
ar
X

iv
:1

40
7.

17
25

v1
  [

he
p-

ph
]  

7 
Ju

l 2
01

4
UdeM-GPP-TH-14-234

Detecting New Physics in Rare Top Decays at the LHC

Pratishruti Saha,1, ∗ Ken Kiers,2, † David London,1, ‡ and Alejandro Szynkman3, §

1Physique des Particules, Université de Montréal,
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Abstract
In the companion paper it was shown that there are six observables in gg → tt →

(

bbc
) (

bℓν
)

that can be used to reveal the presence of new physics (NP) in t → bbc. In the

present paper we examine the prospects for detecting and identifying such NP at the LHC,

in both the short term and long term. To this end, we develop an algorithm for extracting

the NP parameters from measurements of the observables. In the short term, depending

on what measurements have been made, there are several different ways of detecting the

presence of NP. It may even be possible to approximately determine the values of certain

NP parameters. In the long term, it is expected that all six observables will be measured.

The values of the NP parameters can then be determined reasonably precisely from a fit

to these measurements, which will provide good information about the type of NP present

in t → bbc.
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I. INTRODUCTION

Top physics provides a fertile ground for new-physics (NP) searches. With a mass
close to the electroweak scale, the top quark may well be sensitive to interactions
that do not affect other fermions. In Ref. [1], the companion paper, top decay is in-
vestigated for the presence of NP. It is noted that, given the good agreement between
the experimental measurement of Γt and its theoretical prediction [2], significant NP
contributions to top decay can only be present in decay modes that are suppressed
in the standard model (SM). One example is t → bbc, whose amplitude involves
the small element Vcb (≃ 0.04) of the Cabibbo-Kobayashi-Maskawa (CKM) quark
mixing matrix. Ref. [1] focuses on this decay at the LHC, where top production
occurs predominantly via gluon fusion: gg → tt. The goal is to find observables in
the channel gg → tt with t → bbc and t → bℓν̄ that can reveal the presence of NP.

NP contributions to the decay t → bbc can be parametrized in terms of higher-
dimensional operators. If one restricts to dimension-6 operators, then this is realized
in the form of ten operators that span all possible Lorentz structures. In Ref. [1], two
types of observables are identified that can then be used to get a handle on this NP.
The first consists of invariant mass-squared distributions involving the {b, c}, {b, c},
or {b, b} quark pairs coming from t → bbc. As for the second type, we note that,
in gg → tt, the spins of the t and t are correlated. The spin-correlation coeffcient
(κtt) depends only on the production process. However, since the t quark has an
extremely short lifetime, this quantity has to be inferred by measuring the angular
correlation between the decay products of the t and those of the t. If there are NP
contributions to the decay, the inferred value of κtt is necessarily altered from that
of the SM. It is this feature that provides information about the NP. Therefore,
the second type of observable consists of these angular correlations. They are taken
between the ℓ− coming from the t decay and one of b, b or c coming from the t decay.

The NP operators not only change the top branching fraction of this decay, but
also modify the shapes of these distributions. It is shown in Ref. [1] that the NP
contributions to all of the above observables can be written in terms of certain
combinations of the NP couplings, denoted as Âσ

i . Furthermore, the observables are
found to be practically unaffected by parton densities, etc., so that they provide
direct access to the values of these Âσ

i ’s.

Now, the observables described above involve the b quark coming from the decay
of the t. However, there is also a b produced in the t decay. A realistic analysis
must deal with the question of how to distinguish the two b’s. In addition, while
the focus in Ref. [1] was entirely on tt production from gluon fusion, there is also a
contribution from qq̄ → tt which must be considered.

In the present paper we address these issues. In Ref. [1], the analytical expres-
sions for the observables are compared with the results of a numerical simulation
of the LHC using MadGraph 5 [3]. Here we extend our MadGraph 5 simulations
to examine different strategies for extracting the NP parameters. In so doing, we
include a method for distinguishing the two b’s. We also take the contribution from
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qq̄ → tt into account, examining its effect on the aforementioned observables and
their sensitivity to the Âσ

i ’s. In our simulations we consider numbers of total events
representative of LHC measurements in both the short and long terms. While the
long-term results obviously have smaller errors, it is still possible in the short term
to detect and partially identify NP in t → bbc.

We begin in Sec. II by summarizing the results of Ref. [1]. We present the NP
operators that contribute to t → bbc, as well as the gg → tt →

(

bbc
) (

bℓν
)

observ-
ables that can reveal the presence of the NP. In Sec. III we develop the algorithm to
extract the NP parameters from the observables. We discuss the MadGraph 5 sim-
ulations in Sec. IV, and apply the algorithm. Here we show that the measurement
of the observables at the LHC can lead to the detection of the NP, and possibly even
its identification1. We conclude in Sec. V.

II. NEW PHYSICS IN TOP DECAY

In this section, we summarize the main results of Ref. [1].

A. t → bbc: effective Lagrangian

In the SM, the decay t → bbc proceeds through t → W+b, followed by W+ → bc.
The NP contributions to this can be parameterized by the effective Lagrangian
Leff = LV

eff + LS
eff + LT

eff, with

LV
eff = 4

√
2GFVcbVtb

{

XV
LL bγµPLt cγ

µPLb+XV
LR bγµPLt cγ

µPRb

+ XV
RL bγµPRt cγ

µPLb+XV
RR bγµPRt cγ

µPRb
}

+ h.c., (1)

LS
eff = 4

√
2GFVcbVtb

{

XS
LL bPLt cPLb+XS

LR bPLt cPRb

+ XS
RL bPRt cPLb+XS

RR bPRt cPRb
}

+ h.c., (2)

LT
eff = 4

√
2GFVcbVtb

{

XT
LLbσ

µνPLt cσµνPLb

+ XT
RRbσ

µνPRt cσµνPRb
}

+ h.c. (3)

Here the colour indices are assumed to contract in the same way as in the SM (i.e.,
the fields b with t and c with b). Colour-mismatched terms, in which the indices
contract in the opposite way, may occur in certain models and can be incorporated
in a straightforward manner [4].

1 When we refer to the “identification of NP”, what is implied is the measurement of the various

Âσ
i
’s and Re(XV

LL
).
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The NP couplings (the XI
AB in the above equations) contain weak phases, but

the strong phases are negligible [5]. In addition, the XI
AB may be assumed, quite

generally, to be O(1). The sizes of the SM and NP contributions to t → bbc would
then be roughly equal. This shows that it is important to include both the SM-NP
and NP-NP interference pieces when computing the effect of NP on a particular
observable.

B. Observables in gg → tt →
(

bbc
) (

bℓν
)

The kinematics of gg → tt →
(

bbc
) (

bℓν
)

is represented in Fig. 1. The six-body
phase space is decomposed into five solid angles dΩ∗∗

1 , dΩ∗
2, dΩ

∗∗
4 , dΩ∗

5 and dΩt, and
two invariant masses M2 and M5. The ∗ and ∗∗ superscripts on the solid angles
indicate that these angles are defined in reference frames that are, respectively, one
and two boosts away from the tt rest frame. M2 and M5 are defined by M2

2 =
(p1 + p2)

2 and M2
5 = (p4 + p5)

2. Note that p1, p2 and p3 are the momenta of the b,
b and c quarks in t → bbc, but all permutations are allowed. The observables use
several of these possibilities.

M2

q1

q2

p1

p2p3

M5

p4

p5p6

t

t

dΩ
∗∗

1

dΩt

dΩ
∗

2

dΩ
∗

5
dΩ

∗∗

4

FIG. 1: Kinematics for the process gg → tt →
(

bbc
) (

bℓν
)

[6]. Ω∗∗
1 denotes the direction of

~p ∗∗
1 in the rest frame of M2, relative to the direction of ~p ∗

1 + ~p ∗
2 , where M2

2 = (p1 + p2)
2.

Similarly, Ω∗
2 denotes the direction of (~p ∗

1 + ~p ∗
2 ) in the t rest frame, relative to the direction

of ~pt in the tt rest frame. Ωt denotes the direction of ~pt relative to ~q1, also in the tt rest

frame. The solid angles Ω∗∗
4 and Ω∗

5 are defined analogously to Ω∗∗
1 and Ω∗

2, respectively,

and M2
5 = (p4 + p5)

2.

The differential cross section for gg → tt →
(

bbc
) (

bℓν
)

is computed in Ref. [1]. It
is a function of the final-state momenta pi (i = 1, 2, .., 6) and SM and NP couplings,
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and is defined with respect to dM2
2 dM

2
5 dΩ

∗∗
1 dΩ∗

2 dΩ
∗∗
4 dΩ∗

5 dΩt. The cross section is
then integrated over M2

5 and over all angles except for θ∗2 and θ∗ℓ . The observables are
obtained by (i) assigning the pi to specific final-state particles, and (ii) integrating
further over θ∗2 and θ∗ℓ , or M

2
2 .

There are three possibilities for the particle assignments: (i) p1 = pc, p2 = pb,
p3 = pb1 , (ii) p1 = pc, p2 = pb1 , p3 = pb, (iii) p1 = pb, p2 = pb1 , p3 = pc. Here

pb1 refers to the b coming from the t. Also, p6 = pℓ−. For each case there are two
observables:

1. Invariant mass-squared distribution:

dσ

dζ212
= σSM

{

F12

6 h12
SM (ζ212)

(1− ζ2W )
2
(1 + 2ζ2W )

+
3GFm

2
t√

2π2 (1− ζ2W )
2
(1 + 2ζ2W )

∑

i,σ

Âσ
i h

12
i

(

ζ212
)

}

, (4)

2. Angular correlation:

dσ

dcos θ∗3 dcos θ
∗
ℓ

=
σSM

4

{

[

1 + ρ3(ζ
2
W )κ(r) cos θ∗3 cos θ

∗
ℓ

]

+
3GFm

2
t

4
√
2π2 (1− ζ2W )

2
(1 + 2ζ2W )

[(

∑

i,σ

Âσ
i

)

(5)

+

(

Â+
3 − Â−

3 − 1

3

(

Â+
1 − Â−

1 + Â+
2 − Â−

2

)

)

κ(r) cos θ∗3 cos θ
∗
ℓ

]}

.

The numerical subscripts and superscripts correspond to the particle assignments
in each of the three cases. That is, in case (i), the subscript 12 corresponds to bc (b
is particle 1, c is particle 2), and similarly for cases (ii) (12 = bc) and (iii) (12 = bb).
In the summations, σ = +, − and i = b, b, c.

σSM is given in Eq. (60) of the Appendix of Ref. [1], ζ212 ≡ (p1 + p2)
2 /m2

t , ζW ≡
mW/mt, and κ(r) is defined as

κ(r) =
(−31r4 + 37r2 − 66) r − 2 (r6 − 17r4 + 33r2 − 33) tanh−1 (r)

r2
[

(31r2 − 59) r + 2 (r4 − 18r2 + 33) tanh−1 (r)
] , (6)

where

r ≡
√

1− 4m2
t/Q

2 , Q ≡ pt + pt . (7)

The functions hmn
i (mn = bc, bc, bb; i = b, b, c) are defined in Table I, and

hbc
SM

(

ζ2bc
)

=
(

1− ζ2bc
)

ζ2bc θ(1− ζ2W − ζ2bc) ,

hbc
SM

(

ζ2
bc

)

=

(

ζWγW
6π

)

(1− ζ2
bc
)2(1 + 2ζ2

bc
)

(ζ2
bc
− ζ2W )2 + (ζWγW )2

,

hbb
SM

(

ζ2
bb

)

=
(

1− ζ2W − ζ2
bb

) (

ζ2W + ζ2
bb

)

θ
(

1− ζ2W − ζ2
bb

)

. (8)
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TABLE I: Definitions of the hmn
i (mn = bc, bc, bb) functions. The columns correspond

to i = b, b, c.

b b c

hbci (ζ
2) 1

2
(1− ζ2)2(1 + 2ζ2) 3(1 − ζ2)2ζ2 1

2
(1− ζ2)2(1 + 2ζ2)

hbci (ζ
2) 3(1 − ζ2)2ζ2 1

2
(1− ζ2)2(1 + 2ζ2) 1

2
(1− ζ2)2(1 + 2ζ2)

hbbi (ζ
2) 1

2
(1− ζ2)2(1 + 2ζ2) 1

2
(1− ζ2)2(1 + 2ζ2) 3(1− ζ2)2ζ2

In addition,

ρb(ζ
2
W ) = 1 , ρb(ζ

2
W ) = −

(

1− 2ζ2W
1 + 2ζ2W

)

,

ρc(ζ
2
W ) =

1− 12ζ2W + 9ζ4W + 2ζ6W − 12ζ4W ln(ζ2W )

(1− ζ2W )2(1 + 2ζ2W )
. (9)

and
Fbc = Fbb = 1 , Fbc = 1− 4(1− ζ2

bc
/ζ2W )Re

(

XV
LL

)

. (10)

Note that we have neglected some mild dependence on Re
(

XV
LL

)

in the bc and

bb distributions. This dependence is, however, properly taken into account in the
numerical work below.

The NP parameters appear in the observables in the Âσ
i ’s:

Â+

b
= 4

∣

∣XV
LL

∣

∣

2 − 8Re
(

XT
LLX

S∗
LL

)

+ 32
∣

∣XT
LL

∣

∣

2
,

Â−

b
= 4

∣

∣XV
RR

∣

∣

2 − 8Re
(

XT
RRX

S∗
RR

)

+ 32
∣

∣XT
RR

∣

∣

2
,

Â+
b =

∣

∣XS
LL

∣

∣

2
+
∣

∣XS
LR

∣

∣

2 − 16
∣

∣XT
LL

∣

∣

2
,

Â−
b =

∣

∣XS
RR

∣

∣

2
+
∣

∣XS
RL

∣

∣

2 − 16
∣

∣XT
RR

∣

∣

2
,

Â+
c = 4

∣

∣XV
LR

∣

∣

2
+ 8Re

(

XT
LLX

S∗
LL

)

+ 32
∣

∣XT
LL

∣

∣

2
,

Â−
c = 4

∣

∣XV
RL

∣

∣

2
+ 8Re

(

XT
RRX

S∗
RR

)

+ 32
∣

∣XT
RR

∣

∣

2
. (11)

As pointed out in the introduction, the six observables have different functional
dependencies on the Âσ

i ’s.

III. EXTRACTING NEW PHYSICS FROM OBSERVABLES

In the companion paper [1], we showed that the chosen observables, namely the
three invariant mass-squared distributions (dσ/dζ212) and the three angular corre-
lations (dσ/d cos θ∗3 cos θ

∗
ℓ ), are sensitive to certain combinations of the new-physics

parameters. This dependence is represented in Eqs. (4) and (5) as combinations of

the various Âσ
i ’s, which in turn can be defined [Eq. (11)] in terms of the NP coef-

ficients XI
AB that appear in the effective Lagrangian. In addition, the NP operator
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proportional to XV
LL has the same Lorentz structure as the corresponding SM oper-

ator, so that these two interfere, leading to an explicit dependence on XV
LL itself. As

discussed in Ref. [1], the shapes of the observables are largely insensitive to effects
due to parton distribution functions (PDFs). It is only natural then to expect that
it should be possible to extract the various combinations of NP parameters by fitting
these distributions. Further, one expects that, by combining information from all
six observables, it should be possible to extract the values of the individual Âσ

i ’s
and Re(XV

LL) as well. In this section we develop the procedure to carry out this
extraction.

A. Algorithm

Consider first the conventional fitting method, which involves individual observ-
ables. If the underlying theory has N theoretical unknowns, their values can be
determined only if at least N observables are measured. There are theoretical ex-
pressions for these observables in terms of the N unknowns. Using these expressions,
the best-fit values of the unknowns are those for which the measured values of the
observables are best reproduced.

In our case, the observables are distributions and correlations, specifically dσ/dζ212
[Eq. (4)] and dσ/d cos θ∗3 cos θ

∗
ℓ [Eq. (5)]. Each distribution/correlation contains

many measurements (at different values of ζ212 or (cos θ
∗
3,cos θ

∗
ℓ )). Equations (4) and

(5) show that each of the ζ212 distributions and the angular correlations can be written

as a linear combination of the SM piece and several NP pieces [six Âσ
i ’s, Re(X

V
LL)].

With this in mind, we use MadGraph 5 in conjunction with FeynRules [7] to gener-
ate eight templates for each distribution/correlation. The templates are nothing but
the said distributions/correlations generated with the input values of the parame-
ters chosen such that certain specific contributions to the observables are retained,
while all others are set to zero. The objective is to isolate the contributions coming
from the SM, the individual Âσ

i ’s and Re(XV
LL). Table II gives the parameter choices

made for each template (labelled TM-i) and the contributions that they represent.

Once we have these templates, a ζ212 distribution or an angular correlation arising
from a generic choice of NP parameters can be represented as a linear combina-
tion of the corresponding templates with appropriate coefficients. Extracting these
coefficients allows one to determine the values of the NP parameters involved.

B. Testing the algorithm

We use “pseudo-data” generated in Monte Carlo simulations to test our fitting
procedure. Once again, we use MadGraph 5 to generate these samples. In Ref. [1]
we presented plots of the normalized distributions and correlations. Here we use
the unnormalized distributions for the fitting. Since both the templates and the

7



TABLE II: NP parameter choices for each of the templates TM-i.

Template XI
AB Âσ

i Description

TM-0 All XI
AB = 0 All Âσ

i = 0 SM contribution

TM-1 XS
LL, X

T
LL 6= 0 Â+

b
6= 0; all other Âσ

i = 0 Contribution ∝ Â+

b

TM-2 XV
RR 6= 0 Â−

b
6= 0; all other Âσ

i = 0 Contribution ∝ Â−

b

TM-3 XS
LL 6= 0 Â+

b 6= 0; all other Âσ
i = 0 Contribution ∝ Â+

b

TM-4 XS
RR 6= 0 Â−

b 6= 0; all other Âσ
i = 0 Contribution ∝ Â−

b

TM-5 XV
LR 6= 0 Â+

c 6= 0; all other Âσ
i = 0 Contribution ∝ Â+

c

TM-6 XV
RL 6= 0 Â−

c 6= 0; all other Âσ
i = 0 Contribution ∝ Â−

c

TM-7 XV
LL 6= 0 Â+

b
6= 0; all other Âσ

i = 0 Contributions ∝ Re(XV
LL) and Â+

b

TM-8 TM-7 − TM-1 Contribution ∝ Re(XV
LL)

“data-sets” are obtained with MadGraph 5 with the same choices of PDFs, scale,
etc., the overall normalization is automatically accounted for.

Our procedure is as follows. We generate pseudo-data using MadGraph 5, in
conjunction with FeynRules, for certain chosen values of the NP parameters (i.e.,
the XI

AB). This gives us three ζ212 distributions and three angular correlations. We
divide each of these into 25 bins (using a 5 × 5 array for the angular correlations).
We then perform a single χ2 minimization involving all six histograms in order to
determine the coefficients for the templates that result in the best fit for all six
observables simultaneously. For this purpose, we use standard, publicly-available
routines [8]. Finally, we examine to what extent the values of the NP parameters
extracted from the fit agree with their input values.

We consider four different test cases of pseudo-data, which we label EX-1, EX-2,
EX-3 and EX-4. The values of the input NP parameters for these test cases are listed
in Table III, along with the size of the cross section relative to the SM prediction.
The data sets EX-i have been generated for the process gg → tt →

(

bbc
) (

be−νe

)

,
taking a benchmark luminosity that corresponds to 105 SM events. The uncer-
tainties incorporated in the fitting procedure are statistical only, and are estimated
by considering the number of events in each bin in the histograms to be Poisson-
distributed. The templates TM-i have been generated for the same process but with
O(106) events, so that uncertainties from these can be neglected in the fit.

8



TABLE III: Input values of the NP parameters for the four test cases EX-i. The last

column illustrates how the total cross section σ is affected in each of the test cases.

Test Case XI
AB Âσ

i σ/σSM

EX-1 XT
LL = 1 ; XT

RR = 1 Â+

b
= 32 ; Â+

b = −16 ; Â+
c = 32 ; 3.1

Â−

b
= 32 ; Â−

b = −16 ; Â−
c = 32

EX-2 XS
LR = 5 Â+

b = 25 ; all other Âσ
i ’s = 0 1.6

EX-3 XS
LR = 3 ; XS

RL = 4 Â+
b = 9 ; Â−

b = 16 ; all other Âσ
i ’s = 0 1.6

EX-4 XV
LL = 3 ; XS

LL = 5 Â+

b
= 36 ; Â+

b = 25 ; all other Âσ
i ’s = 0 2.4

1. Fit 1

As detailed above, the templates are generated by assuming there is only
a single contribution at a time to the distributions/correlations for the process
gg → tt →

(

bbc
) (

be−νe

)

. The observables are represented by the analytical expres-
sions in Eqs. (4) and (5). However, these expressions have been derived [1] under
the (unrealistic) assumption that the two b’s in the final state are distinguishable.
In Fit 1, as a first test of the algorithm, we retain this assumption.

Table IV shows the values of the Âσ
i ’s and Re(XV

LL) extracted from the fit for the
four different test cases of pseudo-data in Table III. A comparison of the two tables
shows that most of the values of the parameters extracted from the fit agree with
their input values within ±1σ. This demonstrates that the fundamental idea of the
algorithm, namely fitting using the templates, is sound.

The worst-fitted parameter is Re(XV
LL) in the case where Â+

b̄
is nonzero but

Re(XV
LL) = 0. This poor fit is an artifact of the somewhat simple-minded fitting

procedure that we adopt: Â+

b̄
and Re(XV

LL) are treated as independent parameters
in the fit, despite the fact that they are correlated [see Eq. (11)]. Note that the con-
tribution proportional exclusively to Re(XV

LL) appears primarily in dσ/dζ2
bc
.2 Even

so, the fit performs rather well when Re(XV
LL) is, in fact, nonzero. On the other

hand, not considering Re(XV
LL) as a fit parameter leads to an overall worsening of

the fits. For this reason we retain it in our fitting algorithm, while taking care to
avoid drawing any strong conclusions from the extracted value of this parameter.

2 Based on our theoretical analysis, we expect the ζ2
bc

distribution to have the most sensitivity

to Re(XV

LL
). This expectation is confirmed by an examination of the templates. Having said

this, the dependence on Re(XV

LL
) is not completely negligible for the other distributions and

correlations, and in our numerical work we include the corresponding template (TM-8) in the fits

for all distributions and correlations.
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TABLE IV: Values of the NP parameters extracted from the

four test cases EX-i using Fit 1.

Test Case Fit Results χ2/d.o.f.

EX-1 SM coeff. = 1.005 ± 0.003 1.30

Â+

b
= 33 ± 2 Â−

b
= 30 ± 2

Â+
b = −16 ± 2 Â−

b = −15 ± 2

Â+
c = 33 ± 2 Â−

c = 31 ± 2

Re(XV
LL) = 0.40 ± 0.02

EX-2 SM coeff. = 1.000 ± 0.002 1.21

Â+

b
= 0 ± 1 Â−

b
= 0 ± 1

Â+
b = 24 ± 1 Â−

b = 1 ± 1

Â+
c = 1 ± 1 Â−

c = 0 ± 1

Re(XV
LL) = 0.01 ± 0.02

EX-3 SM coeff. = 0.994 ± 0.002 1.22

Â+

b
= 1 ± 1 Â−

b
= −1 ± 1

Â+
b = 10 ± 1 Â−

b = 15 ± 1

Â+
c = 0 ± 1 Â−

c = 0 ± 1

Re(XV
LL) = 0.02 ± 0.02

EX-4 SM coeff. = 1.003 ± 0.003 1.43

Â+

b
= 36 ± 1 Â−

b
= 0 ± 1

Â+
b = 25 ± 1 Â−

b = −1 ± 1

Â+
c = 1 ± 1 Â−

c = −1 ± 1

Re(XV
LL) = 3.03 ± 0.01

2. Fit 2

In Fit 2 we drop the assumption that the two final-state b’s are distinguishable.
The Monte Carlo pseudo-data (as well as the templates) for the process gg → tt →
(

bbc
) (

be−νe

)

now includes the amplitudes in which the momenta of the two b’s in
the final state are exchanged. However, in order to construct the above observables,
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we necessarily need to identify the b̄ emerging from the top decay. Hence we must
restrict our analysis to regions of phase space where the two b̄’s can effectively
be considered to be distinguishable. To do this, we construct the two quantities
m2

1 = (pb + pc + pb1)
2 and m2

2 = (pb + pc + pb2)
2. If both m1 and m2 lie within the

range mt ± 15Γt, the event is discarded. Otherwise, it is assumed that the bi that
yields the smaller value of |mi −mt| comes from the t-quark decay. This leads to a
loss of about 20% of the events. This cut also distorts the angular correlation such
that it no longer conforms to the familiar (a1 + a2 cos θ

∗
3 cos θ

∗
ℓ ) form, even for the

SM. Despite the distortion, the fit can be performed using the same algorithm as
long as the the same method of event selection is applied to the pseudo-data as well
as the templates.

The results of the fit are presented in Table V for the four test cases. The
agreement between the values of the fitted parameters and their input values is
almost as good as in the idealized case (Fit 1): apart from Re(XV

LL) in EX-1, all values
agree within ±1.5σ. We find that, with the event selection discussed above, despite
the resulting loss of statistics, one obtains a slight improvement in the goodness-of-
fit, as can be seen from the smaller values of χ2/d.o.f. All of this demonstrates that
our algorithm continues to hold, even when one imposes a ‘cut’ to distinguish the
two b’s in the final state.

TABLE V: Values of the NP parameters extracted from the

four test cases EX-i using Fit 2.

Test Case Fit Results χ2/d.o.f.

EX-1 SM coeff. = 1.005 ± 0.004 ; 1.09

Â+

b
= 29 ± 2 ; Â−

b
= 33 ± 2

Â+
b = −15 ± 2 ; Â−

b = −16 ± 2

Â+
c = 33 ± 2 ; Â−

c = 31 ± 2

Re(XV
LL) = 0.40 ± 0.03

EX-2 SM coeff. = 0.999 ± 0.003 ; 1.05

Â+

b
= 1 ± 1 ; Â−

b
= −1 ± 1

Â+
b = 26 ± 1 ; Â−

b = 0 ± 1

Â+
c = 1 ± 2 ; Â−

c = −2 ± 2

Re(XV
LL) = −0.01 ± 0.02

EX-3 SM coeff. = 1.005 ± 0.003 ; 0.89

Â+

b
= −1 ± 1 ; Â−

b
= 1 ± 1

Â+
b = 10 ± 1 ; Â−

b = 15 ± 1

11



TABLE V – continued

Test Case Fit Results χ2/d.o.f.

Â+
c = 0 ± 2 ; Â−

c = 0 ± 2

Re(XV
LL) = −0.01 ± 0.02

EX-4 SM coeff. = 0.997 ± 0.003 ; 1.29

Â+

b
= 38 ± 2 ; Â−

b
= −1 ± 2

Â+
b = 23 ± 2 ; Â−

b = 2 ± 2

Â+
c = 1 ± 2 ; Â−

c = −1 ± 2

Re(XV
LL) = 2.98 ± 0.02

3. Fit 3

Finally, at the LHC, there is a small (≈ 10-15%) contribution to tt production
from qq̄ annihilation. In Fit 3 we consider the impact of this additional contribution.

It must be said that we do not expect a significant effect. Since the NP couplings
play a role only in top decay, the structure of Eqs. (4) and (5) remains largely
unchanged. The change in Eq. (4) is the analytical form of the factor σSM ; in Eq. (5),
the changes appear in the expressions for σSM and κ(r). The decomposition of the

NP contribution in terms of a linear combination of Âσ
i ’s and Re(XV

LL) therefore

remains valid for the purposes of the fit. Moreover, in the
√
ŝ range that is sampled3,

tt production is overwhelmingly dominated by gg fusion, simply because the gluon
density is large at low values of momentum fractions (the well-known Bjorken x1

and x2). This means that the corrections due to qq̄ → tt are small in magnitude
over the entire region of phase space that can be probed.

The results of Fit 3 are presented in Table VI. As expected, the fitting procedure
described above proves just as effective for the full process pp → tt → (bbc)(be−ν̄e).

TABLE VI: Values of the NP parameters extracted from the

four test cases EX-i using Fit 3.

Test Case Fit Results χ2/d.o.f.

EX-1 SM coeff. = 1.002 ± 0.004 ; 1.01

Â+

b
= 32 ± 3 ; Â−

b
= 31 ± 3

3 At a 14 TeV pp collider, with O(105) events, this range is approximately 350 GeV to 1200 GeV.
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TABLE VI – continued

Test Case Fit Results χ2/d.o.f.

Â+
b = −16 ± 2 ; Â−

b = −15 ± 2

Â+
c = 32 ± 3 ; Â−

c = 33 ± 3

Re(XV
LL) = 0.42 ± 0.03

EX-2 SM coeff. = 0.998 ± 0.003 ; 1.00

Â+

b
= −1 ± 2 ; Â−

b
= 0 ± 2

Â+
b = 24 ± 2 ; Â−

b = 1 ± 2

Â+
c = 1 ± 2 ; Â−

c = −1 ± 2

Re(XV
LL) = −0.01 ± 0.02

EX-3 SM coeff. = 1.001 ± 0.003 ; 1.08

Â+

b
= 1 ± 2 ; Â−

b
= −1 ± 2

Â+
b = 9 ± 2 ; Â−

b = 16 ± 2

Â+
c = 1 ± 2 ; Â−

c = −1 ± 2

Re(XV
LL) = −0.01 ± 0.02

EX-4 SM coeff. = 0.999 ± 0.003 ; 1.01

Â+

b
= 38 ± 2 ; Â−

b
= −2 ± 2

Â+
b = 24 ± 2 ; Â−

b = 1 ± 2

Â+
c = 1 ± 3 ; Â−

c = −1 ± 2

Re(XV
LL) = 2.97 ± 0.02

Although the essential structure of our statistical analysis is based on the ana-
lytical expressions obtained in Ref. [1], where several simplifying assumptions were
made, through the above series of fits we have obtained a reliable algorithm that
includes a procedure to distinguish the two final-state b’s, and works well even in the
presence of the contribution from qq̄ → tt. We now use this algorithm to examine
the prospects for obtaining information about NP in the decay t → bbc at the LHC,
in both the short and long terms. This is discussed in the next section.
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IV. DETECTING NEW PHYSICS IN TOP DECAY

Above, we have established a method for the extraction of NP parameters in-
volved in the decay t → bbc. However, should a sizeable NP contribution exist, it is
likely that it would first be detected simply by measuring the total cross section in
this channel. It is only afterwards that the ζ212 distributions and the angular corre-
lations discussed in the preceding sections would be used to indicate the presence of
NP. While this is true, it should also be pointed out that the overall normalization
of the cross section suffers from inherent theoretical uncertainties such as the choice
of PDFs, the renormalization and factorization scales, etc. On the other hand,
compared to the total cross section, the distributions/correlations have additional
discriminating power since their shapes also get modified under the influence of NP.

In the following subsections, using the distributions/correlations, we perform
simulations to examine the prospects for detecting NP, for measuring certain combi-
nations of NP parameters, and for partially identifying the NP. The simulations are
done using a total number of events consistent with either short-term or long-term
measurements at the LHC.

A. Short term

The tt cross section at the LHC at a centre-of-mass energy of 14 TeV is ∼ 900 pb
[9]. Considering the SM branching fractions for t → bbc and t̄ → bℓ−ν̄ℓ, the effective
cross section in this channel is ∼ 0.1 pb. For the short-term simulations, we consider
an integrated luminosity which, after factoring in the b-tagging efficiency4, will lead
to 104 events of the type pp → tt → (bbc)(bℓ−ν̄ℓ) from the SM alone5. This is
expected to be delivered by 2020-2021 [10].

In the preceding sections, we noted that, in the presence of NP, the shapes of the
distributions/correlations can be modified. This suggests that NP can be detected by
examining a particular distribution/correlation and seeing a clear difference between
the measured shape and its SM prediction. This is explored in Fig. 2. Here all three
ζ212 distributions are shown for the NP scenario EX-1. Clearly, in the cases of dσ/dζ2bc
and dσ/dζ2

b̄c
, the measurement of the distributions alone would indicate the presence

of NP. On the other hand, it would be difficult to draw conclusions from the shape
of the corresponding dσ/dζ2

bb̄
distribution.6

4 This is assumed to be 70% for each of the three b or b’s in the final state
5 Here ℓ = e, µ. In the CP-conserving scenario that we consider, there would be an equal number

of events in which t̄ → bbc̄ and t → bℓ+νℓ. We assume that the events in which the t decays

leptonically can be identified by tagging the charge of the lepton and consider only those events

in our analysis.
6 If we were not normalizing the distribution to the total number of events, the difference between

the SM and EX-1 cases would be much more apparent.
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FIG. 2: Normalized dσ/dζ212 distributions: (a) dσ/dζ2bc, (b) dσ/dζ2
bb̄
, (c) dσ/dζ2

bc
, (d)

dσ/dζ2
bc

on a semi-log scale.

However, even in the case of dσ/dζ2
bb̄
, information about the NP can be obtained.

To see this, we use the fitting procedure developed in the previous section and
examine what kind of information can be extracted by fitting this distribution alone.
From Eq. (4) one sees that the ζ2

bb̄
distribution depends on three distinct kinematic

structures: hbb
SM , hbb

c and hbb
b (= hbb

b
). These kinematic structures will in principle be

modified by cuts, such as we place on the final state b’s. In addition, as described
above, there is a mild (but potentially important) dependence on Re

(

XV
LL

)

in the
ζ2
bb̄

distribution. We did not include this dependence in the analytical expressions
above, but we do retain it here in our numerical work. Thus, a fit using only the
ζ2
bb̄

distribution would be sensitive to the relative weights of the SM contribution,

Re(XV
LL), (Â

+
c + Â−

c ) and (Â+

b
+ Â−

b
+ Â+

b + Â+
b ). Accordingly, we modify our fitting

procedure: instead of using all eight templates in the fit, we use only four, namely
TM-0, TM-1, TM-5 and TM-8. The values that we obtain for the above combinations
of NP parameters are presented in Table VII. Once again, Re(XV

LL) proves to be the
weakest link. For the other combinations of NP parameters, the values extracted
from the fit agree with their input values within ±3.2σ. However, the key point
is this: in each test case, a parameter combination whose input value is nonzero
is found from the fit to be nonzero to at least 7σ. So, for the NP scenario EX-1,
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although one cannot draw any conclusions about NP from a visual examination of
the normalized dσ/dζ2

bb̄
distribution, a fit provides statistically-significant evidence

that NP is present.

TABLE VII: Values of the combinations of NP parameters ex-

tracted from dσ/dζ2
bb̄
. The integrated luminosity corresponds

to 104 SM events.

Test Case Parameter Input Value Fit Result χ2/d.o.f.

EX-1 SM coefficient 1 1.2 ± 0.2 1.31

Â+
c + Â−

c 64 72 ± 6

Â+

b̄
+ Â−

b̄
+ Â+

b + Â−
b 32 16 ± 5

Re(XV
LL) 0 3 ± 1

EX-2 SM coefficient 1 0.9 ± 0.1 1.24

Â+
c + Â−

c 0 −1 ± 4

Â+

b̄
+ Â−

b̄
+ Â+

b + Â−
b 25 28 ± 3

Re(XV
LL) 0 0.0 ± 0.7

EX-3 SM coefficient 1 1.3 ± 0.1 1.32

Â+
c + Â−

c 0 −10 ± 4

Â+

b̄
+ Â−

b̄
+ Â+

b + Â−
b 25 22 ± 3

Re(XV
LL) 0 −1.0 ± 0.7

EX-4 SM coefficient 1 1.0 ± 0.1 0.96

Â+
c + Â−

c 0 −2 ± 5

Â+

b̄
+ Â−

b̄
+ Â+

b + Â−
b 61 63 ± 4

Re(XV
LL) 3 2.3 ± 0.8

Similar fits can be performed with the dσ/dζ2bc and dσ/dζ2
bc
distributions to extract

other combinations of Âσ
i ’s. If all the dσ/dζ

2
12’s are combined in one fit, it is possible

to obtain the combinations (Â+

b
+ Â−

b
), (Â+

b + Â−
b ) and (Â+

c + Â−
c ).

Analogous to the above example, one may wish to attempt the fit of a single
angular correlation. This, however, is a more complicated task. As argued earlier,
the fits are not sensitive to the individual Âσ

i ’s, but rather to the different kinematic
structures that are present. In the case of the angular correlations [see Eq. (5)],
there are two kinematic structures: a constant term and a term proportional to
cos θ∗3 cos θ

∗
ℓ . However, the coefficients of these pieces involve both SM and NP
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parameters. Therefore only these combinations of SM and NP parameters can be
extracted. Furthermore, note that, in the case of the ζ212 distributions, each template
is proportional to a single kinematic structure. For example, for dσ/dζ2

bb
, TM-5 is

only sensitive to hbb
c . On the other hand, in the case of the angular correlations,

each template contains both the constant piece and the cos θ∗3 cos θ
∗
ℓ piece.

In order to work around these difficulties, we proceed as follows. First, we fix
the weight of the SM contribution7 to be 1.0. Second, the templates themselves
have to be reorganized. For example, consider dσ/d cos θ∗cd cos θ

∗
ℓ . Here a template

defined as (TM-5 + TM-6) would be proportional to the constant piece, and another
defined as (TM-5 − TM-6) would be proportional to the cos θ∗c cos θ

∗
ℓ piece8. The

coefficients of these two modified templates would then be expected to yield the
values of (Â+

c + Â−
c + Â+

b
+ Â−

b
+ Â+

b + Â−
b ) and (Â+

c − Â−
c − 1

3
{Â+

b
− Â−

b
+ Â+

b − Â−
b }).

The results of the fit for the different EX-i are presented in Table VIII. For
all four EX-i, the agreement between best-fit and input values is very good for
(Â+

c +Â−
c +Â+

b
+Â−

b
+Â+

b +Â−
b ). The key point is that, in all cases, this combination

of NP parameters is definitely nonzero. For (Â+
c − Â−

c − 1
3
{Â+

b
− Â−

b
+ Â+

b − Â−
b }) the

error bars are larger: the best-fit and input values agree to within 1-3σ. Nevertheless,
a fit to a single angular correlation can provide statistically-significant evidence that
NP is present. The measurement of an angular correlation would, however, most
likely be more challenging than the measurement of a ζ212 distribution, which is
essentially an invariant mass-squared distribution. Hence it is very likely that NP,
if present, will be discovered first in a ζ212 distribution.

TABLE VIII: Values of the combinations of NP parameters

extracted from dσ/d cos θ∗cd cos θ
∗
ℓ . The integrated luminos-

ity corresponds to 104 SM events. The weight of the SM

contribution is fixed to be 1.0.

Test Case Parameter Input Value Fit Result χ2/d.o.f.

EX-1 Â+
c + Â−

c + Â+

b̄
+ Â−

b̄
+ Â+

b + Â−
b 96 97 ± 1 1.25

Â+
c − Â−

c − 1
3

(

Â+

b̄
− Â−

b̄
+ Â+

b − Â−
b

)

0 26 ± 11

EX-2 Â+
c + Â−

c + Â+

b̄
+ Â−

b̄
+ Â+

b + Â−
b 25 26 ± 1 1.05

Â+
c − Â−

c − 1
3

(

Â+

b̄
− Â−

b̄
+ Â+

b − Â−
b

)

−8.33 −10 ± 7

EX-3 Â+
c + Â−

c + Â+

b̄
+ Â−

b̄
+ Â+

b + Â−
b 25 26 ± 1 1.06

Â+
c − Â−

c − 1
3

(

Â+

b̄
− Â−

b̄
+ Â+

b − Â−
b

)

2.33 −3 ± 7

7 Note that this could also have been done for the fits to the ζ212 distributions. However, in the

case of an angular correlation it must be done.
8 This holds as long as the values of Â+

c and Â−
c used to generate TM-5 and TM-6, respectively,

are identical.
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TABLE VIII – continued

Test Case Parameter Input Value Fit Result χ2/d.o.f.

EX-4 Â+
c + Â−

c + Â+

b̄
+ Â−

b̄
+ Â+

b + Â−
b 61 64 ± 1 1.02

Â+
c − Â−

c − 1
3

(

Â+

b̄
− Â−

b̄
+ Â+

b − Â−
b

)

−20.33 −31± 9

The simplest approach towards the fitting of the angular correlations would have
been to fit them to the functional form a1+a2 cos θ

∗
3 cos θ

∗
ℓ , as is the usual procedure

for measuring κtt. However, this possibility is precluded due to the fact that the
event-selection criteria described in Fit 2 distorts the shape of the correlation. We
have used a somewhat simpel-minded approach to deal with the identical b’s in the
final state. It is certainly possible that experimentalists will find a better way to
deal with this situation (perhaps through the use of some sophisticated multivariate
technique, such as neural networks or boosted decision trees) and that such an
approach would lead to less distortion of the shape of the correlation.

Finally, we consider the full fit involving all six observables, with statistics cor-
responding to 104 events for the SM. The results are presented in Table IX. Apart
from Re(XV

LL) in EX-1, the values of all NP parameters agree with their input values
within ±1.7σ.

TABLE IX: Values of the NP parameters extracted from a fit

to all six observables. The integrated luminosity corresponds

to 104 SM events.

Test Case Fit Results χ2/d.o.f.

EX-1 SM coefficient = 1.00 ± 0.01 1.18

Â+

b̄
= 36 ± 9 Â−

b̄
= 28 ± 9

Â+
b = −22 ± 8 Â−

b = −11 ± 8

Â+
c = 47 ± 9 Â−

c = 18 ± 9

Re(XV
LL) = 0.31 ± 0.09

EX-2 SM coefficient = 0.988 ± 0.009 0.92

Â+

b̄
= 6 ± 6 Â−

b̄
= −3 ± 6

Â+
b = 23 ± 5 Â−

b = 1 ± 6

Â+
c = 0 ± 6 Â−

c = −1 ± 6

Re(XV
LL) = 0.03 ± 0.05

EX-3 SM coefficient = 1.013 ± 0.009 0.94

Â+

b̄
= 4 ± 6 Â−

b̄
= −3 ± 6
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TABLE IX – continued

Test Case Fit Results χ2/d.o.f.

Â+
b = 16 ± 5 Â−

b = 8 ± 6

Â+
c = 1 ± 6 Â−

c = −2 ± 6

Re(XV
LL) = 0.03 ± 0.05

EX-4 SM coefficient = 1.00 ± 0.01 0.99

Â+

b̄
= 47 ± 7 Â−

b̄
= −12 ± 7

Â+
b = 34 ± 7 Â−

b = −9 ± 7

Â+
c = 8 ± 8 Â−

c = −8 ± 8

Re(XV
LL) = 2.91 ± 0.05

To sum up, the above simulations demonstrate that, even in the short term, it
is possible to detect the presence of NP in top decay through the measurement of
the invariant mass-squared distributions and/or the angular correlations. This can
be done by comparing the measured shapes of the distributions/correlations with
the SM predictions. More sensitivity can be obtained by performing fits to extract
combinations of NP parameters. If all six distributions and correlations can be
measured, a combined fit can be performed to extract all the NP parameters. The
determination of which parameters are nonzero allows for a partial identification of
the NP.

B. Long term

As noted above, the effective cross section in gg → tt →
(

bbc
) (

bℓν
)

is ∼ 0.1
pb. The LHC is projected to deliver 3000 fb−1 worth of data by the year 2030
[10]. Assuming this integrated luminosity and a b-tagging efficiency of 70% for
each of the three b or b’s in the final state, one obtains ≈ 105 events of the type
pp → tt → (bbc)(bℓ−ν̄ℓ) from the SM. This is the number of events in our long-term
simulations.

By 2030, all six distributions and correlations will, in all likelihood, have been
measured. For this reason we consider only the fit to all distributions/correlations
with 105 SM events. The corresponding results have already been presented in
Table VI. Apart from Re(XV

LL) in EX-1, the best-fit values of all NP parameters

differ from their input values by at most 1σ. The errors on the Âσ
i ’s are typically

in the range 1.75-2.75. Thus, any Âσ
i that is >∼ 10 will be found to be nonzero at a

statistically-significant level. In this way it will be possible to determine which NP
parameters are nonzero, thus producing an identification of the NP.
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V. CONCLUSIONS

In Ref. [1], the companion paper, new physics (NP) in the decay t → bbc is
considered. There, ten dimension-6 NP operators contributing to t → bbc are de-
lineated, and two types of observables are identified that can be used to search for
this NP in the process gg → tt →

(

bbc
) (

bℓν
)

. They are (i) invariant mass-squared

distributions involving the {b, c}, {b, c}, or {b, b} quark pairs coming from t → bbc,
and (ii) angular correlations between the ℓ− coming from the t decay and one of b, b
or c coming from the t decay. It is further shown that the NP contributions to these
observables can be written in terms of certain combinations of the NP couplings,
denoted as Âσ

i . In the present paper we examine the prospects for detecting and
identifying such NP at the LHC.

The first step is to develop an algorithm to extract the Âσ
i ’s and Re

(

XV
LL

)

from
the observables. From the analytical expressions obtained in Ref. [1] [summarized
here in Eqs. (4) and (5)], we learn that the NP contribution to the observables
can be represented as a linear combination of pieces proportional to the different
Âσ

i ’s and Re
(

XV
LL

)

. Using this idea, we perform a Monte-Carlo simulation using
MadGraph 5 to compute “templates,” which are the contributions of the SM, each
Âσ

i and Re
(

XV
LL

)

to the observables. We also generate Monte-Carlo data for four
possible NP scenarios. For each of these scenarios, we extract the NP parameters
simply by obtaining the weights with which the templates must be combined to
reproduce the Monte-Carlo data.

Although the fit algorithm is based on a simple premise, there are two issues that
must be taken into account. First, the construction of the observables requires dis-
tinguishing the decay products of the t from those of the t̄. However, the final state
contains two b̄’s, which are indistinguishable, at least in some parts of phase space.
We designate the b̄ that yields the smaller value of |mt −

√

(pb̄ + pb + pc)2| as that
having come from the t decay. However, if both b̄’s in the event yield sufficiently
small values of this quantity (less than 15Γt), then we consider them to be indistin-
guishable and exclude such events from the analysis. Second, the contribution to
tt production from a qq̄ initial state is not included in the analytical expressions.
However, this must be taken into account as there are no known algorithms that
can efficiently separate tt pairs coming from gluon fusion from those occuring due
to qq̄ annihilation.

In order to examine the prospects for detecting the presence of NP in t →
bbc, and for its identification, we perform further simulations of the distribu-
tions/correlations. The simulations are done for either short-term or long-term
measurements at the LHC. For the short-term analysis we use 104 events of the
type pp → tt → (bbc)(bℓ−ν̄ℓ). This is expected to be delivered by 2020-2021. For
the long term we use 105 events, which is projected by the year 2030.

In the short term not all distributions/correlations may be measured, and what
can be learned about the NP depends on what measurements have been made.
In the presence of a sufficiently-large NP contribution to t → bbc, the shapes of
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the distributions/correlations can be significantly modified. Thus, NP in t → bbc
may be inferred by observing a clear difference between the shape of a measured
distribution and its SM prediction. Even if there is no discernible difference in
the shapes, it may still be possible to obtain information about NP contributions.
Using the above algorithm with a slight modification, one can perform a fit to
a single distribution. In this case, not all the individual Âσ

i ’s are extracted, but

rather certain combinations of the Âσ
i ’s. We show that, even for a scenario in

which the presence of NP does not induce a substantial change in the shape of the
distribution, a fit may still yield statistically-significant evidence that NP is present.
Finally, if all six distributions/correlations are measured, we can use the algorithm to

perform a simultaneous fit on all the observables to extract Re
(

XV
LL

)

and all the Âσ
i ’s

separately. In the examples studied, we find that the values of all NP parameters
agree with their input values within ±1.7σ. Although the errors are large, this
provides an approximate determination of the values of the NP parameters. More
importantly it allows us to infer that a non-zero NP contribution to t → bbc exists.

In the long term, it is likely that all six distributions/correlations will be mea-
sured. Furthermore, the availability of larger statistics will lead to an improvement
in the quality of the fits. We find that, with 105 events, the best-fit values of all NP
parameters differ from their input values by at most 1σ. Thus, if NP is present in
t → bbc, the fit will allow the determination of its nature.
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