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Abstract. We present an extension of the ergodic, mixing and Bernoulli levels of the ergodic hierarchy in dynamical systems,
the information geometric ergodic hierarchy, making use of statistical models on curved manifolds in the context of information
geometry. We discuss the 2× 2 Gaussian Orthogonal Ensembles (GOE) within a 2D correlated model. For values of the correlation
coefficient vanishingly small, we find that GOE belong to the information geometric (IG) mixing level having a maximum negative
value of scalar curvature. Moreover, we propose a measure of distinguishability for the family of distributions of the 2D correlated
model that results to be an upper bound of the IG correlation.

INTRODUCTION

Historically, several fundamental disciplines like statistical mechanics and thermodynamics in physics, have turned out
to be adequately treated as theories of inference where the conclusions are derived from available information about
the system and making use of a method of reasoning that involves probability theory. In this sense, one of the most
important methods of inference is the maximum entropy method (ME method) where a rule is given for obtaining the
distribution p that represents the best knowledge of the system and corresponds to maximum uncertainty, as measured
by a functional S [p], constrained by the available information [1]. In particular, the so-called MaxEnt method results
when the entropy S [p] is chosen to be the Shannon–Gibbs one.

Given a well-established rule of inference like MaxEnt and generally other ME methods [2], one can study
the dynamics of the system within that framework. The approach proposed by Caticha et al. known as Entropic
Dynamics (ED) is to consider that the system moves irreversibly and continuously along the entropy gradient in a
curved statistical manifold whose elements are probability distributions. There are several forms of ED depending on
the variables and constraints that one chooses [3, 4, 5]. Curved statistical manifolds are the subject of study of the
information geometry (IG), and they have associated the Fisher–Rao metric [6] which in turn is linked to the concepts
of entropy and Fisher information [6, 7]. Thus ED is a theoretical framework that arises from the combination of ME
methods and the IG with the particularity of characterizing a system in terms of geometric quantities like the Ricci
scalar and local scalar curvatures. It has proven to be useful in many applications [8, 5] and also, to study geometric
phase transitions [9]. Furthermore using ED, asymptotic expressions for information measures are obtained by means
of geodesic equations [5]. In this geometric framework, a criterion for characterizing global chaos can be obtained:
the more negative is the curvature, the more chaotic is the dynamics. As usual, chaos can be characterized in terms
of diverging initially nearby trajectories [10]. For the statistical models this condition results in the divergence of
geodesic paths on the statistical manifold and constitutes a local criterion for chaos.

Besides, in dynamical systems theory, the ergodic hierarchy (EH) characterizes the chaotic behavior in terms
of a type of correlation between subsets of the phase space [11, 12]. In the asymptotic limit of large times, the EH
establishes that the dynamics is more chaotic when the correlation decays faster. According to correlation decay, the
four levels of EH are, from the weakest to the strongest: ergodic, mixing, Kolmogorov, and Bernoulli. In particular,
in mixing systems any two subsets enough separated in time can be considered as “statistically independent” which
allows one to use a statistical description of the behavior of the system. In the context of quantum chaos, the statis-
tical independence is present in the universal statistical properties of energy levels which are given by the Gaussian
ensembles [13, pp. 60–79]. In Gaussian ensembles theory one assumes that in a fully chaotic quantum system the in-
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teractions are neglected in such way that the Hamiltonian matrix elements can be considered statistically independent
[14]. Related to this, in [15, 16] a quantum extension of the EH was proposed, called the quantum ergodic hierarchy,
which allowed to provide a characterization of the chaotic behaviors of the Casati–Prosen model [17] and the kicked
rotator [13, pp. 145–150].

Inspired by the characterizations of quantum chaotic systems made in [15, 16] we discuss the 2 × 2 Gaussian
Orthogonal Ensembles (GOE) within a 2D correlated statistical model, and we propose a generalization of the er-
godic, mixing and Bernoulli levels of the EH (for the sake of simplicity, in this contribution we do not deal with the
Kolmogorov level which involves a σ–algebra) in the context of the IG and ED, called the information geometric
ergodic hierarchy (IGEH). In order to study the correlation decay within IGEH we also define a distinguishability
measure for a 2D correlated model that allows us to give an upper bound for the information geometric correlation.

In this way, our main contribution is the information geometric ergodic hierarchy as an alternative framework
for studying the chaotic dynamics in curved statistical models. The present work is organized as follows. First, we
describe the GOE in terms of a 2D correlated model, including a brief discussion about the dynamics characterized
by the global chaos criteria. Second, we propose an information geometric extension of the ergodic hierarchy by
expressing the correlations in terms of probability distributions instead of subsets of phase space. Next, we define a
distinguishability measure for the 2D correlated model, and an upper bound for the IGEH correlation is given. Finally,
we draw some conclusions, and future research directions are outlined.

GAUSSIAN ORTHOGONAL ENSEMBLES WITHIN A CURVED STATISTICAL
MODEL

In Gaussian Orthogonal Ensembles theory one deals with the probability distribution p(H11,H12, . . . ,HNN) for the
Hamiltonian matrix elements assuming that the Hi j are uncorrelated. Then in the framework of information geometry
one could try to describe them by defining an appropriate microspace {(x1, x2, . . . , xN)} that is the set of variables of
the system and, a macrospace {(θ1, θ2, . . . , θM)} which represents macroscopic quantities that can be measured in an
experiment, like the mean value of any variable 〈x j〉, etc.

In order to characterize the GOE within a statistical model we study a correlated ensemble of 2 × 2 matrices. We
take the microspace as the Hamiltonian matrix elements {H11,H22,H12,H21} and define the macrospace as follows.
For the sake of simplicity, we choose the macrospace in such way that only H11 and H22 are correlated, and that
the mean values of all variables are zero, except for the mean value corresponding to H11 which is equal to μ. Also,
we consider that the variance of H11, H12 and H21 are the same, denoted by σ. Moreover, in order to study how
independent the diagonal Hamiltonian elements are, we restrict the dynamics by considering that r ∈ [−1, 1] is the
correlation coefficient between H11 and H22, and that the product of the covariances between H11 and H22 is a constant
Σ
2. Taking this into account, the resulting macrospace is {(μ, σ) ∈ R × (0,∞)} where the constraints over the variables

are1

∫
p(H11,H22,H12,H21) H11 dH11dH22dH12dH21 = μ

∫
p(H11,H22,H12,H21) H12 dH11dH22dH12dH21 =

∫
p(H11,H22,H12,H21) H21 dH11dH12dH21dH22 =

=

∫
p(H11,H22,H12,H21) H22 dH11dH22dH12dH21 = 0

∫
p(H11,H22,H12,H21) (H11 − μ11)2 dH11dH22dH12dH21 =

∫
p(H11,H22,H12,H21) H2

12 dH11dH22dH12dH21 =

=

∫
p(H11,H22,H12,H21) H2

21 dH11dH22dH12dH21 = σ
2

∫
p(H11,H22,H12,H21) H2

22 dH11dH22dH12dH21 = Σ
4/σ2 , Σ = constant

∫
p(H11,H22,H12,H21) (H11 − μ)H22 dH11dH22dH12dH21 = rΣ2 , −1 ≤ r ≤ 1 (1)

1Note that, since the GOE correspond to the orthogonal class of Hamiltonians then one has that H12 = H21. However, in the formalism of
Random matrices and for the orthogonal case, the volume element dH11dH22dH12dH21 (as if H12 and H21 were independent variables) is the real
Lebesgue measure of R4 and must to be taken into account in order to normalize the probability distribution [13].
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with the normalization condition∫
p(H11,H22,H12,H21) dH11dH22dH12dH21 = 1 (2)

According to MaxEnt, the probability distribution p(H11,H22,H12,H21|μ, σ; r) that maximizes the Shannon–Gibbs
entropy subjected to (1) and (2) is [5]

p(H11,H22,H12,H21|μ, σ; r) =
1

2πΣ2
√
1−r2 exp

(
− 1
2(1−r2)

[
1
σ2
(H11 − μ)2 + σ2Σ4 H2

22 − 2r 1
Σ2
(H11 − μ)H22

])
1

2πσ2 exp
(
− 1
2σ2 (H

2
12 + H

2
21)
)

(3)

where the correlation coefficient r is considered as an external parameter (and therefore, not a macrovariable) and
since the correlation between H11 and H22 is in terms of r, due to Eq. (1), then Σ can be taken as a fixed constant.
Therefore, only μ and σ are the macrovariables of the macrospace. The Fisher–Rao metric for this model is to be
computed as

gi j =
∫
dH11dH22dH12dH21 p(H11,H22,H12,H21|μ, σ; r) ∂log p(H11 ,H22,H12,H21 |μ,σ;r)

∂θi

∂log p(H11 ,H22,H12,H21 |μ,σ;r)
∂θ j

with i, j = 1, 2 and θ1 = μ , θ2 = σ (4)

where the integration is taken over all the microspace {(H11,H22,H12,H21) ∈ R4}. With the help of [5] one obtains

g11 =
1

σ(1 − r2) , g22 =
4

σ(1 − r2) , g12 = g21 = 0 (5)

From this, one can obtain the Christoffel symbols Γki j whose nonvanishing coefficients are

Γ
1
12 = Γ

1
21 = −

1
σ
, Γ211 =

1
4σ

, Γ222 = −
1
σ

(6)

Using (5) and (6) one can calculate the non vanishing components of the Ricci tensor Ri j and the Ricci scalar curvature
R, thus giving

R = g11R11 + g22R22 = −
1
2
(1 − r2) ,with R11 = −

1
4σ2
, R22 = −

1
σ2

(7)

Three remarks follow. First, the statistical manifold has a curvature which is negative for all values of the correlation
coefficient r ∈ [−1, 1]. Based on the global chaos criterion above, this simply means that the dynamics in macrospace
(μ, σ) is chaotic for all r.

Second, the 2 × 2 GOE case corresponds to r = 0 and Σ = σ, thus having the minimum value of the scalar
curvature

RGOE = R(r = 0) = −
1
2
= Rmin (GOE, most chaotic case) (8)

Third, for the strongly correlated case that corresponds to |r| ∼ 1 one has

R(|r| → 1) = 0 (strongly correlated case) (9)

which can be interpreted, by the global chaos criterium, as the case when the dynamics is the least chaotic of all.

TOWARDS AN INFORMATION GEOMETRIC DEFINITION OF THE ERGODIC
HIERARCHY

Motivated by the characterization of chaotic dynamics made in [15, 16] by means of a quantum extension of the
ergodic hierarchy, now we study a generalization of the EH in the context of the information geometry. This allows
one to measure how independent the variables Hi j are for the 2 × 2 correlated ensemble (3).
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If one has a dynamical system (X,Σ, μ, {Tt}t∈J) where X is a set, Σ is a sigma–algebra of X, μ a measure defined
over Σ and {Tt}t∈J a group of measure–preserving transformations, then the EH correlation C(TtA, B) between two
subsets A and B of X that are separated by a time t is

C(TtA, B) = μ(TtA ∩ B) − μ(A) μ(B) (10)

The ergodic, mixing and Bernoulli levels of the EH are given in terms of (10) in the following way. Given two arbitrary
sets A, B ∈ X, it is said that Tt is
• ergodic if

lim
T→∞

1
T

∫ T

0
C(TtA, B) dt = 0 , (11)

• mixing if

lim
t→∞

C(TtA, B) = 0 , (12)

• Bernoulli if

C(TtA, B) = 0 for all t ≥ 0 (13)

In ergodic systems the correlation vanishes “in time average” for large times while in mixing systems C(TtA, B)
vanishes for t → ∞. In Bernoulli systems the correlation is zero for all times. These levels classify the dynamics in
terms of the type of decay of C(TtA, B) according to Eqs. (11), (12) and (13).

In order to express C(TtA, B) by means of probability distributions it is is more convenient to use the definition
of (10) in terms of distribution functions, which is given by

C( f ◦ Tt, g) =
∫
X
( f ◦ Tt)(x)g(x)dx −

∫
X
f (x)dx

∫
X
g(x)dx ∀ f , g ∈ L1(X) (14)

where f ◦ Tt denotes the composition of f and Tt, i.e. f ◦ Tt(x) = f (Tt(x)) for all x ∈ X and now the role of A, B
is played by the functions f , g ∈ L1(X). Physically, f represents any initial density function of the classical system
whose value at time t is given by f ◦ Tt, and where Tt is (in Hamiltonian systems) the classical Liouville evolution.

Now, in information geometry and entropic dynamics one has probability distributions p(x|θ) that depend on
a set of parameters θ, and the dynamics of the macrovariables θ is along the geodesics of the statistical manifold.
Moreover, in the statistical manifold the role of time variable t of dynamical systems is played by a parameter τ along
the geodesics. In order to introduce information geometry methods we propose the following approach by defining
a correlation between functions as the macrovariables θ evolve along the geodesics. Given N functions f (xi), each
one of them in terms of the variable xi for all i = 1, . . . ,N, we propose the following IG correlation C( f1, . . . , fN , τ)
between f1, . . . , fN at time–like parameter τ as

C( f1, . . . , fN , τ) �∫
p(x1, . . . , xl|θ(τ))

∏N
i=1 fi(xi)dx1 · · · dxl −

∏N
i=1

∫
pi(xi|θ(τ)) fi(xi)dxi (15)

where θ(τ) = (θ1(τ), . . . , θM(τ)) is the M–dimensional vector of the macrovariables at “time” τ and,

pi(xi|θ(τ)) =
∫
p(x1, . . . , xN |θ(τ))

∏
j�i
dx j , i = 1 . . .N (16)

are the marginal distributions of p(x1, . . . , xN |θ(τ)). From (15) we can see that C( f1, . . . , fN , τ) measures how indepen-
dent the variables x1, . . . , xN are at τ, and this can be considered as a sort of information geometric generalization of
the EH correlation.

Having established C( f1, . . . , fN , τ) and taking into account the ergodic, mixing and Bernoulli levels given by
Eqs. (11), (12) and (13), we define the information geometric ergodic hierarchy (IGEH) as follows. Given a set of N
arbitrary functions f1(x1), . . . , fN(xN) we say that now the statistical model is
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• IG ergodic if

lim
T→∞

1
T

∫ T

0
C( f1, . . . , fN , τ)dτ = 0 , (17)

• IG mixing if

lim
τ→∞

C( f1, . . . , fN , τ) = 0 , (18)

• IG Bernoulli if

C( f1, . . . , fN , τ) = 0 for all t ∈ R (19)

As an example, taking r = 0 and Σ = σ in (3) we obtain the 2 × 2 GOE probability distribution which is simply the
product of its marginal distributions. Then from (15) and (19) it follows that the 2 × 2 GOE is a statistical model that
is IG Bernoulli.

A statistical model that is IG ergodic can be given by assuming that C( f1, . . . , fN , τ) is, for in-
stance, proportional to sin(ατ)|| f1||1 . . . || fN ||1 with α ∈ R. Making this replacement in (17) one obtains that
limT→∞ 1

T

∫ T
0 C( f1, . . . , fN , τ)dτ = 0. Since sin(ατ)|| f1||1 . . . || fN ||1 oscillates, then this model is not IG mixing nor

IG Bernoulli.
Our approach, thus, deals with ergodic hierarchy in statistical models from an information geometry viewpoint.

Henceforth, we use ergodic statistical model to designate any statistical model satisfying (17), (18) or (19).

A DISTINGUISHABILITY MEASURE FOR THE 2D CORRELATED MODEL

In order to use the levels of the IGEH to characterize the dynamics of statistical models one should have a
manner of determining the decay of correlation C( f1, . . . , fN , τ) in Eqs. (17), (18) or (19). For the family of
the 2D correlated probabilities p(H11,H22,H12,H21|μ, σ; r) of Eq. (3) we define the distinguishability measure
F : {p(H11,H22,H12,H21|μ, σ; r) | μ ∈ (−∞,∞), σ ∈ (0,∞),−1 ≤ r ≤ 1} �−→ R, given by

F(p) � ‖p(H11,H22,H12,H21|μ, σ; r) − p(H11)p(H22)p(H12)p(H21)‖∞
= max(H11,H22,H12,H21)∈R4 |p(H11,H22,H12,H21|μ, σ; r) − p(H11)p(H22)p(H12)p(H21)| (20)

where p(Hi j) with i, j = 1, 2 are the marginal distributions of p(H11,H22,H12,H21|μ, σ; r). Furthermore, if
f1(H11), f2(H22), f3(H12), f4(H21) ∈ L1(R) are arbitrary functions of H11,H22,H12,H21, then we have

|C( f1, f2, f3, f4, τ)|
=

∣∣∣∫ d4Hi jp(H11,H22,H12,H21|μ, σ; r) f1(H11) f2(H22) f3(H12) f4(H21) − 〈 f1(H11)〉〈 f2(H22)〉〈 f3(H12)〉〈 f4(H21)〉
∣∣∣

≤ max(H11 ,H22,H12,H21)∈R4 |p(H11,H22,H12,H21|μ, σ, r) − p(H11)p(H22)p(H12)p(H21)|
×
∣∣∣∫ d4Hi j f1(H11) f2(H22) f3(H12) f4(H21)

∣∣∣ ≤ F(p)|| f1||∞ || f2||∞ || f3||∞ || f4||1 (21)

where d4Hi j is the volume element dH11dH22dH12dH21 and

〈 f1(H11)〉 =
∫
p(H11) f1(H11) dH11

〈 f2(H22)〉 =
∫
p(H22) f2(H22) dH22

〈 f3(H12)〉 =
∫
p(H12) f3(H12) dH12

〈 f4(H21)〉 =
∫
p(H21) f4(H21) dH21

Eq. (21) expresses that F(p)|| f1||∞ || f2||∞ || f3||∞ || f4||1 is un upper bound for |C( f1, f2, f3, f4, τ)|. Therefore, it is conve-
nient to find an analytic expression for (20). After some algebra one can obtain that

F(p) = |r|
(√

1 − r2(1 + |r|)
)−1− 1

|r| for all r ∈ [−1, 1] (22)
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FIGURE 1. Behavior of F(p) in terms of the correlation coefficient. The Gaussian Orthogonal Ensembles correspond to the region
near r = 0 where the statistical model belongs to the IG Bernoulli level. When r → ±1 one has that F(p) diverges with the presence
of strong correlations. The discontinuity of the slope of F at r = 0 is due to the particular form of F(p), i.e. the maximum operation
of infinite norm can present discontinuities in its derivatives.

The behavior of F(p) “which is independent of μ and σ” is shown in Fig. 1. Two relevant regions, corresponding
to the limiting cases r → 0 and r → ±1, can be well distinguished. The region r → 0 corresponds to the zone near
the GOE which is characterized by the IG mixing and IG Bernoulli levels, with the particularity that the variables of
microspace are uncorrelated. Moreover, we can see that near to r = 0 the decay is linear in r. The curve F(p) also
shows that, if r → 0 when τ→ ∞, then the statistical model is IG mixing.

In the region r → ±1 the measure F(p) diverges corresponding to the maximally correlated case, which physi-
cally means that the system presents strong correlations between the variables of microspace. Due to the correlations
are strong in this regime the statistical model cannot be IG mixing nor IG Bernoulli.

Finally, it should be noted that F(p) does not allow one to distinguish between two probability distributions hav-
ing r and −r respectively. The symmetry respect to the axis r = 0 is due to the mathematical form of the infinite norm
||.||∞ in the definition (20). That is, with other choices of F(p) one could distinguish states (probability distributions)
with correlation coefficients r and −r.

CONCLUSIONS

We proposed a generalization, called “the information geometric ergodic hierarchy (IGEH)”, of the ergodic, mixing
and Bernoulli levels in the context of information geometry and we applied it to characterize the 2 × 2 Gaussian
Orthogonal Ensembles.

By defining a measure for the family of the 2D correlated probability distributions we obtained an upper bound
for the IG correlation which allowed one to give a sufficient condition for the IG mixing level when limτ→∞ r(τ) = 0,
r being the correlation coefficient and τ the parameter along geodesics. In other words, since the correlation goes to
zero for r → 0 and this implies IG mixing as one can deduce from its definition (18) and Eq. (21), then the condition
limτ→∞ r(τ) = 0 is a sufficient condition for the IG mixing level.

The relevance of our main contribution, the information geometric ergodic hierarchy (IGEH), lies in the following
remarks:

• The IGEH generalizes the notions of statistical independence and chaos characterization of the ergodic hierarchy
to statistical models on curved manifolds in the context of the information geometry. In turn, this gives rise to
an ergodic hierarchy characterization of statistical models, which we called ergodic statistical models.

• Geometrical notions and the global chaos criterion of entropic dynamics can be related with the levels of the
IGEH. The 2 × 2 GOE case belonging to the most chaotic level, the IG Bernoulli, has an associated minimum
negative value of the scalar curvature RGOE = − 1

2 .• By obtaining upper bounds F(p) on the IG correlation for a specific family of probability distributions, as
exemplified by the curve of Fig. 1, one could study geometrical phase transitions moving along curves F(p) as
an external parameter r is varied.
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