, he said.

Summary Generated (After Sentence Ordering)
On Sunday, Milosevic met with Russian Foreign Minister Igor Ivanov and Defense
Minister Igor Sergeyev, Serbian President Milan Milutinovic and Yugoslavia’s top defense
officials. But U.S. special envoy Richard Holbrooke said the situation in the southern
Serbian province was as bad now as two weeks ago. A Western diplomat said up to 120
Yugoslav army armored vehicles, including tanks, have been pulled out. To avoid such an
attack, Yugoslavia must end the hostilities, withdraw army and security forces, take urgent
measures to overcome the humanitarian crisis, ensure that refugees can return home and
take part in peace talks, he said.

improved R-1 and R-2 scores is the use of keyphrases. Moreover, there is no significant

difference between our proposed system and submodular in the case of R-SU4. We also

obtain better coherence probability because of our sentence ordering technique. Our sys-

tem’s output for a randomly selected document set (e.g. d30015t) from DUC 2004 is shown

in Table 3.3 (for more examples see Appendix B)
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3.4.3 Limitations

One of the essential properties of the text summarization systems is the ability to gener-

ate a coherent summary with a fixed length (DUC 2004, Task-2: Length limit = 100 words).

According to (Hong et al., 2014) all the summarizers from the previous research either trun-

cated the summary at the 100th word, or removed the last sentence from the summary set.

In our work, we follow the second option to produce a grammatically correct summary.

However, the former produces a certain ungrammatical sentence, while the later can lose

a lot of information in the worst case, if the sentences are long. We focus more on the

grammaticality of the final summary.

3.5 Summary

In this chapter, we implemented an ILP based sentence selection model along with

TextRank scores and key phrases for extractive multi-document summarization. Our ex-

tractive summarizer can jointly maintain information coverage from the document side and

non-redundancy from the summary side. We further model the coherence to increase the

readability of the generated summary using a greedy algorithm which can reorder the ex-

tracted sentences. Evaluation results strongly indicate the benefits of using continuous word

vector representations in all the steps involved in the overall system. In the next chapter,

we will focus more on the abstractive text summarization where the extracted sentences are

transformed using sentence fusion and lexical substitution.
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Chapter 4

Abstractive Coherent Multi-Document
Summarization

4.1 Introduction

Extractive summarization systems select the salient (important) sentences from the

source document without any modification by copy and paste method. On the other hand,

abstractive summarization methods rewrite the sentences to create a summary. The abstrac-

tive techniques which are traditionally used are sentence compression, syntactic reorgani-

zation and lexical paraphrasing. However, in the case of multi-document summarization

where source documents usually contain similar information, the extractive methods would

produce a redundant summary or are biased towards a specific source document(s).

Multi-sentence compression (MSC) can be a useful solution for the above problem.

It usually takes a group of related sentences about the same topic and produces an output

sentence through merging the sentences while retaining the most important information and

still maintain the grammaticality of the generated sentence. MSC originally called sentence

fusion (Barzilay and McKeown, 2005) is a text-to-text generation process in which a novel

sentence is produced as a result of summarizing a set of similar sentences. On the other

hand, Lexical paraphrasing aims at replacing some selected words with other similar words

while preserving the meaning of the original text. A good lexical substitution for a target

word needs to be semantically similar to the target word and compatible with the given

context (Melamud et al., 2015). For example, the sentence “Jack composed these verses in

1995” could be lexically paraphrased into “Jack wrote these lines in 1995” without altering
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the sense of the initial sentence.

This chapter presents a first attempt towards finding an abstractive compression gen-

eration system for a set of related sentences which jointly models sentence fusion and

paraphrasing using continuous vector representations. Our paraphrastic fusion system at-

tempts to improve information coverage and grammaticality of generated sentences. Our

system can be applied to various real world applications such as text simplification, mi-

croblog, opinion and newswire summarization. We conduct experiments on a human-

generated multi-sentence compression dataset and evaluate our system using several newly

proposed Machine Translation (MT) evaluation metrics. Our experiments demonstrate that

our method brings significant improvements over the state-of-the-art systems across differ-

ent metrics.

4.2 Sentence Abstraction : An Overview

Most of the previous works rely only on one of the following techniques for abstracting

sentences (Clarke and Lapata, 2006, 2008; Filippova, 2010; Boudin and Morin, 2013; Fil-

ippova and Strube, 2008). Instead, in this thesis we take the first step towards finding a joint

representation for sentence abstraction using sentence fusion and lexical paraphrase rather

than treating these two independently.

1. Sentence Compression

• [ACDEFAGED]⇒ [ACDGED]

• Deletion of unimportant words from the input sentence.

• Mainly used for summarizing a sentence or headline generation.

• Sentence compression example:

Input Sentence: “Reporter Jennifer Griffin has been on the road today , head-

ing south from Beirut , and she joins us by phone from Tyre .”
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Compressed Sentence: “Reporter Jennifer Griffin , heading south from Beirut

, joins us by phone from Tyre .”

2. Sentence Fusion

• [ACDEFAGED]+ [CDEFBADE]⇒ [ACDGEDBADE]

• Involves the merging of two or more sentences into one.

• Reduces redundancy in the final generated summary.

• Sentence fusion example:

Input Sentences: Obama told NBC “I’m frustrated with myself” for uninten-

tionally sending a message that there are “two sets of rules” for paying taxes,

“one for prominent people and one for ordinary folks.”

“We can’t send a message to the American people that we have got two sets

of rules – one for prominent people and one for ordinary people,” Obama said,

defending his administration’s standards.

Fused Sentence: Obama told NBC “I’m frustrated with myself” for uninten-

tionally sending a message to the American people that we have got two sets of

rules for paying taxes, one for prominent people and one for ordinary folks.

3. Syntactic Reorganization

• [ACDEFAGED]⇒ [AGEDACDEF ]

• Helps to make sentence coherent and paraphrase.

• Example of syntactic reorganization:

Input Sentence: The cleaning crew vacuums and dusts the office every night.

Reorganized Sentence: Every night the office is vacuumed and dusted by the

cleaning crew.
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4. Lexical Paraphrase

• [ACDEFAGEDHB]⇒ [ABGEFABCDHB]

• Replaces complex words with simple words to make the sentence easier to un-

derstand.

• Example of lexical paraphrasing:

Input Sentence: In fact, not many people do think female troops should be

confined to desk jobs .

Paraphrased Sentence: In fact , not many people do think female troops should

be restricted to desk jobs .

4.3 Paraphrastic Sentence Fusion Model

4.3.1 Word Graph Construction for Sentence Fusion

In order to generate a one sentence representation from a cluster of related sentences

we use the word-graph approach of (Filippova, 2010). Let S = {s1,s2, ...,sn} be a set of

related sentences, we construct a graph G = (V,E) by iteratively adding sentences to it.

The vertices are the words along with the parts-of-speech (POS) tags, and directed edges are

formed by simply connecting the adjacent words in the sentences. Once the first sentence

is added, words from the other related sentences are mapped onto a node in the graph

provided that they have exactly the same lower-case word form and the same POS tag. Each

sentence is connected to dummy start and end nodes to mark the beginning and ending of

the sentences. Words are added to the graph in the following order:

• non-stopwords are added for which no candidate exists in the existing graph or for

which an unambiguous mapping is possible;

• non-stopwords are added for which there are either several possible candidates, multi-

ple mappings are possible in the graph or which occur more than once in the sentence;
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• stopwords.

For the last two cases where mapping is ambiguous (i.e. there are two or more nodes

in the graph that refer to the same word and same POS tag), the immediate context (the

preceding and following words in the sentence and the neighboring nodes in the graph)

are used to select the candidate node for forming the edge (Boudin and Morin, 2013).

In (Filippova, 2010), punctuation marks are not considered. To generate well-punctuated

compressions which in turn represents complete sentences, following (Boudin and Morin,

2013) we considered a fourth step for adding punctuation marks in the graph. Moreover,

similarly as (Boudin and Morin, 2013) we also use the stopword list included in NLTK27

extended with temporal nouns such as “yesterday”, “Friday”, and etc. Figure 4.1 illustrates

an example word-graph for the following two sentences,

S1: The video was made on Feb. 19-20, 2003.

S2: The morning after the video was made, she said, three social workers came and

interviewed them.

As we can see, the two input sentences contain similar information, but differ in sen-

tence length, syntax, and the detail of information. The solid directed arrows connect the

words in the first sentence S1, while the dotted arrows join the words in the second sentence

S2. After constructing the word-graph using (Filippova, 2010; Boudin and Morin, 2013)

described above, we can generate the K-shortest paths from the dummy start node to the

end node in the word graph (see figure 4.1). For example, we can generate these paths:

Ex1: The morning after the video was made on feb. 19-20 , 2003.

Ex2: The video was made , she said , three social workers came and interviewed them.

Ex3: The morning after the video was made , she said , three social workers came and

interviewed them.

Consider another example for better understanding of the constructed word graph from

the following sentences,

27http://www.nltk.org/
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Figure 4.1: Constructed Word graph and a possible compression path (light gray nodes)

S1: In Asia Japan Nikkei lost 9.6% while Hong Kongs Hang Seng index fell 8.3%.

S2: Elsewhere in Asia Hong Kongs Hang Seng index fell 8.3% to 12,618.

From the word graph which is shown in figure 4.2, we can generate these following

paths:

Ex1: In Asia Hong Kongs Hang Seng index fell 8.3%.

Ex2: Elsewhere in Asia Hong Kongs Hang Seng index fell 8.3%.

Ex3: Elsewhere in Asia Japan Nikkei lost 9.6% while Hong Kongs Hang Seng index

fell 8.3%.

The above examples are sampled from the K-shortest paths generated from the word

graph G (K is usually ranges from 50 to 200 according to the literature (Filippova, 2010;

Boudin and Morin, 2013). The main challenge of the sentence fusion is to generate sen-

tences that are grammatically correct and contain the most important information. Hence,

we design a candidate ranking strategy to sort the generated K-shortest paths based on

grammaticality and informativeness.
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Figure 4.2: Constructed Word graph (2) and a possible compression path (light gray nodes)

4.3.2 Candidate Ranking

We rank the fused candidates by applying the sentence ranking algorithm described in

Chapter 3 (section 3.2.3). We extract the fused candidate sentences along with Candidat-

eRank scores Rank(Ci).

4.3.3 Grammatical Quality

We compute grammatical quality of a fused sentence candidate using a 3-gram (trigram)

language model similarly to (Banerjee et al., 2015), which assigns probabilities to sequence

of words in a generated candidate. Suppose that a candidate contains a sequence of m words

{w1,w2,w3, . . . ,wm}. The score GQ (Gramatical Quality) assigned to each candidate is

defined as follows:

GQ(w1, ....,wm) =
1

1−ScoreLM(w1, ....,wm)
(4.1)

ScoreLM(w1, ....,wm) =
log2 ∏

m
t=3 P(w|wt−1wt−2)

N
(4.2)
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The scores are normalized by N, the word length of the candidates. The Language

model scores are negative. Therefore, in Equation (4.1), we take the reciprocal of the loga-

rithmic value with smoothing to compute GQ(w1, ....,wm). In our experiments, we used a

3-gram model that is trained on the English Gigaword corpus28. We use the implementa-

tion29 provided by (Buck et al., 2014) for scoring the n-grams.

Finally, we rank the K candidate fusions and find the N-best sentence fusion which

balances the grammaticality and the informativeness. The score of a candidate sentence

fusion c is given by the following linear combination between the candidate rank score and

the grammaticality score (where, we set α = 0.6)

score(c) = α ·Rank(c)+(1−α) ·GQ(c) (4.3)

4.3.4 Context Sensitive Lexical Substitution

Target Word Identification for Substitution: We first label the words in all N-best can-

didates using Part-Of-Speech (POS) tagging. We then filter out the named entities where

NE ∈{PER;LOC;ORG;MISC}. We take only the nouns and verbs for possible substitution

candidates.

Substitution Selection: The PPDB 2.030(Pavlick et al., 2015) provides millions of lex-

ical, phrasal and syntactic paraphrases which come in packages of different sizes (going

from S to XXXL)31. For instance, we can gather lexical substitution set S = {gliding, sail-

ing, diving, travelling} for the target word (t = f lying) from PPDB 2.0. We hardcoded the

model to select substitutes with the same POS tag and that are not a morphological variant

( such as fly, flew, flown ).

28Available : http://www.keithv.com/software/giga/ (We used the 64K NVP vocabulary version)
29https://github.com/kpu/kenlm
30http://paraphrase.org/
31For our experiment, we use the XXL lexical one
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Substitution Ranking: Word embeddings are low-dimensional vector representations of

words such as word2vec (Mikolov et al., 2013b) that recently gained much attention in var-

ious semantic tasks. Word2vecf (Levy and Goldberg, 2014) is an extension of word2vec

to produce syntax-based word embeddings. They show that these embeddings tend to cap-

ture functional word similarity (as in manage → supervise) rather than topical similarity

(as in manage → manager). We use the word and context vectors released by (Melamud

et al., 2015) which were shown to perform strongly on the lexical substitution task. These

embeddings contain 600d (600 dimension) vectors for 173k words and about 1M syntac-

tic contexts processed using the dependency based word2vecf model (Levy and Goldberg,

2014). Their measure addCos for estimating the appropriateness of a substitute s from

the substitution set S, for the target word t in the set of the target word’s context elements

C = {c1,c2, ...,cn}, is defined as follows,

addCos(s|t,C) =
cos(s, t)+∑c∈C cos(s,c)

|C|+1

Finally, we select the best substitution s according to maximum addCos scores over 0.7

and replace it with the target word t.

4.4 Experimental Setup

In this section, we present our experimental setup for assessing the performance of

the paraphrastic fusion model described above. We give details on the datasets we used,

evaluation metrics, and the baseline systems used for comparison with our approach.

Our system first takes a set of related texts as input and preprocesses them using the

same way as described in chapter 3, section 3.2.1. We generate 50 shortest paths from start

to end nodes from each cluster in the graph using the K-shortest path algorithm (Boudin

and Morin, 2013). Paths shorter than eight words or that do not contain a verb are fil-

tered. To ensure pure abstractive compression generation, we remove the paths that have

cosineSimilarity ≥ 0.9 to any of the original sentence in the cluster. We then select the
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Figure 4.3: Paraphrastic Sentence Fusion Model

3-best candidates from the K paths for lexical substitution. The whole process is presented

in the figure 4.3. For fair evaluation, we also select the 3-best candidates for the baseline

systems that we compare with our model.

4.4.1 Dataset

We conducted experiments on the human generated sentence fusion dataset released by

(McKeown et al., 2010). This dataset consists of 300 English sentence pairs taken from

newswire clusters accompanied by human-produced sentence fusions rewrites collected via
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the Amazon Mechanical Turk service32. We filtered the sentences which have no main

verbs. The resulting set contains 296 pairs of sentences.

4.4.2 Evaluation Metric

We evaluate our system automatically using various automatic metrics. We also intro-

duce some new automatic evaluation metrics.

BLEU (Papineni et al., 2002) is the most commonly used metric for Machine Trans-

lation evaluation. BLEU relies on the exact matching of n-grams and has no concept of

synonymy or paraphrasing. We used the implementation provided in NLTK33 considering

up to 4-gram matching.

SARI (Xu et al., 2016) is a recently proposed metric which compares System output

Against References and against the Input sentence. SARI computes the arithmetic average

of n-gram precision and recall of three rewrite operations: addition, copying, and deletion

which correlates well with human references. One caveat with using SARI as a reward is

the fact that it relies on the availability of multiple references.

METEOR-E (Denkowski and Lavie, 2014) uses a combination of both precision and

recall in the METEOR metric. Furthermore, the alignment is based on exact token match-

ing, followed by WordNet synonyms, stemmed tokens and then look-up table paraphrases.

Recently, an augmented version of METEOR using distributed representations named METEOR-

E (Servan et al., 2016) has been released34.

Compression Ratio is a measure of how terse a compression is and is given in the

following equation. A compression ratio of zero implies that the source sentence is fully

uncompressed.

Compression Ratio (CR) =
#tokdel

#tokorig

32http://www.mturk.com
33https://github.com/nltk/nltk/tree/develop/nltk/translate
34https://github.com/cservan/METEOR-E
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Table 4.1: Comparison with baselines and our Paraphrastic Fusion model across different
automatic evaluation metrics (the scores are averaged)

Model BLEU SARI METEOR-E Compression Ratio Copy Rate Gramaticality(%)

Filippova (2010) 40.6 34.6 0.31 0.57 99.8 58.2%
Boudin and Morin (2013) 44.0 37.2 0.36 0.42 99.9 65.8%

Banerjee (2015) 42.3 36.5 0.34 0.45 99.8 71.4%
Paraphrastic Fusion 42.5 37.4 0.43 0.41 76.2 73.5%

Table 4.2: The output generated by the baseline and our Paraphrastic Fusion system (the
paraphrased words are marked bold)

Input Sentences
Bush, who initially nominated Roberts to replace retiring Justice Sandra Day O’Connor,
tapped him to lead the court the day after Rehnquist’s death.
President Bush initially nominated Roberts in July to succeed retiring Justice Sandra Day O’Connor.

Filippova (2010) president bush initially nominated roberts to replace retiring justice sandra day o’connor .

Boudin and Morin (2013) bush , who initially nominated roberts in july to succeed retiring justice sandra day o’connor ,
tapped him to lead the court the day after rehnquist ’s death .

Banerjee et al. (2015) bush , who initially nominated roberts to replace retiring justice sandra day o’connor ,
tapped him to lead the court the day after rehnquist ’s death .

Paraphrastic Fusion president bush initially recommended roberts in july to accomplish retiring justice sandra day o’connor ,
tapped him to run the court the day after rehnquist ’s death .

Copy Rate: We define the copy rate as how many tokens are copied to the abstract

sentence from the source sentence without paraphrasing in the following equation. A lower

copy rate score means more paraphrasing is involved in the abstract sentence. A copy rate

of 100% means no paraphrasing is involved in the process.

Copy Rate =
|Sorig∩Sabs|
|Sabs|

Grammaticality: We define grammaticality as the parsing problem, if the sentence is

successfully parsed, then it has valid grammar; if not, then it does not. We did not use any

statistical parser because the parser will still return a parse for a sentence with bad grammar

as it uses the statistics to make the best guess possible. Instead, we use a chart parser to

parse a sentence, given a CFG (Context-Free Grammar) which is implemented in the NLTK

Toolkit.
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4.4.3 Baseline Systems and Results

We compare our system with (Filippova, 2010), (Boudin and Morin, 2013)35 and (Baner-

jee et al., 2015)36. Table 4.2 shows the output generated by the baseline and our system.

We report our system’s performance compared with the baselines in terms of different eval-

uation metrics in Table 4.1. We get a slightly higher score in SARI because of the multiple

human abstractive rewrites along with the input sentence. The copy Rate score of other

baseline systems clearly indicates the fact that they are performing complete compression,

no paraphrasing is involved. Moreover, we also get higher score in METEOR-E metric

because of the lexical substitution operation. In our experiments, we used a LM (Language

Model) which tends to choose longer sentences. Therefore, we get a lower compression

ratio than Filippova (2010). However, we achieve a higher grammaticality percentage. As

expected, we get a slightly lower BLEU score compared to (Boudin and Morin, 2013) for

two main reasons: (1) We tried to balance between gammaticality and information coverage

(2) BLEU works well on surface level lexical overlap.

4.5 Document Level Abstractive Summarization

In this section, we will apply our sentence level paraphrastic fusion model to generate

document level abstractive summarization.

• Our system first takes a set of related documents as input according to the same topic

and preprocesses them (see section 3.2.1 for details).

• We cluster all the sentences in the document using the sentence clustering technique

proposed in Chapter 3 (section 3.2.4).

• For each cluster of related sentences, we generate the 5-best abstractive fused sen-

tences using our paraphrastic fusion model described in section 4.3. However, for the

35https://github.com/boudinfl/takahe
36https://github.com/StevenLOL/AbTextSumm

59



4.6. EXPERIMENTAL SETUP

clusters containing only one sentence, we use our context sensitive lexical substitu-

tion model to generate just the abstractive version of the source sentence.

• We use the concept-based ILP framework described in chapter 3 (section 3.2.5) to

select the best subset of sentences under a certain limit (L = 100 Words). In compar-

ison with the ILP formulation described in section 3.2.5, we excluded the sentence

ranking section from the objective function as our paraphrastic fusion model gen-

erates ranked sentences. For a clear understating of the document level abstractive

summarization model, the whole process is presented in figure 4.4.

• Finally, we order the extracted sentences using our greedy sentence ordering tech-

nique described in chapter 3 (section 3.3)

4.6 Experimental Setup

4.6.1 Dataset

We consider the generic multi-document summarization dataset provided at the Docu-

ment Understanding Conference (DUC 2004)37 which is one of the main benchmark dataset

in the multi-document summarization field. It contains 50 document clusters and each

is composed of 10 news wire articles about a given topic from the Associated Press and

The New York Times that are published between 1998 to 2000. The dataset also contains

multiple human-written summaries which are used for the evaluation of system-generated

summaries.

4.6.2 Evaluation Metric

We evaluate our summarization system using ROUGE38 (Lin, 2004) on DUC 2004

(Task-2, Length limit (L) = 100 words). However, ROUGE scores are unfairly biased to-

wards lexical overlap at surface level. Taking this into account, we also evaluate our sys-

37http://duc.nist.gov/duc2004/
38ROUGE-1.5.5 with options: -n 2 -m -u -c 95 -x -r 1000 -f A -p 0.5 -t 0
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Figure 4.4: Our document level Paraphrastic Fusion model
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Table 4.3: Results on DUC 2004 (Task-2) for the baseline, state-of-the-art and our proposed
abstractive summarization system (ParaFuse doc).

System Models R-1 R-2 R-WE-1 R-WE-2 Coherence

Baseline
LexRank 35.95 7.47 - - 0.39

GreedyKL 37.98 8.53 - - 0.46

State-of-the-art
Submodular 39.18 9.35 - - 0.51
ILPSumm 39.24 11.99 40.31 12.40 0.59

Proposed System ParaFuse doc 40.13 12.08 42.73 13.02 0.70

tem with recently proposed metric ROUGE-WE (Ng and Abrecht, 2015), which considers

word embeddings to compute the semantic similarity of the words. Moreover, both metrics

are insensitive to summary coherence. For this reason, we evaluate our summary coherence

using (Lapata and Barzilay, 2005; Barzilay and Lapata, 2008).

4.6.3 Baseline Systems

We compare our system with baseline (LexRank (Erkan and Radev, 2004), GreedyKL

(Haghighi and Vanderwende, 2009)) and state-of-the-art systems (Submodular (Lin and

Bilmes, 2011), ILPSumm (Banerjee et al., 2015)). ILPSumm is a pure abstractive sum-

marization technique for a multi-document setting. For fair comparison, we use the author

provided implementation39 to generate a summary from their model. The summaries gen-

erated by the other baselines and the state-of-the-art extractive summarizers on the DUC

2004 dataset were collected from (Hong et al., 2014).

4.7 Results & Discussion

According to Table 4.3, the R-1, R-2, R-WE-1, RWE-2 scores obtained by our system

outperform all the baselines and state-of-the-art systems on DUC 2004 dataset. Other than

ILPSumm all the other systems are purely extractive, so we did not report the performance

on R-WE of those systems. We also get better performance on the coherence probability

score because of our sentence ordering technique. Some system outputs generated by our

39https://github.com/StevenLOL/AbTextSumm

62



4.8. SUMMARY

abstractive summarization system are shown in Appendix C.

4.8 Summary

In this chapter, we designed a new abstractive compression generation model which

jointly performs sentence fusion and paraphrasing using a skip-gram word embedding

model. Furthermore, we also applied our model to a abstractive multi-document summa-

rization system where documents usually contain related set of sentences and achieved

state-of-the art results. In the next chapter, we will design another abstractive compres-

sion generation model. The difference with the model presented in the next chapter is that,

we will jointly model sentence compression (other than sentence fusion) and paraphrasing

using a standard seq2seq encoder decoder model.
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Chapter 5

Neural Paraphrastic Sentence
Compression Generation

5.1 Introduction

In this chapter, we will design a paraphrastic compression model which jointly performs

compression and paraphrase in a single sentence in order to produce an abstractive com-

pression. We will use a standard seq2seq encoder decoder model in order to accomplish this

task. According to the state of the art, this is the first neural model to tackle compression

and paraphrase in a single sentence.

5.2 Overview of the Model

In this section we present ParaComp, our neural Paraphrastic Compression model

based on Neural Machine Translation (NMT). ParaComp uses neural machine transla-

tion to translate from a source sentence to an abstractive compression. In the following, we

briefly overview the basic encoder-decoder NMT framework and then discuss how it can

be extended to our task.

We formalize the task of paraphrastic compression generation as follows. Given a

source sentence X = (x1,x2, ....,xN), our model learns to predict its paraphrastic compres-

sion target Y = (y1,y2, ...,yM), where M < N. Inferring the target Y given the source X is a

typical sequence to sequence learning problem, which can be modeled with attention-based

encoder-decoder models (Bahdanau et al., 2015; Luong et al., 2015). Our model is mainly

inspired from (Luong et al., 2015) with some specific changes to accomplish the task.
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As the name suggests, the basic form of an encoder-decoder model consists of two com-

ponents: (a) an encoder which computes a representation for a source sentence X and (b) a

decoder which generates one target word at a time which is conditioned on all previously

generated words y1:t−1 like the following,

P(Y|X) =
M

∏
t=1

P(yt |y1:t−1,X)

5.3 Encoder

The encoder in our case is a bi-directional GRU (Bi-GRU) unlike (Luong et al., 2015)

which uses uni-directional LSTM. The GRU (Cho et al., 2014a) achieves similar perfor-

mance as LSTM but it is fast to train and can improve performance on long sequences. In

the simplest uni-directional case, while reading input symbols from left to right, a GRU

learns the hidden annotations ht at time t with

ht = GRU(ht−1,e(xt)) (5.1)

where, the ht ∈ IRn encodes all content seen so far at time t which is computed from

ht−1 and e(xt), where e(xt) ∈ IRm is the m-dimensional embedding of the current word xt .

The tth unit is fed with previous output ht−1 and current input xt , and produces its output

ht . When calculating ht , it uses update gate ut and reset gate rt to improve the performance

on long sequences. The forward propagation of GRU is computed as follows.

ht = (1−ut)�ht−1 +ut� ĥt

ĥt = tanh (We(xt)+U(rt�hi−t))

rt = σ (Wre(xt)+Urht−1))
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ut = σ (Wue(xt)+Uuht−1))

where, Wu , Wr, W ∈ IRn×m and Uu , Ur, U ∈ IRn×n are weight matrices, n is the number

of hidden units, σ() is the sigmoid function, and � is the element-wise multiplication.

Conventional RNNs typically deal with a text sequence from start to end, and build the

hidden state of each word only by considering its preceding words. The hidden state should

also consider its following words as well. Hence, we apply a bidirectional RNN (Bi-RNN)

(Graves et al., 2013) to learn hidden states using both the preceding and the following

words. In our work, we actually applied bi-directional GRUs (bi-GRUs), which we found

achieves better results than single directional GRUs consistently.

As shown in Figure 5.1, Bi-GRU processes the input document in both the forward

direction and backward direction with two separate hidden layers calculated with GRUs, to

obtain the forward hidden states (
−→
h1 , . . . . ,

−→
hN) and the backward hidden states (

←−
h1 , . . . .

,
←−
hN). For each position t, we simply concatenate its both forward and backward states into

the final hidden state:

ht =
−→
ht ⊕
←−
ht

in which operator ⊕ indicates concatenation.
−→
ht is calculated following Eq. (5.1) and

←−
ht is calculated using following equation.

←−
ht = GRU(

←−−
ht+1,e(xt))

One other important modification we can do to the GRUs following (Luong et al., 2015)

is stacking multiple layers on top of each other (stacked GRUs Figure 5.1). For example, in

a 3-layer stacked GRU, the calculation at time step t would look as follows:
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h1,t = BiGRU1(e(xt),h1,t−1)

h2,t = BiGRU2(h1,t ,h2,t−1)

h3,t = BiGRU3(h2,t ,h3,t−1)

They can extract more abstract features of the current words or sentences. For instance,

(Shi et al., 2016) proved that in a two-layer stacked LSTM, the first layer tends to learn

granular features of words such as part of speech tags, while the second layer learns more

abstract features of the sentence such as voice or tense. However, stacking RNNs suffer

from the vanishing gradient problem in the vertical direction from the output layer (GRU3)

to the layer close to the input (GRU1), just as the standard RNN did in the horizontal direc-

tion. This causes the earlier layers of the network to be under-trained. A simple solution to

this problem is to add residual connections, which has been shown to be extremely useful

for the image recognition task recently (He et al., 2016). The idea behind these networks

is simply to add the output of the previous layer directly to the result of the next layer. For

example, in a 3-layer stacked GRU with residual connections, the calculation at time step t

would look as follows:

h1,t = BiGRU1(e(xt),h1,t−1)+ e(xt)

h2,t = BiGRU2(h1,t ,h2,t−1)+h1,t

h3,t = BiGRU3(h2,t ,h3,t−1)+h2,t

Therefore, we use the idea of residual networks in building our encoder decoder model

ParaComp for the abstractive compression task which is illustrated in Figure 5.2. The

initial hidden states of the encoder are set to zero vectors, i.e.,
−→
hS

1,1 = 0 ,
←−−
hS

1,N = 0. In our

ParaComp model, the encoder transforms the source sentence X into a sequence of hidden

states (hS
3,1,h

S
3,2, . . . ,h

S
3,N) with a stacked residual network.
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Figure 5.1: Neural Paraphrastic Compression Generation Model (Stacked GRUs)

Figure 5.2: Neural Paraphrastic Compression Generation Model (Stacked GRUs with
Residual Connections)
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5.4 Decoder and Attender

The decoder uses a simple GRU with attention to generate one word yt+1 at a time in the

paraphrastic compression target sentence Y. Abstractive sentence generation is conditioned

on all previously generated words y1:t and a context vector ct , which encodes the source

sentence:

P(Y|X) =
M

∏
t=1

P(yt |y1:t−1,X) (5.2)

P(yt+1|y1:t ,X) = so f tmax (g(hT
t ,ct)) (5.3)

where g(·) is a one-hidden-layer neural network with the following parameters:

g(hT
t ,ct) = Wo tanh(UhhT

t +Whct) (5.4)

where Wo ∈ IR|V |×n, Uh ∈ IRn×n, and Wh ∈ IRn×n; |V | is the vocabulary size and n is

the hidden unit size. hT
t is the hidden state of the decoder GRU which summarizes what

has been generated so far y1:t . At the very beginning of the decoding, we initialize the GRU

hidden state hT
0 with the last backward encoder hidden state

←−
hS

3,1 as input from our proposed

stack residual network.

hT
t = GRU(e(yt),hT

t−1) (5.5)

During each time step in the decoder, instead of using a fixed context (i.e. last hidden

state of encoder), a distinct context vector ct is used for generating word yt+1. This context

vector ct is basically the weighted sum of the stacked residual GRU hidden states (hS
3,i)

of the encoder. The weight αti denotes the strength of attention of the tth word in the

target language sentence to the ith word in the source sentence. The basic idea behind the

attention vector is that it is telling us how much we are focusing on a particular source word
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at a particular time step of the decoder. The larger the value in αti, the more impact a word

will have when predicting the next word in the output sentence.

ct =
N

∑
i=1

αtihS
3,i (5.6)

αti =
exp(hT

t ·hS
3,i)

∑i exp(hT
t ·hS

3,i)
(5.7)

We use the (·) dot attention mechanism of (Luong et al., 2015) due to its efficiency

and which is simple to implement. The dot attention mechanism is actually the dot product

between two hidden vectors.

5.5 Training and Decoding

The training objective of our ParaComp model is to maximize the log likelihood of the

sentence-abstract pairs in a given training set D (where, θ is the training parameters):

Lt(θ) = ∑
(x,y)∈D

log p(Y|X;θ)

p(Y|X;θ) = ∏
t=1

P(yt |y1:t−1,X)

Once the models are trained, we use the following modified beam search algorithm to

find the output that maximizes the conditional probability.
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Algorithm 2: Restricted Beam Search Decoding Algorithm
Data: Vocabulary size |V |, beam size B, max output length N.

Result: Return K paraphrastic compression variations of a source sentence.

⇒ Computed probabilities of all the words in vocabulary

⇒ Choose the B most likely words and initialize the B hypotheses

while t ≤ N do
⇒ For each hypothesis, compute the next conditional probabilities, then have

B×|V | candidates with the corresponding probabilities

⇒ Use the [AttentionScore] to choose B most likely candidates those are not in

the Vhistory[(t−3) : (t−1)]

end

5.6 Repetition control using restricted beam search decoding

Repetition is a common problem in the seq2seq encoder decoder model (Tu et al., 2016;

Sankaran et al., 2016) and our model is no exception. The following examples are picked

by manually investigating our model’s generated output.

Output#1: It is not appropriate appropriate to insist upon a Syrian withdrawal.

Output#2: Lebanese parliamentary sessions parliamentary session have to be open to

the public.

Output#3: This has been ruled has been out .

The reduction of redundant repeating generation of tokens for neural abstractive sum-

marization first tackled by (Suzuki and Nagata, 2017). They jointly estimate the upper-

bound frequency of each target vocabulary in the encoder and control the output words

based on the estimation in the decoder. Recently, (See et al., 2017) adapted the coverage

model of (Tu et al., 2016) to solve this problem in their work for generating a multi-sentence

summary from a single document. See et al. (2017) maintain a coverage vector, which is
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the sum of attention distributions over all previous decoder time steps.

In our work, we follow a simple approach in order to solve this problem. Our main goal

is to reduce the complexity in the decoder. We keep track of all the previously generated

tokens at the tth time step of the decoder in a separate variable called Vhistory(t) for each

beam. While generating the tth word our model looks into the Vhistory(t−1) for immediate

uni-gram repetition, Vhistory(t−2) for bi-gram repetition and Vhistory(t−3) for possible tri-

gram repetition. We hard-code the decoder not to choose these words (or any morphological

variation of these words) which can or may cause repetition.

5.7 Dealing with out of vocabulary problem

At each generation step of the decoder, the output word is selected according to the

probability distribution over the whole target vocabulary in the softmax layer, which is the

most time and capacity-consuming part of the system. Therefore, most summary generation

systems keep a fix-sized target vocabulary according to the word frequency. The infrequent

words were removed from the vocabulary and were replaced with the symbol < UNK >,

meaning unknown word. However, it has been observed that the infrequent words are

usually proper nouns or named-entities that have an impact on the meaning of the overall

sentence. Therefore, (Gu et al., 2016) introduced COPYNET which is an encoder-decoder

architecture equipped with a copying mechanism. COPYNET can integrate the regular

way of word generation in the decoder with the new copying mechanism which can choose

words or subsequences in the input sequence and put them at appropriate places in the

output sequence. Gulcehre et al. (2016) also propose to solve the unknown word related

problem in an end-to-end neural network. When predicting an output word, the model first

makes a decision whether to pick a word from target vocabulary or copy from source input,

which was later adopted by (Nallapati et al., 2016) for abstractive sentence summarization.
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In our work, we follow an easier approach to tackle the “UNK replace” problem. From

our training samples, we acquired almost 300K unique words in the vocabulary. We limit

our vocabulary to include the top 50K most frequent words, while the other words are re-

placed with the token < UNK >. By doing this, we are explicitly predicting in which

contexts and places the model will be expecting an unknown word (they are usually proper

nouns or named-entities). We use 100 <UNK > placeholders to represent out of vocabu-

lary < OOV > words. The embeddings for these unknown words are less interchangeable

in the encoder. The placeholders are working as a queue and taken from the model vocab-

ulary’s last 100 places. The main advantage is the probability of seeing < UNK > during

training is evenly split out into 100 placeholders. During generation we copy the unknown

words from the input sentence to the placeholders according to their position of appearance

in the source sentence (e.g. from left to right in the source sentence, the first unknown

word is copied to the first placeholder and so on). We let the model decide according to the

probability distribution over the whole target vocabulary including the placeholders.

5.8 Paraphrasing in Context

We trained our model on paraphrase, abstractive compression and text simplification

sentence pairs. Our model implicitly learned how to paraphrase and can eventually generate

paraphrases from the data itself. Moreover, to ensure complete paraphrasing we also impose

some explicit edit operations.

5.8.1 Pre-Edit Paraphrasing

We use the 50K most frequent words, as our model vocabulary out of almost 300K

unique words from the training set. We create an alignment table for the words outside

the vocabulary to the words inside the vocabulary using GloVe embedding (Pennington

et al., 2014). The word-to-word alignment has been done by calculating the cosine distance

between glove average word vectors. We found an alignment table of almost 8K words
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outside of the vocabulary to words inside with CosDistance≥ 0.7 (e.g. pricey⇒ expensive,

detested⇒ hated). Our model tries to replace the out of vocabulary words with the words

inside the vocabulary using the alignment table during training as well as generation.

5.8.2 Post-Edit Paraphrasing

We apply post-edit paraphrasing operations, after the K paraphrastic compression vari-

ations generated by the model for a single sentence. We use the context sensitive lexical

substitution described in Chapter 4 (section 4.3.4) to accomplish post-edit paraphrasing.

We collect a substitution set S for a particular target word t from the model described in

section 4.3.4. To generate paraphrastic compression variations, we select different words

for the different output sentence from the substitution set S.

5.9 Compression Variation Selection

The model generates K different variations from the decoding step due to the beam

search size (B = 10). We filter out the candidates that are too close to each other using

string edit distance40. Finally, we rank the candidates according to the following scoring

function,

Rankc(Ck) = δ · #tokdel(Ck)

#tokorig(S)
+(1−δ) ·BeamSearchScore(Ck)

where, S is the original sentence, Ck is a candidate paraphrastic compression, tokdel(Ck)

is the number of tokens deleted in the candidate K. We set δ = 0.6 (optimally tuned based

on the validation data) to rank the shorter candidates higher. One typical output of our

model is shown in Table 5.1.
40https://pypi.python.org/pypi/python-Levenshtein
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Table 5.1: Our model’s output for the source sentence. (CR means Compression Ratio,
italic means paraphrasing in context.)

Source Sentence It is the right message, sent while it is still early enough to do something
constructive about the disappointing quality of the work so far.

Reference(Best) It is the right message to send to correct the disappointing quality
of work so far. (CR: 0.36)

Output#1 this message is the right message. (CR: 0.76)

Output#2 it is the right message, sent while it is still early enough to do something
suitable. (CR: 0.44 )

Output#3 it is the right message, sent while it is still early enough to do something
faster about the work. (CR: 0.24)

Output#4 this message is the right message, sent while it is still early enough to do
something useful about the work so far. (CR: 0.12)

Output#5 it is the right message, sent while it is still early enough to do something
faster about the work so far. (CR: 0.16)

5.10 Experimental Setup

In this section, we present our experimental setup for assessing the performance of the

paraphrastic compression model described above. We give details on the datasets we used,

model training, evaluation metrics, and the baseline and state-of-the-art systems used for

comparison with our approach.

5.10.1 Dataset

Deep Neural Network (DNN) architectures are completely data driven. More training

data will produce a good quality output sequence. The DUC41 (Document Understanding

Conference) and the TAC42 (Text Analysis Conference) datasets are not sufficient for train-

ing a full end-to-end neural network. Therefore, almost all the past works on abstractive

summarization using neural networks (Rush et al., 2015; Filippova et al., 2015; Chopra

et al., 2016; Nallapati et al., 2016; Suzuki and Nagata, 2017; Zhou et al., 2017) made use of

the English Gigaword dataset (Napoles et al., 2012). They take the first sentence of a news

41http://www-nlpir.nist.gov/projects/duc/data.html
42https://tac.nist.gov/data/
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document, align it with the headline of that document and generated 3.8M source-summary

training pairs. It was argued that the first sentence is enough to capture the gist of a docu-

ment, but its not perfect in all cases. They assume that the first sentence of a document as a

source sentence and headline as a summary sentence. However, headlines are not expected

to be grammatical and complete, therefore in the generation step their model produces un-

grammatical sentences. In our work, instead of generating training pairs using headlines we

use the existing human annotated datasets which is either used for compression, paraphrase

or abstractive compression. All the sentence-summary pairs used for our model training are

purely grammatical, complete and human-generated.

Deletion-based compression corpora: Clarke and Lapata (2006, 2008) provided two

manually annotated corpora, which are named written news (WN) and broadcast news (BN)

respectively43. The Written news corpus contains 1,629 gold compressions pairs. More-

over, the broadcast news corpus contains 1,370 pairs with three different trained human

annotations, therefore we have 4,110 unique compression sentence pairs from the BN cor-

pus. Filippova et al. (2015) created 2M sentence pairs using (Filippova and Altun, 2013) by

aligning news headlines to first sentences. Only 10K parallel sentences has been publicly

released44, as they are not human annotated we will not use this dataset for training.

Paraphrase corpora: The Microsoft Research paraphrase corpus (MSRP)45 (Dolan

et al., 2004) contains 3,900 human labeled true paraphrase pairs from both the training

and test set. The Plagiarism Detection Corpus (PAN)46 is constructed by deriving aligned

corresponding sentences from 41,233 plagiarised documents made available by (Madnani

et al., 2012). PAN consists of 13,000 sentence pairs in total, among them 6,500 are true

paraphrase pairs. The SICK (Marelli et al., 2014) data set consists of about 10,000 English

sentence pairs47. Each sentence pair is annotated with a relatedness score [1, 5] by means

43http://jamesclarke.net/research/resources
44http://storage.googleapis.com/sentencecomp/compression-data.json
45https://www.microsoft.com/en-us/download/details.aspx?id=52398
46http://bit.ly/mt-para
47http://clic.cimec.unitn.it/composes/sick.html
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of crowd sourcing techniques, with higher scores indicating the two sentences are more

closely-related. We extracted 3,672 sentence pairs with a relatedness score [4,5].

Abstractive compression corpora: Recently, Kajiwara and Komachi (2016) built a

monolingual parallel corpus for text simplification by aligning sentences from English

Wikipedia (normal) and Simple English Wikipedia (simple) using various sentence sim-

ilarity measures which use word embeddings. The released version48 consists of 492,493

sentence pairs, which we can consider as abstractive compression. Toutanova et al. (2016)

also recently introduced a manually-created, multi-reference dataset for abstractive sen-

tence and short paragraph compression. It contains approximately 6,000 source texts with

multiple compressions (about 26,000 pairs of source and compressed texts) which is ac-

companied by up to five crowd-sourced rewrites. They divided the whole dataset into train-

ing,valid and test sets. We filtered out the compressions which involves multiple source

sentences. From their traing set we obtained almost 12,050 unique pairs for our training.

We are not aware of any published results on this two recently released datasets.

Text Simplification corpora49: (Xu et al., 2015) introduced NewSela50 corpus con-

sisting of 1,130 news articles, each re-written four times for children at different reading

or grade levels by professional editors. It has a total of 10,787 documents, each with a

unique article identifier and a version indicator between 0 and 4 (which defines the level of

simplicity), where 0 refers to the original form, and 4 to its simplest version. We use the

sentence alignment algorithm by (Xu et al., 2015) for producing 141,582 complex-simple

sentence pairs.

In total, we collected 665,936 human-generated training pairs for our model. As we are

doing paraphrastic compression (In general, abstractive compression), we took the valida-

tion and test sets of (Toutanova et al., 2016) as ours. The validation and test set contains

271 and 459 pairs of single sentence abstractive compression with maximum of five human

48https://github.com/tmu-nlp/sscorpus
49https://newsela.com/data/
50Newsela (https://newsela.com), a company that produces reading materials for pre-college classroom use.
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rewrite variations. The basic information of the datasets are presented in Table 5.2.

Table 5.2: Statistics of the datasets

Datasets # of Pairs Source Length Target Length # of Vocab
Compression 5,739 22.17 15.81 9.8K
Paraphrase 14,072 22.74 21.91 31.8K

Abstractive Compression 504,543 25.38 18.00 267K
Text Simplification 141,582 25.68 16.97 40K

5.10.2 Training Details

We trained our model on an Nvidia TITAN X GPU card with 12G RAM. We use 300-

dimensional uncased pre-trained GloVe embeddings51 (Pennington et al., 2014) to initial-

ize word embedding matrices of our model. We use a reverse training sequence (Sutskever

et al., 2014) which is a trick that avoids long-distance dependencies in RNN. The assump-

tions is that the input sequence and the output sequence usually has similar word orders.

We use Adam (Kingma and Ba, 2014) to optimize parameters with a mini-batch of size 80

and randomly shuffled the training data at every epoch. We followed scheduled sampling

(Bengio et al., 2015) that dynamically adjusts the balance between target feeding and self

generation. We limit our vocabularies to be the top 50K most frequent words. Our stacked

residual BiGRU model have 3 layers, with each GRU containing 512 cells. We did not use

any dropout. We used early stopping based on the validation set and used the best model

on the validation set. The beam size of the decoder was set to be 10.

5.10.3 Evaluation Metric

We evaluate our system automatically using various automatic metrics described in

Chapter 4 (section 4.4.2) such as BLEU, SARI, METEOR-E, compression ratio and copy

rate.
51http://nlp.stanford.edu/data/glove.6B.zip
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5.10.4 Baseline Systems

We compare our model with the systems which includes both deletion-based and ab-

stractive models. ILP, an integer linear programing approach for sentence compression

which involves word deletion (Clarke and Lapata, 2008); T3, a tree-to-tree transduction

model for abstractive sentence compression (Cohn and Lapata, 2009); seq2seq, a neu-

ral model for deletion-based compression (Filippova et al., 2015); and NAMAS, a neural

model for abstractive compression and sentence summarization (Rush et al., 2015).

Table 5.3: Performance of different systems compare to our proposed ParaComp sent (A
sentence level Paraphrastic Compression) model

Model BLEU SARI METEOR-E Compression Ratio Copy Rate Gramaticality(%)

T3 11.1 25.7 0.22 0.75 90.6 57.2%
ILP 54.7 38.1 0.35 0.29 99.5 59.8%

seq2seq 53.8 35.5 0.31 0.39 99.7 56.4%
NAMAS 38.7 36.6 0.32 0.24 99.8 49.3%

ParaComp sent 49.2 39.3 0.41 0.47 71.3 74.3%

5.10.5 Performance Comparison & Discussion

The output generated by the above mentioned systems were collected from (Toutanova

et al., 2016). As we used the identical test set, we use the output directly to compare our

system with the metrics discussed earlier. For fair comparison, we added all the top (N = 5)

candidates in the evaluation process. The results of different systems across the different

metrics are presented in Table 5.3. As our model is generating paraphrastic compression,

we obtain a lower BLEU score compare to ILP, as BLEU works well on surface level lexical

overlap. We get a slightly higher score in SARI because of the multiple human references.

ThecCopy Rate scores of the baseline systems other than T3 clearly indicates that they are

doing complete compression, and no paraphrasing is involved. We also get a higher score

in METEOR-E metric because of the lexical substitution operation. Moreover, compare

to the baseline our model has the benefit of using human level sentence-summary pairs in

terms of gramaticality score.
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5.11 Summary

In this chapter, we have designed another abstractive compression generation model

which jointly models sentence compression and paraphrasing using a standard seq2seq en-

coder decoder model. We propose simple yet effective solutions to several common prob-

lems in neural seq2seq models such as redundant repetition and unknown token replace-

ment. In the next chapter, we will apply our sentence level Paraphrastic Compression

model to multi-document level abstractive summarization.
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Chapter 6

Neural Abstractive Multi-Document
Summarization

6.1 Introduction

In this chapter, we will propose a neural paraphrastic compression model at the docu-

ment level. To the best of our knowledge, this is the first model to generate a multi-sentence

abstractive summary using a seq2seq encoder decoder model in a multi-document setting.

The difference between the multi-document abstractive summarization model described

in Chapter 4 (section 4.5) and the model proposed here is the first one uses paraphrastic

sentence fusion and this one uses the neural paraphrastic sentence compression model pre-

sented in chapter 5. Furthermore, we also introduce a new concept called “Reader Aware

Summary” which can generate summaries for some critical readers ( non-native readers).

Finally, we designed an optimal solution for the classical summary length limit problem in

a multi-document setting.

6.2 Document Level Neural Paraphrastic Compression Model

In this section, we apply our sentence level neural paraphrastic compression model to

the abstractive multi-document summarization.

• We use our sentence extraction technique proposed in Chapter 3 (section 3.2) to ex-

tract the important and no-redundant sentences from each related document set.
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• We put a longer length limit (L = 200 words) in our ILP formulation for sentence

extraction, as our paraphrastic compression model will further compress the extracted

sentences.

• We then order the sentences using our greedy sentence ordering algorithm proposed

in Chapter 3 (section 3.3).

• We take the ordered set of sentences and incrementally produce abstraction variations

using our neural paraphrastic compression model (presented in chapter 5) one by one

for each sentence. For each extracted sentence, we generate 5-best paraphrastic com-

pressions using our ParaComp model (K = 5) described in Chapter 5. We compute

the grammatical quality of a generated paraphrastic compression sentence candidate

using the Equation 4.1 (presented in chapter 4, section 4.3.3).

• Finally, we use the following ILP formulation to select the best subset of paraphrastic

compressions for each extracted sentences.

Maximize : ∑
i
(GQ(si)+Sim(sexti, si)+

li
L̂
) · si (6.1)

Sub ject to : ∑
i

lisi ≤ L̂ (6.2)

∑
i∈gK

si ≤ 1, ∀gK (6.3)

GQ(si)≥ α (6.4)

Sim(sexti, si)≥ β (6.5)
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Sim(sexti, si)≤ γ (6.6)

si ∈ {0,1} ∀ j (6.7)

where, GQ(si) measures the grammatical quality of paraphrastic compressions, and

Sim(sexti, si) measures the semantic similarity between the sentence extracted (sexti) and

the abstraction of the sentence (we use the sentence similarity measure described in Chap-

ter 3, section 3.2.2). Moreover, Sim(sexti, si) defines the margin between near extractive to

full abstractive summary. In order to ensure only one paraphrastic compression variation

is included in the final summary, we add an extra constraint (6.3). L̂ is the length budget,

which is set to 100 words. We also introduce three summary quality parameters namely

α , β and γ ; α ensures grammaticality of the abstracted sentence; β and γ presents a win-

dow between near extractive to complete abstractive sentence selection. By the term, near

extractive means the generated sentences using our neural paraphrastic compression model

are more closer to the extracted sentences. To ensure complete abstractive summarization,

we put a upper bound γ in the sentence selection. Moreover, we do not want a sentence

to be included in the summary which is not semantically similar to the original extracted

sentence, that’s why a lower bound β was introduced to restrict the dissimilar sentences.

6.3 Optimal Summary Budget

One of the essential properties of the text summarization systems is the ability to gen-

erate a summary with a fixed length (DUC 2004, Task-2 (Multi-Document): Length limit =

100 words). According to (Hong et al., 2014) all of the multi-document summarizer from

the previous research either truncated the summary at the 100th word, or removed the last

sentence from the summary set. However, the first option produces a certain ungrammat-

ical sentence, the later one can lose a lot of information in the worst case, if the sentence
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is long. Recently, (Kikuchi et al., 2016) propose four methods in order to tackle this is-

sue. Two of them are based on different decoding procedures without model architecture

modification. The other two are learning-based, (i.e., the models take the desired length

information as input and encode it into the model architecture). However, their model is

limited to the headline generation task (DUC 2004, Task-1) where models generate a single

sentence headline of a document. In this thesis, we tackle this issue in a multi-document

setting by generating multiple paraphrastic compression length variations of a sentence (see

table 5.1 for the examples). In our ILP formulation for the document level summary gen-

eration, we are trying to maximize the total summary length to optimally solve the length

limit problem. Under any circumstances, our model can choose a shorter variation of a

sentence automatically to be included in the summary (Appendix D presents some system

outputs of our model).

6.4 Experimental Setup

6.4.1 Dataset

We use the DUC 200452 dataset to evaluate our summarization system. The DUC 2004

dataset (Task-2) is made of 50 sets of documents, each consisting of 10 newswire articles

related to a topic. The task (we are considering Task-2) consists of generating a summary

of a maximum of 100 words for each document set. Four human-authored reference sum-

maries are provided for each document set, and can be used for automatic evaluation. We

randomly select 15 sets of documents as our validation data for tuning the parameters α , β

and γ. We set the parameters (α = 0.12 , β = 0.4 and γ = 0.8) based on the validation data

for optimal performance. The remaining 35 document sets are used for the final evaluation.

52http://duc.nist.gov/duc2004/
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Table 6.1: Results on DUC 2004 (Task-2) for the baseline, state-of-the-art and our system.

System Models R-1 R-2 R-WE-1 R-WE-2 Coherence

Baseline LexRank 35.95 7.47 - - 0.39
GreedyKL 37.98 8.53 - - 0.46

State-of-the-art Submodular 39.18 9.35 - - 0.51
ILPSumm 39.24 11.99 40.31 12.40 0.59

Proposed System ParaComp doc 40.06 12.01 42.41 12.73 0.71

6.4.2 Evaluation Metric

We evaluate our system using ROUGE53 (Lin, 2004). As ROUGE scores are unfairly

biased towards lexical overlap, we further evaluate our system with recently proposed met-

ric ROUGE-WE (Ng and Abrecht, 2015), which considers word embeddings to compute

the semantic similarity of the words. Moreover, both metrics are insensitive to summary co-

herence. For this reason, we evaluate our summary coherence using (Lapata and Barzilay,

2005; Barzilay and Lapata, 2008).

6.4.3 Baseline Systems

We compare our system with two baseline systems (LexRank (Erkan and Radev, 2004),

GreedyKL (Haghighi and Vanderwende, 2009)) and two state-of-the-art systems (Submodular

(Lin and Bilmes, 2011), ILPSumm (Banerjee et al., 2015)). ILPSumm (Banerjee et al.,

2015) is a recently proposed abstractive summarizer which relies on multi-sentence com-

pression and ILP to perform abstractive summarization in a multi-document setting. For

fair comparison, we use the author provided implementation54 to generate a summary from

their model. The summaries generated by the other baseline and the state-of-the-art extrac-

tive summarizers on the DUC 2004 dataset were collected from (Hong et al., 2014).

53ROUGE-1.5.5 with options: -n 2 -m -u -c 95 -x -r 1000 -f A -p 0.5 -t 0
54https://github.com/StevenLOL/AbTextSumm
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6.4.4 Performance Comparison & Discussion

According to Table 6.1, the R-1, R-WE-1, RWE-2 scores obtained by our system out-

perform all of the baseline and state-of-the-art systems on the DUC 2004 dataset55. We also

obtain better performance on coherence score because of our sentence ordering technique.

6.5 Reader Level Summary Generation

In this thesis for the first time, we introduced the concept of “Reader Level Summary”,

which means the output of the summarization system depends largely on the reader of

the summary. The readers of a summary can be classified according to the demographic

information (e.g. age, gender, educational background, income and cultural background),

cognitive aspects (e.g. prior experience, technical skills, memorizing ability and fixation

rate), personality traits (e.g. curiosity, patience, mood and confidence) and several other

contextual factors. We only introduced this concept and are not claiming that our system

can generate summaries for these variant readers. However, sophisticated systems can be

build based on this concept which can extend the document summarization research in a

new level.

In this thesis, we simply further tuned the summary quality parameters such as α, β,

and γ based on the reader of the summary (e.g. Non-Native reader). Consider a non-native

reader of an abstractive summarization system, they can expect a more grammatically read-

able summary. Native readers can still extract the meaning if the sentences are not properly

grammatical. Moreover, the original source documents are expected to be grammatical as

they are written by the professional editors. In our work, we introduced β and γ which rep-

resents a window between near extractive to complete abstractive sentence selection. For

non-native readers, we prefer near extractive summarization. Furthermore, our α param-

eter measures grammatical quality. In case of non-native readers, we set the parameters

(α = 0.15 , β = 0.5 and γ = 0.9).

55Other than ILPSumm all the other systems are purely extractive, so didn’t report the performance on
R-WE of those systems
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6.6 Summary

In this work, we developed an end-to-end abstractive summarizer in a multi-document

setting using a neural seq2seq model. We use our sentence level Paraphrastic Compression

model presented in Chapter 5 to design the document level summary generation system.

According to state-of-the-art, this is the first model to generate multi-sentence abstractive

summary using a seq2seq encoder-decoder model in a multi-document setting. We also

propose an optimal solution to a summary length limit problem. Furthermore, we intro-

duced a new concept called “Reader Aware Summary” which can generate summaries for

some critical readers.
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Chapter 7

Conclusion & Future Work

7.1 Conclusion

In this thesis, we have developed several techniques for modeling both the extractive and

the abstractive text summarization tasks. We implemented an ILP-based sentence selection

along with TextRank scores and key phrases for extractive multi-document summarization.

To increase the readability of the generated summary, we further model the summary coher-

ence. Our novel abstractive fusion generation model jointly performs sentence fusion and

paraphrasing using skipgram word embedding model. We designed a neural paraphrastic

compression model, which jointly performs compression and paraphrasing in a single sen-

tence in order to produce abstractive compression using a seq2seq encoder decoder model.

According to the state of the art, this is the first neural model to tackle compression and

paraphrasing in a single sentence. We propose simple yet effective solutions to several com-

mon problems in neural seq2seq models such as redundant repetition and unknown token

replacement. For ensuring pure sentence abstraction, we propose several novel sentence ab-

straction techniques which jointly perform sentence compression, fusion and paraphrasing

at the sentence level. Our sentence level models improve the information coverage as well

as the grammaticality of the generated sentences. Furthermore, we applied our sentence ab-

straction techniques to the multi-document setting. We also introduce an optimal solution

to the summary length limit problem which was overlooked by the previous models. At

the end of this thesis, we also introduced a new concept called “Reader Aware Summary”

which can generate summaries for some critical readers (e.g. non-native readers). For the
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sentence level tasks, we conduct our experiments on human generated abstractive com-

pression datasets and evaluate our system on several newly proposed Machine Translation

(MT) evaluation metrics. In the case of document level summary, we conduct experiments

on the Document Understanding Conference (DUC) 2004 datasets using ROUGE toolkit.

Our experiments demonstrate that the methods bring significant improvements over the

state-of-the-art methods.

7.2 Future Work

Although the results we obtained have shown the effectiveness of the proposed sentence

level and document level models, it could be further improved in a number of ways:

• We will focus on jointly extracting the sentences to maximize the information cover-

age and readability while minimizing redundancy using a single ILP model.

• We have plans to propose a neural paraphrastic fusion model using seq2seq encoder

decoder framework. We can consider using the dataset proposed by (Hermann et al.,

2015) in our task.

• We can modify our seq2seq encoder decoder model with recently proposed hierar-

chical attention networks (Yang et al., 2016) to encode a full document or to some

extent a document set with our model.

• Syntactic reorganization of natural language sentences are extremely difficult. In

future, we will try to propose a model for this using Bidirectional Beam Search (Sun

et al., 2017) which has been shown to perform well on image caption generation.

• We will conduct some extensive experiments for our reader level summary generation

using some readability metrics56. We will also try to propose a full end-to-end model

focusing on different critical readers.

56https://en.wikipedia.org/wiki/Readability
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Table A.1: Smart Stopwords List

a contain hers nine some very
a’s containing herself no somebody via
able contains hi nobody somehow viz
about corresponding him non someone vs
above could himself none something w
according couldn’t his noone sometime want
accordingly course hither nor sometimes wants
across currently hopefully normally somewhat was
actually d how not somewhere wasn’t
after definitely howbeit nothing soon way
afterwards described however novel sorry we
again despite i now specified we’d
against did i’d nowhere specify we’ll
ain’t didn’t i’ll o specifying we’re
all different i’m obviously still we’ve
allow do i’ve of sub welcome
allows does ie off such well
almost doesn’t if often sup went
alone doing ignored oh sure were
along don’t immediate ok t weren’t
already done in okay t’s what
also down inasmuch old take what’s
although downwards inc on taken whatever
always during indeed once tell when
am e indicate one tends whence
among each indicated ones th whenever
amongst edu indicates only than where
an eg inner onto thank where’s
and eight insofar or thanks whereafter
another either instead other thanx whereas
any else into others that whereby
anybody elsewhere inward otherwise that’s wherein
anyhow enough is ought thats whereupon
anyone entirely isn’t our the wherever
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anything especially it ours their whether
anyway et it’d ourselves theirs which
anyways etc it’ll out them while
anywhere even it’s outside themselves whither
apart ever its over then who
appear every itself overall thence who’s
appreciate everybody j own there whoever
appropriate everyone just p there’s whole
are everything k particular thereafter whom
aren’t everywhere keep particularly thereby whose
around ex keeps per therefore why
as exactly kept perhaps therein will
aside example know placed theres willing
ask except knows please thereupon wish
asking f known plus these with
associated far l possible they within
at few last presumably they’d without
available fifth lately probably they’ll won’t
away first later provides they’re wonder
awfully five latter q they’ve would
b followed latterly que think would
be following least quite third wouldn’t
became follows less qv this x
because for lest r thorough y
become former let rather thoroughly yes
becomes formerly let’s rd those yet
becoming forth like re though you
been four liked really three you’d
before from likely reasonably through you’ll
beforehand further little regarding throughout you’re
behind furthermore look regardless thru you’ve
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being g looking regards thus your
believe get looks relatively to yours
below gets ltd respectively together yourself
beside getting m right too yourselves
besides given mainly s took z
best gives many said toward zero
better go may same towards
between goes maybe saw tried
beyond going me say tries
both gone mean saying truly
brief got meanwhile says try
but gotten merely second trying
by greetings might secondly twice
c h more see two
c’mon had moreover seeing u
c’s hadn’t most seem un
came happens mostly seemed under
can hardly much seeming unfortunately
can’t has must seems unless
cannot hasn’t my seen unlikely
cant have myself self until
cause haven’t n selves unto
causes having name sensible up
certain he namely sent upon
certainly he’s nd serious us
changes hello near seriously use
clearly help nearly seven used
co hence necessary several useful
com her need shall uses
come here needs she using
comes here’s neither should usually
concerning hereafter never shouldn’t uucp
consequently hereby nevertheless since v
consider herein new six value
considering hereupon next so various
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Sample system generated extractive
summaries

Sample summaries for extractive multi-document summarization

In the following, we show some examples of our system-generated summary using our
extractive coherent summary generation model described in Chapter 3 and human-written
reference summary from DUC 2004 (Task-2) dataset .

Human-written summary for the document set D31032t

President Boris Yeltsin’s health has become a matter of great concern to the Russian
leadership. The concern began in 1996 when he had a heart attack followed by bypass
surgery. Illness has often sidelined him during his seven years in power. He recently cut
short a trip to Central Asia because of a respiratory infection and he later canceled two out-
of-country summits. This revived questions about his ability to lead Russia through any
crisis. Yeltsin refuses to admit he is seriously ill and his condition is kept secret, even the
cause for burns on his hands. Russia’s leaders are calling for his resignation and question
his legal right to seek reelection.

System-generated coherent summary for the document set D31032t

President Boris Yeltsin has suffered minor burns on his right hand, his press office said
Thursday. Yeltsin has a history of health problems, and underwent heart bypass surgery
in 1996. The president insists he has no major health problems and will serve out the
remaining two years of his term. A respiratory infection forced him to cut short a trip to
Central Asia earlier this week. The trip is Yeltsin’s first high-profile foray since an economic
crisis swamped his country in August. In an interview with the British Broadcasting Corp.,
he stopped short of calling on Yeltsin to step down.
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Human-written summary for the document set D30026t

As the U.S. government pressed its antitrust case against Microsoft Corp. in Novem-
ber 1998, America Online (AOL) proposed an alliance with Netscape Communications and
Sun Microsystems. The three-pronged deal promised to provide on-line services, Internet
software and electronic commerce. AOL was to buy Netscape and forge a partnership with
Sun, benefiting all three and giving technological independence from Microsoft. Microsoft
lawyers argued unconvincingly that AOL’s purchase of Netscape would undermine the gov-
ernment’s antitrust case, based in large part on Netscape’s complaint. It remained to be seen
whether AOL could achieve a vast virtual mall.

System-generated coherent summary for the document set D30026t

Sun’s version of Unix, Solaris, is among the most popular operating systems for the
large, powerful computers that run Netscape’s server software. Even before the Netscape
deal, America Online was moving to provide some electronic commerce software and ser-
vices. Microsoft Corp. argued in federal court Monday that the proposed acquisition of
Netscape Communications Corp. by America Online seriously undermined the govern-
ment’s antitrust suit against the software giant. It would strengthen two of Microsoft’s
leading rivals, AOL and Sun Microsystems. Its Navigator was the runaway leader in the
market for the browser software used to navigate the World Wide Web.
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Sample system generated abstractive
summaries

Sample summaries for abstractive multi-document summarization

In the following, we show some examples of our system-generated summary using our
abstractive coherent summary generation model which is based on paraphrastic sentence fu-
sion described in Chapter 4 and human-written reference summary from DUC 2004 (Task-
2) dataset .

Human-written summary for the document set D30002t

Hurricane Mitch, category 5 hurricane, brought widespread death and destruction to
Central American. Especially hard hit was Honduras where an estimated 6,076 people
lost their lives. The hurricane, which lingered off the coast of Honduras for 3 days before
moving off, flooded large areas, destroying crops and property. The U.S. and European
Union were joined by Pope John Paul II in a call for money and workers to help the stricken
area. President Clinton sent Tipper Gore, wife of Vice President Gore to the area to deliver
much needed supplies to the area, demonstrating U.S. commitment to the recovery of the
region.

System-generated coherent summary for the document set D30002t

Hurricane Mitch killed an estimated 9,000 people throughout Central America in a dis-
aster of such proportions that relief agencies have been overwhelmed. Jerry Jarrell, the
weather center director, said Mitch was the strongest hurricane to strike the Caribbean
since 1988, when Gilbert killed more than 300 people. “Mitch is closing in,” said Mon-
terrey Cardenas, mayor of Utila, an island 20 miles ( 32 kilometers ) off the Honduran
coast. In honduras, at least 231 deaths have been blamed on mitch, bringing the storm’s
death toll in the region to 357, the national emergency commission said saturday.
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Human-written summary for the document set D30003t

Pinochet arrested in London on Oct. 16 at a Spanish judge’s request for atrocities against
Spaniards in Chile during his rule. Castro, Chilean legislators and Pinochet’s lawyers
protested and claimed he had diplomatic immunity. His wife asked for his release because
he was recovering from recent back surgery. Pinochet visited Thatcher before his surgery.
The British and Spanish governments defended the arrest, saying it was strictly a legal mat-
ter. The EC president hoped Pinochet would stand trial. None of his Swiss accounts have
been frozen yet. The Swiss government also asked for his arrest for the 1977 disappearance
of a Swiss-Chilean student.

System-generated coherent summary for the document set D30003t

Pinochet was arrested in London on Oct. 16 at the instigation of Spanish magistrate
Baltasar Garzon who is seeking to extradite the former dictator on charges of genocide,
terrorism and torture. Pinochet’s detention in the London clinic where he was recovering
from back surgery. The Spanish and British governments appeared Wednesday to be seek-
ing shelter from the political storm brewing over the possible extradition of former Chilean
dictator Augusto Pinochet to Spain. The court’s national court have appealed the judicial
investigations into human rights abuses in chile and argentina that underpin garzon’s arrest
warrant.
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Sample system generated neural
abstractive summaries

Sample summaries for neural abstractive multi-document summariza-
tion

In the following, we show some examples of our system-generated summary using our
neural abstractive coherent summary generation model (chapter 6) which is based on the
neural seq2seq paraphrastic sentence compression generation model described in Chapter
5 and human-written reference summary from DUC 2004 (Task-2) dataset .

Human-written summary for the document set D30011t

Malaysian Prime Minister Mahathir Mohamad ruled adroitly for 17 years until Septem-
ber 1998 when he suddenly reversed his economic policy and fired his popular deputy and
heir apparent, Anwar Ibrahim. Anwar organized a political opposition leading Mahathir
to arrest him. Mahathir met street demonsrations with tear gas and water cannon, but his
censorship did not reach Anwar’s internet support. News that police had beaten Anwar bru-
tally brought protests from around the world, but the Malaysian trade minister discounted
any unrest. Anwar remained in custody as lawyers appealed. Malaysia hardly provided a
salubrious setting for the forthcoming economic summit.

System-generated coherent summary for the document set D30011t

on sept. 2 , malaysia ’s prime minister mahathir mohamad fired anwar , calling him
morally unfit for office. the two had differed over economic policy and anwar says mahathir
feared him as an alternative leader. anwar since has been charged with illegal homosexual
acts and corruption in connection with those allegations. anwar was arrested sept. 20 under
the internal security act , which allows jail without trial. the arrest of former malaysian
deputy prime minister anwar ’s trade minister said thursday. last week , philippine president
joseph estrada said he was considering not going to the asia-pacific economic cooperation
forum because of anwar ibrahim ’s arrest.
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Human-written summary for the document set D30022t

On the eve of China’s signing the International Covenant of Civil and Political Rights
(ICCPR) in October 1998, police detained Chinese human rights advocate Qin Yongmin
for questioning. Eight weeks after signing the ICCPR, Chinese police arrested Qin and an
associate in the China Democracy Party (CDP), Xu Wenli, without stating charges. Another
CDP leader already in custody, Wang Youcai, was accused of “inciting the overthrow of the
government”. Qin and Wang went to trial in December for inciting subversion. Police
pressure on potential defense attorneys forced the accused to mount their own defenses. Xu
Wenli had not yet been charged.

System-generated coherent summary for the document set D30022t

china plans to sign the international covenant on civil and political rights on monday at
the united nations. almost 200 dissidents signed a letter to the chinese prisons , labor camps
or detention centers , said the information center of human rights and democratic movement
in china. wang was a student leader of the 1989 tiananmen square democracy movement.
china ’s government said thursday that two prominent dissidents , both promoters of the
new party. as the founder of the suppressed new political party , the china democracy party
, he publicly announced its charter in june during president clinton ’s visit to china.
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