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We present a study of the atmospheric depth profile and the dependence with its character-

istic parameters. We introduce a new model, named GAMMA, based on a parameterization

that allows us to obtain the atmospheric depth profile specifying only one simple physical

parameter, namely the temperature at ground. The GAMMA Model consists of a multilayer

representation of the atmosphere that can be adjusted conveniently via constrained fits that

are built to ensure interlayer continuity for both atmospheric depth and density profiles.

Our analysis uses experimental data collected at Malargüe, Argentina by meteorological

radiosondes. The GAMMA Model can reproduce the averaged atmospheric depth profiles

in all the cases available for analysis with good accuracy. The relative differences between

model predictions and averaged data are always less than approximately 0.7 %.

I. INTRODUCTION

The accurate characterization of the atmosphere constitutes a critical task for the analysis of

extensive air showers generated by cosmic rays. The list of cosmic ray experimental collaborations

that make major efforts in atmospheric monitoring is extensive. Experiments like Pierre Auger

Observatory, HiRes, HESS, Veritas, AGASA, etc., have documented their work on this field ([1],

[2], [3], [4], [5]).

A particular important quantity to study is the vertical atmospheric depth, X(h), defined as

X(h) =

Z ∞

h
ρ(ζ)dζ, (1)

where h is the altitude, ρ(h) is the matter density, and the integral in (1) is evaluated along a

vertical straight line.

For both experimental and simulated air shower data analysis, a precise knowledge of X(h) is

essential for an accurate estimation of observable air shower quantities [6–8]. For example, in the

fluorescence detection technique the measurements are expressed in terms of geometrical altitude

and must be converted into atmospheric depth to obtain the traversed air mass. The opposite case
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can be found in simulations where traversed matter is expressed in terms of the atmospheric depth.

To compare it with the experimental measurements a conversion to altitude is required.

It is well known that the Earth’s atmosphere is permanently changing, and such changes affect

also the vertical depth profile. The most relevant variations observed occur at relatively low

altitudes (in the first kilometers above sea level), and are correlated noticeably with the daily and

seasonal cycles. Any model capable of describing adequately the profile must take into account

such variations. Due to the complexity of the atmospheric dynamics, it is not straightforward to

build a model that could reproduce the proper profile with a minimal set of input parameters.

The model we introduce in this article was conceived upon the idea of providing a simple but

effective way of reproducing the atmospheric profile under given conditions. Its main characteristic

is that the ground level temperature is used as a parameter to efficiently parameterize the different

profiles. In the analyzed cases (see below), we found that such parameterization can reproduce the

atmospheric profile experimental data with excellent accuracy. Due to its practicality, this model

can be easily used in shower reconstruction and shower simulation studies.

This work is organized as follows: section II is an overview of the classical models used to

describe the atmospheric depth profile; in section III, we present the new model; section IV is

dedicated to the discussion of several important points related to the model; and a summary

of this work and our conclusions are placed in section IV. We have also included an appendix

summarizing the expressions and the values of the obtained parameterization.

II. THE ATMOSPHERIC DEPTH PROFILE MODELS

The mass density of air as a function of altitude is one of the basic observables taken into

account by every atmospheric profile model virtually. The density of air diminishes six orders of

magnitude when the altitude goes from sea level up to 100 km, and another six orders in the range

of 100 km to 300 km. The chemical composition, usually described by the mean molar mass (Mm),

is another relevant parameter to consider. In dry air Mm has a constant value of Mm = 28.966 g

mol−1 in the range of 0 ≤ h ≤ 90 km and begins to decrease monotonically to higher altitudes.

The constant value of Mm represents the mixing of 78.084 % N, 20.946 % O, 0.934 % Ar and

approximately 0.036 % by others elements.

During the last century, many studies and models were developed to characterize the terrestrial

atmosphere. A simple model to describe the density variation with altitude, including the molecular

weight is the well-known isothermal model, where the air is considered as an ideal gas at a given
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uniform temperature T. A straightforward calculation leads to the following expression for the

vertical depth as a function of altitude:

X(h) = X0 e−gMmh/RT (2)

where R is the universal gas constant, g is the local gravity acceleration, Mm is the molar mass of

air, and X0 is the vertical atmospheric depth at sea level. In most cases, T is taken as the sea level

temperature. X0 can be calculated from the density at sea level ρ0 via X0 = ρ0RT/gMm (notice

that from equation (1) it follows that ρ(h) = −dX(h)/dh).

Another widely used and accepted atmospheric model is the so-called US Standard Atmosphere

(USStdA 1976) [9], consisting of an idealized atmosphere model based on measurements made at

different mid-latitude geographical locations. The USStdA 1976 tables are built from adequate

averages of those measurements, and thus this model can be considered to represent a mean global

atmosphere.

In the USStdA 1976 model, the atmosphere is represented as a series of consecutive layers

covering altitudes from sea level up to 1,000 km. An exhaustive description of the variation with

altitude of pressure, temperature, density, and chemical composition, among other quantities, is

presented at each layer. One characteristic of the atmosphere that can be clearly appreciated from

the USStdA 1976 model is that its temperature varies with altitude [9]. Thus, it is expected that

the isothermal model is inappropriate for an accurate description of the atmospheric depth profile

in the entire altitude range of interest for this work, from sea level up to about 100 km. However,

comparing the isothermal and the USStdA 1976 models, an acceptable agreement of the lowest

kilometers is found, but a significant difference appears at altitudes higher than 10 km.

On the basis of these models, J. Linsley developed a parameterization of the atmospheric depth

profile [10], that reproduces accurately the average density profile given by the USStdA 1976 model.

The hallmark of the Linsley model is to suppose that the atmosphere can be considered as a

series of consecutive layers with fixed boundaries, each of them with a characteristic temperature;

and consequently the model is named isothermal by layers. Therefore, and taking into account

equation (2), the vertical atmospheric depth can be approximated at each isothermal layer in terms

of a function of the form

X(h) = a+ b e−
h
c (3)

where a, b, and c are given parameters. In a series of consecutive layers, those parameters are

adjusted to ensure continuity of X as a function of h. In the Linsley model, the profile is completed
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Layer Layer limits al bl cl

l hl−1 [km] hl [km] [g cm−2] [g cm−2] [m]

1 0 4 -186.5562 1222.6562 9941.8638

2 4 10 -94.9199 1144.9069 8781.5355

3 10 40 0.61289 1305.5948 6361.4304

4 40 100 0.0 540.1778 7721.7016

5 100 112.8 0.01128292 1.0 10000000

TABLE I: Values of the parameterization of Linsley with 5 layers.

with a constant density layer that ends at a maximum finite altitude hmax, on top of the previous

isothermal layers.

In this way, in a L− 1 isothermal layer model the complete profile will read as

X(h) =


al + ble

− h
cl hl−1 ≤ h < hl (l=1,...,L-1)

aL − bL
h
cL

hL−1 ≤ h < hL

0 h ≥ hL

(4)

where al, bl, cl, l = 1, . . . , L are given parameters, and the altitudes h0, . . . , hL define the layer

boundaries, that must verify that hl < hl+1 for all l. Layer L, the uppermost one, corresponds

to the already mentioned constant density layer that allows to reach a finite maximum altitude

hmax = hL. Note that X(h) as defined in equation (4), can be inverted analytically to obtain the

function h(X) frequently used in air shower simulation algorithms.

Using equation (4) with L = 5 layers, Linsley parameterized the values of the USStdA 1976

and obtained the values listed in table I, that completely define the widely used Linsley Model of

5 layers. The Linsley profile X(h) is a very accurate parameterization of the USStdA 1976 profile,

covering the range that goes from sea level up to hmax ’ 112.8 km, altitude that marks the end of

the profile with X(hmax) = 0 g cm−2. It is worthwhile mentioning that for altitudes greater than 90

km, the Linsley profile is less accurate than at lower altitudes. Nevertheless, at such altitudes the

vertical depth is very small (around 0.001 g cm−2 or less) not affecting significantly any air shower

calculation. Although it only describes the behavior of the parameter X, Linsley parameterization

is usually mentioned as the Linsley Model.

Being a parameterization of a global average atmosphere, the Linsley Model is applicable at

any geographical location, and at any moment of the year. However, it is a fact that there are

obvious changes in the atmospheric depth related with seasonal and local variations in temperature,

4



pressure and humidity [11]. The lack of consideration of those changes has been the main motivation

for the search of parameterizations capable of producing more accurate profiles.

A study performed a few years ago at the southern site of the Pierre Auger Observatory (Ar-

gentina), derived an improved model including also temperature, pressure and vapor pressure

profiles [12]. In particular, the atmospheric depth profile is characterized by a layered structure

similar to the approach made by Linsley. An important feature of this model is the fact that

the experimental data, obtained from atmospheric balloons, are grouped in monthly bins giving

a set of 12 parameterizations with different layer boundaries, one for each calendar month (thus

called Malargüe Monthly Model). With this model, the experimental data can be reproduced with

remarkable accuracy. Considered as a parameterization, the monthly model satisfies the premise of

being a fit function that represents the data precisely, however it introduces an artificial temporal

discontinuity in the atmospheric depth profile, so that the profile provided by the model for an air

shower event in the last hour of the last day of a month is different than the one provided for an

event occurring an hour later.

The Malargüe Monthly Model (MMM) and its update New Malargüe Monthly Model (NMMM)

[1] have been used in the atmospheric characterization of simulation, detection and reconstruction of

cosmic rays events at the Pierre Auger Observatory. Both models were developed with atmospheric

measurements from a database made in the Pierre Auger Observatory [1] .

III. THE GAMMA MODEL

The starting point of this work is the interest in a characterization of the atmospheric profile

by physical parameters instead of temporal considerations.

Among all the physical quantities that could affect the atmosphere, the temperature is one of

the most influential for the density profile. Considering this, the temperature at ground appears as

a good parameter to characterize the atmospheric depth profiles. On this basis, we introduce the

GAMMA (Ground temperature Association to Multilayer isothermal Model of the Atmosphere)

model . In our model, the vertical depth profile has the same functional form as equation (4), that

[1] The MMM also includes measurements from balloons launched at Santa Rosa and Cordoba, two cities located
approximately at 500 km and 650 km from Malargüe.
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is,

XGAMMA =


al + ble

− h
cl hl−1 ≤ h < hl (l=1,...,L-1)

aL − bL
h
cL

hL−1 ≤ h < hL

0 h ≥ hL

(5)

where L is the total number of layers, hL = hlim is the maximum altitude (top of the atmosphere),

and the coefficients al, bl, cl, l = 1, . . . , L are now functions of the temperature to be adjusted

conveniently, as they are discussed in the following sections.

A. Procedure

1. The Database.

The atmospheric measurements used in our work were obtained from weather balloons launched

at the Pierre Auger Observatory. In order to establish the conditions in which the measurements

were made, it is important to recall that the Pierre Auger Observatory [13], capable of studying

cosmic rays with energy above 1017 eV, has a southern site located near the city of Malargüe, in

Mendoza (Argentina), approximately at 35◦140 S - 69◦150 W, at a plateau with average altitude of

1420 m.a.s.l. The weather is dry with low precipitations (280 mm year−1) and with a mean annual

temperature of 12 ◦C (Mean Minimum -2 ◦C - Mean Maximum 20 ◦C). In addition to other devices

to monitor the atmospheric status, there is a Balloon Launching Station (BLS) with intermittent

launches of weather balloons at the array of the Pierre Auger Observatory .

The atmospheric measurements from weather balloons used in this study have been performed

in periodical campaigns; and later in a more regular manner, generally in about every 5 days.

The balloons were launched throughout the year at different hours of the day and night trying to

produce a representative sample of different atmospheric conditions. Some groups of launches were

performed within a small interval of few hours, allowing to observe fast variations in the parameters

at low altitude. With these measurements, we made a database composed by 277 balloons launches

that represent 277 atmospheric profiles between August 2002 and December 2008.

The meteorological balloons carried radiosondes capable of taking data every 8 seconds [14].

This ensures altitude dependent profiles of temperature T(h), air pressure p(h) and relative hu-

midity u(h) with high resolution [15]. The parameters needed to calculate the atmospheric depth

profile can be obtained from these profiles. In particular, the air density ρ(h) can be calculated,
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using the ideal gas law, as

ρ(h) =
p(h) Mm(h)

R T (h)
(6)

where R is the universal gas constant and Mm(h) is the air molar mass expressed in g mol−1. The

molar mass includes the water vapor contribution extracted from the humidity profile [16], so that

its value deviates slightly from the constant Mm previously defined.

The atmospheric depth profile can be obtained integrating the density from the top of the

atmosphere down to the ground level. For a series of estimations of the density ρ(hi) at given

altitudes hi, where the index i labels the different measurements within the same balloon ascent,

the atmospheric depth profile can be estimated by means of the following approximation

X(hi) = X(hi+1) + ∆X (7)

∆X ≈ ρ(hi) + ρ(hi+1)

2
· (hi+1 − hi). (8)

The starting point used in our calculations corresponds to the maximum height reached by the

atmospheric balloon, that is, the altitude of balloon burst hb. The initial value for the series defined

in equation (7), X(hb), comes from the approximation

X(hb) ≈
p (hb)

g(hb)
(9)

where

p(hb) =

Z ∞

hb

g(h) · ρ(h) dh ≈ g(hb)

Z ∞

hb

ρ(h) dh (10)

and g(h) is the gravity acceleration at altitude h.

In order to check the consistency of the different data sets, we have analyzed two additional

quantities that can be obtained from the measured atmospheric profiles, namely, the quotient

between the pressure versus height and atmospheric depth, and the quotient between pressure and

density multiplied by temperature versus height. The analytical expressions of these quantities are

C(h) =
p(h)

ρ(h) T (h)
and G(h) =

p(h)

X(h)
, (11)

respectively.

For an ideal gas, the first expression corresponds to the ratio between the gas constant R and

the molar mass, that is truly independent of altitude in the case of dry air (Mm as already defined).

The second should give the approximate dependence of the gravity with altitude. It is found that
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in most measurements G(h) and C(h) behave as expected within a typical range of small deviations

that are characteristic of every set of experimental measurements: the profile G(h) has a linear

behavior and the C(h) profile diminishes slightly from 288.0 m2 s−2 K−1 at ground to 287.1 m2

s−2 K−1 at approximately 5 km of height, and remains constant above this limit.

However, in a small subset of 33 measured profiles, the resulting G(h) and/or C(h) deviate sig-

nificantly from the corresponding expectations [2]. The results of our analyses are not significantly

affected by the elimination of these problematic 33 profiles. For this reason and to improve the

robustness of our study, we have decided to exclude that set of measurements.

We have grouped the data set in ten bins of temperatures according to the value of the tempera-

ture at ground, covering a range between 278 K and 298 K (Table II). These values of temperature

at ground have been obtained from a linear fit of the temperature profile in the first 5.6 km.

We find it worthwhile mentioning here that, as a posteriori test, we have compared the ground

temperatures obtained via the mentioned method with the corresponding ground temperatures

recorded by the Pierre Auger Observatory weather stations (when available), finding no significant

differences between them. We have also studied possible effects of inversion in temperature, which

can be an usual phenomenon in arid climate. Very few cases with a slight inversion were detected

(about 2 %), but considering the small fraction have not been discarded.

In summary, we take into account 212 profiles for this work, discarding 32 profiles with temper-

ature at ground lower than 278 K or higher than 298 K which would imply to consider bins with

16 low statistics. For each bin we built the profile in altitude of the atmospheric depth average.

Bin T range [K] Measured Profiles

1 278 - 280 15

2 280 - 282 17

3 282 - 284 20

4 284 - 286 26

5 286 - 288 23

6 288 - 290 25

7 290 - 292 22

8 292 - 294 27

9 294 - 296 19

10 296 - 298 18

[2] We cannot give a closed explanation of the possible reasons that could originate these deviations, due fundamentally
to the lack of information about the experimental details and the environmental conditions during the problematic
measurements.
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TABLE II: Distribution of the profiles in ground temperature bins.

2. The fit.

We performed a series of analysis to determine the function that allows to adjust precisely the

vertical depth profiles provided by the experimental data.

From these analyses we concluded that L = 7 layers is the most appropriate number of layers

to use in equation (5). We also determined the layers boundaries that provide accurate fits with

the average profiles of each temperature bin.

The selected layer limits can be found in Table III.

Layer 1 2 3 4 5 6 7

Range [km] 0 - 3.5 3.5 - 8.5 8.5 - 16 16 - 24 24 - 40 40 - 100 100 - 112.8

TABLE III: Layers limits of GAMMA Model

The average maximum height reached by the balloons is around 26 km, a typical maximum

altitude for such devices. Nevertheless, there is no special need for taking data at higher altitudes

since in this region the USStdA 1976 values are accurate enough for our case. For this reason,

we decided to adjust the vertical depth profile using the five lowest layers (that correspond to

altitudes located in the region reached by the balloons, see Table III) in appropriate fits to the

available data, and set the remaining coefficients so that XGAMMA(h) matches Linsley’s profile for

all altitudes corresponding to layers 6 and 7. This also implies that the coefficients al, bl, and cl,

l = 6, 7 of equation (5) are temperature independent.

The fits to the different data sets have been performed imposing the constraint of continuity

between consecutive layers for XGAMMA(h) and its first derivative, including continuity at the top

of layer 5 with Linsley’s profile and its derivative at the corresponding altitude. No constraints

were imposed at ground level.

With those considerations, the number of free parameters to be adjusted in the fit reduces

to 5, that can conveniently be chosen c1, c2, c3, c4, c5. The remaining coefficients al and bl,

l = 1, 2, 3, 4, 5, can be evaluated using a straightforward procedure described in the Appendix.
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FIG. 1: Average atmospheric depth versus altitude, corresponding to Bin 1. The red line is the parame-

terization of X(h). Full range plot (left) and zoom (right) to appreciate the precision of the fit, practically

coincident with the averaged data points. The black line corresponds to the Linsley Model of 5 layers, which

underestimates slightly the averaged data points.

B. Outcome

The proposed parameterization reproduces adequately the experimental data (Figures 1 (left)

and 2 (left)). The parameterization matches the data more precisely than the Linsley Model and

this is more evident as the temperature at ground increases (Figure 1 (right) and more significantly

in Figure 2 (right)).

From the fit we obtain the parameters cl, l = 1, 2, 3, 4, 5, for each temperature bin. We have

plotted the values of cl to analyze its temperature dependence (Figure 3). As a first approximation

a linear fit was done, and the parameters obtained for these linear fits are shown in Table IV. A

first look over the coefficients c1 and c2 in Figure 3, leads to think that a linear function does

not fit the data appropriately. Using a third degree polynomial results in a significantly better

fit. However, such better fit does not result in substantial improvements in the overall matching

of XGAMMA with the data. For that reason we decided to keep linear functions to describe the

temperature dependence of all the coefficients cl, l = 1, 2, 3, 4, 5.

The results from the linear fits define entirely the GAMMA Model: using the ground level

temperature, it is now possible to calculate univocally the corresponding atmospheric depth profile

using equation (5) with the corresponding layer limits (Table III).

The values of the parameters cl (l = 1, ..., 5) are obtained using the expression
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FIG. 2: Average atmospheric depth versus altitude, corresponding to Bin 9. The blue line is the parame-

terization of X(h). Full range plot (left) and zoom (right) to appreciate the precision of the fit, practically

coincident with the averaged data points. The black line corresponds to the Linsley Model of 5 layers, which

as very well known underestimates the averaged data points.

Layer (l) Nl [km] Ml [km K−1]

1 -20.716 0.1034

2 -0.626 0.0376

3 -1.64 0.0307

4 9.668 -0.0129

5 7.463 -0.00038

TABLE IV: Values of the parameterization cl(TGROUND) = Ml TGROUND +Nl.

cl(TGROUND) = Ml TGROUND +Nl (l = 1, ..., 5) (12)

where Ml and Nl are listed in Table IV. The values of al and bl, l = 1, ..., 5, can be derived from

the expressions given in the Appendix. Finally, the values of al, bl and cl, l = 6, 7, correspond to

the Linsley model parameterization and can also be found in the Appendix.

It is important to mention that the temperature interval [Tmin, Tmax] = [278 K, 298 K] that

corresponds to the experimental data can be used to define a first range of validity of the model

in the present case.

In order to analyze the precision achieved by the parameterization, we took the value of the

temperature at ground for each experimental profile XEXP (h) and we calculated the atmospheric
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FIG. 3: c1, c2, c3, c4, c5 versus temperature. The dots correspond to the different temperature bins. Fitted

linear functions are also shown; the corresponding fit parameters are listed in Table IV.

profile XGAMMA(h) predicted by the model at those temperatures. Defining the residual as

Residual(h) = XEXP (h)−XGAMMA(h) (13)

we made some plots to analyze the behavior of the residuals in each bin (Figures 4 and 5). It

can be seen that the differences between the GAMMA Model and the experimental data in each
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bin are smaller than approximately 2 g cm−2 ± 4 g cm−2 (approximately 0.7 % ± 1.4 %).
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FIG. 4: GAMMA Model average residuals versus altitude (Bins 1, 2, 3 and 4).

If we take all the experimental data without discrimination in bins and we plot the average

residuals versus altitude, we obtain that the average uncertainty predicted by the GAMMA Model

is smaller than approximately 2 g cm−2 ± 4 g cm−2 (Figure 6 a). Similarly, the experimental data

and the prediction of the New Malargüe Monthly Model of the corresponding month are compared

(Figure 6 b). The average uncertainty is consistent with that achieved by the GAMMA Model. As

it was expected, there are greater differences between the prediction by the Linsley Model and the

experimental data (Figure 6 c).

With the aim of checking the validity of the GAMMA Model at the Malargüe site, we have

also calculated the residuals over a new independent set of data (43 profiles collected in the period

January 2009 - August 2010) (Figure 6 d). The maximum values observed in the average residuals

are approximately 3 g cm−2 ± 4 g cm−2, slightly larger than in the case of the original data.
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FIG. 5: GAMMA Model average residuals versus altitude (Bins 5, 6, 7, 8, 9 and 10).

IV. DISCUSSION

Several points of the obtained results need special analysis and discussion.

Firstly, it is important to note that the comparisons between GAMMA and NMMM (Figures

6(a) and 6(b)) correspond to average values, but in the analysis of particular profiles, the differences

between the GAMMA and the NMMM could be different. A particular situation could happen
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(a) GAMMA Model - Original database.
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(b) New Malargüe Monthly Model.
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(d) GAMMA Model - New database.

FIG. 6: Average residuals versus altitude including all the data: GAMMA Model (a), New Malargüe Monthly

Model (b), Linsley Model (c), and check of the GAMMA Model using a new independent database (d).

with those profiles whose associated ground temperature is substantially larger or smaller than the

corresponding monthly average. In such cases, it could happen that the predictions of the NMMM

(invariant during the whole month) and the GAMMA (depending upon temperature) models differ

more than in normal cases. We have found within the experimental data available some profiles

that are examples of this situation. In these cases, the differences between the GAMMA Model and

these particular profiles are similar to those reported in this work, that is, approximately 2 g cm−2

± 4 g cm−2, while the NMMM model presents for the same cases differences of up to more than 7 g

cm−2. This fact demonstrates an important feature of our model: while the NMMM profiles remain

constant within a given month, the GAMMA Model ones are sensitive to the changes induced by

daily ground temperature variations.

In the comparison between the GAMMA and Linsley models (Figures 1, 2, 6 (a) and 6 (c)), the

first one reproduces the atmospheric depth profiles substantially better. We must mention that
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the improved performance of the GAMMA Model derives from the fact that the XGAMMA profile

comes from fits to local atmosphere measurements. Even though the GAMMA and Linsley models

are based on different databases, the comparison between these models is still relevant because

the latter is a global model built upon data collected at many geographical locations distributed

around the world [9]; what makes it an usual option when local data are not available. We have

thus compared the predicted profiles by both models, considering several values of temperature at

ground. This study allows to observe that the average difference between the models increases with

ground temperature (Figure 7), reaching at the highest temperatures considered in this work, values

that are significantly larger than the residuals between the GAMMA Model and the corresponding

measured profiles (that are practically independent of temperature, as clearly illustrated in figures 4

and 5). Beyond that we are comparing with a model built with data from Malargüe, this promotes

two readings: (i) a warning signal in the use of the Linsley Model, especially at high temperatures;

and (ii) the validation of the temperature at ground as a good parameter to characterize the

atmospheric depth profiles.

From the analysis performed with the independent database (Figure 6 d), we conclude that

the small difference observed in the average residuals is a consistency test passed by the GAMMA

Model. We observe that the structure of the average residuals in Figure 6 (a) and Figure 6 (d) is

very similar. We estimate that this behavior could be a consequence of the number of layers and

its limits.

The GAMMA Model temperature range is another point to be discussed. Originally, the model

was developed using profiles corresponding to temperatures at ground level in the range 278 K -

298 K. We have compared the predictions of the GAMMA Model for the parameters presented

here with profiles corresponding to ground temperatures out of the mentioned range (19 profiles

between the limits [269.9 K, 278 K] and 13 profiles in the range [298 K, 304 K] that were originally

not taken into account in the model set up, see section IIIA 1). From this analysis, we could

observe that the residuals corresponding to the profiles with ground temperatures greater than

298 K, show a similar behavior than the ones analyzed in section III B. However, this is not

observed at temperatures below 278 K where the residuals become significantly larger. Both cases

are illustrated at Figure 8. From this analysis, we can conclude that the GAMMA Model can be

extended to the temperature range from 278 K to 304 K.

When using the GAMMA Model to reproduce the depth profile, we suggest that an appropriate

choice is to employ the average temperature evaluated over a few hours interval. This is a valid

selection since the fluctuations in the temperature at ground within such a period, has no immediate
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FIG. 7: Differences between the profile predicted by the Linsley Model of 5 layers and several profiles obtained

from the GAMMA Model with diverse temperatures at ground, plotted as a function of altitude. In order

to observe the trend beyond the range defined for GAMMA, the temperature range explored was extended

including the cases 308 K, 273 K, 268 K, 263 K and 258 K. The dashed line indicates the ground level

corresponding to the experimental database.

Altitude [Km]
5 10 15 20 25

]2
  [

g/
cm

G
A

M
M

A
- X

EX
P

X

-15

-10

-5

0

5

10

15

0

1

2

3

4

5

6

Temperature at ground level lower than 278 K

Altitude [Km]
5 10 15 20 25

]2
  [

g/
cm

G
A

M
M

A
- X

EX
P

X

-15

-10

-5

0

5

10

15

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Temperature at ground level between 298 K and 304 K

FIG. 8: Difference between the GAMMA Model prediction and the experimental profiles with extreme ground

temperatures, as a function of altitude: 19 profiles with temperature lower than 278 K (left) and 13 profiles

with temperature higher than 298 K (right).
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influence on the complete atmospheric depth profile.

The GAMMA Model could be improved including more parameters, besides the temperature

at ground, to characterize the atmospheric depth profile. The parameters to be included should

be measured preferably at ground level so they can be easily obtained, thus preserving the spirit

of the model. The pressure at ground (combined with the temperature at ground) is among the

bests candidates being investigated to be included in an updated version of our model.

The results we have presented in our analysis are based on data corresponding to the Malargüe

site as a study case. Nevertheless, the GAMMA Model could be implemented to obtain the

atmospheric depth profiles from other locations, for example sites corresponding with other cosmic

ray experiments. Work is in progress in this direction.

V. SUMMARY AND CONCLUSIONS

A new model for atmospheric depth profile X(h), the GAMMA Model, has been presented.

We have built the model driven by two motivations: (i) the accurate description of the local

atmosphere, improving the well-known Linsley Model that uses the USStdA database; and (ii) the

need to take into account the atmospheric profiles variations as a function of a physical parameter

(alternatively to NMMM that uses a temporal one). With these premises, the model includes the

assumption that the temperature at ground is a suitable indicator for the atmospheric conditions

at any moment. The database used comes from radiosondes that were launched at the southern site

of the Pierre Auger Observatory and the function proposed in the model keeps the layers structure

of the Linsley Model.

The parameterization obtained describes with an excellent agreement the experimental data.

Particularly, the value of the atmospheric depth at ground given by the GAMMA parameterization

has a significant accuracy, being the average difference with data less than 0.9 g cm−2 ± 3 g cm−2

(approximately 0.11% ± 0.36%). These low percentages are remarkable considering that the fit

was made with free boundary conditions at ground level. The high accuracy at ground level could

be appreciated in Figures 4, 5 and 6 (a).

Considering the entire profiles, the average difference between the data and the model are

smaller than approximately 2 g cm−2 ± 4 g cm−2. These results are of the same order than

the ones corresponding to the New Malargüe Monthly Model. In percentages, the differences are

smaller than 0.7 % (±1.4 %) in all bins (Figures 4 and 5). The average residuals profile made over

the complete data presents the same differences (Figure 6 (a)) and it has also been shown that the
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model could be extended to 304 K keeping the uncertainty values already mentioned.

VI. APPENDIX

The function XGAMMA defined by the GAMMA Model uses the parameters al, bl and cl

(l = 1, .., 5). The parameters cl have to be calculated in first place, using in equation (12) the

temperature at ground level and the values of Ml and Nl (Table IV).

The parameters al and bl remain univocally defined by the imposition of boundary conditions

and the continuity between layers of XGAMMA(h) and its derivative, as discussed in section IIIA 2.

These conditions can be expressed as

b5 = 0.000381472 c5 e
−h5/c5 g cm−2

b4 = b5
c4
c5

e−h4/c5 eh4/c4 g cm−2

b3 = b4
c3
c4

e−h3/c4 eh3/c3 g cm−2

b2 = b3
c2
c3

e−h2/c3 eh2/c2 g cm−2

b1 = b2
c1
c2

e−h1/c2 eh1/c1 g cm−2

(14)

a5 = 3.0396 − b5 e
−h5/c5 g cm−2

a4 = a5 + b5 e
−h4/c5 − b4 e

−h4/c4 g cm−2

a3 = a4 + b4 e
−h3/c4 − b3 e

−h3/c3 g cm−2

a2 = a3 + b3 e
−h2/c3 − b2 e

−h2/c2 g cm−2

a1 = a2 + b2 e
−h1/c2 − b1 e

−h1/c1 g cm−2

(15)

The values of al, bl and cl (l=6,7 ) are derived from the Linsley Model of 5 layers:

a6 = 0 g cm−2

b6 = 540.1778 g cm−2

c6 = 7721.7016 m

(16)

a7 = 0.01128292 g cm−2

b7 = 1.0 g cm−2

c7 = 10000000 m

(17)
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[14] B. Keilhauer, J. Blümer, R. Engel, H.O. Klages, M. Risse, Impact of Varying Atmospheric Profiles on

Extensive air shower Observation: - Atmospheric Density and Primary Mass Reconstruction, Astropart.

Phys. 22 (2004) 249-261.

[15] For the performance of the radiosondes used to acquire the atmospheric data at the Malargüe Pierre
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