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ABSTRACT 

 

Although ozonation is nowadays recognized as one of the most efficient technologies for 

micropollutants abatement in municipal wastewater effluents, several of the compounds 

potentially present in those waters exhibit a strong resistance to direct ozone oxidation. 

In addition, the real-time control of the removal process is still challenging. In this work, 

the abatement of ozone-recalcitrant micropollutants during wastewater ozonation of six 

different wastewater effluents was explored using the pesticide acetamiprid as hydroxyl 

radical (•OH) probe. By means of this data, the oxidation efficiency (i.e., hydroxyl radical 

exposure per consumed ozone) could be described by means of a two-stage model based 

on the ROHO3 concept. This was possible using a semi-continuous bubbling ozone 

contactor in all experiments, which permitted the inclusion of the ozone mass balance in 

the model. ROHO3 values of (1.53-7.60)·10-7 s for initial ozonation stage and (0.61-

2.95)·10-6 s for the secondary stage were obtained allowing the characterization and 

comparison of the process performance in a wide range of effluent qualities, including 
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water matrices with a high content of dissolved and particulate organic matter (total 

organic carbon (TOC), dissolved organic carbon (DOC) and turbidity tested ranges: 6.7-

50 mg C L-1, 6.6-27.6 mg C L-1 and 0.3-28.6 NTU, respectively). Finally, a surrogate 

strategy involving •OH exposure estimation by means of ultraviolet absorbance at 254 

nm (UVA254) measurements was proposed based on the ROHO3 concept, and by means of 

its application the removal of atrazine and ibuprofen in six different wastewaters could 

be rightly predicted (R2 > 0.98). 
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1. Introduction 

 

Ozonation has largely demonstrated to be one of the most effective and easily 

implementable advanced treatment technologies for micropollutants (MPs) abatement in 

municipal wastewater effluents. From laboratory to full-scale studies, a considerable 

number of works have reported the benefits, in terms of water quality, derived from ozone 

(O3) application after the secondary stage of a wastewater treatment train (Bourgin et al., 

2018; Gerrity et al., 2011; Nakada et al., 2007; Reungoat et al., 2012; Zimmermann et al., 

2011). However, and although this technology is nowadays increasingly implemented in 

wastewater treatment plants (WWTPs) around the world (Chys et al., 2017), the control 

of MPs removal during the process – necessary to optimize the required oxidant doses – 

is still challenging. Despite the vast advances in chromatographic techniques, which 
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currently allow the simultaneous determination of a few hundred compounds from µg L-

1 to ng L-1 levels (Bourgin et al., 2018), the huge number of chemicals (Drewes et al., 

2013; Oulton et al., 2010) potentially present in wastewater effluents makes the 

measurement of their individual oxidation efficiencies a completely prohibitive option 

from a practical and economical perspective. A helpful alternative could be the 

employment of chemical kinetics, which establishes that the removal of any MP during 

ozonation can be predicted if the second-order rate constants of reactions between this 

compound and both ozone (kO3) and hydroxyl radicals (k•OH), as well as the ozone and 

hydroxyl radical exposures (∫[O3]dt and ∫[•OH]dt) are known, according to Eq. 1. 

 

−𝑙𝑛 (
[𝑀𝑃]

[𝑀𝑃]0
) =  𝑘𝑂3

∫[𝑂3] d𝑡 + 𝑘•𝑂𝐻 ∫[• 𝑂𝐻] d𝑡 (1) 

 

Despite the great potential of ozonation process, some of the organic compounds typically 

present in secondary effluents present a strong recalcitrance towards direct ozone 

oxidation. They are known as ozone-resistant micropollutants, and they are characterized 

by second-order rate constants with molecular ozone generally below 10 M-1 s-1 (Lee et 

al., 2013). As most of these chemicals are only effectively eliminated by hydroxyl radical 

(•OH) oxidation, they are considered to be one of the main limiting factors for ozone 

applications (Schindler Wildhaber et al., 2015). In some parts of the world, obtaining a 

high quality water from wastewater may be required in a near future for applications 

involving further human exposure. In these situations, the monitoring and control of the 

fate of ozone-recalcitrant MPs during ozonation might be essential, especially 

considering that some of these compounds can pose risks to human and environmental 

health. In such cases, and according to chemical kinetics (see Eq. 1), if these species 

(ozone-resistant compounds) are effectively removed from the effluent, it can be fairly 
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hypothesized that those other compounds presenting a certain degree of reactivity with 

O3 (i.e., in general, kO3 values larger than 10 M-1s-1) would be faster oxidized. It is clear, 

therefore, that a potential approach to ensure the removal of MPs during the ozonation 

step in a WWTP could be the control of those MPs whose abatement is more difficult to 

achieve, that is, O3-resistant compounds. In accordance with this hypothesis of work, Eq. 

1 could be simplified to Eq. 2.  

 

−𝑙𝑛 (
[𝑀𝑃]

[𝑀𝑃]0
) =  𝑘•𝑂𝐻 ∫[• 𝑂𝐻] d𝑡 (2) 

 

Regarding k•OH values, there is a large kinetic database in literature for reactions between 

organic compounds and hydroxyl radicals (Buxton et al., 1988; von Sonntag and von 

Gunten, 2012). With respect to •OH exposure, this term can be experimentally determined 

through the monitoring of a •OH probe compound (Elovitz and Von Gunten, 1999). This 

method, although useful for prediction of contaminants removal in lab-scale studies or 

during the planning stage of wastewater ozonation units (Lee et al., 2014, 2013; Schindler 

Wildhaber et al., 2015), is time consuming and hardly has an application in real-time 

control systems. A possible solution to this limitation could be the use of a water quality 

parameter as surrogate for online estimation of •OH exposure. A recent work by Chys 

and coworkers shows the potential of this approach employing the ultraviolet absorbance 

at 254 nm (UVA254) and total fluorescence (TF) as surrogates (Chys et al., 2017). In a 

parallel – but related – line of work, some studies have also shown that decreases in 

UVA254 and total fluorescence (TF) could be correlated to the abatement of 

micropollutants (Gerrity et al., 2012; Park et al., 2017; Stapf et al., 2016).  
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In general, lab-scale studies dealing with micropollutants oxidative abatement from 

wastewater by means of ozonation – and especially those working on the kinetic 

modelling of the process – ignore the ozone mass transfer and the relationship between 

this factor and the process performance. The performance of batch ozonation experiments 

with addition of O3 from aqueous stock solutions, although practical for absolute kinetics 

determinations, prevents the accurate characterization of the initial, fast O3-consuming, 

ozonation stage. Furthermore, in most ozonation studies the oxidation performance is 

usually described by means of parameters that are strongly dependent from the applied 

dose of oxidant, such as the Rct concept (Elovitz and Von Gunten, 1999). Regarding this, 

Kwon and coworkers (Kwon et al., 2017) have recently proposed the ROHO3 concept, a 

kinetic parameter defined as the •OH exposure (i.e., the time-integrated •OH 

concentration) per consumed O3 (i.e., the transferred ozone dose (TOD)) (see Eq. 3). The 

ROHO3 concept is independent from the O3 dose and appears to be useful for both, 

performance characterization and kinetic modelling of ozonation process. However, a 

single ROHO3 value is not enough to characterize the whole ozonation process, as deducted 

by the work performed by Kwon et al. (Kwon et al., 2017).  

 

𝑅𝑂𝐻𝑂3
=  

∫[• 𝑂𝐻] d𝑡

𝑇𝑂𝐷
 (3) 

 

The main goal of this study was, on one hand, to assess the oxidation performance of 

semi-continuous ozonation for enhanced wastewater treatment, particularly focusing on 

the monitoring and control of ozone-resistant micropollutants removal from effluents. On 

the other, and by means of kinetic parameters like ROHO3 and the monitoring of UVA254 

as surrogate quality parameter, to establish the fundamentals of potential strategies for 

the real-time prediction and control of the abatement of these recalcitrant species during 
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the whole process. The proposed models were validated by predicting the abatement of 

ozone-recalcitrant micropollutants atrazine and ibuprofen in all the employed effluents. 

The removal of moderate and highly ozone-sensitive micropollutants during the process 

was also verified. 

 

2. Materials and methods  

 

2.1. Chemicals and reagents 

 

Acetamiprid (ACMP), atrazine (ATZ), ibuprofen (IBU), methiocarb (MC) and dichlorvos 

(DDVP) analytical standards were acquired from Sigma-Aldrich (Germany). Ultrapure 

water was produced by a filtration system (Millipore, USA). Pure oxygen (≥ 99.999%) 

was supplied by Abelló Linde (Spain). 

 

2.2. Wastewater effluents 

 

Six wastewater effluents from five WWTPs in the province of Barcelona (Spain) were 

employed in this work. Three of them (M-VAC, M-VAL and M-GAV) came from 

membrane biological reactor (MBR) systems, whereas the rest (C-PRA, C-GAV and C-

C-LLA) were collected from conventional activated sludge (CAS) treatments. All 

samples were directly collected from the outlet stream of the corresponding biological 

treatments. Their main quality parameters are gathered in Table 1. The raw CAS effluents 

were filtered with conventional filter paper to remove the largest particles. For each 

sample, total organic carbon (TOC) and dissolved organic carbon (DOC) (after being 

filtered through 0.45 µm PTFE syringe filters) were measured by means of a Shimadzu 
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TOC-VCSN analyzer. The ultraviolet (UV) absorbance was determined with a DR6000 

UV VIS spectrophotometer (Hach, USA). Turbidity was measured with a 2100Q portable 

turbidimeter, also by Hach. Alkalinity was determined by means of an automatic titration 

device coupled with a pH meter (Crison, Spain). Nitrite (NO2
-) concentration was 

determined through ion-exchange chromatograph with UV detection. All the effluent 

samples were stored at 4 ºC prior to be used. 

 

Table 1. Main effluent water quality parameters (M-: membrane biological systems; C-: conventional 

activated sludge treatments). All measurements were performed per triplicate. Discrepancies between 

values were in all cases lower than 5%. 

WWTP 

ID 

Location  pH 

TOC 

[mg C L-1] 

DOC 

[mg C L-1] 

UV254 

[cm-1] 

Turbidity 

[NTU] 

Alkalinity 

[mg CaCO3 L-1] 

NO2
- 

[mg N L-1] 

M-VAC Vacarisses 7.9 6.7 6.6 0.179 0.6 330 0.85 

M-VAL Vallvidrera 7.4 10.5 10.3 0.163 0.9 178 0.03 

M-GAV 

Gavà-

Viladecans 

7.7 12.4 12.1 0.149 0.3 200 0.12 

C-PRA 

El Prat de 

Llobregat 

7.5 14.0 13.6 0.229 1.1 264 0.09 

C-GAV 

Gavà-

Viladecans 

7.8 42.1 27.6 0.672 28.6 517 0.09 

C-LLA La Llagosta 7.7 25.6 21.3 0.664 20.1 419 0.03 

 

The employed wastewater effluents showed broad variations in their main quality 

parameters. These marked differences were considered highly valuable since allowed the 

performance of a study whose results could cover a wide range of water qualities. 
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2.3. Ozonation of wastewater effluents 

 

Wastewater ozonation experiments were performed in a 750 mL jacketed reactor, 

operated in semi-continuous mode. Ozone was produced by a 301.19 lab ozonizer 

(Sander, Germany) and injected at the bottom of the reactor by means of a porous diffuser 

made of sintered glass (pore size: 150-250 µm). A mechanical mixing system ensured the 

good contact between liquid and gas phases. Experiments were performed at 20±1 ºC, 

without pH adjustment. The gas flow rate and the inlet ozone concentration were 

maintained at 0.1 NL min-1 and 30 mg NL-1, respectively. Inlet and outlet gas-phase ozone 

concentrations were continuously monitored by two BMT 964 ozone analyzers (BMT 

Messtechnik, Germany) placed up and downstream the reactor, respectively. The ozone 

concentration in the aqueous phase was measured by means of a Q45H/64 dissolved O3 

probe (Analytical Technology, USA), which was connected to a liquid recirculation 

stream (flow rate: 200 mL min-1). A detailed scheme of the ozonation setup is shown in 

Fig. 1. 
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Figure 1. Ozonation setup. 1. Oxygen bottle; 2. Ozonizer; 3. Regulating valve; 4. Manometer; 5. Gas flow-

meter; 6. Three-way valve; 7. Reactor; 8. Dissolved ozone measuring system; 9. Foam trap; 10. KI solution 

for O3 quenching; 11. Thermometer; 12. Ozone analyzer (gas-phase). 

 

The ozone consumption was determined as the transferred ozone dose (TOD), which is 

defined by Eq. 4 and represents the accumulated amount of ozone that is transferred to 

the water sample per unit of volume and time. 

 

𝑇𝑂𝐷 = ∫
𝐹𝑔𝑎𝑠

𝑉𝑙𝑖𝑞
· ([𝑂3]𝑔𝑎𝑠,𝑖𝑛 − [𝑂3]𝑔𝑎𝑠,𝑜𝑢𝑡) · d𝑡

𝑡

0

 (4) 

 

Fgas, Vliq are the gas flow rate and the liquid volume, respectively; t stands for the 

ozonation time; [O3]gas,in and [O3]gas,out represent the ozone concentrations measured at 

the inlet and outlet gas streams, respectively. The trapezoidal method of numerical 

integration (integration step: 10 s) was employed in these calculations. The existent dead 

volume between the reactor liquid-gas interface and the outlet ozone gas analyzer was 

considered for TOD calculations. The reactor headspace was modelled as a continuous 

stirred-tank reactor (CSTR) to account for ozone dilution in the gas phase, whereas gas 

streams circulating through standard polytetrafluoroethylene (PTFE) tubing have been 

considered to follow plug-flow behavior (estimated delay: 2.0 min). 

 

Each wastewater effluent was spiked with 100 µg L-1 of ACMP as •OH probe compound 

(kACMP,O3 = 0.25 M-1 s-1 and kACMP,•OH = 2.1·109 M-1 s-1 (Cruz-Alcalde et al., 2017a)), then 

ozonized for 60 min under the mentioned operational conditions. Samples were 

withdrawn at known time intervals and kept at room conditions until complete 

consumption of dissolved ozone was achieved. The residual concentration of ACMP was 
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then measured by high performance liquid chromatography with UV detection (HPLC-

UV). The UV absorbance data was determined with a DR6000 UV-Visible 

spectrophotometer (Hach, USA). Additional ozonation experiments were performed in 

order to test the proposed strategy for the control of micropollutants abatement. In this 

case, each wastewater effluent was spiked with low concentrations (25-50 µg L-1) of the 

pesticides atrazine (ATZ), methiocarb (MC) and dichlorvos (DDVP), as well as the anti-

inflammatory drug ibuprofen (IBU). The residual concentrations of these micropollutants 

in samples taken at various reaction times were also determined by HPLC-UV. All 

experiments were performed in duplicate. 

 

The concentrations of ACMP, ATZ, MC, DDVP and IBU were quantified by means of a 

HPLC equipped with a diode array detector (DAD), all supplied by Agilent (1260 

Infinity). The column employed was a Teknokroma Mediterranea Sea18 (250 mm x 4.6 

mm and 5 µm size packing). The flow rate and injection volume were set, respectively, 

at 1.0 mL min-1 and 100 µL in all determinations. For ACMP and DDVP analyses, the 

mobile phase consisted of 30:70 volumetric mixtures of acetonitrile and Milli-Q water 

acidified at pH 3 by the addition of H3PO4. The detection wavelength was set to 250 nm 

(ACMP) and 225 (DDVP) nm, respectively. For ATZ, MC and IBU quantification, the 

mobile phase consisted of 70:30 volumetric mixtures of acetonitrile and pH 3 Milli-Q 

water, and the UV detection was performed at 225 nm. The limits of quantitation were: 

3.3 µg/L (ACMP), 9.2 µg/L (DDVP), 0.9 µg/L (ATZ), 8.3 µg/L (MC) and 2.1 µg/L 

(IBU). 

 

3. Results and discussion 
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3.1. Ozone mass transfer and demand 

 

During wastewater ozonation experiments, inlet and outlet (gas phase), as well as 

dissolved (liquid phase) ozone concentrations were continuously measured and registered 

(see Fig. S1 of the Supplementary Information (SI)). The monitoring of these data allowed 

a complete assessment of the ozone mass balance and the estimation of some parameters 

describing key aspects of the process, such as the ozone transfer efficiency (ηtr), the 

volumetric mass transfer coefficient (KLa), the rate of ozone decay (kd) and the immediate 

ozone demand (IOD). The corresponding values for each effluent are gathered in Table 

2. Further information regarding these parameters and their estimation procedures can be 

found in the SI (Texts S1-S3 and Figs. S2-S5). 

 

Table 2. IOD, kd and ηtr values determined for wastewater effluent samples. 

Sample 

ID 

IOD 

[mg O3 L-1] 

kd 

[min-1] 

KLa 

[min-1] 

ηtr, 1
st-phase 

[tr. O3/app. O3] 

ηtr, 2
nd-phase 

[tr. O3/app. O3] 

M-VAC 14 0.170 0.451 0.705 0.115 

M-VAL 9 0.175 0.389 0.771 0.121 

M-GAV 11 0.181 0.396 0.742 0.141 

C-PRA 16 0.221 0.397 0.725 0.154 

C-GAV 28 0.621 0.210 0.853 0.247 

C-LLA 19 0.582 0.228 0.840 0.233 

 

Differences observed between effluents in ozone transfer behavior could be explained by 

the properties of each sample, especially – but not exclusively – the initial concentrations 

of dissolved and particulate organic matter (OM) (see TOC and DOC data in Table 1). 



12 

 

This is clearly illustrated by results obtained for IOD. This parameter describes the ozone 

demand at the initial stage of ozonation, where this oxidant is instantaneously consumed 

by the reactive components of the water matrix. Thus, this parameter represents the dose 

of ozone for which the transition between primary (fast) and secondary (slow) ozonation 

stages takes place. In general, increasing contents in organic matter leads to larger ozone 

demands. DOC-normalized IODs (i.e., IOD/DOC) were in general in the range between 

0.9 and 1.2 mg O3 mg C-1, being this a proof of the similar effluent organic matter (EfOM) 

character and ozone needs for different effluent sources. The only exception was found 

to be the M-VAC sample, which presented an IOD/TOC of 1.7 (ozone demand exerted 

by nitrite (Naumov et al., 2010) already deducted). This particular result could be 

probably attributed to the also individual properties of that effluent – besides nitrite 

content: highest pH, high alkalinity, and one of the highest UVA254/DOC ratios. For the 

rest of parameters gathered in Table 2, in general, the relationship between ozone transfer 

and effluent quality observed in the present study was in agreement with previous findings 

and fundamental concepts (Jiang et al., 2009; Levenspiel, 1999; Marce et al., 2016).  

 

3.2. Removal of a model ozone-resistant micropollutant and determination of ROH,O3 

values  

 

Fig. 2 shows ACMP degradation evolution during ozonation experiments as a function of 

the employed O3:DOC ratios (determined as TOD/initial DOC). Ozonation was extended 

to applied ozone doses significantly higher than that reported in related lab-, pilot- and 

full-scale ozonation works, where O3:DOC ratios mainly between 0.5 and 1.5 mg O3 mg 

C-1 but up to 2 mg O3 mg C-1 (Bourgin et al., 2018; Chys et al., 2017; Gerrity et al., 2011; 

Kwon et al., 2017; Lee et al., 2013) have been employed. Typical conditions applied in 
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actual ozonation units are characterized by none or limited ozone residual in the aqueous 

phase during the process, that is, working within the initial ozonation stage in which all 

the applied ozone is instantaneously consumed, before IOD completion. In Fig. 2, the 

maximum and minimum DOC-normalized IOD values (IOD/DOC) determined during 

experimentation are represented by dashed lines. 

 

 

Figure 2. Abatement of acetamiprid from different wastewater effluents during ozonation, as a function of 

the TOD/DOC ratio. The shaded area represents the typical range of O3:DOC ratios applied in ozonation 

studies (up to 2 mg O3 mg C-1). Maximum and minimum DOC-normalized IOD values are also represented 

by dashed vertical lines.  

 

It is clear, in the view of recent research, that currently employed ozone doses are not able 

to completely remove ozone-recalcitrant chemicals (Bourgin et al., 2018; Lee et al., 

2013). That is also obvious in the view of the findings of the present work, where ACMP 

removals for a maximum O3:DOC ratio of 2 mg O3 mg C-1 ranged between 30 and 80%, 

depending on the water source. If ozone was dosed up to IOD completion, the following 

ACMP degradation levels would be approximately obtained: 17% for M-VAC, 25% for 
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M-VAL, 22% for M-GAV; 20% for C-PRAT; 31% for C-GAV and 25% for C-LLA. 

Definitely, if a significant abatement of ozone-recalcitrant micropollutants is wanted to 

be reached, ozonation should be extended beyond IOD. However, and due to the high 

pollution loads (i.e., high DOC) of samples from conventional activated sludge effluents, 

the absolute doses of oxidant to apply for the abatement of O3-resistant compounds would 

be considered uneconomical. Thus, for these effluents other alternatives should be 

explored for the removal of these chemical species from wastewaters. On the contrary, 

extended ozonation could be considered for clearer effluents, such as the MBR systems 

employed in this study.  

 

 

Figure 3. ∫[•OH]dt versus TOD plot obtained during ozonation of wastewater effluent samples spiked with 

acetamiprid as •OH probe compound. The slopes of each linear regression represent the ROHO3 values of 

primary and secondary ozonation stages, which are gathered in Table 2. [ACMP]0 = 100 µg L-1; Gas flow 

rate = 0.100 ± 0.005 NL min-1; Inlet (gas) ozone concentration = 30 ± 1 mg O3 NL-1; Treaction = 20 ± 1 ºC, 

Tin (gas) = 22 ± 2 ºC; Pin (gas) = 25 ± 2 mbar. Values of the immediate ozone demand (IOD) for each 

effluent are marked at the top of the graph and should be read by projecting the symbols on the x-axis. 
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Because of the different O3 demands and consumptions according to the individual water 

qualities (see Table 2 and SI, texts S1-S3 and Figs. S1-S5), the use of ∫[•OH]dt alone as 

an absolute indicator of the oxidation performance during ozonation process is not 

recommended. The ROHO3 concept can be used instead. Fig. 3 shows the ∫[•OH]dt versus 

TOD (consumed ozone, according to the employed experimental methodology) plot for 

all the tested effluents. Linear relationships were obtained in all cases (R2 > 0.98) and, 

according to Eq. 3, the corresponding ROHO3 values could be determined from their slope 

values (Table 3). IOD values representing the transition between both stages are also 

indicated in Fig. 3. 

 

Two different ROHO3 were obtained for each water sample, one per each of the two ozone 

consumption regimes that were observed during ozonation experiments. According to the 

typically applied conditions in actual ozonation units, first stage ROHO3 value would be 

enough to estimate the hydroxyl radical exposure during the treatment. If ozonation is 

extended beyond IOD with the aim of further removing ozone-recalcitrant species, the 

secondary ROHO3 value should be also taken into account. For all effluents, the initial 

ROHO3 value was lower than the secondary one.  This means that at the beginning of the 

reaction there were less radicals available per consumed ozone, when there is a strong 

mass transfer and an instantaneous ozone consumption exerted by O3-reacting matter. 

After IOD completion, the amount of consumed ozone gradually decreased until 

stationary conditions were reached. In addition, during the early stage of ozonation the 

water matrix presents larger amounts of •OH-scavenging matter. This situation changes 

when the regime switches to the slow phase, as a fraction of these components have 

already been consumed. From this point, therefore, both the O3 consumption and •OH 

scavenging rates diminish. 
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Table 3. Summary of ROHO3, kUVA,O3 and kUVA,OH (experimental and determined as kUVA,O3/ROHO3) values 

obtained for ozonized wastewater effluents. Correlation coefficients (R2) greater than 0.98 were obtained 

in all cases. Discrepancies between coefficients values obtained in duplicate experiments were in all cases 

lower than 5%. 

WW ID 

ROHO3 

[s] 

kUVA,O3 

[M-1] 

kUVA,OH 

(experimental) 

[M-1s-1] 

kUVA,OH 

(kUVA,O3/ ROHO3) 

[M-1s-1] 

1st  

(x107) 

2nd 

(x106) 

1st 

(x10-3) 

2nd 

(x10-3) 

1st 

(x10-9) 

2nd 

(x10-8) 

1st 

(x10-9) 

2nd 

(x10-8) 

M-VAC 2.95 2.53 1.64 1.50 5.73 5.90 5.56 5.92 

M-VAL 7.60 2.95 2.59 1.79 3.37 6.06 3.41 6.05 

M-GAV 5.29 1.35 1.88 0.82 3.49 5.98 3.55 6.08 

C-PRA 2.94 1.18 1.48 0.76 4.94 6.46 5.03 6.43 

C-GAV 1.53 0.61 0.77 0.25 5.00 4.20 5.05 4.09 

C-LLA 1.79 1.23 0.93 0.59 5.13 4.80 5.20 4.80 

 

Changes in ozone transfer regimes turned into ca. 3 to 9-fold ROHO3 increases between 

primary and secondary ozonation stages, depending on the water source. The observed 

trend in initial ROHO3 values were M-VAL > M-GAV > M-VAC ≈ C-PRA > C-LLA > C-

GAV. Although M-GAV and C-PRA exhibited similar values for •OH exposure, the C-

PRA effluent had larger ozone needs caused by a higher content in organic matter and 

EfOM aromaticity. Therefore, for equal ∫[•OH]dt values the M-GAV sample presented a 

better oxidation efficiency. Similarly, the obtained ROHO3 values for M-VAC and C-PRA 

effluents were very close. The M-VAC effluent presents a NO2
- content and alkalinity of 

0.85 mg N L-1 and 329.5 mg CaCO3 L
-1, respectively, versus the 0.09 mg N L-1 and 263.5 
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mg CaCO3 L
-1 exhibited by the C-PRA sample. Thus, differences in OM content between 

these two waters [M-VAC (TOC: 6.7 mg L-1), C-PRA (TOC: 14.0 mg L-1)], were 

compensated by a larger O3 consumption without •OH generation (nitrite) and also a 

higher •OH scavenging rate (carbonates) in the case of the M-VAC effluent. M-VAL, C-

GAV and C-LLA effluents presented the highest and the two lowest oxidation 

efficiencies, respectively, which could be also explained by their relative water qualities: 

the M-VAL sample had relatively low values TOC and alkalinity, whereas the opposite 

situation was observed for C-GAV and C-LLA effluents. 

 

3.3. Effluent organic matter transformation during wastewater ozonation: evolution of 

UV254 absorbance 

 

The absorbance spectra as a function of the transferred ozone dose (TOD) revealed a 

proportional decay in the UV absorption of the water throughout the entire ozonation 

time, at practically any of the studied wavelengths and for all the ozonized effluents (Fig. 

S6 of the SI). As known, the electron-rich moieties present in wastewater effluents 

(EfOM), with typically strong UV absorptions (von Sonntag and von Gunten, 2012), are 

certainly reactive to ozone: a sustained decrease in the UV absorption was therefore 

expected during the ozonation process. Fig. 4 shows, for all the tested effluents, the plot 

of the relative decrease in UV absorbance with time (A), as well as negative, natural 

logarithm of the relative UV absorbance versus the consumed ozone (B), represented in 

this case by the TOD. A wavelength of 254 nm was chosen for absorbance monitoring 

since UVA254 is one of the parameters typically monitored in practice. 
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−𝑙𝑛 (
𝑈𝑉𝐴254

𝑈𝑉𝐴254,0
) = 𝑘𝑈𝑉𝐴,𝑂3 · 𝑇𝑂𝐷 (5) 

 

The relationship between the absorbance decrease and the TOD is expressed by Eq. 5.  

This is reasonable here since the decay of UVA254 has been demonstrated to follow a first-

order kinetic relationship with respect to ozone, and the ozone exposure (i.e., the time-

integrated O3 concentration) is directly proportional to the consumed dose of this oxidant 

(Buffle et al., 2006). In the view of the obtained results (Fig. 4B), in which linear 

relationships with regression coefficients greater than 0.98 were generally obtained, these 

assumptions were confirmed. 
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Figure 4. Changes in UV absorbance during ozonation of wastewater effluents. UVA254 evolution with time 

(A) and logarithmic relative decrease in UVA254 (B) as a function of the transferred ozone dose (TOD). 

 

Again, two different regimes were observed regarding the rate of UVA254 reduction 

(kUVA,O3, Table 3) in accordance with the relative amount of aromatic and unsaturated 

moieties contained in the EfOM along ozonation, for each one. M-VAL wastewater 

effluent exhibited the highest rate constant for UVA254 depletion (2.59·103 M-1), whereas 
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for the C-GAV effluent (0.77·103 M-1) resulted to be the lowest one. This approximately 

4-fold factor is partly explained by the huge differences found in particulate/colloidal 

organic matter content of the CAS effluent with respect to the MBR effluent, (see 

turbidity, TOC and DOC values in Table 1) (Marce et al., 2016). If the focus is put in 

waters in which less or no solids were present (M-VAL, M-VAC, M-GAV and C-PRA), 

other water quality parameters with high influence on the ozonation process, such as the 

carbonate presence (alkalinity) or the EfOM aromaticity can play an important role. So, 

the MBR effluent with the fastest kinetics (M-VAL) is also the one with a lower carbonate 

alkalinity content (178 mg CaCO3 L
-1). •OH oxidation appears to play a significant role 

in the UVA254 reduction process during ozonation, and a significant increase in the 

carbonate content reduces this important contribution by means of the scavenging effect.  

 

3.4. Kinetic modelling using the ROHO3 concept and UVA254 monitoring 

 

If the relationship between •OH exposure and transferred ozone (i.e., ROHO3 definition, 

Eq. 3) and the relationship between UVA254 decay and TOD (Eq. 5) are both combined, 

a new expression relating the absorbance decrease and the •OH exposure can be obtained 

(Eq. 6). 

 

−𝑙𝑛 (
𝑈𝑉𝐴254

𝑈𝑉𝐴254,0
) = 𝑘𝑈𝑉𝐴,𝑂𝐻 · ∫[• 𝑂𝐻] d𝑡 (6) 

 

Therefore, if the logarithm of the relative measured UVA254 is graphically represented 

against the time-integrated hydroxyl radical concentration, a linear correlation is 

expected. Fig. 5 shows the logarithm of relative UVA254 as a function of the hydroxyl 

radical exposure, determined for all the tested effluents. Experimental data were fitted by 
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straight lines (R2 > 0.98), thus confirming the linear behavior for this data set previously 

deduced by means of theoretical analysis. Obtained kUVA,OH values, that is, the slope of 

the obtained linear relationship described by Eq. 6, are gathered in Table 3. To further 

validate the relationship obtained by the combination of Eqs. 2 and 4, kUVA,OH calculated 

as kUVA,O3/ROHO3 was also included in this table and compared with the experimentally 

determined values, obtaining differences ranging from 0.1 to 3.0%. 

  

According to the obtained results, good correlations could be established between •OH-

exposure and UVA254 attenuation, which opens the door to potential real-time estimations 

of the ∫[•OH]dt term by means of online UVA254 measurements. The use of a similar 

approach has been recently reported by Chys et al., who obtained good correlations 

between •OH-exposure and both UVA254 and TF attenuation (R2 in the range of 0.82-

0.90) in lab-scale wastewater ozonation experiments. Similarly to ROHO3 concept, initial 

kUVA,OH values obtained in the present study would be useful to perform •OH-exposure 

estimations during the primary ozonation stage, that is, if working ozone doses are within 

IOD completion. That situation, as mentioned, would represent typical operational 

conditions of actual ozone applications for enhanced water and wastewater treatment. 

However, if ozonation is wanted to be extended up to the application of O3 doses beyond 

IOD, the second-stage kUVA,OH value should be used for •OH-exposure predictions in the 

secondary ozonation stage. By means of these two values, therefore, a complete 

characterization of the radical availability during the whole ozonation process is certainly 

possible. 
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Figure 5. Natural logarithm of relative UVA254 as a function of •OH exposure, determined during ozonation 

experiments of different wastewater effluent samples: A, entire ozonation time; B, zoom of data 

corresponding to initial ozonation stage. 

 

It seems to be that even a general model for •OH-exposure prediction by UVA254 

measurements could be proposed for clearer effluents such as membrane bioreactor 

effluents and C-PRA (R2 = 0.94 and 0.92 for initial and secondary ozonation stages, 
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respectively, see SI-Fig. S7). Significant deviations from these predictions, however, 

would be observed for CAS effluents with relatively high content in OM and inorganic 

salts (i.e., C-GAV and C-LLA samples). Further investigations, therefore, would be 

required in these cases to accurately quantify the individual and synergistic effects exerted 

by main matrix components, so proper corrections according to the water quality could 

be applied to the model. 

 

3.5. Prediction of ozone-resistant micropollutants removal by means of models based 

on ROHO3 and UVA254 measurements 

 

In order to evaluate the usefulness of both the ROHO3 concept and the newly developed 

method for •OH exposure monitoring by means of UVA254 measurements, removal 

prediction assays were conducted for each wastewater effluent and two typical target 

compounds: ibuprofen (IBU) and atrazine (ATZ). The deprotonated form of both 

chemicals, predominant at neutral pH, present low reactivity towards ozone, with second-

order rate constants of 9.6 and 6 M-1s-1, respectively, and moderate/high reactivity with 

hydroxyl radicals (k•OH of 7.4·109 and 3.0·109 M-1s-1 for IBU and ATZ, respectively) 

(Acero et al., 2000; Huber et al., 2003). According to Eq. 2 and both the ROHO3 and kUVA,O3 

definitions (Eqs. 3 and 5), the removal of these two O3-resistant micropollutants (MPs) 

can be predicted by Eqs. 7 and 8, respectively. 

 

−𝑙𝑛 (
[𝑀𝑃]

[𝑀𝑃]0
) =  𝑘•𝑂𝐻 · 𝑅𝑂𝐻𝑂3 · 𝑇𝑂𝐷 (7) 
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−𝑙𝑛 (
[𝑀𝑃]

[𝑀𝑃]0
) =  𝑘•𝑂𝐻 ·

−𝑙𝑛 (
𝑈𝑉𝐴254

𝑈𝑉𝐴254,0
)

𝑘𝑈𝑉𝐴,𝑂𝐻
 

(8) 

 

Consistently with the work developed in this study, and according to the fact that we 

extended ozonation experiments in order to achieve the complete abatement of ozone-

recalcitrant micropollutants, two-phase models were employed for these calculations 

using the ROHO3 and kUVA,O3 values determined in primary and secondary ozonation stages, 

for each tested water source.  

 

 

Figure 6. Prediction of ATZ and IBU removals during ozonation of M-VAC (representative example) 

effluent, employing both the ROHO3 concept (A) and the UVA254-based strategy for •OH exposure prediction 

(B). [ATZ]0 = [IBU]0 = 25 µg L-1, [MC]0 = [DDVP]0 = 50 µg L-1; Gas flow rate = 0.100 ± 0.005 NL min-1; 

Inlet (gas) ozone concentration = 30 ± 1 mg O3 NL-1; Treaction = 20 ± 1 ºC, Tin (gas) = 22 ± 2 ºC; Pin (gas) = 

25 ± 2 mbar. 

 

Fig. 6 shows the removal profiles of ATZ and IBU predicted for the M-VAC effluent, as 

representative example, together with the relative residual concentrations experimentally 
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determined during the tests. The concentrations of two additional micropollutants, the 

pesticides methiocarb (MC) and dichlorvos (DDVP), were also followed during removal 

prediction tests. MC presents high reactivity towards both O3 and •OH (kMC,O3 = 1.7·106 

M-1 s-1 and kMC,•OH = 8.2·109 M-1 s-1, (Cruz-Alcalde et al., 2017b)), whereas the insecticide 

DDVP rapidly reacts with hydroxyl radical but has a moderate reaction rate with ozone 

(kDDVP,O3 = 590 M-1 s-1 and kDDVP,•OH = 2.2·109 M-1 s-1, (Cruz-Alcalde et al., 2018)). Similar 

plots were obtained for the rest of tested effluent samples (see SI, Figs. S8 and S9). In all 

cases, a good agreement between model predictions and experimental measurements was 

observed. An initial, rapid removal rate followed by a slower degradation period was 

observed for ATZ and IBU, being the depletion of ATZ always less efficient than that for 

IBU. This was kinetically consistent, as IBU presents lower rate constant with •OH than 

ATZ. On the other hand, MC and DDVP pesticides were degraded below their respective 

detection limits at a contact time less than 5 min. These results highlight again the strong 

dependence between the removal of micropollutants with low ozone reactivity and •OH 

exposure, which in turn can represent a limiting factor when implementing ozonation 

treatments in secondary effluents. Chemicals with significant ozone reactivity here 

illustrated by the MC and DDVP examples in this work are always faster eliminated by 

the contribution of direct ozonation. Finally, Fig. 7 shows how the removal of IBU and 

ATZ could be accurately predicted by employing both ROHO3 and kUVA,OH concepts along 

with chemical kinetics, in a wide range of wastewater effluent qualities (R2 > 0.98 for 

both models), down to complete recalcitrant micropollutants abatement. 
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Figure 7. Measured versus predicted removals for atrazine and ibuprofen in six different wastewater 

effluents, employing both ROHO3 (A) and UVA254-based (B) models. 

 

Conclusions 

 

The production of a high quality reclaimed wastewater, especially if the final application 

of this water involves potential human exposure, may require the monitoring and control 

of ozone-resistant micropollutants from wastewater effluents. In this work, the oxidation 

performance of the whole semi-continuous ozonation process could be well described by 

means of a two-stage model based on ROHO3 concept. Determining the ROHO3 values 

necessary to describe both initial and secondary ozonation stages was achieved by 

coupling chemical kinetics with a proper assessment of the ozone mass transfer. This tool 

was demonstrated to be useful to describe and compare the process in different effluents 

showing a broad range of water properties. By means of this approach, hydroxyl radical 

exposures during ozonation could be accurately determined during the whole treatment, 

provided that the consumed ozone dose was always known. Also derived from a strategy 
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based on the ROHO3 concept, a new model involving UVA254 monitoring was proposed for 

the online estimation of hydroxyl radical exposure along the entire process. The 

fundamentals of a potential strategy for the monitoring and control of ozone-recalcitrant 

micropollutants abatement during ozonation have been developed and presented in this 

paper. Further research in this direction is from now on required, including exhaustive 

studies concerning the influence of water quality and seasonal variations on the kinetic 

parameters of the model (i.e., ROHO3 and kUVA,OH). 
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