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Primary Research 

 

Abstract 

 The relationship between the timing of recurrent biological events and seasonal climatic 

patterns (i.e., phenology) is a crucial ecological process. Changes in phenology are 

increasingly linked to global climate change. However, current evidence of phenological 

responses to recent climate change is subjected to substantial regional and seasonal biases. 

Most available evidence on climate driven phenological changes comes from Northern 

Hemisphere (NH) ecosystems, and typically involve increases in spring and summer 

temperatures, which translate into earlier onsets of spring population developments. In the 

Argentine Pampa region, warming has occurred at a much slower pace than in the NH, and 

trends are mostly restricted to increases in the minimum temperatures. We used zooplankton 

abundance data from lake Chascomús (recorded every two weeks from 2005 to 2015) to 

evaluate potential changes in phenology. We adopted a sequential screening approach to 

identify taxa displaying phenological trends, and evaluated if such trends could be associated 

to observed long-term changes in water temperature. Two zooplankton species displayed 

significant later shifts in phenology metrics (end date of Brachionus havanaensis seasonal 

distribution: 31-day/decade, onset and end dates of Keratella americana seasonal 

distribution: 59-day/decade and 82-day/decade, respectively). The timing of the observed 

shift in B. havanaensis phenology was coincident with a warming trend in the May lake water 

temperature (4.7°C per decade). Analysis of abundance vs. temperature patterns from six 

additional shallow Pampean lakes, and evaluation of previous experimental results, provided 

further evidence that the lake water warming trend in May was responsible for the delayed 

decline of B. havanaensis populations in autumn. This study is the first report of freshwater 

zooplankton phenology changes in the Southern Hemisphere (SH).   
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Introduction 

 The relationship between the timing of recurrent biological events and seasonal climatic 

patterns (i.e., phenology) is a crucial ecological process. As a major driver of population 

dynamics, dispersal and migration, phenology has strong implications for population 

demography. In addition, by differentially affecting co-occurring species, phenological 

changes may have profound effects on species interactions, such as increased (or reduced) 

competition for resources, trophic mismatch, disruption of plant-pollinator interaction, etc. 

(Hampton, 2005; Thomson, 2010; Thackeray et al., 2013). Changes in phenology are 

increasingly linked to global climate change (Ovaskainen et al., 2013). However, current 

evidence of phenological responses to recent climate change is subjected to substantial 

regional, habitat-specific, taxon-specific and seasonal biases (Brown et al., 2016). By far, 

most of the available evidence on climate driven phenological changes comes from Northern 

Hemisphere (NH) ecosystems (Cohen et al., 2018). Moreover, the larger proportion (>80%) 

of Southern Hemisphere (SH) datasets originated in Australasia, while Africa and South 

America are remarkably under-represented. In these regions, most studies have focused on 

terrestrial and marine environments (Chambers et al., 2013). Within freshwater systems, an 

overwhelming proportion of phenological studies have been conducted in deep stratifying 

lakes (many of which freeze) from temperate European countries (Vadadi-Fülöp & Hufnagel, 

2014). Most such studies focused on the spring period, during the ice free period, with much 

less attention on autumn and winter periods (Chen & Folt, 1996; Manca & DeMott, 2009; 

Gallinat et al., 2015).  

 Documented responses in freshwater systems typically involve advancements (=earlier 

shifts) in the date of initiation of population growth or the date on which the population 

maximum is reached. In general, the advancement of spring phenological events has been 

attributed to earlier ice break-up dates and/or higher spring water temperature (Table 1 in 
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Vadadi-Fülöp & Hufnagel, 2014). Within planktonic animals, most examples of phenological 

shifts over time involve fast growing, parthenogenetic species, e.g., cladocerans and rotifers 

(Winder & Schindler, 2004; Hampton, 2005; Thackeray et al., 2012), as opposed to 

organisms with longer or more complex life cycles, such as copepods (Gerten & Adrian, 

2002; Winder et al., 2009). 

 The paucity of phenological studies form the Southern Hemisphere limits our ability to 

draw general conclusions on phenological trends at a global scale (Cohen et al., 2018), not 

only because of a large underrepresented region, but also and most importantly, because of 

the disparities in ongoing and projected climate trends between both hemispheres, which 

result from the uneven distribution of land masses (for a review see Chambers et al., 2013). 

Studies from the SH (mostly on terrestrial plants and birds) display large disparities in the 

timing and direction of phenological changes, with a moderately higher proportion of trends 

towards earlier events in autumn (Chambers et al., 2013). 

 Quite pertinent for the present study is the fact that climate trends in temperate 

Argentina differ those in other areas of the world. In most parts of the country, warming has 

taken place at a much slower pace than in the NH (Nuñez et al., 2008; Barros et al., 2015). In 

contrast to most other land areas of the world, there has been net cooling over most of 

Argentina (about -0.04°C/decade), and a remarkable decrease in the diurnal temperature 

range north of 40°S. This is associated with a noticeable reduction in the maximum 

temperature (-0.12°C/decade) along with a weak warming trend in the minimum temperature 

(0.05°C/decade). A long-term modelling study of lake Chascomús water temperature 

concluded that the lake had warmed at a rate of 0.3°C per decade over the study period (1966 

to 2012), with most significant increases during the warmer season (Elisio et al., 2015). 

 Contrary to most known examples of lakes displaying long-term phenological shifts, 

shallow Pampean lakes remain mixed during the whole year and do not freeze in winter. 
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Thus, the physical environment can be expected to provide fewer (and from a researcher’s 

perspective, less predictable) cues to trigger phenological responses of plankton. On the 

positive side, the noticeable seasonal succession of Pampean lakes zooplankton (Diovisalvi et 

al., 2015b) entails a progressive replacement of species, which are likely adapted to different 

ranges of temperature and other environmental conditions. Under such circumstances, studies 

with whole year coverage maximize the chances of detecting phenology trends, and for 

analogous reasons the use of metrics that capture the whole seasonal distribution of activity 

for the focal organisms should be preferred (Miller-Rushing et al., 2008). Fortunately, time 

schemes of many plankton monitoring programs allow such an approach (Thackeray et al., 

2012). 

 Based on seasonal temperature trends, both at hemispherical and local scales, we 

anticipated that the chances of detecting phenology shifts should be maximum in autumn. 

Nevertheless, phenology shifts may not only arise from direct species-specific temperature 

responses, but also from indirect effects related to bottom-up and top-down processes 

(Velthuis et al., 2017). Such trophic interactions restrict our ability to predict the magnitude 

and direction of changes (Cohen et al., 2018). In order to investigate the phenological 

changes of a zooplankton community in the Pampean region, we analyze three phenological 

metrics (onset, central and end point of the growing season) of lake Chascomús zooplankton, 

over the period 2005-2015. In addition, we used shorter (2-year) time-series datasets from 6 

additional shallow Pampean lakes to validate the patterns observed in lake Chascomús.  

 

Materials and methods 

Study area 

 The Pampa region of Argentina is one of the largest wetland areas of South America 

(Diovisalvi et al., 2015a). The region is a predominantly flat area, crossed by rivers and 
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scattered with shallow lakes. The climate is warm temperate (mean annual temperature 13 to 

16°C) and characterized by pronounced thermal seasonality. The mean annual precipitation 

decreases along a NE-SO gradient from 1,000 to 400mm, and displays large inter annual 

variability, resulting in dry and wet periods (see Diovisalvi et al., 2015a). Our main study 

site, lake Chascomús (35º36’S, 58º02’W), is a large shallow lake (surface area 30.1 km2, 

mean depth of 1.9 m), which is a part of a chained system lakes within to the Salado River 

watershed. Lake Chascomús was sampled every other week from June 2005 to January 2015. 

In addition, six other Pampean shallow lakes were included: El Triunfo (35º51’S, 57º52’W), 

La Limpia (35º37’S, 57º48’W), La Salada de Monasterio (35º47’S, 57º52’W), Grande de 

Otamendi (34º13’S, 58º52’W), La Barrancosa (37°20’S, 60°7'W) and El Chifle (37°24'S, 

59°47'W) (Figure 1). These lakes were sampled monthly from October 2012 to January 2015. 

Sampling 

 Routine sampling included zooplankton collections along with measurements of a 

standard set of limnological variables. Water temperature, pH (Orion pH meter), conductivity 

(Hach conductimeter), dissolved oxygen concentration (YSI 5000 oximeter) and Secchi disk 

readings were measured in situ. Chlorophyll a concentration (Chl a), suspended particulate 

matter (seston) and nutrients (N and P) were measured following Izaguirre et al., (2015). 

Zooplankton samples were collected from a central sampling site (Diovisalvi et al., 2015c) by 

pouring 45L of lake surface water (upper ~30cm) through a 45-µm mesh net and preserved in 

4% formalin. Rotifers and copepod nauplii were counted under a compound microscope on 1-

mL Sedgwick-Rafter counting cell; cladocerans and copepods (copepodids and adults) were 

counted under a dissecting microscope in a 5-mL Bogorov counting chamber. Zooplankton 

were identified to species (more rarely to genus) level. Rotifers were identified following 

Ruttner-Kolisko (1974) and Koste (1978) and crustaceans according to Reid (1985) and 

Paggi (1995). 
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Air and water temperature 

 We used the hourly air temperature time series from the nearest official meteorological 

station (Dolores city, 85 km from the lake). We used the series from Dolores city because 

data were certified by the Argentine National Meteorological Service and the time coverage 

included our study period (2005 to 2015). Using over 3 years of simultaneous measurements, 

we have confirmed that the mean daily air temperature from Dolores was strongly correlated 

with measurements from our own meteorological station located near the lake (r2= 0.981, 

p<0.0001, n=1305). Missing data (9% of total data series) were replaced by linear 

interpolation estimates. In order to assess long-term temperature changes, within each month, 

daily temperature values were regressed vs. the year.  

 Measurements of lake water temperature were available for every sampling date. Given 

that water temperature had a strong seasonal component (Elisio et al., 2015) and considering 

that the lake was sampled every other week (i.e., not at fixed dates), monthly water 

temperature estimates could be affected by among-years differences in the actual date of 

sampling. To circumvent this problem, we developed a simple model to remove both the 

seasonal component and the dependence of the measured values on the date of sampling. The 

rationale for this was to develop a model relating water temperature to sampling date 

(expressed as day of year, DOY). The model residuals represent deviations from the expected 

temperature for any given DOY. Therefore, instead of analyzing trends of actual temperature 

data, we could focus our attention on the deviations from the expected values, and ask if such 

deviations showed significant trends over the years. For each DOY we computed   

                        , which is proportional to the expected (i.e., astronomical) 

incident radiation; and its derivative                            , which represents 

the rate of change of incident radiation at any given DOY. The number 80.8 was chosen so 

that the maximum value of   occurs on the longest day of the year (December 21 in the SH). 
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Then, we used multiple regression analysis to fit temperature measurements to a regression 

model including   and    as independent variables. The underlying rationale for these models 

is that changes in water temperature result from the additive effects of thermal conduction at 

the water–atmosphere interface and the incoming and emitted radiation (Elisio et al., 2015). 

In general, irradiance values are useful to distinguish between summer and winter. On the 

other hand, the rate of change of irradiance (as estimated by   ) is more effective for 

distinguishing between autumn and spring. We anticipated that temperature would be related 

to irradiance (as estimated by  ) and that the addition of    would improve the model fit. The 

long-term changes in temperature residuals were investigated using linear regression vs. the 

year. The procedure was repeated for each month. 

 

Zooplankton analysis  

 The analysis of zooplankton abundance data from lake Chascomús was intended to 

identify species (or groups) that displayed phenological trends, and subsequently assess if 

such trends could reasonably be associated with long-term changes in water temperature. The 

procedure involved four sequential steps or criteria: 

1. First, we defined the group of “common taxa” (species or groups of species) as those taxa 

that exceeded 5% of the total abundance in, at least, five of 214 samples analyzed. Within 

the latter group,  

2. We searched for taxa whose time series of population abundance displayed a substantial 

seasonal component. For this purpose, the log-transformed series of abundance values 

(i.e., log    )), was fitted using Seasonal Decomposition of Time Series by Loess (stats 

package of R) and only taxa showing > 20% of the variation explained by the seasonal 

component were retained for further analysis.  

3.  
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4. Phenological metrics for each “growth cycle” were estimated for “common taxa” 

displaying a substantial seasonal component. The beginning of each growth cycle was set 

to the first of August, as most species showed minimal abundance values around that 

date. We fitted two phenological models to the abundance data to quantitatively describe 

the population abundance distribution for each focal organism (Miller-Rushing et al., 

2008). The central point of the growing season was estimated as the center of gravity; 

while the onset, middle, and end points of the growing season were estimated as the 10%, 

50%, and 90% quantiles of the area under the adjusted Weibull-type curve, respectively 

(Rolinski et al., 2007; Feuchtmayr et al., 2012). Long-term trends in phenology were 

assessed by regressing the estimated phenological metrics vs. year (Feuchtmayr et al., 

2012).  

5. For those taxa displaying long-term trends in a given phenological metrics, we regressed 

such metrics vs. the mean value of environmental variables (temperature, Chl a, seston 

and phosphorus content of seston) (Feuchtmayr et al., 2012) computed for the window of 

time on which the phenological shift occurred. For example, if a given phenological 

metric was observed to occur between “date a” and “date b” over the 10-year study; then, 

we used the average of all samples collected between “date a” and “date b” for each year, 

to estimate the mean value of the corresponding environmental variable. 

 

 For those taxa that satisfied the four previous criteria, we compared their patterns of 

population abundance vs. temperature observed in lake Chascomús, with those observed in 

the other six Pampean shallow-lakes. Due to large differences in absolute abundance, both 

between years and among lakes, abundance values were re-scaled by standardizing each 

observation for each lake and “growth cycle” as z = (x - μ) / σ; where z is the standard score, 

x is the log-transformed abundance value (i.e., log     )), and μ and σ are the mean and 
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standard deviation within each lake and “growth cycle”, respectively. The standardized 

abundance values were plotted against lake water temperature, and the upper boundary, 

conditional on temperature was estimated using quantile regression for the 95% quantile (i.e., 

s = 0.95) (Koenker, 2000). 

 

Results 

Environmental variables 

 Air and water temperature displayed strong seasonal patterns (Figure 2 a and b, and 

Table 1). Significant increasing trends in monthly air temperature were observed for May 

(0.2°C per year), August (0.16°C per year), October (0.12°C per year), and December 

(0.25°C per year); while a significant decreasing trend was observed only for July (-0.18°C 

per year) (Table 2). On the other hand, the regression model relating lake water temperature 

to the day of the year (DOY) explained 86% of total variance (R2= 0.86, p< 0.0001, n= 230). 

Thus, the model effectively removed the seasonal component from the water temperature 

time-series (coincidently, also 86% of total variance, Table 1). Model residuals represent the 

observed temperature deviations from the expected seasonal values of lake water 

temperature. Overall, we found a weak, but significant positive trend in the annual model’s 

residuals vs. year (0.13°C per year; R2= 0.027, p= 0.0127, n= 230). However, by performing 

stratified analyses by month, we found that significant trends occurred only during May, 

revealing an average warming of lake water temperature of about 0.47°C per year for that 

month (R2= 0.27, p= 0.0268, n= 18). The seasonal behavior of other potentially relevant 

environmental variables was much less marked (Figure 2 c, d, and e). The seasonal 

contribution to total variance was 2%, 14% and 23% for Chl a, seston, and phosphorus 

content of seston, respectively (Table 1). 
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Zooplankton 

 Forty-eight taxa (5 copepods, 9 cladocerans, and 34 rotifers) were identified during the 

study period. Common taxa were cyclopoid Acanthocyclops robustus, calanoid 

Notodiaptomus incompositus the cladoceran Bosmina and 10 rotifer species (or genera) 

(Table 3). Some very common species, such as Keratella tropica, were frequent and highly 

abundant (representing >5% in 160 out of 214 samples), but did not show marked 

seasonality. On the other hand, several species occurred only sporadically. Overall, only nine 

“common taxa” (criterion 1) displayed a recurrent seasonal pattern (criterion 2): N. 

incompositus nauplii, N. incompositus adults + copepodids, and the rotifers: Brachionus 

caudatus, B. havanaensis, B. plicatilis, K. americana, Polyarthra, Trichocerca and a group 

made up of all rotifers excluding B. havanaensis and K. americana (see explanation below) 

(Figure 3 and Table 3). Most “common taxa” showed a clear and repetitive pattern displaying 

maxima during the warm season and minima (sometimes absence) in winter. The amplitude 

of abundance variation was, in some cases, up to 3 orders of magnitude (i.e. B. havanaensis, 

B. caudatus). Brachionus plicatilis, K. americana and Trichocerca were absent from the 

water column on some cycles. For each one of these nine taxa, the four phenological metrics 

(central point of the growing season, i.e., center of gravity; onset, middle and end points of 

Weibull distribution) were regressed against year (Table 4). Twenty three out of 36 

phenology metrics (64%) showed increased trends over time (i.e., delays), while the 

remaining 13 (36%) displayed decreased trends (i.e., advancements). However, the statistical 

strength of most trends was weak. The strongest relationships (i.e., p < 0.05) were observed 

for three cases: B. havanaensis end of the growing season (i.e., Weibull percentile 90%, 

delayed from April 22 to May 26), K. americana onset of the growing season (i.e., Weibull 

percentile 10%, delayed from September 24 to November 25) and K. americana end of the 

growing season (i.e., Weibull percentile 90%, delayed from May 30 to August 20) (Table 4 
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and Figure 4 a-c). The remaining taxa, i.e., copepods, cladocerans and rotifers (excluding B. 

havanaensis and K. americana) did not show significant trends in phenological metrics. Each 

of the 3 phenological metrics that showed changes over time, were regressed vs. the mean 

value of environmental variables (temperature, Chl a, seston and phosphorus content of 

seston). We found a significant relationship between the end of the growing season of B. 

havanaensis and the mean water temperature (R2= 0.507, p= 0.0314, n= 9), computed for the 

window of time on which the phenological shift occurred (Figure 4d). 

 The normalized abundance of B. havanaensis recorded in lake Chascomús and in 6 

additional Pampean shallow-lakes (El Triunfo, La Limpia, La Salada de Monasterio, Grande 

de Otamendi, La Barrancosa, and El Chifle) is plotted in Figure 5. The figure shows that B. 

havanaensis abundance was strongly constrained by temperature, resulting in an upper limit 

that increases with temperature. The upper edges of the distributions for both data sets were 

estimated using quantile regression. No statistical differences between the two data sets were 

observed (i.e., the 95% confidence intervals of the slopes overlapped: Chascomús 0.077 to 

0.167°C-1; other Pampean lakes 0.004 to 0.138°C-1).  

 

Discussion 

 Lake Chascomús showed a weak (albeit significant) increase in mean annual water 

temperature during the study period. This is consistent with previous studies that reported 

that, for most part of Argentina, warming has occurred at a much slower pace than in the NH 

(Nuñez et al., 2008; Barros et al., 2015). However, when water temperature trends were 

analyzed on a monthly basis, it became apparent that the warming of lake water had occurred 

solely during the month of May (mid-autumn), with an average increase of 0.47°C per year. 

This May increasing trend in lake Chascomús water temperature is coincident with the 

concurrent increase in air temperature observed in the nearby area (0.2°C per year, data from 
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Dolores Observatory). However, other observed trends in air temperature (increases in July, 

August and December and a decrease in June) did not translate into significant trends in lake 

Chascomús water temperature. Lake water temperature typically correlates with regional-

scale air temperatures (Adrian et al., 2009), but among-year differences in thermal inertia due 

to changes in water depth add a stochastic component to the heat balance between air and 

water (Winslow et al., 2017). Elisio and co-workers (Elisio et al., 2015) modeled lake 

Chascomús water temperature for the period 1966-2012 and concluded that the lake had 

warmed at a rate of 0.04°C per year, over the whole period of 47 years, with most significant 

warming occurring during the warmer seasons. For the period of our study (2005-2015), we 

have also estimated an annual warming trend of 0.13°C per year; but the stratified analysis 

showed that the only significant warming trend corresponded to the month of May. 

Summarizing, studies around Chascomús area are consistent in showing significant warming 

trends during the warmer season, but show subtle differences in warming magnitude and 

timing (i.e., the actual months on which the changes occurred).  

 Despite the lack of distinct seasonal landmarks in lake Chascomús (e.g., ice melting, 

water column stratification), several zooplankton species display striking recurrent seasonal 

patterns or phenologies (Diovisalvi et al., 2015b, 2015c and Figure 3). In this paper however, 

we focused exclusively on species that showed significant phenological changes in the long 

run. Two taxa displayed long-term phenology trends (i.e., they met criteria 1 to 3). In both 

cases, the trends involved delays of some phenological metrics: B. havanaensis showed a 31-

day/decade delay on the end date of its seasonal distribution (i.e., the 90% quantile of the 

Weibull function) and K. americana showed 59-day/decade and 82-day/decade delays on the 

onset and end dates of its seasonal distribution (i.e., 10% and 90% quantiles of the Weibull 

function). However, B. havanaensis was the only species that displayed a shift in phenology, 

which could confidently be associated with a concurrent trend in lake water temperature (i.e., 
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it also met criterion 4). This is consistent with previous reports of phenological trends in 

freshwater zooplankton. In general, only one or a handful zooplankton species has been 

reported to undergo phenological shifts within individual lakes (discussed below), even when 

the number of occurring species may be large (up to several tens). This may be partly due to 

statistical constrains (i.e., trend detection may be restricted to the most abundant and/or 

frequently occurring species), and also to inter-specific differences in tolerance to 

environmental change (i.e., some species may not respond, or respond weakly, to changes in 

temperature, as long as it remains within their physiological ranges). 

 

 Brachionus havanaensis is a warm stenotherm rotifer (Ruttner-Kolisko, 1974) that 

develops dense populations in shallow Pampean lakes. In lake Chascomús, it becomes the 

dominant species during late summer and autumn, but it is absent from the water column 

during the coldest months of the year (Diovisalvi et al., 2015b). The delay in the end date of 

its seasonal distribution (i.e., the 90% quantile of the Weibull function) implies the widening 

of its temporal niche (Hampton, 2005) towards the end of the autumn. This shift has occurred 

during the month of May and was concurrent with the increase in the mean monthly water 

temperature. Additional evidence (discussed below) provides further support to our claims 

that the B. havanaensis shift in phenology was a direct response to the increase in water 

temperature during the declining phase of its seasonal cycle. Phenological responses could 

also result from indirect effects via altered bottom up or top-down forcing (Manca et al., 

2007; Visconti et al., 2008; Stoks et al., 2014; Vadadi-Fülöp & Hufnagel, 2014; Velthuis et 

al., 2017). For example, the delays in the onset and end dates of K. americana population 

could not be associated with concurrent trends in temperature; nor could it be related to 

trends in the other environmental variables considered in this study. Given that shifts in K. 

americana phenological metrics occurred during periods of fish recruitment (Iglesias et al., 
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2011), there is a potential for indirect trophic interactions, which were not addressed in the 

present study. 

 The continued persistence of B. havanaensis into late autumn was coincident with the 

increasing water temperature that was observed in May, but it was seemingly unrelated to 

changes in resource availability (as estimated by Chl a and seston concentrations). Moreover, 

two independent pieces of information provide further support to our interpretation that the 

shift in B. havanaensis phenology was a direct response to increases in May water 

temperature. The first piece of evidence comes from the study by Diovisalvi and co-workers 

(Diovisalvi et al., 2015b), who performed life table experiments at two different temperatures 

(9°C and 20°C). They reported that the egg production of B. havanaensis was high at 20°C, 

but halted at 9°C. Moreover, these authors also showed that, under favorable temperature 

conditions (i.e., at 20°C), B. havanaensis was insensitive to changes in the quality of food 

naturally occurring in lake Chascomús. These findings contrasted with the results obtained 

for K. tropica and B. caudatus (assayed simultaneously), which reproduced at both 

temperatures and did better when fed on natural seston produced in winter (higher food 

quality) as compared to seston produced in summer (lower food quality). The second piece of 

evidence comes from the cross-system comparative analysis of B. havanaensis abundance vs. 

temperature distribution reported here. This analysis showed that B. havanaensis abundance 

(normalized by lake and growth cycle) was strongly constrained by temperature (Scharf et 

al., 1998) and that the upper limit (conditional to temperature) to data distributions for lake 

Chascomús was virtually identical to that of other six Pampean shallow-lakes. Within a given 

region, the patterns of temperature change among lakes tend to be highly coherent (Kent et 

al., 2007). In contrast, concentrations of nutrients and zooplankton populations vary much 

less coherently over time (see Feuchtmayr et al., 2012). Thus, the observed similarity in B. 

havanaensis responses to temperature among lakes provide strong support to our 
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interpretation that the shift in B. havanaensis phenology was a direct consequence of the 

warming trend in lake water temperature in May, which we presume, resulted in the 

lengthening of the amictic (asexual) phase of its reproductive cycle (i.e., delayed production 

of resting eggs). Warmer autumn temperatures have been reported to delay insect diapause 

(Gallinat et al., 2015), but experimental work suggesting that temperature may control the 

induction of mixis in rotifers is lacking (John Gilbert, pers. comm.). 

 A number of zooplankton phenology studies in NH lakes have reported earlier spring 

events in response to climate warming (Vadadi-Fülöp et al., 2012 and references therein). 

Most studies reported shifts in cladoceran populations (particularly, Daphnia), while only a 

handful studies reported changes in rotifer phenologies. For example, the strong advancement 

of the spring peak in the rotifer Keratella (Winder & Schindler, 2004) and the greater 

window of time for the growth of Conochilus populations (Hampton, 2005) have been linked 

to the long-term warming trend of Lake Washington. Similarly, Keratella populations have 

been reported to develop earlier in Lake Muggelsee (Gerten & Adrian, 2000), although 

subsequent studies have not reported any further shits in rotifer phenologies (Adrian et al., 

2006; Scharfenberger et al., 2013). Finally, Molinero et al. (2006) analyzed a 29-year (1969–

98) time-series of physical and biological data for Lake Geneva. These authors did not report 

changes in rotifer phenology, but they did observe an abrupt shift (around 1987) in the size 

structure of the rotifer community, which was linked to water temperature increases. 

Similarly, mesocosm studies (Zhang et al., 2015; Velthuis et al., 2017) have demonstrated 

advancements in rotifer phenological metrics due to experimental increases in temperature. It 

must be noted however, that the pervasiveness of spring phenology trends observed in the 

NH have strongly influenced the design of experimental studies, reducing the chances of 

capturing delayed phenology trends, as those experiments were not intended to mimic the 

persistence of warmer temperature in autumn. 
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 Reported phenological rates of change in NH environments are lower for rotifers 

(Keratella; advancement shift: 6 to 7 days per decade) than for cladocerans (Daphnia; 

advancement shift: 1 week to 5 months per decade). Rotifer populations may be negatively 

impacted through exploitative or interference competition with large-sized cladocerans 

(Gilbert, 1988), potentially obscuring phenological responses to in-lake long-term 

temperature trends (Hampton, 2005). In lake Chascomús, large cladocerans are virtually 

absent, and although rotifers develop the highest densities during the warmer months, they 

are present (as a group) during the whole annual cycle. This fact, together with a continuous 

monitoring program (Gallinat et al., 2015; Zipf et al., 2017), allowed us to capture the change 

in the declining phase of the annual B. havanaensis population, which according to our 

estimates experienced a delay of roughly a month per decade.  

 To the best of our knowledge, this is the first study documenting phenological shifts in 

SH freshwater zooplankton. The observed delayed trend in the ending phase of B. 

havanaensis population in autumn differ from most published phenological changes in NH 

zooplankton (i.e., most frequently earlier spring trends), but is consistent with air temperature 

trends reported for central Argentina (Nuñez et al., 2008; Barros et al., 2015). There are 

fewer long-term ecological datasets for the SH than for the NH. In particular, there is a 

scarcity of data for Africa, Pacific nations and South America (Chambers et al., 2013). 

Moreover, the length of the data sets available for SH locations (ten years in our case) is often 

shorter than that of similar datasets for NH. Chambers and co-workers (2013) investigated the 

potential biases introduced when analyzing shorter series of data. They concluded that there 

was no impact of the data series length on the likelihood of detecting earlier or later trends 

over time. However, the length of the data series influenced the magnitude of the observed 

trend. In general, the magnitude of the phenological trend was greater for shorter data series 

(Chambers et al., 2013, appendix S4). In order to address this potential shortcoming, we have 
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examined additional sources of evidence that provide further support to the B. havanaensis 

phenological shift inferred from the 10-year time-series of lake Chascomús. On the one hand, 

the long-term trends in air and lake water temperature reported here (2005-2015) are 

supported by the evidence of lake Chascomús warming over a longer period of time (1966-

2012) (Elisio et al., 2015). Moreover, the temperature dependence of B. havanaensis 

population density was also supported by the comparative analysis of its populations density 

distribution in other shallow Pampean lakes. This cross-system comparison allowed us to 

analyze the temperature dependence of B. havanaensis populations in twelve additional 

annual cycles (i.e., 6 lakes x 2 years) reinforcing our confidence in the conclusions drawn 

from the 10-year time series of lake Chascomús.  
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 Figure legend 

Fig. 1. Geographic location of studied shallow lakes (Buenos Aires province, Argentina). Inset: the 

position of Buenos Aires Province within South America. 

 

Fig. 2. Time series of main environmental variables: Air temperature from Dolores city (a), and 

water temperature (b), Chl a (c), seston (d) and phosphorus content of seston (e) from lake 

Chascomús. 

 

Fig. 3. Time series for the set of zooplankton taxa that displayed recurrent seasonal patterns in 

lake Chascomús. Note that # refers to the abundance of all rotifers excluding B. havanaensis and 

K. americana (see text for explanation). 

 

Fig. 4. Temporal change of phenological metrics for B. havanaensis (a- end date of Weibull 

function), and K. americana (b- onset, and c- end date of Weibull function). Relationship between 

the end date of Weibull function of B. havanaensis and water temperature (d) computed for the 

window of time on which the phenological shift occurred (see text for explanation). 

 

Fig. 5. Relationship between B. havanaensis standardized abundance and water temperature. The 

lines correspond to the 95th quantile regression for 6 shallow lakes (black) and for lake 

Chascomús (grey).  
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Table 1. Relative contribution to the total variance of decomposition based on Loess (STL) of 
main physical and chemical variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Daily air temperature (°C) mean, minimum and maximum values for each month 
and linear trends for mean temperature by month. Statistical parameters: R Square, slope 
parameter and p value of F statistics, * p < 0.05. Samples (n). 

 n Mean Min Max R Square Slope P-value 

Jan 341 22.0 14.1 30.5 0.004 0.057 0.253 

Feb 282 21.3 14.3 27.7 0.007 -0.076 0.177 

Mar 310 18.6 9.8 24.8 0.010 -0.107 0.073 

Apr 300 15.0 5.4 23.9 0.004 0.070 0.298 

May 310 11.6 3.2 21.8 0.029 0.203 0.003* 

Jun 300 8.6 0.5 20.5 0.007 -0.095 0.135 

Jul 310 8.1 0.9 19.2 0.020 -0.184 0.013* 

Aug 310 9.6 1.5 22.8 0.017 0.162 0.022* 

Sep 300 11.9 3.7 23.3 0.006 0.086 0.188 

Oct 310 15.0 8.5 24.3 0.013 0.122 0.041* 

Nov 300 18.1 9.3 26.1 0.002 0.053 0.426 

Dec 310 20.6 10.5 28.8 0.047 0.248 0.000* 

        

 

 Seasonal Trend Residual 

Tair 0.74 0.00 0.26 

Tw 0.86 0.01 0.12 

Chl a 0.02 0.49 0.33 

Seston 0.14 0.28 0.49 

Phosphorus content 

of seston 

0.23 0.19 0.53 
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Table 3. Common taxa of zooplankton.   Species or group of species exceeded 5% of the total 
abundance in, at least in 5 of 214 samples analyzed. Relative contribution to the total 
variance of decomposition based on Loess (STL). # Rotifers total abundance with the 
exception of B. havanaensis and K. americana. 

 Zooplankton 
groups 

Samples with 
>5% abundance 

Relative variance STL 

  Seasonal Trend Residual 

Cyclopoid nauplii 191 0.14 0.19 0.58 

Cyclopoid copepods 122 0.13 0.20 0.63 

Calanoid nauplii  65 0.34 0.09 0.52 

Calanoid copepods 15 0.21 0.21 0.47 

Cladocerans 71 0.10 0.40 0.41 

Bosmina  57 0.10 0.54 0.25 

Rotifers# 209 0.41 0.25 0.34 

B. havanaensis 74 0.81 0.05 0.11 

B. caudatus 138 0.62 0.12 0.26 

B. plicatilis 10 0.26 0.28 0.37 

B. calyciflorus 5 0.06 0.18 0.74 

K americana 60 0.28 0.40 0.28 

K. tropica 160 0.05 0.21 0.59 

Filinia  15 0.11 0.22 0.56 

Polyarthra  8 0.30 0.17 0.44 

Pompholyx 9 0.12 0.38 0.48 

Trichocerca  7 0.42 0.11 0.41 
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Metrics sp/ 
group 

Calanoid 
nauplii  

Calanoid 
copepods 

Rotifers# B. havanaensis B. caudatus B. plicatilis K. americana Polyarthra Trichocerca 

Weibull          
N  7 5 9 9 6 6 9 8 
              
Onset 

         

Mean 20-Sep 21-Oct 16-sep 02-Oct 17-Oct 29-Nov 29-Oct 07-Dec 07-Dec 
RSquare 0.49 0.14 0.14 0.10 0.03 0.04 0.74 0.29 0.28 
Decadal 
Rate of 
Change 
(days) -67 

 
82 

 
33 

 
-38 

 
22 

 
-36 

 
59 

131 

 
88 

P-value  0.08 0.404 0.528 0.415 0.636 0.720 0.014* 0.137 0.173 
              
Middle  

        

Mean 25-Jan 27-Jan 19-ene 12-Feb 19-Jan 09-Jan 28-Feb 03-Mar 08-Feb 
RSquare 0.51 0.19 0.09 0.00 0.11 0.22 0.22 0.21 0.04 
Decadal 
Rate of 
Change 
(days) 143 

 
66 

-83 

 
-5 

 
84 

 
-51 

 
-62 

97 

 
-32 

P-value 0.07 0.322 0.634 0.932 0.377 0.349 0.292 0.219 0.641 
               
End  

        

Mean 16-Jun 07-May 16-jul 10-May 21-Jul 21-May 19-Jul 09-May 08-May 
RSquare 0.43 0.29 0.06 0.51 0.19 0.07 0.85 0.01 0.41 
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Table 4. Phenological metrics of zooplankton groups with seasonal periodicity. Weibull distribution (onset, middle and end points) and Center of 
gravity (D): Mean and parameters of lineal tendency through the years (R Square, decadal rate of change and p value of F statistics, * p < 0.05). 
# Rotifers total abundance with the exception of B. havanaensis and K. americana. Number of growth cycle analyzed (N). 

 

Decadal 
Rate of 
Change 
(days) 89 

 
86 

-6 

 
31 

 
39 

 
-29 

 
82 

-20 

 
-18 

P-value 0.11 0.212 0.685 0.032* 0.240 0.622 0.003* 0.836 0.085 
          
D          
N 9 9 9 9 9 9 9 9 9 
Mean 02-Feb 03-Feb 4-feb 05-Feb 06-Feb 27-Feb 10-Feb 20-Mar 19-Feb 
RSquare 0.07 0.21 0.32 0.22 0.09 0.19 0.10 0.05 0.01 
Decadal 
Rate of 
Change 
(days) 10 

 
32 

15 

 
20 

 
14 

 
-43 

 
68 

 
34 

 
7 

P-value 0.508 0.212 0.111 0.199 0.422 0.278 0.453 0.566 0.846 
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