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Abstract:

Predicted no effect concentrations (PNECs) are used in environmental 
hazard and risk assessment as well as classification and labeling of 
chemicals. They are derived from the lowest effect concentrations 
obtained in standard tests: typically, the fish early-life stage (FELS) 
toxicity test, the chronic daphnia reproduction test, and the algae growth 
inhibition test. Given the demand to replace and reduce animal tests we 
explored the impact of the FELS test on the PNEC by comparing the 
sensitivity of the FELS test to daphnia and algae acute or chronic toxicity 
tests. Therefore, a database of FELS data for 231 compounds was 
established. Corresponding daphnia and algae toxicity tests were 
identified using established databases (US EPA ECOTOX, OECD QSAR 
toolbox, eChemPortal, EnviroTox and OpenFoodTox database). About 12 
percent of the investigated compounds showed a 10-fold higher 
sensitivity in FELS in comparison to the lowest effect concentrations 
obtained with any of the other tests. Many of these compounds were 
known or discussed as endocrine disrupting or other non-narcotic 
chemicals indicating that the higher sensitivity in the FELS test is related 
to a specific mechanism of action. Targeting these mechanisms by 
alternative test systems or endpoints, for instance using fish embryos, 
may allow reduction or replacement of the FELS test or prioritize 
compounds for conduction of the FELS test.

 

Environmental Toxicology and Chemistry



1

1 Running head: Comparison of FELS sensitivity to daphnia and algae

2 Comparative assessment of the sensitivity of fish early-life 

3 stage, daphnia and algae to the chronic ecotoxicity of 

4 xenobiotics – perspectives for alternatives to animal testing

5 KEYWORDS: Fish early life stage test; Adverse outcome pathways; Mode of action; 

6 Alternatives to animal testing; Fish embryo test

7 Abstract

8 Predicted no effect concentrations (PNECs) are used in environmental hazard and risk 

9 assessment as well as classification and labeling of chemicals. They are derived from the lowest 

10 effect concentrations obtained in standard tests: typically, the fish early-life stage (FELS) 

11 toxicity test, the chronic daphnia reproduction test, and the algae growth inhibition test. Given 

12 the demand to replace and reduce animal tests we explored the impact of the FELS test on the 

13 PNEC by comparing the sensitivity of the FELS test to daphnia and algae acute or chronic 

14 toxicity tests. Therefore, a database of FELS data for 231 compounds was established. 

15 Corresponding daphnia and algae toxicity tests were identified using established databases (US 

16 EPA ECOTOX, OECD QSAR toolbox, eChemPortal, EnviroTox and OpenFoodTox database). 

17 About 12 percent of the investigated compounds showed a 10-fold higher sensitivity in FELS in 
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18 comparison to the lowest effect concentrations obtained with any of the other tests. Many of 

19 these compounds were known or discussed as endocrine disrupting or other non-narcotic 

20 chemicals indicating that the higher sensitivity in the FELS test is related to a specific 

21 mechanism of action. Targeting these mechanisms by alternative test systems or endpoints, for 

22 instance using fish embryos, may allow reduction or replacement of the FELS test or prioritize 

23 compounds for conduction of the FELS test.

24

25 INTRODUCTION

26 For the environmental hazard and risk assessment of industrial chemicals, biocides and plant 

27 protection products, TER (toxicity exposure ratios) or PNECs (predicted no effect 

28 concentrations) are calculated. The TER and PNEC assessment is based on the comparison of 

29 effect concentrations and expected exposure concentrations in one or all of three trophic levels 

30 represented by a species of algae, daphnia and fish (Ahlers et al., 2006; Damalas and 

31 Eleftherohorinos, 2011). Finally, the TER or PNEC assessment is used in classification and 

32 labeling of hazards to the aquatic environment as requested by the global harmonization system 

33 for classification and labeling of chemicals (Nations, 2011). The trophic level or species, 

34 respectively that gives rise to the lowest effect concentration is driving the PNEC. Classification 

35 and labelling are conducted for acute and long-term aquatic hazards. For long-term aquatic 

36 hazard estimation in fish the determination of chronic toxicity is conducted using a specific test 

37 setup (OECD TG 210, Fish Early-Life Stage (FELS) toxicity test (OECD, 1992)). With respect 

38 to fish there has been ethical concern with regard to the use of vertebrate animal tests. Therefore, 

39 various approaches had been proposed to avoid or reduce the need to conduct FELS tests. For 
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40 instance, a tiered testing strategy and the use of the adverse outcome pathway (AOP) concept as 

41 a foundation to replace and reduce FELS tests was proposed, and potential AOPs that lead to 

42 FELS toxicity were discussed (Volz et al., 2011; Villeneuve et al., 2014). A systematic analysis 

43 regarding modes of action (MoAs) that may results in enhanced FELS toxicity revealed that 

44 baseline toxicity in the FELS test was similar to baseline toxicity in acute fish and fish embryo 

45 toxicity (Scholz et al., 2018). Enhanced toxicity (i.e. effect concentrations below baseline 

46 toxicity levels and a high acute-to-chronic ratio) was particularly caused by compounds with a 

47 specific or reactive mode of action such as neuromuscular toxicity, methemoglobin formation, 

48 extracellular matrix inhibition or endocrine disruption (Scholz et al., 2018). Some of these MoAs 

49 may be captured by alternative endpoints such as behavior or phenotypic assessment in the fish 

50 embryo test (FET, OECD TG 236 (OECD, 2013)) and could be used to predict the chronic fish 

51 toxicity appropriately. However, in the context of a comparative assessment with daphnia and 

52 algae test, the FELS test may not represent the most sensitive test and even for compounds with a 

53 specific MoA the FELS test may exhibit a weak impact on the TER and PNEC assessment and 

54 subsequent labeling and classification of products with regard to their environmental hazard. 

55 This minor impact of fish tests has recently been shown for acute toxicity PNEC determination 

56 (Rawlings et al., 2019). Daphnia and algae toxicities were driving to a large extent the 

57 calculation of a PNEC and fish embryo and acute fish toxicity exhibited similar sensitivity. 

58 Hence, it was concluded that replacement of acute toxicity tests by fish embryo test would result 

59 in a very similar classification and labeling.

60 It is also important to understand the relation of the FELS test effect concentrations to other 

61 aquatic toxicity endpoints, for two reasons: (i) In case that the FELS test would not represent the 

62 test with the highest sensitivity, the impact on TER or PNEC assessment would be low, since the 
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63 compounds with weak sensitivity in the FELS test may provoke the strongest effects in daphnids 

64 or algae (similar as observed for acute toxicity in (Rawlings et al., 2019)). (ii) The development 

65 of alternative test systems such as the FET could be optimized and prioritized for MoAs that 

66 exhibit a significant higher toxicity in the FELS test if compared to other aquatic toxicity 

67 endpoints (i.e. algae and daphnia toxicity).

68 Such an analysis may lead to the identification of compound characteristics that are most 

69 influential and provide the basis to the potential development of new endpoints in alternative test 

70 systems and assessment strategies with sufficient protection to environmental hazards but 

71 without the requirement to conduct (vertebrate) animal tests. 

72 Our study had three main objectives: (i) Extension of an existing FELS test database (Scholz et 

73 al., 2018) and providing corresponding acute and chronic daphnia and chronic algae toxicity data 

74 by searching ECHA registration dossiers, and the EFSA OpenFoodTox databases, and using 

75 various other search tools to identify potential data on FELS, daphnia and algae toxicity (eChem 

76 Portal, EnviroTox database and AMBIT). (ii) Comparison of the effect concentrations of the 

77 different taxonomic levels (fish, daphnia, algae), aiming at the identification of cases in which 

78 the FELS test would have the highest influence on the TER or PNEC assessment. We used a 

79 threshold of 10 to identify compounds with highest sensitivity in the FELS test as suggested by 

80 the European Chemical Agency. According to the European REACH guidance document R7B, 

81 no further requirements for fish toxicity testing is indicated if there is compelling evidence to 

82 suggest that the fish value is likely to be at least a factor of about 10 less sensitive than 

83 invertebrates or algae (ECHA, 2017). It was anticipated that using this threshold would allow 

84 identifying potential major MoAs leading to high sensitivity in the FELS test if compared to 

85 other aquatic toxicity tests. (iii) Providing a strategy to improve prediction of FELS toxicity by 
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86 alternative testing strategy or identify for which compounds a FELS test may be required for 

87 PNEC assessment.

88 MATERIAL AND METHODS

89 Compilation of toxicity data

90 Toxicity data were collected from five public databases, the US-EPA ECCOTOX database 

91 (https://cfpub.epa.gov/ecotox/), the database included in the OECD toolbox 

92 (http://www.qsartoolbox.org/), the database in eChem Portal (https://www.echemportal.org), the 

93 EnviroTox database (Health and Environmental Sciences Institute (HESI), 2018) and the 

94 OpenFoodTox database available via the AMBIT search tool 

95 (https://ambitlri.ideaconsult.net/tool2). The search in the OECD QSAR Toolbox was limited to 

96 the chemical inventory lists of available databases. It was restricted to databases that include data 

97 on aquatic toxicology, such as Aquatic ECETOC, Aquatic Japan MoE, Aquatic OASIS, 

98 Bioaccumulation Canada, Bioaccumulation fish, Carcinogenicity&mutagenicity ISSCAN, 

99 Genotoxicity OASIS, Toxicity Japan MHLW, and ToxRefDB US-EPA. In order to search for 

100 available toxicity data each of these databases had to be analysed separately. Therefore, the 

101 entire list of compounds of each database was used to search for aquatic ecotoxicity data in the 

102 whole set of the databases. The US EPA ECOTOX database was not included in the search of 

103 the OECD QSAR toolbox but was analysed separately. Received data were subsequently filtered 

104 for availability of the appropriate endpoints. Given that many results were represented in more 

105 than one database duplicate entries were removed. Entries found in the US-EPA ECOTOX, 

106 OECD toolbox and EnviroTox databases were manually inspected for similarity to the OECD 

107 guidelines (OECD 210, 211, 202 and 201) by inspecting the original literature.
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108 ECHA registration dossiers were searched via the OECD eChemPortal. Datasets were 

109 retrieved using the query provided in the supplementary material (Table S1). Data entries in the 

110 ECHA database are generated for the chemical registration under REACH by the registrant, 

111 therefore data provided by the registrants is partially confidential and thus the primary data 

112 source could not be evaluated.  For quality control the search was limited to high quality data 

113 (reliability 1 - studies well documented and conducted according to or similar to international 

114 guidelines; reliability 2 - studies deviating from international guidelines but well documented 

115 and scientifically acceptable) and not assigned quality (reliability 4) as indicated by the provided 

116 Klimisch score (Klimisch et al., 1997). Studies with reliability level 3 (inappropriate method, 

117 insufficient documentation) were excluded from the database. For data obtained from ECHA 

118 registration dossiers the underlying data are not directly available from the online supplementary 

119 information, due to property and confidentiality reasons, all those data are available on the 

120 ECHA dissemination website (https://echa.europa.eu/home).

121 Data from the OpenFoodTox database (Bassan et al., 2018) was retrieved using a KNIME 

122 (Berthold et al., 2008) node that queries the AMBIT database (Jeliazkova and Jeliazkov, 2011) 

123 (https://ambitlri.ideaconsult.net/tool2). This node was developed by IdeaConsult and is freely 

124 available through GitHub (https://github.com/ideaconsult/ambit-knime). 

125 For the comparative analyses, FELS, daphnia and algae tests were not considered if the purity 

126 of the test chemical was reported to be below < 90%. Furthermore, effect concentrations reported 

127 as “less than (<)” were also excluded from comparative analysis. Only mono constituent organic 

128 and organometallic compounds were included in the final FELS test database.

129
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130 Compilation of Fish Early-life Stage Toxicity Data

131 In compliance with the existing FELS database (Scholz et al., 2018) the search for additional 

132 FELS data was restricted to studies that were conducted similar as described in the OECD TG 

133 210. Furthermore, the search was limited to the fish species Pimephales promelas, 

134 Oncorhynchus mykiss, Cyprinodon variegatus, Jordanella floridae, Danio rerio, Oryzias latipes, 

135 and Fundulus heteroclitus which had been previously identified to represent the most abundant 

136 fish species used for FELS testing. FELS tests were identified by an initial collection of all 

137 studies that reported LOEC, NOEC, LOEL, and NOEL as endpoints. Only results based on 

138 laboratory tests (no field studies) were accepted. Furthermore, data sets with a mean observation 

139 duration < 60 days (for rainbow trout) or < 28 days for other species (minimum post-hatch test 

140 duration required by OECD TG 210) were excluded. If available, the original literature or report 

141 was reviewed to verify the FELS toxicity tests were conducted similar to the OECD TG 210. 

142 Data sets obtained under conditions strongly deviating from OECD requirements were not 

143 included in the subsequent correlation analysis. The lowest effect concentration that caused a 

144 statistically significant effect in comparison with control treatments was considered as the 

145 LOEC. Accordingly, the highest test concentration that did not provoke an effect was considered 

146 as the NOEC. The LOEC of the most sensitive endpoint (survival or growth) was used for a 

147 comparative assessment with EC50 values obtained for daphnia and algae. As has been shown 

148 previously the LOEC was close to the LC50 and EC50 in the FELS test (Scholz et al., 2018). 

149 Given that typically LOECs and NOEC rather than EC50s are reported for the FELS toxicity 

150 test, we used LOEC instead of EC50 or LC50 for the comparative assessment. However, in 2 

151 cases no LOEC or NOEC was provided and the LC50 or EC50s were used.
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152 Only chemicals (N=231) with available FELS studies were considered for subsequent 

153 identification of corresponding acute and chronic daphnid toxicity and algal toxicity. For this 

154 search the CAS registry numbers were used. Both ionic and neutral form CAS numbers were 

155 used to link effects of different taxa (list of CAS numbers is available as supplementary table 

156 S2).

157 The baseline FELS toxicity test LOEC was calculated based on a previously established 

158 regression for narcotic compounds (Scholz et al., 2018) using the following equation:

Log LOEC survival (mM) = 1.04 * LogD + 1.36

159 The Log D was used instead of the Log Kow to account for dissociation.

160

161 Compilation of acute and chronic daphnia toxicity data

162 For acute toxicity data only datasets generated from tests with various daphnia species and 

163 duration of 48 hours were considered. In case that an individual study reported EC50s separately 

164 for replicates, the geometric mean EC50 was calculated. Only results from laboratory tests were 

165 accepted. For details on endpoints and identifiers that were considered for retrieving EC50s in 

166 each database refer to supplementary table S3.

167 For chronic toxicity only data on reproductive effects obtained with Daphnia magna and test 

168 duration of 21 days were accepted. Studies identified via the OECD toolbox were inspected for 

169 assignment of the reproductive effect endpoints used in the US-EPA database (see 

170 supplementary table S3). Furthermore, after manual inspection of the original literature, 

171 reproductive effects were subdivided based on three commonly measured endpoints: (i) the total 

172 number of living offspring at the end of the test, (ii) the number of living offspring per day or 

173 brood, and (iii) the time required to production of first brood. From the data obtained via 

174 eChemPortal the endpoint “reproduction” was used for analysis. LOECs were used for analysis, 
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175 however in case no LOEC was reported, the EC50 value was used. The geometric mean of the 

176 LOEC or EC50 was calculated for studies that reported effect concentrations for replicates 

177 separately. Tests which did not allow deriving a LOEC or EC50 were excluded from the 

178 analysis. 

179

180 Compilation of algae chronic toxicity data

181 Only tests with a duration of 72 h and 96 h and in accordance with OECD TG 201 

182 (“Freshwater Alga and Cyanobacteria, Growth Inhibition Test”) or other guidelines (see query 

183 search, table S3) were included in the final dataset. Checked endpoints included EC50 and IC50, 

184 LOEC and NOEC obtained under laboratory conditions. Effect measures were limited to direct 

185 measures of algal growth (according to OECD TG 201), for details on species and the effect 

186 measurement identifiers that were considered as indicators for growth in the different databases 

187 please refer to supplement table S3 and S4.

188 In case a reference reported more than one effect concentration for a certain compound, the 

189 geometric mean was calculated and included in the final database. The data selection for 

190 sensitivity comparison was conducted as follows: (1.) the most sensitive EC50 was selected from 

191 the algal endpoints (supplementary table S4), (2.) if no EC50 but a pair of NOEC and LOEC 

192 values was available, the most sensitive LOEC was used. 

193

194 Fish juvenile/adult and embryo acute toxicity data

195 Fish juvenile/adult and embryo toxicity data were collected for those chemicals for which the 

196 FELS test was 10 fold or more sensitive than daphnia (acute or chronic) and algae chronic 

197 toxicity tests.  Acute fish toxicity was identified from the aforementioned databases (ECOTOX, 
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198 QSAR-Toolbox, EChemPortal, EnviroTox and OpenFoodTox databases), from Klüver et al. 

199 (2015) and Sobanska et al. 2018). Tests following OECD guideline 203 or other ISO and EPA 

200 guidelines were used. Fish embryo acute toxicity data, LC50 and EC50 for sub-lethal and 

201 additional endpoints, were identified from Sobanska et al. (Sobanska et al., 2018) and from the 

202 open literature (www.pubmed.com). Preferentially LC50 values recorded after 96 h or 120 h of 

203 exposure were used. If no values for 96 or 120 h exposure duration were available, the LC50 

204 values recorded after 72 h or 48 h were used. 

205 Physicochemical properties

206 The physicochemical properties of compounds tested in the FELS were estimated using 

207 ACD/PERCEPTA (ACD/Labs, v. 14.0.0.2726; molecular weight, LogP, LogSW, LogD at pH 7, 

208 pKa first strongest acid and first strongest base) and EPIWEB 4.1 (Log Henry’s low coefficient, 

209 bond method). The following prediction models of ACD/Percepta were used: Consensus LogP, 

210 LogS, LogD, ACD/pKa Classic GALAS and classical ACD consensus model.

211 Identification of modes of action

212 Modes of action (MoA) were assigned by searching databases (e.g. Drugbank, IRAC), a 

213 recently established database for predictive model development (Barron et al., 2015) and 

214 available literature for the primary MoA of the chemical. If no data on the primary MoA was 

215 available, the potential MoA for acute fish toxicity was identified using a structural alert QSAR 

216 based on algorithm of Russom et al. (Russom et al., 1997) and Verhaar et al. (Verhaar et al., 

217 1992). This analysis was conducted using the software ChemProp version 6.8 (UFZ, 2018).

218 Correlation analysis

219 The compiling and grouping and statistical analysis of data in the different databases was 

220 conducted using the analytical workflow program KNIME (version 3.7, www.knime.org). 
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221 Regression analysis of molar ECs was conducted using a Deming (type II) regression to 

222 consider variability for both the independent and dependent variables. The regression analysis 

223 was performed using the software Sigma Plot 13.0 (Systat Software) or the R-package mrc (R 

224 Core Team, 2014). Statistically significant deviation of the regression slope from 1 or –1 was 

225 calculated with the F test in Sigma Plot 13.0 (p<0.05).

226 RESULTS

227 Availability of data

228 The search for newly published FELS tests not included in an existing dataset (Scholz et al., 

229 2018) revealed 83 additional studies representing 73 chemicals. Since four of these chemicals 

230 have been already tested in other studies included in the existing dataset, the update added a total 

231 number of 69 chemicals to the existing FELS test database. One chemical (polymeric 

232 ethylenethiuramdisulfide (CAS# 30394140)) from the existing dataset without specified 

233 molecular weight was not included in the sensitivity comparison because the analysis was 

234 conducted based on molar concentrations (µmol/L), resulting in a final number of 231 chemicals 

235 with FELS data that could be used for comparative analyses (detailed tables with Chemical 

236 Abstracts Service reference numbers, chemical properties, ECs, MoAs and references for each 

237 compound are given in the Supplementary tables S5-S10). These chemicals represent 313 entries 

238 because some compounds have been studied in more than one species or study. We found FELS 

239 toxicity data for 168 (P. promelas), 45 (O. mykiss), 36 (D. rerio), 26 (C. variegatus), 25 (O. 

240 latipes), 10 (J. floridae), and 3 (F. heteroclitus) compounds. For around 19% of the FELS data 

241 entries with available NOEC/LOEC pairs, nominal exposure concentrations were not verified by 

242 chemical analysis. Information on the purity of the test chemical was lacking for 32.6% of the 

243 data entries. For 190 of 231 compounds, toxicity data on at least one of the investigated 
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244 alternative test systems (daphnia acute toxicity –DAT–, daphnia chronic toxicity – DCT– or 

245 algae chronic toxicity –ACT–) which fulfilled the quality criteria, was available (supplementary 

246 figure S1). The greatest compound overlap was observed between FELS and acute daphnia 

247 toxicity test data (Table 1).

248 Comparison of daphnia chronic and acute toxicity

249 Daphnia toxicity data used for long-term aquatic hazard PNEC calculations are typically 

250 derived from chronic toxicity tests. However, chronic daphnia toxicity data were not available 

251 for many compounds and restriction to compounds for which chronic toxicity was available 

252 would have reduced the number of compounds for comparative assessment to 95 compounds. 

253 Therefore, we explored if chronic Daphnia test on average exhibit a higher sensitivity or whether 

254 acute tests may be used in case of unavailability of chronic data. From the overall compiled data, 

255 there were 99 compounds for which chronic and acute daphnia toxicity data was available. The 

256 regression analysis of logarithmic values indicated a high correlation of acute and chronic 

257 daphnia toxicity with a data correlation coefficient (R) of 0.87 (Figure 1). The slope of the 

258 regression was not significantly different from 1 and the average difference in sensitivity was 

259 around 4-fold higher for reproduction in the daphnia chronic toxicity test. Compounds with 

260 larger deviation (>100 fold difference) included chlorotetracycline (CTC), fenitrothion (FNT), 

261 afidopyropen (AFI), dimethyl disulfide (DDS) and chloroacetic acid (CAA) (5% of all 

262 compounds, total number of test compounds = 99). Despite the difference in sensitivity, acute 

263 daphnia data were used as a surrogate to increase the database. Hence, in some cases where the 

264 FELS test represents the test with the highest sensitivity the lack of chronic daphnia toxicity 

265 should be considered as a potential bias.

266
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267 Compounds with high sensitivity in the FELS test

268 In order to study the potential impact of the FELS test on PNEC determination the effect 

269 concentrations of the FELS test were compared to the most sensitive effect concentration 

270 between acute or chronic daphnia toxicities and algae chronic toxicity (ACT). Acute toxicity data 

271 for Daphnia was used in order to increase the size of the dataset (see previous section for the 

272 comparative analysis between acute and chronic daphnia toxicity test). FELS test data was 

273 compared with the most sensitive effect concentration of any of the other tests. The line of unity 

274 and a threshold value of 10 were used to compare the overall sensitivity of the FELS test with 

275 respect to the most sensitive endpoint of daphnia or algae tests. 

276 A total number of 129 compounds were used for comparative analysis, i.e. for these 

277 compounds data for FELST, algae chronic toxicity and daphnia toxicity test (chronic or acute) 

278 were available (Figure 2). There was a total of 16 chemicals (12%) that showed a higher 

279 sensitivity in the FELS test (effect concentration <10 fold lower) compared to daphnids or algae. 

280 This included also compounds that did not provoke any toxicity in daphnids or algae, if the 

281 highest tested concentration was at least 10 fold above the FELS LOAEC. Six out of the 16 

282 compounds with higher FELS sensitivity (4.6%) showed effect concentration <100-fold lower 

283 (Table 2). Four compounds did not provoke any toxicity to algae and are not represented in 

284 figure 2 (total n=125). For 25 compounds (19%) algae or daphnia toxicity tests displayed a 10 

285 fold or higher sensitivity. Ten of those compounds exhibited more than 100-fold higher 

286 sensitivity (supplementary table S11). All compounds with higher sensitivity in the FELS test 

287 were associated with high toxic ratios in the FELS test (TR = Baseline toxicityFELST 

288 /FELSTLOEC), for some compounds reaching levels of 105 to 106.

289
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290 Relation of high sensitivity in the FELS test with modes of action

291 Table 2 indicates MoAs that were associated with compounds of 10 fold higher sensitivity in 

292 the FELS test. In order to link FELS sensitivity to specific MoA one can compare the range of 

293 sensitivities for each MoA. Previous analyses have indicated that there are certain MoAs 

294 associated with high toxic ratio or ACR in the FELS test (e.g. neurotoxicity, methemoglobin 

295 formation, extracellular matrix formation inhibition and endocrine disruption). If FELS test 

296 sensitivity is compared to modes of action, particularly 2 MoAs, endocrine disruption and 

297 inhibition of extracellular matrix formation appeared to be associated with higher FELS 

298 sensitivity ratios, with median values between 1 and 10 and peak values of 8100 and 37, 

299 respectively (Figure 3, see supplementary table S12). 

300

301 Fish juvenile/adult and embryo toxicity of compounds with high sensitivity in the FELS test

302 In many cases FELS test concentrations relate to acute effect concentrations (Scholz et al. 

303 2018). Furthermore, the FELS toxicity test includes embryonic stages and hence, chronic effects 

304 may be indicated already by (sub-lethal) effects of compounds in fish embryos. Therefore, we 

305 investigated, how reported effect concentrations for acute fish toxicity and sub-lethal and lethal 

306 effect concentrations of fish embryos relate to effect concentrations in the FELS test, with focus 

307 on compounds that exhibit highest sensitivity in the FELS test (see section “Compound with high 

308 sensitivity in the FELS test”, n= 16). Figure 4 shows the EC50 or LOEC values, for fish, algae, 

309 daphnia and fish embryo toxicity tests. Fish embryo toxicity data were available for 8 out of 16 

310 compounds. For three compounds (azinphos-methyl, benzovindiflupyr and peracetic acid) the 

311 effect concentrations of acute fish toxicity were already close (i.e. in the range of 10 fold 

312 difference) to the FELS toxicity test (Figure 4).  Thiram, a dithiocarbamate associated with 

313 inhibition of cellular matrix formation, showed similar sensitivity for the fish embryo test and the 
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314 chronic FELS test when the EC50 for sub-lethal effects was compared with the chronic fish 

315 LOEC. 

316 A large proportion of the compounds (5 out of 16) with high sensitivity to the FELS test were 

317 endocrine disruptors. Therefore, an endpoint related to estrogenic effects, i.e. induction of 

318 cyp19a1b measured with reporter gene fluorescence in embryos of a transgenic zebrafish strain 

319 was included (Brion et al., 2012). Figure 4 shows the sensitivity ratios using the most sensitive 

320 EC50 for malformations or cyp19a1b induction in the fish embryo test. Three compounds (4-tert-

321 butylphenol, estradiol and 17alpha-ethynilestradiol) showed an effect concentration close to the 

322 FELS test (Figure 4 and supplement table S13) if the induction of cyp19a1b was considered. 

323 DISCUSSION

324 The FELS test is the most demanding vertebrate animal test routinely conducted for 

325 environmental hazard and risk assessment and is requested by many different regulations (Oris et 

326 al., 2012; Scholz et al., 2013, 2018). Similarly, as observed for acute fish toxicity, FELS toxicity 

327 for many compounds is described by an intrinsic baseline or minimal toxicity, driven by the 

328 hydrophobicity of the test compound (Scholz et al., 2018). Only compounds with a specific non-

329 narcotic mode of action are more likely to show an enhanced toxicity, i.e. a higher TR and/or 

330 higher ACR. Therefore, it has been proposed that development of alternative approaches could 

331 target these MoAs and relate to key events of an AOP. The use of such targeted assays would 

332 enable to reduce or replace FELS tests, by either predicting effect concentrations or indicating 

333 for which compounds the conduction of an FELS test may finally be required (Scholz et al., 

334 2018).  However, given that FELS tests are used in the context and comparison to endpoints of 

335 other taxonomic levels (typically represented by algae and daphnia toxicity), even for 

336 compounds with a specific MoA the FELS toxicity may not be relevant for risk assessment, 
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337 classification and labeling. Therefore, it is also critical to understand how FELS toxicity relates 

338 to algae and daphnia toxicity and for which type of compounds or MoA the higher sensitivities 

339 for the FELS test are observed. Such a comparative assessment represents the rationale for the 

340 development of the threshold approaches for reduction of acute fish toxicity tests (Hoeger et al., 

341 2003; OECD, 2010; Creton et al., 2014). The threshold approach acknowledges that algae and 

342 daphnia represent in many cases the most sensitive models. Hence, it was proposed that 

343 chemicals are first tested in daphnia and algae and the lowest effect concentration of these 

344 models is used for a limit test of acute fish toxicity. A full range of concentrations would only be 

345 tested for acute fish toxicity if mortality would occur in the limit test (Rawlings et al., 2019).

346 In order to compare effect concentration of the FELS test to algae and daphnia we made use of 

347 a previously established database with effect concentrations of the FELS toxicity test for 183 

348 compounds (Scholz et al., 2018). However, given that for these compounds only a limited 

349 number of algae and daphnia effect concentrations were available and in order to increase the 

350 data basis for a comparative assessment, the database was extended by searching additional 

351 databases. This search was leading to the identification of 73 additional compounds and also an 

352 increased number of corresponding algae and daphnia effect concentrations. While our database 

353 content was increased it may also contain a higher degree of uncertainty as the previously 

354 established data set. The reason is that our assessment was based on data that were retrieved 

355 from other database without an accompanying publication and/or limited availability of the 

356 original studies or raw data (e.g. from dossiers submitted to ECHA) and it is difficult to assess 

357 the quality and reliability of data in detail. Hence, for individual compounds there might be a 

358 bias with regard to experimental protocols and data quality. However, restricting the analysis to 

359 data for which original data sources were available would result in a very limited dataset that 
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360 would compromise a quantitative comparative assessment. Thus, for individual dataset a 

361 subsequent analysis of the original study data or replication of the study may be required to 

362 confirm the reliability. Detailed dossiers submitted to agencies may represent a potential source 

363 of data associated with sufficient details for quality assessment. However, for this kind of data it 

364 is often required to keep the compound identity confidential (e.g.(Ahlers et al., 2006)). This 

365 would hamper to release the MoAs related to high sensitivity in the FELS test and was hence, not 

366 considered as an option for obtaining more data on FELS toxicity tests. 

367 The present study demonstrated that in many cases daphnia and algae chronic toxicity tests 

368 revealed similar effect concentration as the FELS test. Hence, for these compounds the FELS test 

369 would have a weak or no impact on the determination of PNECs. For around 12 % of the test 

370 compounds the FELS test revealed an at least 10 fold higher sensitivity. The compounds for 

371 which the higher FELS toxicity was observed appeared to exhibit a specific mode of action, 

372 indicated by their TRs and the known MoA, such as endocrine disruption or extracellular matrix 

373 inhibition. For some of the compounds with high FELS sensitivity, however, only acute daphnia 

374 studies were available. Availability of chronic effect concentration may change the classification 

375 of these compounds, i.e. FELS tests may no longer represent the test with highest sensitivity.

376 As indicated by the previous assessment of TRs and ACRs of the FELS test, typically 

377 compounds with a specific MoA provoke enhanced toxicity. Similarly, sensitivity (if compared 

378 to algae and daphnia) in the FELS test appears to be associated with a non-narcotic and specific 

379 MoA. Partially the same MoAs were identified that also lead to high TR or ACRs in the FELS 

380 test, such as extracellular matrix synthesis inhibition and endocrine disruption (Figure 3). Some 

381 of the MoA displayed a wide range of sensitivity ratios with the FELS test (supplementary table 

382 S11) which could be due to, e.g experimental variability, species specific sensitivities in the 
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383 FELS test and other (unknown) MoA as assigned in this study. While the inhibition of 

384 extracellular matrix synthesis inhibition was linked to enhanced FELS toxicity via impact on the 

385 embryonic development and impaired swimming and feeding, the relation of endocrine 

386 disruption to growth is not well understood (Scholz et al., 2018). However, there is some 

387 evidence that environmental estrogens can affect post-embryonic growth in fishes through 

388 impact on the growth hormone-insulin-like-growth factor (GH-IGF) system (Hanson et al., 2012; 

389 Reindl and Sheridan, 2012). For compounds with other MOAs, such as benzovindiflupyr, a 

390 fungicide that inhibits succinate dehydrogenase, there were also concerns that this compound 

391 may exhibit endocrine disrupting properties (Food Safety Authority, 2015). We also identified 

392 one COX inhibitor (diclofenac) with high sensitivity in the FELS test. Prostaglandins have been 

393 discussed to play an important role in fish reproduction (Martinović-Weigelt et al., 2017), but the 

394 relation to the higher sensitivity in FELS test observed especially for diclofenac is not known. 

395 Furthermore, two other COX inhibitors included in the comparative assessment did not exhibit 

396 higher FELS sensitivity.  For some of the other additional MoAs (e.g. reactive electrophile) that 

397 were identified in the present study, appropriate knowledge why they are related to higher 

398 sensitivity in the FELS test is lacking and may require research to provide data for a mechanistic 

399 process understanding. There were three compounds for which no specific or reactive mode of 

400 action was identified, all of them out of the structural alert domain for prediction of MoAs 

401 (dibutyl thiourea, 4,4'-oxydi(benzenesulphonohydrazide) and peracetic acid). However, the high 

402 toxic ratios found for the FELS test indicate that these compounds are likely to exhibit an 

403 unknown specific or reactive MoA. Interestingly, although known to be associated with high 

404 TRs (Scholz et al., 2018), the comparative analysis did not reveal neurotoxicity as a MoA that 

405 leads to high sensitivity in the FELS test. It is likely that many neuroactive compounds impact 

Page 18 of 33Environmental Toxicology and Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19

406 primarily on invertebrates. Hence, Daphnia represented the most sensitive species for 

407 neuroactive compounds (around 34.6% –9 out of 26– of the neuroactive chemicals displayed a 

408 10fold higher sensitivity in acute or 3chronic daphnia tests). This has also been observed for the 

409 comparison of acute toxicity data (Rawlings et al., 2019).

410 Overall, the comparative assessment of FELS toxicity provides the perspective that 

411 measurement of endpoints related to key events (KEs) and AOPs in alternative test system could 

412 contribute to reduce animal test numbers. With respect to the compounds with high FELS 

413 sensitivity, the analysis of malformations and markers for endocrine disruption in fish embryos 

414 could provide an endpoint with similar sensitivity and related to or representing KE of AOPs 

415 leading to high FELS toxicity. This was indicated for 4 compounds, for which fish embryo EC50 

416 concentrations were found in the range of the FELS test LOEC. However, appropriate 

417 corresponding data in fish embryo are still lacking for most of the other compounds and a 

418 systematic experimental analysis would support to develop alternative endpoints. If not for the 

419 prediction of the effect concentration, the assessment of alternative endpoints in fish embryos or 

420 other alternative test systems may at least lead to the identification of compounds for which a 

421 FELS test should be conducted. Such an approach may be combined with a threshold approach 

422 proposed for the reduction of acute toxicity tests and help to reduce the need for conducting 

423 FELS toxicity tests to assess long-term aquatic hazard of chemicals.

424
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545 Tables and Figures
546

547 Table 1. Results of the literature search for available toxicity data in the FELS toxicity test, 

548 daphnia acute and chronic toxicity test and algae chronic toxicity testa 

Number of study 
entries

Number of chemicalsTest Database

Total 
entries

Entries after 
application of 

quality 
criteria/ 

removal of 
duplicates

Total 
chemicals

Entries after 
application of 

quality 
criteria/ 

removal of 
duplicates

FELST 
test 

compound 
overlap

ECOTOX-
QSAR Toolbox

328 239 206 169

eChem Portal 381 68 265 61
EnviroTox db 717 5 317 5

FELS 
test

OpenFoodTox 16 0 14 0

n/a

ECOTOX-
QSAR Toolbox

422 344 140 134

eChem Portal 146 116 99 83
EnviroTox db 272 27 85 19

Daphnia 
acute 
toxicity

OpenFoodTox 21 3 16 2

162

ECOTOX-
QSAR Toolbox

179 131 97 81

eChem Portal 92 64 79 61
EnviroTox db 377 12 95 8

Daphnia 
chronic 
toxicity

OpenFoodTox 16 0 13 0

119

ECOTOX-
QSAR Toolbox

339 235 124 99

eChem Portal 198 119 102 87
EnviroTox db 669 6 86 6

Algae 
chronic 
toxicity

OpenFoodTox 18 1 8 1

136

549 a The search was limited to chemicals for which FELS data were available. Search was 
550 conducted subsequently, i.e. first via the ECOTOX QSAR Toolbox, followed by echemPortal 
551 and EnviroToxDB. This resulted in a decreasing number of newly identified chemicals in the 
552 subsequent searches. Quality criteria refer to purity of the test chemical (below < 90%) or 
553 deviation from the test guidelines. The search for daphnia and algae data was limited to 
554 compounds for which FELS data were available.

555

Page 26 of 33Environmental Toxicology and Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27

556 Table 2. Compounds with >10 fold higher sensitivity in fish early-life stage test compared to daphnia acute toxicity or Daphnia magna 

557 chronic toxicity, algae chronic toxicity and the FELS test baseline toxicitya 

CAS Number Common Chemical Name 3-Letter 
Abbrv. Mode of action 

Sensitivity 
Daphnia 

acute/
FELST

Sensitivity 
Daphnia 
chronic/
FELST

Sensitivity 
Algae chronic/

FELST
TRb

57-63-6 17alpha-Ethinylestradiol AEE Endocrine disruption 8101 66408 73166

613-62-7 2-(phenylmethoxy)naphthalene 2NP Narcosis 28 >31 26

80-51-3 4,4'-oxydi(benzenesulphonohydrazide) OBH Out of structural alert domain 22 15 15 66194

98-54-4 4-tert-butylphenol 4TB Endocrine disruption 160 85 89 61

86-50-0 Azinphos-methyl APM AChE inhibition 176 1176 >2940 24395

1072957-71-1 Benzovindiflupyr BVF succinate dehydrogenase 
inhibitor 47 19 >494 264

80-09-1 Bisphenol S BPS Endocrine disruption 1000 140 160 1366

109-46-6 Dibutyl thiourea DBT Out of structural alert domain 38 69 196

15307-79-6 Diclofenac DCF COX inhibition 427 255 308 1684

105-53-3 Diethyl malonate DEM reactive electrophiles/pro-
electrophiles 205 28 544 1055

50-28-2 Estradiol ETD Endocrine disruption 10630 >513 >9180 5842

79-21-0 Peracetic acid PAA Out of structural alert domain 117 106 590293

1918-02-1 Picloram PCL Methemoglobin formation 78 55 23465

835621-07-3 Regorafenib RGF Other MoA 2304 127 15882

137-26-8 Thiram THI Extracellular matrix formation 37 47 38 51235

76-87-9 Triphenylstannanol TPS Endocrine disruption 56 61 872109

558 a Color code: blue = most sensitive, red = lowest sensitive, grey = either acute or chronic toxicity data were available for daphnids. 
559 Sensitivity values represent the ratio of effect concentrations (daphnia or algae toxicity versus FELST). A “>” indicates that no 
560 toxicity was observed, in these cases the highest tested concentration was used to calculate the effect ratio. 

561 bThe toxic ratio (TR = Baseline toxicityFELST/ LOECFELST) was calculated for the fish early life stage test. 

562 FELST= fish early-life stage test; AChE = Achetylcholinesterase; COX=  cyclooxygenase; MoA = mode of action
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563 Figure 1. Correlation of daphnia chronic toxicity and daphnia acute toxicity. The indicated 

564 sample numbers (n) refer to the number of compounds used for regression analysis. For details 

565 on compounds and data sources, refer to Supplemental Data. The table summarizes the 

566 parameters of the linear regression. EC50, median effective concentration; LOEC, lowest-

567 observed-effect concentration; IMBL, immobile endpoint.

568

569 Figure 2. Comparison of effect concentrations in fish early-life stage tests (FELST) and the most 

570 sensitive test concentration between Daphnia sp. (chronic (DCT) or acute (DAT) toxicity), and 

571 algae chronic toxicity (ACT). Toxicity data are given in µmol/L. Comparison of all data for 

572 which at least a chronic algae toxicity test and one daphnia (acute or chronic) test – in addition to 

573 the FELS test – was available (n=125). The type of test yielding the most sensitive effect 

574 concentration can be identified from the graph by the symbol preceding the abbreviation of the 

575 compound name. (§) - DAT, (*) - DCT, (~) – ACT.  Compound name abbreviation can be found 

576 in table 2. Dashed lines represent the line of unity ± 10 fold difference (1 log).

577

578 Figure 3. Relation of FELS test sensitivity to the MoA. The FELS sensitivity is described by the 

579 ratios of the lowest effect concentration found in the chronic algae, acute or chronic daphnia test 

580 to the effect concentration of the FELS test. The dashed line represents a ratio of 10. The number 

581 inside the parenthesis indicates the number of chemicals present in each class. For details on the 

582 compounds and data sources, refer to the Supplement (table S5-S10 and S12). Inh. extracellular 

583 matrix - inhibition of extracellular matrix formation by lysyl oxidase inhibition; LOEC - lowest 

584 effect concentration; MoA - mode of action; Ox. - oxidative.
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585

586 Figure 4. Differential sensitivity of 16 chemicals to six toxicity tests (chronic FELS test, 

587 Daphnia acute and chronic test, algae chronic test and acute and embryo fish toxicity test). In the 

588 case of the fish embryo test, two type of endpoints are displayed, the lethal concentration (LC50) 

589 and the effect concentration (EC50) for sub-lethal effects (malformations, locomotor response or 

590 cyp19a1b induction, see supplementary table S13 for details). The dashed line indicates 10 fold 

591 sensitivity difference from FELS toxicity test. In case more than one study was available the bars 

592 represent median values and the range of values for the toxicity studies is represented by error 

593 bars. No bars indicate lack of data or no toxicity was observed (denoted by a #). FELST, chronic 

594 fish early-life stage toxicity test; DAT, daphnia acute test; DCT, daphnia chronic test; ACT, 

595 algae chronic test; FET; fish embryo test; baseline chronic fish toxicity; FELS baseline toxicity. 
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Correlation of daphnia chronic toxicity and daphnia acute toxicity. The indicated sample numbers (n) refer to 
the number of compounds used for regression analysis. For details on compounds and data sources, refer to 
Supplemental Data. The table summarizes the parameters of the linear regression. EC50, median effective 

concentration; LOEC, lowest-observed-effect concentration; IMBL, immobile endpoint. 
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Comparison of effect concentrations in fish early-life stage tests (FELST) and the most sensitive test 
concentration between Daphnia sp. (chronic (DCT) or acute (DAT) toxicity), and algae chronic toxicity (ACT). 
Toxicity data are given in µmol/L. Comparison of all data for which at least a chronic algae toxicity test and 
one daphnia (acute or chronic) test – in addition to the FELS test – was available (n=125). The type of test 
yielding the most sensitive effect concentration can be identified from the graph by the symbol preceding 
the abbreviation of the compound name. (§) - DAT, (*) - DCT, (~) – ACT.  Compound name abbreviation 

can be found in table 2. Dashed lines represent the line of unity ± 10 fold difference (1 log). 
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Relation of FELS test sensitivity to the MoA. The FELS sensitivity is described by the ratios of the lowest 
effect concentration found in the chronic algae, acute or chronic daphnia test to the effect concentration of 
the FELS test. The dashed line represents a ratio of 10. The number inside the parenthesis indicates the 
number of chemicals present in each class. For details on the compounds and data sources, refer to the 

Supplement (table S5-S10 and S12). Inh. extracellular matrix - inhibition of extracellular matrix formation 
by lysyl oxidase inhibition; LOEC - lowest effect concentration; MoA - mode of action; Ox. - oxidative. 
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Differential sensitivity of 16 chemicals to six toxicity tests (chronic FELS test, Daphnia acute and chronic 
test, algae chronic test and acute and embryo fish toxicity test). In the case of the fish embryo test, two 

type of endpoints are displayed, the lethal concentration (LC50) and the effect concentration (EC50) for sub-
lethal effects (malformations, locomotor response or cyp19a1b induction, see supplementary table S13 for 
details). The dashed line indicates 10 fold sensitivity difference from FELS toxicity test. In case more than 

one study was available the bars represent median values and the range of values for the toxicity studies is 
represented by error bars. No bars indicate lack of data or no toxicity was observed (denoted by a #). 

FELST, chronic fish early-life stage toxicity test; DAT, daphnia acute test; DCT, daphnia chronic test; ACT, 
algae chronic test; FET; fish embryo test; baseline chronic fish toxicity; FELS baseline toxicity. 
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