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Abstract

The role of credit rating agencies has been under severe scrutiny af-

ter the subprime crisis. In this paper we explore the relationship between

credit ratings and informational efficiency of a sample of thirty nine corpo-

rate bonds of US oil and energy companies from April 2008 to November
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2012. For that purpose, we use a powerful statistical tool relatively new

in the financial literature: the complexity-entropy causality plane. This

representation space allows to graphically classify the different bonds ac-

cording to their degree of informational efficiency. We find that this classi-

fication agrees with the credit ratings assigned by Moody’s. Particularly,

we detect the formation of two clusters, that correspond to the global

categories of investment and speculative grades. Regarding to the latter

cluster, two subgroups reflect distinct levels of efficiency. Additionally,

we also find an intriguing absence of correlation between informational

efficiency and firm characteristics. This allows us to conclude that the

proposed permutation-information-theory approach provides an alterna-

tive practical way to justify bond classification.

Key words: Corporate bonds; oil and energy sectors; market efficiency;

complexity-entropy causality plane; permutation entropy; permutation

complexity.

JEL Classification: G14; C81

1 Introduction

In his classical definition, [19] establishes that a market is informationally effi-
cient if prices reflect all available information and classifies efficiency into three
broad categories: (i) weak efficiency if today price reflects the information em-
bedded in the series of past prices, (ii) semi-strong efficiency if prices reflect all
public information, beyond past prices, and (iii) strong efficiency if prices reflect
all public and private information. We will center our study in the weak form
of the informational efficiency. Prices are in fact a mechanism of signaling. [26]
says that the price system can be regarded as a platform for communicating
information and its functioning is based on the economy of knowledge where
“by a kind of symbol, only the most essential information is passed on, and
passed on only to those concerned”. In fact such a definition was anticipated in
[24], who wrote “when shares become publicly known in an open market, the
value which they acquire there may be regarded as the judgment of the best in-
telligence concerning them”. Later, [7] formalized the first mathematical model
of security prices, considering an stochastic process without memory. In fact,
as recognized by [28], the Efficient Market Hypothesis (EMH) is the theory of
competitive equilibrium applied to securities markets. There is a vast litera-
ture on empirical research related to weak informational efficiency. It is worth
mentioning here that deviations from the EMH have been confirmed for oil and
energy markets - see, for instance, results obtained by [51], [58], [2], [11], [3], [4]
and [6].

Since the subprime crisis credit rating agencies (CRAs) activities are under
scrutiny, due to their difficulty to rank financial securities, specially Collateral-
ized Debt Obligations (CDOs). There are some paradigmatic examples of slow
reaction of CRAs to market movements: Enron was rated investment grade by
both, Moody’s and Standard & Poor’s, four days prior to its bankruptcy on
December 2nd 2001, and more recently, Lehman Brother was still rated invest-
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ment grade by both agencies on the day of its bankruptcy filing on September
15th 2008.

The aim of this paper is to build a bridge between credit ratings and a mar-
ket derived measure, i.e. informational efficiency. Specifically, we explore the
link between the correlated stochastic behavior of the bond yield time series
(quantified by a combination of entropy and complexity measures) and bond
ratings. We want to: (i) classify corporate bonds by means of the complexity-
entropy causality plane, (ii) establish a correspondence between credit ratings
and levels of informational efficiency, and (iii) analyze the potential link be-
tween market efficiency and firm ratios. It is worth remarking that we are not
trying to analyze causality between credit rating and informational efficiency.
Probably, a better rating induces market participants to trade more actively
this bond, increasing the informative flow to the market and, consequently, the
associated informational efficiency. On the contrary, it could be thought that
better informational efficiency reflects an intrinsic quality of the firm that is
captured by CRAs.

This paper is organized as follows. Section 2 presents a review about credit
ratings. Section 3 describes the study of informational efficiency by using tools
derived from Information Theory. Section 4 details the data analyzed and the
results obtained. Section 5 draws the main findings of our work. Finally, A
includes a thorough explanation of the permutation-information-theory based
quantifiers applied in this paper.

2 Credit ratings

Credit rating industry was born at the beginning of the twentieth century. In
fact, Moody’s, the oldest of the rating agencies, begun operations in 1909 pub-
lishing ratings of railroads companies. Credit ratings are intended to measure
the likelihood of a firm to fulfill its debt obligations. According to the [17]
“credit rating means an opinion regarding the creditworthiness of an entity, a
debt or financial obligation, debt security, preferred share or other financial in-
strument, or of an issuer of such a debt or financial obligation, debt security,
preferred share or other financial instrument, issued using an established and
defined ranking system of rating categories”. Nevertheless, credit ratings should
not be understood as a buy or sell recommendation or a warranty of payment.

Credit ratings are based on the opinions of analysts who, after examining
quantitative (e.g. financial statements, financial ratios, macroeconomic data,
etc.) and qualitative data (interview to the firm’s senior managers), reach a
decision about the rating. These ratings are usually materialized in a letter
grade or a combination of letters and figures. The best rating is Aaa and the
worst is C. Between them, there are twenty categories, which intend to fine tune
the credit appraisal. They can be divided into two global categories: investment
(the upper half) and speculative (the bottom half) grades. The first category
represents instruments issued by companies that have solid financial indicators
and have a high payment capacity. The second category represents instruments
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issued by companies whose financial strength is questioned, and default on debt
or late repayment is likely to occur.

At the beginning credit ratings were mostly focused on utility companies.
Later, financial regulations increased the importance of CRAs. The Federal Re-
serve was created in 1913 and the Securities and Exchange Commission (SEC)
of the United States in 1934. These two institutions rapidly begun to issue
financial regulations to standardize the format of financial information disclo-
sure and to limit the risk exposure of banks. In order to promote a safer and
more transparent financial system, bank regulators in many countries link the
minimum capital requirements to bond rating, as an standard measure of the
riskiness of the bonds. Although there are a lot of CRAs, three of them, namely
Moody’s, Standard & Poor’s and Fitch, concentrate about 80% of the market
share. Successive regulations in the US and other countries favor this concen-
tration and, as [60] recognizes, “creditworthiness judgments of these third-party
raters attained the force of law”. In this line, [57] states that these three big
rating agencies are regarded as all-powerful and unregulated elements of the
financial markets.

A main criticism of the CRAs assessment is their lack of transparency. They
do not disclose any of the criteria on which their ratings are based on and
the methods applied. In addition, their business model is questioned. At the
beginning of their activities, CRAs raised money from investors who were in-
terested in an independent credit risk appraisal. However, in the 1970s, the
revenue source shifted from ‘investor pays’ to ‘issuer pays’. This change casts
some doubts about the independency of opinions and, consequently, gives rise
to potential conflict of interests. CRAs face two important forces: on the one
hand they are interested in giving their best opinion on the credit quality of a
firm, but, on the other hand, they want to give ‘good news’ to the firm that
pays for the service. This situation is relevant because in most markets it is
mandatory for a firm to contract one of the CRAs in order to be authorized to
issue new debts. Nevertheless, the fact that investors pay for rating information
does not prevent from big mistakes. [43] remembers that 11% of investment
grade corporate issues and 78% of the municipal bonds that had been rated as
Aaa or Aa defaulted during the Great Depression. This situation reflects the
fact that credit rating is not a trivial task.

Most of the analyses on ratings in the literature focused their attention on
guessing the variables that mainly affect or determine the assignation of rating
categories, and on investigating the influence of rating changes in prices and
yields. There are several papers that analyze the relationship between rating
and firm risk, i.e. the comparison between ratings and market based measures
to assess the risk of firms. In other words, they try to figure out if ratings inject
new information to the market or, on the contrary, the market has already in-
corporated that information before the disclosure of ratings. [59] finds empirical
evidence that prices change before rating change announcements. In the same
line, [23] conclude that markets anticipate to rating changes independently that
the change is within or between speculative and investment grade categories.
[16] analyze the corporate bond price behaviors, taking into account that the
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credit rating qualifications given by Moody’s and Standard & Poor’s determine
homogeneous groups related to the yield curve. However, they recognize the
existence of other important factors that affect the price bond evolution such
as the default risk, liquidity, tax liability, recovery rate and maturity. [37] find
“that bond prices and credit ratings generally embed similar views on relative
credit risk, and any difference in views that do arise are often temporary”. In
a recent work, [33] detects that changes in credit ratings produce a significant
reaction in bond prices. [30] study the effect of uncertainty and asymmetry of
information over corporate bond spreads and find that yield spread of bonds
with short maturities are partially explained by corporate credit rating. [1] find
evidence that negative announcements of ratings convey relevant information to
the market.

In this paper we are particularly interested to explore about a potential
relationship between credit ratings and informational efficiency. This link could
help to find a more objective and unbiased way to classify credit ratings.

3 Informational efficiency and the complexity-

entropy causality plane

The study of weak informational efficiency is about the possibility of unveiling
information from prices or return time series. Financial markets can be regarded
as dynamical systems, whose behavior is recorded in time series of prices, yields,
turnover, etc. These time series should be carefully analyzed in order to un-
derstand the underlying phenomenon. Quantifiers derived from Information
Theory can be suitable candidates for this task since they allow to extract some
properties of the probability distributions estimated from the observed data.
One of the key metrics is Shannon entropy. Given any arbitrary discrete prob-
ability distribution P = {pi ≥ 0, i = 1, . . . ,M} for which

∑M

i=1 pi = 1, Shannon

entropy is defined as S[P ] = −
∑M

i=1 pi ln pi [12]. It is equal to zero if the un-
derlying structure is fully deterministic (pk = 1 ∧ pi = 0, ∀i 6= k) and reaches
a maximum value for an uncorrelated stochastic process (uniform distribution,
i.e. pi = 1/M, ∀i = 1, · · · ,M). It is remarkable that this amount of information
is computed in terms of state probabilities and does not depend on a particular
distribution.

The use of informational entropy to study economic phenomena can be
traced back to [56], where entropy is used to predict short-term price fluctu-
ations in the Amsterdam Stock Exchange. [18] and [15] perform a similar study
for the New York and London Stock Exchanges, respectively. [38] analyze the
proportions of securities with positive, negative and null returns on the Ameri-
can Stock Exchange using Information Theory methodologies and conclude that
they are dependent on the previous day and not significantly influenced by the
proportion of untraded securities. [39] propose the average mutual information
or shared entropy as a proxy for systematic risk. Much more recently, [41]
combines entropy quantifier and symbolic time series analysis in order to relate
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informational efficiency and the probability of having an economic crash. Later,
[42] also uses Shannon entropy to rank the informational efficiency of several
stock markets around the world. Alvarez-Ramirez and coworkers implement a
multiscale entropy concept to monitor the evolution of the informational effi-
ciency over different time horizons. By applying this methodology to the crude
oil prices [32, 35] and the Dow Jones Index (DJI) [5], the presence of some
particular cyclic dynamics is unveiled.

However, analyzing time series by only estimating the Shannon entropy could
be insufficient since, as recalled by [20], an entropy measure does not quantify
the degree of structure presents in a process. In fact, it is necessary to measure
the statistical complexity in order to fully characterize the system’s dynamics.
This is why we have proposed to consider also the statistical complexity for
the analysis of financial time series [64]. Measures of statistical complexities
try to quantify the underlying hidden organizational structure. In that sense,
perfect order and maximal randomness (a periodic sequence and a fair coin toss,
for example) are defined with zero complexity because they are the easiest to
describe and understand. At a given distance from these extremes, a wide range
of possible degrees of physical structure exists. The complexity measure allows
to quantify this array of behavior [21].

In the present paper we employ the complexity-entropy causality plane (CECP),
i.e. the representation space with the permutation entropy of the system in the
horizontal axis and an appropriate permutation statistical complexity measure
in the vertical one, for the analysis. This novel information-theory-tool was
recently shown to be a practical and robust way to discriminate the linear and
nonlinear correlations present in stock [64], commodity [65] and sovereign bond
[63] markets. The location in the CECP allows to quantify the inefficiency of
the system under analysis because the presence of temporal patterns derives in
deviations from the ideal position associated with a totally random process, i.e.
normalized entropy and statistical complexity equal to one and zero, respec-
tively. Consequently, the distance to this random ideal planar location can be
used to define a ranking of efficiency. Technical details about the estimation
of the permutation entropy, permutation statistical complexity as well as the
construction of the CECP are left to A in order to make easy the reading of the
paper. Readers unfamiliar with these topics are strongly encouraged to read it
at this point.

4 Data and results

In this work we analyze the daily values of the yield to maturity of thirty
nine corporate bonds, corresponding to oil and energy companies of the United
States. The yield to maturity is the annualized percentage return of a bond held
until its stated maturity. All data were collected from Datastream database.
The period under analysis goes from 1st April 2008 until 16th November 2012,
giving a total of N = 1209 data points for each bond. Time counting was
performed over trading days, skipping weekends and holidays. In order to ho-
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Table 1: Corporate bonds.

DS Code Borrower Issue Maturity Coupon Moody’s
date date rating

1. 18797N Anadarko Petroleum Corporation 15/10/96 15/10/26 7.500 Ba1
2. 17874U Apache Corporation 27/02/96 15/03/26 7.700 A3
3. 81359Q Berry Petroleum Co. 24/10/06 01/11/16 8.250 B3
4. 56161F Buckeye Partners Lp 30/06/05 01/07/17 5.125 Baa3
5. 90269K Canadian Natural Resources Limited 19/03/07 15/05/17 5.700 Baa1
6. 93510X Cimarex Energy Company 01/05/07 01/05/17 7.125 Ba2
7. 216442 Conocophillips Company 01/07/97 01/01/27 7.800 A1
8. 18739L El Paso Corporation 03/02/98 01/02/18 7.000 Ba3
9. 18258R El Paso Natural Gas Company 13/11/96 15/11/26 7.500 Baa3
10. 18483P Enbridge Energy Partners Lp 01/10/98 01/10/28 7.125 Baa1
11. 61384H Energen Corporation 22/07/97 24/07/17 7.400 Baa3
12. 81359L Energy Transfer Partners Ltd. 23/10/06 15/02/17 6.125 Baa3
13. 1688NK EOG Resources Incorporated 10/09/07 15/09/17 5.875 A3
14. 2101ME Forest Oil Corp. 15/12/07 15/06/19 7.250 B1
15. 251985 Hess Corporation 01/10/99 01/10/29 7.875 Baa2
16. 46082X Husky Energy Incorporated 18/06/04 15/06/19 6.150 Baa2
17. 18791U Marathon Oil Corporation 15/05/92 15/05/22 9.375 Baa2
18. 1798EF Mcmoran Exploration Co. 14/11/07 15/11/14 11.875 Caa1
19. 241094 Murphy Oil Corporation 04/05/99 01/05/29 7.050 Baa3
20. 95576F Nexen Incorporated 04/05/07 15/05/17 5.650 Baa3
21. 18616C Noble Energy Incorporated 15/10/93 15/10/23 7.250 Baa2
22. 251451 Occidental Petroleum Corporation 10/02/99 15/02/29 8.450 A2
23. 38803V Overseas Shipholding Group Inc 19/02/04 15/02/24 7.500 Caa1
24. 80814U Peabody Energy Corp 12/10/06 01/11/26 7.875 Ba1
25. 65954C Pioneer Natural Resources Company 01/05/06 01/05/18 6.875 Ba1
26. 49481N Plains All American Pipeline Lp 15/02/05 15/08/16 5.875 Baa3
27. 86422F Plains Exploration & Production Co. 13/03/07 15/03/17 7.000 B1
28. 64349H Quicksilver Resources Incorporated 16/03/06 01/04/16 7.125 B3
29. 1722EQ Range Resources Corporation 28/09/07 01/10/17 7.500 Ba3
30. 18737W Sherwin-Williams Company 10/02/97 01/02/27 7.375 A3
31. 18242J Spectra Energy Capital Llc 20/07/98 15/07/18 6.750 Baa2
32. 49480M Stone Energy Corp. 15/12/04 15/12/14 6.750 Caa2
33. 18725W Sunoco Incorporated 01/11/94 01/11/24 9.000 Ba2
34. 96571M Swift Energy Company 01/06/07 01/06/17 7.125 B3
35. 602040 Talisman Energy Incorporated 21/10/97 15/10/27 7.250 Baa2
36. 244814 Tennessee Gas Pipeline Company 13/03/97 01/04/17 7.500 Baa3
37. 16527D Transcanada Pipelines 14/10/97 14/10/25 7.060 A3
38. 243459 Transcontinental Gas Pipe Line Co. 15/07/96 15/07/26 7.080 Baa2
39. 18241H Valero Energy Corporation 25/06/96 01/07/26 7.650 Baa2

mogenize our sample, bonds are selected using the following criteria: (i) they
are issued by companies from the United States and from the oil and energy
sectors, (ii) they are straight bonds, (iii) the coupons are constant with a fixed
frequency, (iv) the repayment is at par, (v) they mature before year 2029, (vi)
they are long term (10 to 30 years), and (vii) the rating is available. To arrive
to the thirty nine corporate bonds, we select only one bond by firm in order to
avoid over representation bias. Codes and names of these indices are listed in
Table 1.

We estimate permutation entropy (HS) and permutation statistical complex-
ity (CJS) for the different corporate bonds. Embedding dimensionsD = {3, 4, 5}
and embedding delay τ = 1 are chosen. Ordinal patterns generated by these
parameters correspond to three, four and five consecutive days. It should be
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noted that long-range correlations in the time series are reflected in the relative
frequency of these ordinal patterns, i.e. some particular patterns appear more
often than the others due to the memory effect, and the estimated probability
distribution results different from the uniform one expected for an uncorrelated
stochastic process. Moreover, stochastic processes with different long-range cor-
relations, such as fractional Gaussian noise (fGn) and fractional Brownian mo-
tion (fBm), can be clearly discriminated by using permutation quantifiers with
parameters similar to that employed in the present analysis [8, 45, 48, 62]. Re-
sults obtained by estimating both permutation quantifiers, HS and CJS , for
the corporate bond markets of US oil and energy companies are displayed in
Fig. 1. According to them we can clearly identify two clusters. The planar loca-
tion of each cluster corresponds to homogeneous rating categories: investment
and speculative grades. The first category (black and red symbols) exhibits, in
average, high entropy and low complexity indicating that series behaves more
randomly and, thus, that they are closer to the informational efficient behavior.
The second category can be subdivided into two subgroups. The bonds in the
upper part of this category (Ba1 to Ba3), represented by green symbols, are lo-
cated in an area with intermediate entropy and complexity values. Finally, the
lower part of the speculative grade bonds (B1 to Caa2), indicated by blue and
light blue symbols, exhibits less entropy and higher complexity, which highlight
their informational inefficiency. Of course, these are average behaviors, and
particular exceptions can be observed. In Fig. 2 the mean and standard devia-
tion of the permutation quantifier values estimated with D = 5 and embedding
delay τ = 1 for the above mentioned clusters are displayed. Estimated values
for permutation entropy and permutation statistical complexity show a high
correlation. This kind of information redundancy is characteristic of stochas-
tic processes. When the temporal correlations in the process increase, HS and
CJS are smaller and larger, respectively, advising about the presence of these
patterns. The locations in the CECP allow to conclude that the correlated
stochastic properties of the yields time series is coherent with classifications
given by CRAs. Following the same approach, [63] find that the qualifications
given by Moody’s to sovereign bonds of thirty countries are coherent with the
location of the associated time series in the CECP.

Trying to justify the fact that intrinsic temporal correlations play a signifi-
cant role in the CECP location obtained for the different corporate bonds, we
have also estimated the permutation quantifiers for the shuffled corporate bond
data. Shuffled realization of the original data are obtained permuting them in
a random order, and eliminating, consequently, all non-trivial temporal corre-
lations. From Fig. 3, where the location obtained for the original data (blue
circles) and its shuffled counterparts (red circles) are depicted, it can be easily
concluded that the positions obtained from original data are not obtained by
chance and the underlying correlations are relevant. Estimated values of the
permutation quantifiers for the shuffled data are very close to that expected for
a fully random record (HS ≈ 1 and CJS ≈ 0). Stock [66] and commodity [65]
markets show a similar behavior.

In order to analyze the relationship between informational efficiency and

8



0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

HS

C
J

S

D = 3 and τ = 1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

HS

D = 4 and τ = 1

C
J

S

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

HS

C
J

S

D = 5 and τ = 1

Figure 1: (Color online) Location of the corporate bond markets of US oil and
energy companies in the CECP. Permutation quantifiers are estimated by using
different embedding dimensions D = {3, 4, 5} and embedding delay τ = 1. The
following symbols and colors are employed to discriminate the different credit
ratings: black circle (A1), black square (A2), black triangle (A3), red circle
(Baa1), red square (Baa2), red triangle (Baa3), green circle (Ba1), green square
(Ba2), green triangle (Ba3), blue circle (B1), blue square (B3), light blue circle
(Caa1) and light blue square (Caa2). Dashed lines represent the maximum and
minimum complexity values for a given value of the entropy (see, for instance,
[31] for further details about these bounds).
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Figure 2: Average location of the three clusters identified in the analysis: cor-
porate bonds in the investment category grade (A1 to Baa3, black lines), in the
upper part of the speculative grade (Ba1 to Ba3, red lines), and in the lower
part of this category (B1 to Caa2, blue lines). Mean and standard deviation of
the permutation quantifiers estimated with D = 5 and embedding delay τ = 1
for each cluster are plotted. Dashed lines represent the maximum and minimum
complexity values for a given value of the entropy.

Table 2: Description of the five selected accounting ratios.

Ratio Expected sign
Quick Ratio (QR) = Cash & short term investments

Current liabilities
+

Current Ratio (CurrRatio) = Current assets
Current liabilities

+
Coverage Ratio (CovRatio) = Gross income

Interest expense on debt
+

Interest Earning ratio (IE) = Interest expense on debt
Earnings before interest & taxes

-

Interest Cash ratio (IC) = Interest expense on debt
Net cash flow-operating activities

-

firm characteristics, we perform Spearman’s non-parametric correlation between
permutation entropy and the average of some accounting ratios for the period
2008-2011. Selected accounting ratios and their expected signs are detailed
in Table 2. Results for this non-parametric correlation are shown in Table 3.
Similar results were also obtained using Kendall’s non-parametric correlation.
If we consider the whole sample, there is not a statistical significant correlation.
We have also computed the correlations for investment and speculative grade
subgroups looking for a differential effect within bond categories. After this
classification, the results are similar, but the correlation with the interest cash
is significant, albeit with the opposite expected sign.

According to these results, we conclude that accounting ratios are not sig-
nificantly correlated with permutation entropy. This situation is relevant con-
sidering that accounting ratios are used for computing credit ratings and, as the
CECP analysis shows, credit ratings are associated with informational efficiency.
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Figure 3: (Color online) Location of the original (blue circles) and shuffled
(red circles) corporate bond markets in the CECP with embedding dimensions
D = 3 (upper plot), D = 4 (central plot) and D = 5 (lower plot) and embedding
delay τ = 1. The estimations for the shuffled realization are very close to that
expected for a fully random record with HS ≈ 1 and CJS ≈ 0. Dashed lines
represent the maximum and minimum complexity values for a given value of
the entropy.
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Table 3: Spearman’s non-parametric correlation between permutation entropy
estimations and the five selected accounting ratios for the different embedding
dimensions D = {3, 4, 5}. QR: Quick Ratio, CurrRatio: Current Ratio, CovRa-
tio: Coverage Ratio, IE: Interest Earning ratio & IC: Interest Cash ratio.

QR CurrRatio CovRatio IE IC

All firms

D = 3 Spearman’s Rho -0.190 -0.085 0.218 0.129 0.027
p-value 0.260 0.607 0.182 0.435 0.873

D = 4
Spearman’s Rho -0.228 -0.062 0.231 0.141 0.055
p-value 0.175 0.706 0.157 0.392 0.740

D = 5
Spearman’s Rho -0.181 -0.117 0.151 0.209 0.116
p-value 0.283 0.477 0.358 0.202 0.480
N 37† 39 39 39 39

Investment grade

D = 3 Spearman’s Rho 0.334 0.167 0.003 -0.125 0.053
p-value 0.129 0.436 0.987 0.560 0.806

D = 4
Spearman’s Rho 0.230 0.221 0.077 -0.140 0.071
p-value 0.304 0.300 0.722 0.514 0.741

D = 5
Spearman’s Rho 0.290 0.075 -0.053 0.018 0.190
p-value 0.191 0.728 0.806 0.933 0.375
N 22† 24 24 24 24

Speculative grade

D = 3 Spearman’s Rho -0.118 -0.196 0.046 0.371 0.582*
p-value 0.676 0.483 0.869 0.173 0.023

D = 4
Spearman’s Rho -0.132 -0.182 -0.025 0.461 0.654**
p-value 0.639 0.516 0.930 0.084 0.008

D = 5
Spearman’s Rho -0.068 -0.189 -0.104 0.489 0.732**
p-value 0.810 0.499 0.713 0.064 0.002
N 15 15 15 15 15

† El Paso Natural Gas Company and Tennessee Gas Pipeline Company are not included because

cash & short term investments figures are not available for these firms in the Datastream database.

∗ significant at the 5% level.

∗∗ significant at the 1% level.
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Consequently, accounting ratios and permutation entropy are both related to
credit ratings but they appear to be independent of each other. In light of
these results, we can conclude that permutation quantifiers provide additional
explicative power to justify bond classification.

5 Conclusions

This paper analyzes the relationship between informational efficiency and credit
ratings in the corporate bond markets of US oil and energy companies. On the
one hand, we find that bonds that are included in the investment grade category,
i.e. those with the highest creditworthiness, are located in the region of the
CECP that represents the most informational efficient behavior. On the other
hand, bonds that belong to the speculative grade category exhibit less entropy
and greater complexity, which indicates less efficiency. These different planar
locations confirm a significant relationship between informational efficiency and
credit rating of corporate bonds.

Additionally, in this paper, we investigate a potential link between entropy
and accounting ratios. The aim of this approach is to explore if firm characteris-
tics are related to the permutation entropy, and thus, connected with the degree
of informational efficiency. Surprisingly, only one of the five selected accounting
ratios, the interest cash, is statistically significant for speculative grade bonds.
However, this correlation does not present the expected sign. This situation
highlights an absence of correlation between accounting ratios and informational
efficiency. Since we have confirmed a correlated behavior between informational
efficiency and the permutation quantifiers estimated in this paper, we conclude
that the CECP provides an alternative and more transparent way to justify
bond classification.

In the future, we propose to further study the reasons behind the lack of
relationship between accounting ratios and permutation entropy, in spite of
the fact that, on the one hand, credit ratings and permutation entropy, and,
on the other hand, credit ratings and accounting ratios, are actually linked.
Additionally, we would like to expand this study to other sectors in order to set
a comparative study and verify that the CECP provides a good classification of
the rating quality, independently of the firm sector.
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A Permutation-information-theory based quan-

tifiers

A.1 Entropy and Statistical Complexity

The information content of a system is usually evaluated via a probability distri-
bution function (PDF) describing the apportionment of some measurable or ob-
servable quantity, commonly a time series S(t). An information measure can be
roughly defined as a quantity that characterizes this given probability distribu-
tion. The Shannon entropy is very often used as the most “natural” one ([52]).
Given any arbitrary discrete probability distribution P = {pi, i = 1, . . . ,M},
with M the number of degrees of freedom, Shannon’s logarithmic information
measure reads

S[P ] = −

M
∑

i=1

pi ln pi. (1)

It can be regarded as a measure of the uncertainty associated with the physical
process described by P . If S[P ] = Smin = 0 we are in position to predict
with complete certainty which of the possible outcomes i, whose probabilities
are given by pi, will actually take place. Our knowledge of the underlying
process described by the probability distribution is maximal in this instance. In
contrast, our knowledge is minimal for the equiprobable distribution Pe = {pi =
1/M, i = 1, . . . ,M} and, consequently, the uncertainty is maximal, S[Pe] =
Smax.

It is widely known that an entropic measure does not quantify the degree
of structure presents in a process [20]. Moreover, it was recently shown that
measures of statistical or structural complexity are necessary for a better un-
derstanding of chaotic time series because they are able capture their organi-
zational properties [21]. This specific kind of information is not revealed by
randomness’ measures. Rosso and coworkers introduced an effective statistical

complexity measure (SCM) that is able to detect essential details of the dynam-
ics and differentiate different degrees of periodicity and chaos [27]. This specific
SCM, that provides important additional information regarding the peculiarities
of the underlying probability distribution, is defined via the product1

CJS [P ] = QJ [P, Pe] · HS [P ] (2)

of the normalized Shannon entropy

HS [P ] = S[P ]/Smax, (3)

with Smax = S[Pe] = lnM , (0 ≤ HS ≤ 1) and Pe the equiprobable distribution,
and the so-called disequilibrium QJ . This latter quantifier is defined in terms
of the extensive (in the thermodynamical sense) Jensen-Shannon divergence

J [P, Pe] that links two PDFs. We have

QJ [P, Pe] = Q0 · J [P, Pe], (4)

1This functional product form for the SCM is due to [29].
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with
J [P, Pe] = S [(P + Pe)/2]− S[P ]/2− S[Pe]/2. (5)

Q0 is a normalization constant, equal to the inverse of the maximum possible
value of J [P, Pe]. This value is obtained when one of the values of P , say pm,
is equal to one and the remaining pi values are equal to zero, i.e.,

Q0 = −2

{(

M + 1

M

)

ln(M + 1)− 2 ln(2M) + lnM

}−1

. (6)

The Jensen-Shannon divergence, that quantifies the difference between two (or
more) probability distributions, is especially useful to compare the symbol-
composition of different sequences [25]. We stress the fact that the statistical
complexity defined above is the product of two normalized entropies (the Shan-
non entropy and the Jensen-Shannon divergence), but it is a non-trivial function
of the entropy because it depends on two different probabilities distributions,
i.e., the one corresponding to the state of the system, P , and the equiproba-
ble distribution, Pe, taken as reference state. Furthermore, it has been shown
that for a given value of HS , the range of possible SCM values varies between
a minimum Cmin and a maximum Cmax [31]. Therefore, the evaluation of the
complexity provides additional insight into the details of the systems probabil-
ity distribution, which is not discriminated by randomness measures like the
entropy. It can also help to uncover information related to the correlational
structure between the components of the physical process under study [46, 47].

A.2 Complexity-entropy plane

In statistical mechanics one is often interested in isolated systems characterized
by an initial, arbitrary, and discrete probability distribution, and the main pur-
pose is to describe its evolution towards equilibrium. At equilibrium, we can
suppose, without loss of generality, that this state is given by the equiprobable
distribution Pe. The temporal evolution of the statistical complexity measure
(SCM) can be analyzed using a two-dimensional (2D) diagram of CJS versus
time t. However, the second law of thermodynamics states that, for isolated
systems, entropy grows monotonically with time (dHS/dt ≥ 0). This implies
that HS can be regarded as an arrow of time, so that an equivalent way to study
the temporal evolution of the SCM is through the analysis of CJS versus HS .
The complexity-entropy plane has been used to study changes in the dynamics
of a system originated by modifications of some characteristic parameters (see,
for instance, [49], [66, 65, 63] and references therein).

A.3 Estimation of the Probability Distribution Function

When using quantifiers based on Information Theory, such as HS and CJS , a
probability distribution associated with the time series under analysis should be
provided beforehand. Many methods have been proposed for a proper estima-
tion of it. We can mention: (i) frequency counting [49], (ii) procedures based
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on amplitude statistics [14], (iii) binary symbolic dynamics [34], (iv) Fourier
analysis [40], and (v) wavelet transform [44], among others. Their applicabil-
ity depends on particular characteristics of the data, such as stationarity, time
series length, variation of the parameters, level of noise contamination, etc. In
all these cases the dynamics’ global aspects can be somehow captured, but the
different approaches are not equivalent in their ability to discern all the relevant
physical details.

Methods for symbolic analysis of time series that discretize the raw series
and transform it into a sequence of symbols constitute a powerful tool. They
efficiently analyze nonlinear data and exhibit low sensitivity to noise [22]. How-
ever, finding a meaningful symbolic representation of the original series can be
a subtle task [10]. Different symbolic sequences may be assigned to a given
time series [13]. In this respect, an issue of some importance is that of as-
certaining whether the temporal order in which the distinct time series values
appear is considered or not. In the first case one says that causal information

has been taken into account. If one merely assigns a symbol a of the finite
alphabet A to each value of the time series, the ensuing symbolic sequence can
be regarded as a non-causal coarse-grained description of the time series un-
der consideration. The PDF extracted from the time series will not have any
causal information. The usual histogram technique corresponds to this kind
of assignment. Causal information may be incorporated into the construction
process that yields P if one symbol of a finite alphabet A is assigned instead
to a (phase-space) trajectory’s portion, i.e., we assign “words” to each trajec-
tory portion. The Bandt and Pompe (BP) methodology [9] for extracting a
PDF from a time series corresponds to the causal type of assignment, and the
resulting probability distribution P constitutes, thus, a causal coarse-grained
description of the system. “Partitions” are devised by comparing the order of
neighboring relative values rather than by apportioning amplitudes according
to different levels. The appropriate symbol sequence arises naturally from the
time series. No model-based assumptions are needed.

Given a time series S(t) = {xt; t = 1, . . . , N}, an embedding dimension
D > 1 (D ∈ N), and an embedding delay τ (τ ∈ N), the BP-pattern of order D
generated by

s 7→
(

xs, xs+τ , . . . , xs+(D−2)τ , xs+(D−1)τ

)

, (7)

is considered. To each time s, BP assign a D-dimensional vector that results
from the evaluation of the time series at times s, s + τ, . . . , s + (D − 2)τ, s +
(D − 1)τ . Clearly, the higher the value of D, the more information about the
“future” is incorporated into the ensuing vectors. By the ordinal pattern of order
D related to the time s, BP mean the permutation π = (r0 r1 . . . rD−2 rD−1)
of (0 1 . . . D − 2 D − 1) defined by

xs+r0τ ≤ xs+r1τ ≤ . . . xs+rD−2τ ≤ xs+rD−1τ . (8)

In this way the vector defined by Eq. (7) is converted into a definite symbol π.
To get a unique result BP consider that ri < ri+1 if xs+riτ = xs+ri+1τ . This is
justified if the values of xt have a continuous distribution so that equal values
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Figure 4: Illustration of the construction-principle for ordinal patterns of length
D [36]. For D = 4, full circles and continuous lines represent the sequence
x0 ≤ x3 ≤ x2 ≤ x1 which leads to the pattern (0321).

are very unusual. For all the D! possible orderings (permutations) πi when
embedding dimension is D, their associated relative frequencies can be naturally
computed according to the number of times this particular order sequence is
found in the time series, divided by the total number of sequences. Thus, an
ordinal pattern probability distribution P = {p(πi), i = 1, . . . , D!} is derived
from the time series.

In order to illustrate the BP recipe, consider a simple example: a time
series with seven (N = 7) values x = {4, 7, 9, 10, 6, 11, 3} and we evaluate the
BP-PDF for D = 3 and τ = 1. Triplets (4, 7, 9) and (7, 9, 10) represent the
permutation pattern (012) since the values are in increasing order. On the
other hand, (9, 10, 6) and (6, 11, 3) correspond to the permutation pattern (201)
since xs+2 ≤ xs ≤ xs+1, while (10, 6, 11) has the permutation pattern (102) with
xs+1 ≤ xs ≤ xs+2. Then, the associated probabilities result: p(012) = p(201) =
2/5; p(102) = 1/5; p(021) = p(120) = p(210) = 0.

Graphically, Fig. 4 illustrates the construction principle of the ordinal pat-
terns of length D = {2, 3, 4} [36]. Consider the sequence {x0, x1, x2, x3}. For
D = 2, there are only two possible direction from x0 to x1, up and down. For
D = 3, starting from x1 (up) the third part of the pattern can be above x1, be-
low x0 or between x0 and x1 as it is illustrated in the Fig. 4. A similar situation
is obtained starting from x1 (down). For D = 4, for each one of the 6 possible
positions for x2 we will have 4 possible locations for x3, leading in this way fi-
nally to the D! = 4! = 24 different ordinal patterns. A graphical representation
of all possible patterns corresponding to D = {3, 4, 5} can be found in Fig. 2 of
[36].

The BP-generated probability distribution P is obtained once we fix the em-
bedding dimension D and the embedding delay τ . The former parameter plays
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an important role in the evaluation of the appropriate probability distribution,
since D determines the number of accessible states, given by D!. Moreover,
it has been established that the length N of the time series must satisfy the
condition N ≫ D! in order to achieve a reliable statistics and proper distinction
between stochastic and deterministic dynamics [45, 55]. With respect to the
selection of the parameters, BP suggest in their cornerstone paper [9] to work
with 3 ≤ D ≤ 7 with a time lag τ = 1. Nevertheless, other values of τ might
provide additional information. [64] and [53, 54] have recently showed that this
parameter is strongly related, when it is relevant, to the intrinsic time scales of
the system under analysis.

It is clear that, applying this prescription for symbolizing time series, some
details of the original amplitude information and variability are lost. However,
a meaningful reduction of the complex systems to their basic inherent structure
is provided. The symbolic representation of time series by recourse to a compar-
ison of consecutive points (τ = 1) or non-consecutive (τ > 1) points allows for
an accurate empirical reconstruction of the underlying phase-space, even in the
presence of weak (observational and dynamical) noise [9]. Furthermore, the or-
dinal pattern associated PDF is invariant with respect to nonlinear monotonous
transformations. Accordingly, nonlinear drifts or scalings artificially introduced
by a measurement device will not modify the quantifiers’ estimation, a useful
property if one deals with experimental data (see, i.e., [50]). These advantages
make the BP approach more convenient than conventional methods based on
range partitioning. Additional advantages of the method reside in its simplicity
(we need few parameters: the pattern length/embedding dimension D and the
embedding delay τ) and the extremely fast nature of the pertinent calculation-
process.

In this work the normalized Shannon entropy, HS (Eq. (3)), and the SCM,
CJS (Eq. (2)), are evaluated using the permutation probability distribution. De-
fined in this way, these quantifiers are usually known as permutation entropy

and permutation statistical complexity [48]. They characterize the diversity and
correlational structure, respectively, of the orderings present in the complex
time series. The complexity-entropy causality plane (CECP) is defined as the
two-dimensional (2D) diagram obtained by plotting permutation statistical com-
plexity (vertical axis) versus permutation entropy (horizontal axis) for a given
system [45]. For further details about the estimation of permutation quantifiers
and an exhaustive list of its main biomedical and econophysics applications we
refer the readers to [61].
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