
�������� ��	
�����

Lithospheric 3D gravity modelling using upper-mantle density constraints:
Towards a characterization of the crustal configuration in the North Patagonian
Massif area, Argentina
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Abstract

The North Patagonian Massif is an Argentinean plateau that has an average

height of 1200 m and stands from 500 to 700 m above the neighboring areas.

During Paleogene, it suffered a sudden uplift of more than 1200 m without

noticeable internal deformation; thus, it could be related to isostatic disequilib-

rium. To shed light on the geodynamic development of the area it is necessary

to characterize the present-day configuration of the crust. In this study, a

lithospheric-scale 3D density model was developed by integrating all the avail-

able data of the area with the objective of assessing the depth of the crust-mantle

discontinuity (Moho). During the construction of the initial density model, we

tested different mantle density scenarios obtained using P- and S-wave veloc-
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ities from tomographic models, converting them into densities and comparing

the conversions with densities obtained from xenoliths. Below the North Patag-

onian Massif plateau, we have derived a Moho depth between 40 and 50 km

which is from 2 to 7 km deeper than its surroundings. There is an evident cor-

relation between high topography and deep Moho that would indicate isostatic

equilibrium at present. The model results provide a new approach to the Moho

depth in an area where there is no seismic constraining information about this

discontinuity. In addition, we found a spatial correlation between the variation

of the mean crustal density and the location of the Paleozoic terranes that were

proposed to constitute the basement of Argentina.

Keywords: 3D gravity modelling, crustal configuration, North Patagonian

Massif, seismic tomography, xenoliths.

1. Introduction

The backarc of the southern Andes in North Patagonia, Argentina, (36◦S to

45◦S) is composed of a heterogeneous crust where there are many sedimentary

basins of different origins that are surrounding the so-called North Patagonian

Massif (NPM) plateau (Figure 1; Aragón et al. 2011 b). It is located 400 km

east of the trench of the subduction margin that links the South American and

the Nazca tectonic plates. It covers an area of 100000 km2 and is framed by

crustal morpho-structural lineaments called Limay, Gastre, Los Chacays and

El Gualicho (Figure 1) that allow regional relative movements. Because of

its height (about 1200 m above sea level), the NPM plateau is distinguished

from the surrounding basins, called Neuquén, Colorado, Ñirihuau and Cañadon

Asfalto, that are about 500 to 700 m lower in altitude than the plateau (Figure

1).

The present-day elevation of the NPM plateau was caused by a sudden uplift

(Aragón et al., 2011 b) constrained by Paleocene (60 Ma) marine sediments and

Oligocene (35 Ma) basalt flows that spilt from the top of the plateau (Aragón

et al., 2010). Hence, the area was elevated more than 1200 meters after the
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Figure 1: Topographic and geographic map of the backarc of North Patagonia, Ar-

gentina, including the modelled area, delimited in blue, and the location of the North

Patagonian Massif plateau, in red.

Paleocene and before the late Oligocene basalts, and the tectonic inversion that

built the neighboring Andes in the Miocene. There is no evidence of internal

deformation in the NPM area during the mentioned uplift; the marine sediments

from the Cretaceous-Tertiary boundary lay horizontally at 1100 m above sea

level and they do not exhibit deformation inside the NPM plateau. By contrast,

in the surrounding areas, these sediments are at a height between 300 and 500 m

above sea level and they document different degrees of deformation associated

with a Miocene phase of tectonic inversion (Aragón et al. 2010 and Aragón et al.

2011 a). Moreover, during the uplift time (Paleogene), a regional extensional

system was developed in the area (rifting; Aragón et al. 2015), caused by the

development of a slab window and mantle upwelling (Aragón et al., 2011 b). The

described geological evidence lead to questions about the geodynamic processes

that have generated the high elevation of the NPM plateau.

The NPM area behaved as an independent morpho-structural unit that ex-

perienced epeirogenic uplift (Aragón et al., 2011 a). These movements could
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have been generated by isostatic disequilibrium. Isostasy works toward an equi-

librium state of the lithosphere in terms of vertical loads that thus become

laterally equal at a certain depth of compensation. Hence, if a region is not

isostatically balanced, buoyancy forces act and induce vertical movements to

restore isostatic equilibrium. Nevertheless, before making statements about the

geodynamic evolution of the NPM since pre-Oligocene times, it is necessary to

understand its present-day physical state. Because the vertical loads depend on

density, investigating the lithospheric-scale density configuration is essential to

estimate the current isostatic state.

The main objective of this work is to assess the lithospheric density con-

figuration of the North Patagonian Massif plateau and its surrounding areas

(Figure 1) by using gravity modelling. As gravity analysis produces non-unique

solutions, independent constraints need to be included. The major challenge of

the area consists in the scarcity of seismic data that would illustrate the crustal

discontinuities, but there are different seimological data for the mantle. There-

fore, we emphasized the study in obtaining the mantle density configuration by

analyzing the seismological data of tomographic models. The density configura-

tions were constrained with independent density values derived from xenoliths

to identify the more realistic one. Then, we integrated the selected configura-

tion for the mantle with the other available data into a 3D gravity modelling

procedure to assess the Moho depth and the density configuration of the crust.

2. Modelling approach

2.1. 3D Gravity modelling

The development of a gravity-constrained 3D density model requires setting

up an initial model including all significant geological and geophysical observa-

tions. Subsequently, the free parameters of the initial model can be modified

until the gravity calculated from the model fits with the measured gravity. For

this purpose, we have used IGMAS+ software (Interactive Geophysical Mod-

elling ASsistant, Götze & Schmidt 2010). IGMAS+ is an interactive software
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that allows to perform 3D gravity modelling by the use of triangulated grids that

approximate different bodies, each with a constant density (Götze & Schmidt,

2010). The interfaces between modelled units are defined through a number of

parallel vertical cross sections (working sections) and automatically triangulated

by the software generating the three-dimensional bodies. Based on an initial 3D

model, IGMAS+ allows to vary the model geometry and density interactively.

The initial model has an areal extension of 500 km x 500 km, including the

NPM plateau and a surrounding area (Figure 1). The aim of the selection of

the area is to compare the crustal configuration inside and outside the NPM

plateau.

Figure 2(a) shows a profile of the 3D density model, including all considered

data. It shows the initial model that consists of four bodies: sediments, two

different crustal domains and mantle, the selected densities for each body as

well as the constraining data, for the geometry of the discontinuities and for the

densities, and the measured gravity used.

Bouguer anomalies from EGM2008 geopotential model (Earth Gravitational

Model, Pavlis et al. 2012) have been used. EGM2008 has been released by

the U.S. National Geospatial-Intelligence Agency (NGA) and is complete to

spherical harmonic degree and order 2159. Figure 2(b) illustrates that there

are negative Bouguer anomaly values inside the NPM plateau area, being all of

them lower than−60 mGal and reaching a minimum of−100 mGal in the south-

western parts of the plateau. These values are similar to the Bouguer anomaly

values found in the mountain ranges of the Andes, where there are crustal roots

(Lowrie, 2007). In the basins that surround the NPM, there are higher values

measured increasing eastward from the Andes towards lower topography (Figure

2(b)). A correlation between topography (Figure 1) and Bouguer anomalies

(Figure 2(b)) is evident: whenever a high topography is found the anomalies

are low, this can be seen in the Andes as well as in the NPM. The opposite –

high Bouguer anomaly values correlated with low relief areas – can be observed

in the east of the modelled region where the Atlantic passive margin is located

and to the north and south of the NPM.
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2.2. Constraints on the density configuration of the sediments

The discontinuity between the sediments and the upper crust (Figure 2(c))

was digitized from the Mobil isopaches of ICONS atlas (Heine, 2007), a compi-

lation of data for intracontinental sedimentary basins world-wide. The south of

Neuquén basin is the only area with sediment thicknesses larger than 200 m in

the modelled domain (Figure 2(c)).

A constant density value (2400 kg/m3) for the sediments was used because

the sediment thicknesses are low (Figure 2(c)) and porosity (compaction) effects

are expected to be minor. Including more detail would require more data and

would not imply a significant improvement of a lithospheric scale model. The

sediment density value was selected according to the different lithologies known

to fill the Neuquén basin (Canale et al., 2015), because it is the area where the

major volume of sediments can be found in the modelled zone.

2.3. Constraints on the density configuration of the crust

The initial shape for the Moho was extracted from a regional model of South

America (Assumpção, personal communication) developed mainly on seismic

data, such us point estimates from seismic refraction experiments, receiver func-

tions analysis and surface wave dispersion (Assumpção et al., 2012). Gaps of

seismic information have been filled with gravity-based estimates from Tassara

& Echaurren (2012). The model has a resolution of 0.5◦ (Figure 2(d)). Accord-

ing to this model, the Moho depth beneath the NPM is between 32 and 38 km

and it is surrounded by a thinner crust towards the north, east and north-west

and by a thicker crust in the west. As the model lacks information in the south,

we have interpolated between existing values to obtain an initial Moho surface

for the model.

Even though the model of Assumpção et al. (2012) is based on a large

database, there are only a few point estimates of Moho depth in the NPM

area (Figure 2(d), Assumpção personal communication). These points, as they

are gravity-independent Moho depth values from seismics, were used as control

points of the final shape of the Moho in this study.
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Some constraints on crustal density could come from exposed crustal rocks

described in geological studies. The studies in the area point out that the con-

stituting sub-sedimentary crystalline crust of the NPM comprises early and late

Paleozoic metamorphic complexes intruded by Ordovician, Devonian, Carbonif-

erous, Permian, and Triassic plutonic rocks (Pankhurst et al., 2006), alternated

by large Triassic and Jurassic volcanic rhyolitic complexes (Rapela et al., 2005),

and overlain by thin Triassic and Jurassic sediments. These geologic units, in

turn, were subject to strong erosion that developed, from late Jurassic to early

Cretaceous times, an extended planation surface (flat topography) that was cov-

ered by a thin layer of upper Cretaceous (marine) and Tertiary (continental)

sediments. Most of the south-eastern side of the Massif is covered by Oligocene

plateau basalts that were erupted from the top of the massif onto the surround-

ing lower land (Aragón et al., 2011 b). To the north of the NPM plateau area,

the basement is composed mostly by granites, granodiorites, rhyolites and an-

desitic to rhyolitic volcaniclastic successions (Gregori et al. 2008 and Kostadinoff

et al. 2005). Even if Gregori et al. (2008) and Kostadinoff et al. (2005) suggest

a possible connection between the rocks in the NPM and the basement to the

north, they also mentioned that methamorphic rocks are more abundant in the

NPM area, and thus the shallower crustal rocks can be slightly denser in the

NPM than in the north.

For the deep crustal structure, the S-wave velocity model SL2013Sv of Scha-

effer & Lebedev (2013) provides valuable information for the depth level at

25 km. The velocity distribution was converted to density in two steps: first P-

wave velocities (Vp) have been calculated from the S-wave velocities (Vs) using,

Vp = 1.75 ∗ Vs (1)

The used factor is a value in the ranges described in several works for dif-

ferent areas in the world, such as Alvarado et al. (2007); Julià & Mejía (2004);

Nakajima et al. (2001) among others. Nakajima et al. (2001) have found this

value as the average for the lower-crust in northeastern Japan and in Alvarado
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et al. (2007) the value appears as the mid-range value for the northern part of

Chilenia terrane. This constant factor allows us to obtain P-wave velocities that

are similar to those expected for 25 km depth in ak135 model (Kennett et al.,

1995).

The second step was to convert the obtained P-wave velocity distribution

into densities (Figure 2(e)), which was done using a modification of Birch’s law

(Birch, 1961) that takes the form

ρ = aVp + b (2)

with ρ being the density, Vp the P-wave velocity and a and b constants

depending on the lithology. We have used a different "b" factor that fits with

the densities obtained from lower crust xenoliths. They are granulites enclosed

in Paleogene basalts from Paso de los Indios, unique location where we have

lower crust xenoliths data (locality V, Figure 2(b)). The mentioned xenoliths

are described in the work of Castro et al. (2011). Their densities were calculated

using the whole-rock analyses of major elements (Castro et al., 2011) and the

CIPW norm (Johannsen, 1931) to reconstruct the minerals that might have

composed the original rock (without the alterations caused by temperature,

pressure or other effects) and their proportions. Using these density constraints,

the modified Birch’s law applied was

ρ = 0.3788Vp + 0.33 (3)

The final density configuration for 25 km is shown in Figure 2(e), where a

clear tendency in the density values can be observed from lower densities in the

north-west to higher densities in the south-east.

Ramos (1988) has proposed the existence of different terranes forming the

crystalline crustal basement of Argentina and Chile. These blocks are thought

to have travelled long distances, before colliding with the south-west of Gond-

wana, during Proterozoic to Paleozoic times (Ramos, 1994). The modelled area

is occupied mainly by two terranes, the southernmost part of Chilenia and the

8
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northern extreme of Patagonia (Figure 2(e)). Chilenia is suposed to have col-

lided with Gondwana in Devonian times (Ramos, 1988) and it was the last of

a sequence of collisions in central Argentina. Patagonia was proposed as an al-

lochthonous terrane (Ramos, 1988) that might have collided with Gondwana in

late Carboniferous times generating a subduction dipping south-west beneath

the NPM (Vaughan & Pankhurst, 2008). Recent studies also point out the

allochthonous character of Patagonia in a different way; they show that the

Patagonia terrane is a piece of the Antartica Ross Orogen transported along

the south-western Gondwana margin (Gonzalez et al. 2010, 2011a and Gonzalez

et al. 2011b).

The sutures (terrane boundaries) between these blocks are major crustal

discontinuities (Ramos, 1994) of which those in the study area, proposed by

Chernicoff & Zappettini (2004) and based on magnetic data, are shown in Fig-

ure 2(e). The suture between Chilenia and Patagonia, derived from geological

surface observations, largely coincides with the changing pattern of densities

at 25 km depth (Figure 2(e)). Accordingly, Chilenia would have lower crustal

density than Patagonia at this depth level. The contour levels of density are not

fully coincident with the suture between Chilenia and Patagonia (Figure 2(e)),

but they can express the limit between both areas at this depth. By following

the surface expression of the limits between terranes, as shown on the map of

Figure 2(e), we have divided the crust in two different bodies: Chilenia with a

density of 2700 kg/m3 and Patagonia with 2810 kg/m3 (Figure 2(a)). The final

densities chosen for the two bodies of crust are representative of values in the

shallower and deeper rocks and a result of the combination of the previously

exposed data.

2.4. Seismological constraints on the density configuration of the mantle

To obtain the density configuration in the upper mantle, two different to-

mographic models have been explored, one S-wave velocity model (Schaeffer &

Lebedev 2013, Figure 2(a)) and one P-wave velocity model (Amaru, 2007).

The S-wave velocity model is called SL2013sv (Schaeffer & Lebedev, 2013)
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(a)

(b) (c)

(d) (e)

Figure 2: Initial density model. a) Schematic profile showing a cross section of the initial model and the input

data. The velocity distribution profile is from SL2013Sv model (Schaeffer & Lebedev, 2013). The location of the

profile is shown in white in figures 2(b), 2(c) and 2(d). b) Bouguer anomalies from EGM2008 (Pavlis et al., 2012)

used as measured gravity for the 3D density model. The localities where there are xenolith data (Ponce 2016 and

Mundl et al. 2015) are indicated by black triangles. I: Cerro Chenque, II: Puesto Diaz, III: Comallo, IV: Pahuaniyeu,

V: Paso de Indios. c) Sediment thickness in the study area from Heine (2007). d) Moho depth of the initial model

extracted from Assumpção et al. (2012). The area with white points has no resolution and was interpolated to be

used in the initial model. The location of the Moho depth data from seismics are shown with red stars. e) Density

configuration at 25 km depth, converted from SL2103Sv model (Schaeffer & Lebedev, 2013). The discontinuity

between terranes from Chernicoff & Zappettini (2004) is shown with white solid lines. The final discontinuity

between the two crustal bodies modelled is shown with black dashed line.
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and it is a global, tomographic model of the upper mantle. It was developed

using surface and S-wave forms and inverted with the Automated Multimode

Inversion (AMI) algorithm (Schaeffer & Lebedev, 2013). The solution was found

with respect to a 3D reference model based on the model Crust 2.0 (Bassin et al.,

2000) and the global velocity model ak135 (Kennett et al., 1995). The advantage

of SL2013sv is that it has data coverage at every knot of the model (Schaeffer

& Lebedev, 2013). The used version of the model is provided with a lateral

resolution of 0.5◦ and a vertical resolution of 25 km.

The second model, UU-P07 (Amaru, 2007), is also a global tomographic

model, but containing P-wave velocity of the crust and mantle. Its reference

model is also the global velocity model ak135 (Kennett et al., 1995). It is based

on a wide data set that consists of a selection of travel times from catalogs, bul-

letins and recordings of seismic networks and temporary experiments (Amaru,

2007). This model does not ensure data coverage in every cell of the model like

the previous one.

Both tomographic models present a similar pattern of velocities. A low

velocity anomaly can be seen below the NPM plateau area, between 50 and

200 km depth (Figure 2(a)). This anomaly continues to the south of the NPM

but ends towards the north, where higher velocities can be observed. One of the

major goals of deriving density from mantle velocity was to assess the influence

of mantle anomalies (such as the one described) on the gravity field - a major

requirement for inverting crustal densities using gravity (see also Klitzke et al.

2016, in press).

2.4.1. Velocity-density conversions

For the S-wave tomographic model -SL2013Sv-, two different conversions

were tested and compared. The first one is based on a seismic heterogeneity

ratio R( ρS ), which is a conversion factor depending on depth, whereas the second

is based on the approach of Goes et al. (2000) as implemented in the computer

programme of An & Shi (2007).

The density to S-wave velocity heterogeneity ratio R( ρS ) is the relation be-
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tween the lateral density perturbations relative to the spherical average (δ ln(ρ))

and the relative shear velocity perturbations (δ ln(VS)). Revising the bibliog-

raphy (Cammarano et al. 2003; Ishii & Tromp 2001; Karato & Karki 2001;

Resovsky & Trampert 2003), different values for this parameter depending on

depth can be found, but most of them vary between 0.15 and 0.25 for the upper

mantle. The only exception is some value found for the shallow upper man-

tle, which is very low or negative and related to subducted slabs (Cammarano

et al., 2003). R(
ρ
S ) is mainly derived from mineral physics and is based on the

assumption that the lateral variations in density are only caused by thermal

variations (Ishii & Tromp, 2001). Although there may be some other sources of

heterogeneity, mainly caused by compositional variations, their effect on seis-

mic velocity is supposed to be small (less than 1% of the velocity changes, as

inferred from mantle xenoliths) compared with the effect generated by thermal

variations in the uppermost mantle (50 to 300 km; Goes et al. 2000; Cammarano

et al. 2003).

We have converted the S-wave velocities using the vertical profile of R(
ρ
S )

published by Simmons et al. (2009), who have determined an optimum R(
ρ
S )

for different depth levels by testing different profiles of R( ρS ) (derived from min-

eralogy and considering only thermal variations) with geodynamic constraints.

These authors also proposed a correction due to the temperature dependence

on seismic attenuation in the upper mantle that was used in this conversion.

The second conversion applied to the S-wave velocity data was performed

using "velt", a program developed by An & Shi (2007). Velt is based on the

approach of Goes et al. (2000) which, in turn, assume that the upper mantle

can be modelled by five basic minerals with characteristic elastic moduli. They

postulate that the elastic moduli of every component of the upper mantle (Mi)

is a function of the in-situ temperature (T ) and pressure (P ) as well as the iron

content (XFe):

Mi(P, T,XFe) =M(P0, T0, XFe)+(T−T0)
δM

δT
+(P−P0)

δM

δP
+XFe

δM

δXFe
, (4)
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whereMi can be either of the elastic parameters: compressibility (κ) or rigid-

ity (µ). In the case of velt, the elastic moduli in normal conditions (P0, T0, XFe)

and the derivatives have been obtained from laboratory experiments (An & Shi,

2007). Then, the elastic moduli of the upper-mantle material can be found as

the Voigt-Reuss-Hill (VRH) average of the compounding minerals:

〈M〉 = 1

2
(MV oigt +MReuss), (5)

MV oigt =
∑

Miλi (6)

MReuss = (
∑ λi

Mi
)−1 (7)

where λi is the volumetric portion of the mineral i. According to An & Shi

(2007), velt considers an off-cratonic mantle composition with 68% olivine, 18%

orthopyroxene, 11% clinopyroxene, 3% garnet, 0% spinel and an iron content of

0.1 (the content of Fe is 10 % of the content of Fe +Mg).

Once the elastic moduli are obtained, the program calculates the S and P-

wave velocities from:

VS(P, T ) =

√
〈µ〉
〈ρ〉

(8)

VP (P, T ) =

√
〈κ〉+ 4〈µ〉

3〈ρ〉
(9)

and determines the density value iteratively by approaching the observed Vs

or Vp. The programme also corrects the results for the effect of the anelasticity

with a correction dependent on the frequency (Goes et al., 2000).

This methodology was also used to convert P-wave velocities of the model

UU-P07 (Amaru, 2007) into densities.
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2.4.2. Density configuration as derived from seismic velocities

In total, three density configurations have been obtained for the area: for

the S-wave velocity model SL2013sv, we have obtained configuration A by using

the R(
ρ
S ) parameter and configuration B by using the program velt. On the

other hand, configuration C consists of densities as derived from P-wave velocity

model UU-P07 by using the program velt. The spatial pattern of density in the

three density configurations is similar, showing a low density anomaly below

NPM area, but they differ significantly in absolute value. To better illustrate

the general pattern of densities, but showing at the same time the difference in

absolute value, Figure 3 shows different perspectives of the three configurations.

Figure 3(a) shows a west-east profile crossing the NPM area (at −41◦S) of

configuration A. In this figure the mentioned anomaly can be observed below

the NPM area; the difference with the surroundings can also be observed and

is greater to the east than to the west. Figure 3(b) shows a south-north profile

(at −68◦W ) of configuration C, where the low density anomaly can also be

observed. In this case, the difference of densities between the NPM area and

the surroundings can be observed towards the north of the NPM area while the

anomaly follows to the south till the end of the study area. Figure 3(c) shows a

map at 60 km depth of configuration B, where it is also possible to distinguish

the anomaly of lower density below the NPM area.

Table 1 shows the statistics of the different density configurations to highlight

their differences. The highest difference can be observed between configurations

A and B -106 kg
m3 in average and 1 kg

m3 in standard deviation. The values of

configuration C are generally between the values of configurations A and B.

2.5. Petrological constraints on the density configuration of the mantle

In the study area and its immediate surroundings, there are five localities

with basalts carrying ultramafic xenoliths from the upper mantle (Figure 2(b)).

To assess mantle densities, modal analysis data of more than 50 xenoliths pub-

lished by Ponce (2016) and Mundl et al. (2015) have been studied. The xeno-

liths described by Ponce et al. (2015) and Ponce (2016) were carried by Eocene
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(a) W-E profile of distribution A (b) S-N profile of distribution C

(c) 60 km depth map of distribution B

Figure 3: Density configurations for the mantle obtained from tomographic models. a) West-

east profile of configuration A obtained from SL2013Sv model (Schaeffer & Lebedev, 2013) by

using R(
ρ
S
). b) South-north profile of configuration C obtained from UU-P07 model (Amaru,

2007) using velt software (An & Shi, 2007). c) 60 km depth map of configuration B obtained

from SL2013Sv model (Schaeffer & Lebedev, 2013) by using velt software (An & Shi, 2007).

The location of the profiles of figures 3(a) and 3(b) are shown in grey.
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Table 1: Statistics of the different density configurations. The values are expressed in

kg/m3

Configuration A B C

Mean 3384 3278 3288

Standard de-

viation

52.5 51.4 22.8

Minimum 3304 3201 3240

Maximum 3470 3379 3361

(54 Ma old) basalts of the area of Paso de los Indios (locality V, Figure 2(b))

and the xenoliths investigated by Mundl et al. (2015) were emplaced in alkali

basalts of four locations within the North Patagonian Massif (Cerro Chenque,

Puesto Diaz, Comallo and Prahuaniyeu; localities I, II, III and IV respectively

in Figure 2(b)) during Miocene (23 Ma) to Pleistocene times (1.3 Ma). Ponce

(2016) has carried out a modal analysis of the xenoliths by point counting thin

section scanned images and also determined the major element chemical com-

position of olivine, clinopyroxene, orthopyroxene and spinel with electron mi-

croprobe analyses. Mundl et al. (2015) have also accomplished a modal analysis

of xenoliths by using mass balance of whole rock and mineral compositions for

some samples and point counting for others. They have also made an analysis

of the mineral major element using electron microprobe analyses (Mundl et al.,

2015). The xenoliths of locality V are spinel peridotites, pyroxenites, hazburgui-

tes and lherzolites (Ponce et al., 2015). In localities I, II and III, the xenoliths

are mostly spinel-hazburgites and the samples from locality IV are spinel and

garnet-peridotites (Mundl et al., 2015). A summary of the information about

xenoliths is given in Table 2.

2.5.1. Assessment of in-situ densities from xenolith data

Hacker & Abers (2004) have developed an Excel macro to calculate physical

properties of rocks for certain pressures and temperatures. One of the properties
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Table 2: Description of xenoliths in the study area

Locality Name Age Composition Method Reference

I Cerro

Chenque

Miocene

(23 Ma)

Spinel hazbur-

guites

Modal analysis by

point counting +

Major element by

electron microprobe

Mundl

et al.

(2015)

II Puesto

Diaz

Miocene

(23 Ma)

Spinel hazbur-

guites

Modal analysis by

point counting +

Major element by

electron microprobe

Mundl

et al.

(2015)

III Comallo Pleistocene

(1.3 Ma)

Spinel hazbur-

guites

Modal analysis by

point counting +

Major element by

electron microprobe

Mundl

et al.

(2015)

IV Prahuaniyeu Miocene

(23 Ma)

Spinel and gar-

net peridotites

Modal analysis by

point counting +

Major element by

electron microprobe

Mundl

et al.

(2015)

V Paso de los

Indios

Eocene

(54 Ma)

Peridotites,

piroxenites,

hazburguites

and Iherzolites

Modal analysis by

mass balance and

point counting +

Major element by

electron microprobe

Ponce

et al.

(2015);

Ponce

(2016)
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that the macro is able to calculate is density, as influenced by modal or volume

proportions of minerals in a sample. The first step of the density calculation is

to obtain the density of every mineral composing the rock at these particular

temperature and pressure conditions. Based on the density at standard tem-

perature and pressure (ρ0), first temperature and then pressure is interpolated

(Hacker & Abers, 2004). The density (ρ(T )) at a given temperature T is:

ρ(T ) = ρ0e
−φ, (10)

where,

φ = ln(
V (T )

v0
), (11)

with V0 being the molar volume at standard temperature and pressure and

V (T ) being the molar volume at temperature T . φ is extracted from the vari-

ation of the expansivity with temperature that depends on a constant for each

mineral (Hacker & Abers, 2004). The variation of density with pressure is given

by:

ρ(P ) = ρ0(1 + 2f)2/3 (12)

where f is the finite Eulerian strain, calculated from the pressure and the

mineral properties (Hacker & Abers, 2004). Then, the density at a given tem-

perature and pressure is calculated as:

ρ(T, P ) = (
ρ(P )

ρ0
)ρ(T ) (13)

Once the density of every mineral is calculated, the density of the rock can

be obtained by using the volume proportions of the minerals as specified in the

modal analysis (Ponce, 2016; Mundl et al., 2015) and by applying:

ρsample(T, P ) = (

n∑
i=1

ρivi)/n (14)
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For the density calculation of the xenoliths in the study area we have used

the composition derived from the modal analysis (Ponce, 2016; Mundl et al.,

2015) and equilibrium temperatures and pressures. Ponce (2016) has deter-

mined these equilibrium conditions using major element analysis of clinopyrox-

ene and orthopyroxenes cores, the two-pyroxene geo-thermometer of Brey &

Köhler (1990) and the geo-barometer of clinopyroxene of Mercier (1980). The

mean values of the corresponding data are 1.8 GPa for pressure and 972 ◦C for

temperature. Mundl et al. (2015) have also calculated the temperature of equi-

librium using the two-pyroxene thermometer of Brey & Köhler (1990) though

only by measuring the pressure in one sample. For this reason, and using the

mineralogical data available in Mundl et al. (2015), we have calculated the

equilibrium pressure for the xenoliths inside the NPM plateau area by using a

geo-barometer of clinopyroxene of Mercier (1980). For every locality, the mean

value of temperature and pressure (Figure 4) has been selected to calculate the

density.

The calculated densities of xenoliths in the localities inside the NPM plateau

(localities I, II, III and IV) area are illustrated in Figure 4(a) and the ones in

locality V, towards the south of the NPM plateau, are shown in the histogram

of Figure 4(b). In Figure 4(c) all the samples of the localities inside the NPM

are shown together. The densities shown in Figure 4 and calculated considering

xenolith data are compared with the ones obtained by converting seismic veloc-

ities. Therefore, the density values of the configurations A, B and C (Figure 3)

in the localities I, II, III and IV and at corresponding P conditions have been

obtained and shown in the histograms of Figure 4. The density configuration

(obtained from seismic velocities) that best fits with the densities determined

by xenoliths is configuration C (configuration of densities obtained from P-wave

velocities). That is why, we have chosen configuration (C) to integrate the initial

density model.
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(a)

(b) (c)

Figure 4: Histograms containing the density calculated for xenolith samples (data from Ponce

2016 and Mundl et al. 2015) at mantle pressures and temperatures and a comparison with

density configurations from tomographic models. The arrows show the densities of the different

configurations (A, B and C) in the localities where the xenolith samples were found, at a depth

equivalent to the equilibrium pressure (considering lithostatic pressure, using ak135 pressures;

Kennett et al. 1995) a) Histograms with density values of xenoliths inside the NPM plateau

area, specified by locality. b) Histogram with density values of Paso de los Indios (locality V)

towards the south of the NPM plateau area. c) Histogram with density values of all xenolith

samples inside the NPM plateau area (localities I, II, III, IV and V).
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3. 3D Gravity modelling procedure and results

3.1. Initial 3D density model

The initial density model (illustrated in Figure 2) is composed by:

• the sediment thickness from ICONS Atlas (Heine 2007; Figure 2(c))

• the sediment density assumed to be a constant according to the lithologies

of Neuquén basin (Figure 2(a))

• the Moho depth from Assumpção et al. (2012) (Figure 2(d))

• the density of the two cristalline crust domains from a combination of

surface geology and the density configuration at 25 km obtained from the

conversion of the S-wave velocities of Schaeffer & Lebedev (2013) (Figures

2(a) and 2(e))

• the mantle density configuration from P-wave velocities of model UU-P07

(Amaru 2007; configuration C).

This initial density model generates a gravity residual (measured minus cal-

culated anomalies) that is illustrated in Figure 5. As can be observed, the

calculated anomalies fit well with the measured ones at the points where the

initial Moho is constrained -residual gravity of < 30 mGal in absolute value.

A negative residual, reaching −100 mGal, can be clearly observed in the NPM

plateau area (Figure 5) and indicates a mass excess in the model. Other resid-

uals can be observed on the map of Figure 5 and they are located near the

discontinuities between terranes.

3.2. Final 3D density model

The modelling process was conducted by shifting the free parameter (the

Moho depth) to greater depths in the NPM area to fit the gravity. It was mod-

ified at every point except where Assumpção et al. (2012) Moho is constrained

by seismic data (Figure 2(d)). The resulting Moho can be observed in Figure

6(a) and the residuals of the gravity in Figure 6(b). According to the improved
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Figure 5: Gravity residuals of the initial model. The location of the constraining

independent Moho depth data is shown with green stars. The discontinuity between

terranes from Chernicoff & Zappettini (2004) is shown with white solid lines, and the

S-wave velocity constrained boundary between terranes in a white dash line.
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Table 3: Statistics of the residuals of the final model. The values are expressed in mGal

Entire study area At points where the Moho is

constrained by seismic data

Mean Standard

deviation

Maximum

value

Minimum

value

Mean Maximum

−7.76e−8 27.05 57.81 −59.83 14.95 25.68

gravity-constrained model, the crust is thicker in the NPM plateau area than

in its surroundings (Figure 6(a)). It varies between 40 and 50 km, increasing

from the borders of the plateau to a point near the center of the massif and

it has an elongated shape in north-east to south-west direction (Figure 6(a)).

The greater difference between the NPM and the surroundings is observed to-

wards the north, where the Neuquén basin is located and the shallowest Moho

depths of the modelled area can be observed. The lowest difference is observed

towards the west of the NPM plateau area, where the compressional forces of

the subduction margin have caused a thickening of the crust. In the north-west

corner of the modelled area, the southern extreme of the Andes crustal root can

be observed (Figure 6(a)). Interestingly, the Moho depths inside the NPM area

are similar to the depths found in mountain crustal roots.

The residual map of Figure 6(b) shows a similar pattern in the northern part

(Chilenia terrane) to the residuals of the initial model but with lower values.

In the southern part of the model (Patagonia terrane), the long wave-length

anomaly observed in Figure 5 was eliminated considering the observed gravity

and a smaller residual anomaly can be observed. The statistics of the residuals

can be observed in Table 3. In the locality where there are young xenoliths

(locality III; Figure 6(b)) a negative residual is observed, indicating that there

is a mass excess in the model. However, the localities with older xenoliths are

outside the negative residuals.
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(a) (b)

Figure 6: Moho and residuals of the final model. The discontinuity between terranes from

Chernicoff & Zappettini (2004) is shown with white solid lines and the discontinuity in the

velocity distribution with a dash line. a) Resulting Moho depth. b) Gravity residuals of the

resulting model. The location of the constraining independent Moho depth data is shown

with red stars. The outcropping basalts of the area are delimited in grey. The location of the

xenolith samples are shown with black triangles.

4. Discussion

The setup of the initial 3D density model has involved some important as-

sumptions. Concerning sediments, we have selected a density value that consid-

ers, intrinsically, a certain porosity for the given lithology. If this assumption is

changed between the possible extremes, i.e. totally compacted sediments with-

out porosity or unconsolidated sediments (of 70 % porosity), the mean of the

residuals (Table 3) almost remain the same but the standard deviation slightly

increase (in the first case by 2 mGal and in the second by 7 mGal). Therefore,

the density value chosen for the sediments does not significantly affect the main

modelling results (i.e. crustal thickness). Moreover, in most of the study area

the pattern of the residuals is preserved in spite of the changes in the sedi-

ment density. We conclude that the density of the sedimentary unit does not

significantly affect the main results of the modelling procedure (i.e. the depth

distribution of the Moho).

Another important predefined feature of the model is the mantle density

configuration. If this configuration is changed in the final model, the residu-
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als increase significantly as can be observed in Table 4. This table shows the

statistics of the residuals if configuration A, B or a constant mantle density

replaces the mantle density configuration of the final model. All the statisti-

cal parameters of the residuals (standard deviation, minimum and maximum

values) substantially increase for other configurations (table 4) compared with

the configuration of the final model (table 3). The same can be observed in

the residuals at points where the Moho is constrained by seismic data (tables

3 and 4). Therefore, the selection of the mantle density configuration is very

important in the modelling process and has a large impact on the results.

The selection of the mantle density configuration for the final model was

based on the comparison of every derived configuration with determinations of

density from independent xenolith data. This procedure ensures the reliability of

our choice, since it was based on independent data that validate the conversion.

The selected configuration is derived from P-wave velocities and the reason why

it gave the best result may come from several causes. One of the reasons could

be the type of wave, as the P waves are less dependent to anisotropy or maybe

the conversion employed, because we made two conversions with S-wave data

that gave different results and thus it can be that none of them are appropriate

in this case. Other reason can be the resolution, as the S-wave model cannot

resolve the subducting plate at the model latitude, thus maybe the resolution

is not enough in the modeled area.

4.1. Implications of the modelled crustal configuration

There is an important difference between the modelled crust-mantle discon-

tinuity (Figure 6(a)) and the initial Moho (Assumpção et al. 2012; Figure 2(d))

in the areas where this model has no independent constraints. The most re-

markable difference is that the resulting Moho distinguishes the NPM as an

area of increased crustal thickness compared to the surroundings. According

to the model, the Moho inside the NPM plateau has a mean depth of 45.6 km

and a standard deviation of 2.7 km (Figure 6(a)) and an important difference

of depth, of between 2 and 7 km, with respect to the surroundings, allowing
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Table 4: Statistics of the residuals of models with different mantle density configura-

tions. The residuals are calculated for models that integrate the Moho of the final

model. The values are expressed in mGal

Residuals With configu-

ration A

With configu-

ration B

With con-

stant mantle

density

Average 1.82e−7 6.36e−8 3.54e−7

Standard deviation 54.17 55.16 52.46

Maximum value 119.72 119.27 134.35

Minimum value −99.95 −102.38 −86.17

Mean of the values

at Moho constraining

points

33.55 45.99 37.81

Maximum of the val-

ues at Moho constrain-

ing points

51.66 64.19 56.48
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us to distinguish the NPM plateau on the Moho map (Figure 6(a)). An evi-

dent correlation can be observed between the described Moho shape and the

topography that also distinguishes the area as a plateau (Figure 1). As isostasy

assumes equal loads at a certain depth of compensation, the relation between

deep Moho and high topography in the area could indicate that it is in isostatic

equilibrium at crustal scale, i.e. the great depth of the Moho is compensated

by a high topography to equal the loads at a crustal scale. This would have

contributed to the present-day elevation of the NPM plateau and would also

indicate that the isostatic forces may have played a role during the Paleogene

uplift. The recent work of Álvarez Pontoriero et al. (2016) also suggests that

the NPM plateau area would be in isostatically compensated.

Concerning the modelling of crustal densities, we have used the 25 km depth

velocity distribution of Schaeffer & Lebedev (2013) tomographic model where

an S-wave velocity trend, increasing from north-west to south-east, can be seen

(Figure 2(e)). Searching for geological evidence that could explain such a differ-

ence in velocities, we found that the trend fits with the sutures of the paleozoic

terranes proposed by Ramos (1988). We have converted the velocities into den-

sities for this depth and tested them against gravity to validate the densities

found. As a result, two different density domains were modelled having an im-

portant density contrast of 110 kg
m3 (Chilenia has a lower crustal density than

Patagonia; Figure 2(a)). In the correlation between the velocity trend and the

different terranes it is possible to observe that the present-day configuration of

the crust traces back to Paleozoic times. It can be inferred from the model that

the two mentioned terranes are very different in composition, which supports the

idea of their different origins (Ramos, 1988; Gonzalez et al., 2010, 2011a,b). In

conclusion, the difference in mean crustal density between both terranes would

be related with their different origins and compositions.

The surface boundary between terranes is located to the north of the depth-

integrated boundary constrained by S-wave velocity (Figure 5); this could in-

dicate that the boundary dips to the south coinciding with the hypothesis of

Ramos (1988) that Patagonia collided Gondwana generating a subduction dip-
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ping south-west beneath the NPM. This posible tectonic scenario would also

be related with the shape of the Moho in the NPM area which is thickened in

a SW-NE direction following the sutures between terranes. The thickening in

this direction may have a relation with the collision of both terranes. There

are residuals in the area between the surface expression of the sutures between

terranes and the plotted contour levels of the density at 25 km depth (Figure 5).

They can be caused by the difference between the modelled limit between crustal

bodies (following the surface sutures) and the real one, with its continuation in

depth that is unknown.

After modelling, there are still gravity residuals (Figure 6(b)) that, due to

their wavelength - 100 to 200 km -, seem to be caused by density heterogeneities

inside the crust. Moreover, in some points inside the NPM plateau area there

are spatial correlation between the residuals and basaltic plateaus, such us the

biggest residual of the area (in absolute value) that coincides with one of the

basaltic plateau (north-west of the NPM; Figure 6(b)). This basaltic plateau

is also near locality III (Figure 6(b)), where the youngest xenoliths are, and

therefore the negative residual can be caused by a decrease in density related

with magmatic events (thermal effect that decreased the density). In this con-

text, it can be assumed that the magmatism present in the area could have

differentiated the crust generating the observed crustal heterogeneities.

4.2. Geodynamic hypothesis

The thickened crust beneath the North Patagonian Massif plateau has an

origin difficult to track. This region of Gondwana was subject to strike-slip

motion of terranes in the early Paleozoic (Gonzalez et al. 2010, 2011a and Gon-

zalez et al. 2011b). In the late Paleozoic there was granitic plutons emplacement

in the region (Aragón et al., 2010) that were exhumated and eroded since the

Triassic to the Cretaceous to yield the Gondwana planation surface (Aragón

et al., 2010), preserved in the NPM plateau to the present time. In mid Jurassic

time, the region was affected by the breakup of Gondwana by a major thermal

anomaly, that gave rise to the Atlantic ocean. We suggest that the Moho of

28



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

the region, at the uplift moment (Paleogene), was modelled for the described

processes: the forces involved in the amalgamation of the terranes, the possible

orogeny that generates the granitic emplacement and the thermal anomaly of

the breakup of Gondwana.

During the Paleogene there was a plate rearrangement that led to a thermal

discontinuity in the mantle below the NPM. Several papers refer the mentioned

discontinuity but with different hypothesis and explanations. Kay et al. (1993,

2007) proposed the existence of a transient hot spot in the area, Muñoz et al.

(2000), a corner flow due to a slab roll back, De Ignacio et al. (2001) a shallow

mantle uplift caused by a corner flow and Aragón et al. (2011 b, 2015) an

astenospheric window generated by the detachment of the Aluk plate during the

subduction of Farallon-Aluk ridge. In this period when the area were subjected

to an extensional regime, the heating of the mantle would have led to a decrease

in the density which, together with the thicker crust of the NPM plateau, would

have generated the isostatic disequilibrium and the consequent uplift. This

regional uplift of the plateau was controlled by four major lineaments of remnant

fault systems that in the Paleogene extensional regime allowed normal fault

displacement.

Nowadays, the reasons for the NPM to preserve its high elevation would

be the apparent isostatic balance, as can be observed in the developed model,

together with the possible low density and/or partial melt that can be suppose

in the low velocities observed in the mantle. The present compression derived

from the subduction in the west margin of South America (from Miocene on)

can be also contributing to preserve the elevation of the area and may affect the

present thickness of the crust.

5. Conclusions

With the aim of obtaining the crustal configuration of the NPM, as a key

to understand its present-day isostatic state, we developed a lithospheric-scale

3D gravity modelling of the area. Since there is no seismic information about
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the crust, we needed to assess the mantle density contribution to the observed

gravity field to constrain the model. This was done by combining seismological

and xenolith data. The main modelling result is the Moho depth configuration

that is consistent with multi-disciplinary data.

The modelled Moho has a depth of 46± 3 km in the NPM plateau area and

presents a difference of 2 to 7 km with respect to its surroundings. The large

depth of the Moho correlates with the high topography of the NPM which is

indicative of isostatic equilibrium in a crustal scale. This isostatic equilibrium

may be a contribution to the present high topography of the NPM plateau and

together with a possible high temperature and the active tectonics in the west

margin would keep the study area elevated. Moreover, the thicker crust of the

NPM plateau and its present isostatic compensation would indicate that the

isostasy would have had some influence in the sudden uplift occurred in the

Paleogene related with the isostatic disequilibrium generated by the thermal

anomaly referred by several authors (Aragón et al., 2011 b, 2015; Kay et al.,

1993, 2007; Muñoz et al., 2000; De Ignacio et al., 2001) .

In the shape of the Moho, a NE-SW striking domain of large crustal thickness

can be distinguished within the NPM. It correlates with the strike direction of

the proposed suture between ancient crustal terranes and thus might have some

relation with the Paleozoic amalgamation of Gondwana.

The 3D density model integrates a density contrast within the crust that has

been derived from crustal S-wave velocities and correlates quite well with the

proposed Paleozoic suture zone between Patagonia and Chilenia (Chernicoff &

Zappettini, 2004; Ramos, 1988).

Further density discontinuities within the crust are indicated by the final

residual between modelled and measured gravity. The consistency of the main

residuals inside NPM area with volcanic areas points to a magmatically dif-

ferentiated crust. Nevertheless, more data is required to analyse these smaller

wavelength discontinuities.
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Highlights

• A lithospheric 3D density model was developed for the North Patagonian

Massif area.

• Mantle density configuration obtained through seismological and xenoliths

data.

• Correlation between crustal density contrasts in the model with Paleozoic

terranes.

• Modelled Moho depth below North Patagonian Massif plateau deeper than

surroundings.

38


