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Abstract: The adoption of multiscale approaches by the biomechanical community has caused a major
improvement in quality in the mechanical characterization of soft tissues. The recent developments in
elastography techniques are enabling in vivo and non-invasive quantification of tissues’ mechanical
properties. Elastic changes in a tissue are associated with a broad spectrum of pathologies, which
stems from the tissue microstructure, histology and biochemistry. This knowledge is combined with
research evidence to provide a powerful diagnostic range of highly prevalent pathologies, from birth
and labor disorders (prematurity, induction failures, etc.), to solid tumors (e.g., prostate, cervix,
breast, melanoma) and liver fibrosis, just to name a few. This review aims to elucidate the potential
of viscous and nonlinear elastic parameters as conceivable diagnostic mechanical biomarkers.
First, by providing an insight into the classic role of soft tissue microstructure in linear elasticity;
secondly, by understanding how viscosity and nonlinearity could enhance the current diagnosis
in elastography; and finally, by compounding preliminary investigations of those elastography
parameters within different technologies. In conclusion, evidence of the diagnostic capability of
elastic parameters beyond linear stiffness is gaining momentum as a result of the technological
and imaging developments in the field of biomechanics.
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1. Introduction

Elastography is a medical imaging modality intended to map the elastic properties of soft tissues
for diagnostic purposes that has recently been undergoing heavy development. It combines an
imaging principle, that is, either ultrasonic or magnetic resonance imaging (MRI), with algorithms to
reconstruct the stiffness maps from the raw shear wave propagation data [1–4]. The references are more
detailed on ultrasound elastography, given the variety of techniques and the author’s background,
but the conclusions are fully applicable to magnetic resonance elastography (MRE). It follows that
only dynamic or shear wave methods will be reviewed since strain elastography merely delivers
relative deformability as the stress is unknown. However, in static ultrasonic methods, this current
dependency of the stiffness on the probe pressure can become an opportunity instead of a drawback,
since that dependency is caused by elastic nonlinearity, which is only quantifiable by dynamic
techniques at this time. Further, the emerging field of elastography of viscous elastic parameters
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is finally gaining prominence. Therefore, beyond the current standard of elasticity maps, measuring
the nonlinearity and viscosity might yield a more precise, pressure and operator-independent
interpretation of the results, since for nonlinearity models, the dependence of the tangent stiffness
modulus with deformation is correlated with operator-applied probe pressure, hence, decoupling
operator dependency at the time a new biomarker is added. This proposed mechanical biomarkers,
whose rationale is found in the tissue microstructure, and preliminary evidence, suggest a convincing
diagnostic potential.

The purpose of this present work is not to address ultrasound elastography techniques in detail;
there are several published works that deal with their differences and cut-off values, and the different
systems available in the clinical market [2,5–8]. Instead, this article reviews the projected capabilities
of viscous and nonlinear elastography parameters as clinical biomarkers from three perspectives:
(1) the linear mechanics of soft tissue, focusing on the microstructure of the stroma, and therein
mainly the fiber network organization; (2) how viscous and non-linear parameters are expected to
be able to refine the diagnoses provided by classical elastography modalities; and (3) a spectrum
of pathologies for which viscous and nonlinear elasticity quantification, conceived as mechanical
biomarkers, has current or potential applications.

2. Mechanics of Soft Tissue

2.1. Soft Tissue Microstructure

The application of imaging techniques based on the propagation of shear acoustic waves aims to
become a benchmark in terms of medical diagnosis. Pathologies such as tumors and fibrosis involve
changes in consistency, since the structural properties of these anomalies imply a stiffer area that reflects
histological differences in the microstructure of the tissue [9]. For current technologies to be effective
and reliable, a sufficiently broad range of variation in the mechanical properties of the tissue must
occur. This response can be addressed at the biological microscale, where the most relevant information
can be gathered [10–12]. At this scale, there are two fundamental components, the extracellular matrix
(ECM) and active cells, with fibroblasts and smooth muscle cells being the most prominent of this
second group. The integrity of the tissue is ensured by the ECM, with a composition that provides
support for the structural functionality through the formation of a fibrous scaffold. The components are
organized hierarchically down to the macromolecular level, according to the morphology and function
of the tissue they form. The primary constituent of the ECM is a crosslinked network of collagen
and elastin, which is embedded within a gelatinous matrix of proteoglycans (PGs). This matrix is
responsible for resisting and transmitting mechanical loads and regulating the hydrostatic pressure
and fluid flow [13]. For illustrative purposes, the reader is referred to Figure 1, where the remodeling
process of cervical ECM during pregnancy is graphically described.

All the elements that compose the ECM have a load-bearing role in the mechanical response,
emphasizing the importance of the content and distribution of collagen fibers in the shear modulus
of the tissue. During the synthesis of collagen there is a process of hydroxylation that determines
the crosslink formation, setting the adhesion of the new fibrils [14,15]. This is a critical step in
the development of pathologies related to collagen [16], such as fibrosis-associated pathologies,
as shown on foreskin cell cultures [17]. When several fibrils are adhered, they increase the crosslink
density, creating a stiffer fiber, 1–20 µm in diameter [18], and completing the fibrillogenesis
process [19–23]. Apart from the diameter, the morphology of the collagen is defined by the interfibrillar
space and the crimping. The origin of this wavy structure comes from the subfibril formation,
very sensitive to different homeostasis levels affected by biochemical factors. It can resist very
low compressions due to this crimping, which in turn is responsible for the existence of internal
shear [24,25]. The collagenous matrix varies greatly depending on the organ and its state. For instance,
breast tissue has a collagen content of 5–10% [26,27], similarly to the liver [28,29]. The collagen content
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is higher in the cervix and prostate tissues: around 60% for the cervix [30–32], and similar content for
the prostate can be inferred from qualitative analysis [33].

a) b)

Figure 1. Histological illustration of the ECM remodeling as an example of cervical tissue during
pregnancy. (a) The structure of the constituents in non-pregnant women. (b) The morphological
evolution near the end of pregnancy. Quantitatively, there are increases in active cell and water
contents, and crimping; and the diameter of collagen fibers increases, while PGs show a cyclic behavior.
The legend at the bottom describes the symbol for each constituent; PGs: proteoglycans.

Elastin fibers are randomly distributed in the ECM, loosely interconnecting collagen fibers [34].
During their formation elastin fibers are prestressed, and once they are assembled they discharge stress,
stretching and curling the attached collagen fibers [35,36]. They are used as a support in the mechanical
response of collagen, operating as springs that recoil the structure to its initial state, allowing it to
withstand repeated load cycles without reaching a plastic state [37]. They have a linear response up to
100% strain, with an average stiffness of 0.4 MPa depending on the tissue (two orders of magnitude
lower than collagen) [38,39].

The gelatinous matrix is a ground material composed of water, proteins and PGs. PGs fill
the spaces between the fibers in a perpendicular scattered network, conferring a supportive bending
stiffness to collagen. At the same time, they contribute to resisting compression forces along with
the interstitial fluid, balancing the fiber network [40]. PGs are composed of a core protein that covalently
bonds with glycosaminoglycans (GAGs), thereby becoming a scaffold for the loose proteins of the ECM.
Some of them can interlace their core with collagen, affecting the fibrillogenesis [41] and providing
lateral stability [42,43]. GAGs are polysaccharide macromolecules with high electrical charges; among
them, there is a particular GAG called hyaluronic acid, which is able to imbibe the surrounding
elements. This is a hydrophilic process that attracts water, generating osmotic pressure, turning these
components into a dampener against compression [44].

2.2. Linear Elasticity

The heterogeneous combination of the ECM components exhibits directional anisotropy, which is
mainly attributed to variations in the morphology of the crosslinked fiber network [45]. Consequently,
the stress at a point does not depend only on the gradient of deformation but also on the orientation,
connection and distribution of its components. At the same time, the fiber network displays a nonlinear
stress–strain relationship due to complex interactions that vary from point to point. The action of
collagen and elastin can be lumped together, showing a stress–strain behavior divided into three
regions (see Figure 2) [46]: (i) In the absence of load, collagen fibers are in their natural state of
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formation, wavy and loose. Due to its symmetrical organization, its behavior is frequently modeled
as approximately isotropic. For strains lower than 2%, collagen offers little resistance, originated by
fiber bending; thus, it is considered that elastin absorbs most of the energy, acting as a spring. This is
the area with normal physiological activities called the toe region, showing nonlinear effects [47].
(ii) The progressive increase in deformation will disrupt the fibers that begin to line up in the direction
of the load increasing the stiffness; this in turn, means that crosslinks are stressed and interfibrillar
sliding is induced; the stress–strain relationship is approximately linear. (iii) At around 30% strain,
depending on the tissue, crimping disappears and the fibers are arranged in parallel; the tissue reaches
its highest stiffness [48–50]. Beyond these values, crosslinks and fibers begin to break, leaving severe
damage to the tissue.

Figure 2. Stress–strain curve in soft tissues. The relationship is divided into three regions;
namely, the toe, the nearly linear, and the failure regions: in the first, elastin fibers absorb most
of the deformation and collagen forms a loose network that offers little resistance—primarily nonlinear
behavior; in the second, collagen fibers line up and start to work under severe stress (nearly linear);
and in the final region, the maximum capacity is reached. Color codes for the fibers are green for
collagen and black for elastin.

Current imaging technologies are gaining prominence because they are based on the propagation
of shear waves, which is directly proportional to the shear modulus, a very sensitive parameter to
the microstructure of the material being examined [51]. Whether through biochemical modulations
or the presence of a disease, the integrity of the tissue changes, which might be quantifiable with
enough contrast for a clinical diagnosis; for that purpose a range of scores has been proposed [8].
However, it is difficult to maintain a standard, as the review article of Sigrist et al. notes [2],
because the characterization of the shear modulus in the same tissue is variable. The variability
in the commercial equipment methodologies and the existence of mechanisms of contrast make
achieving standardization unfeasible. Another factor comes from the physical nature of shear waves;
the displacement generated is characterized by being usually oriented perpendicularly to their
propagation. However, the waves do not propagate with the fibrous matrix direction necessarily.
This is dependent on the interaction of the wavelength relative to the interrogated fibrous matrix;
therefore, its inherent anisotropy defines the examined direction. The dependence on tissue anisotropy,
albeit interesting, is outside the scope of this work; for further information the reader is referred to [45].
Additionally, when the viscoelastic nature of tissues is considered, their mechanical response is time
and frequency-dependent. Finally, the microscopic dimensions of the ECM components concerning
the exciter wavelength must be taken into account. The key is to find a trade-off in the excitation
frequency between a small enough wavelength that is able to interrogate internal components of
the target tissue and a distance to the source of excitation that reduces wave attenuation [52–54].
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The next step is to introduce the mathematical basis for soft tissue biomechanics, in this case,
from the perspective of the continuum making two simplifications. The first is incompressibility,
which stems from the high water content that does not allow the tissue to alter its volume under
deformation; thus, the Poisson’s ratio is considered close to 0.5. The second simplification is isotropy,
since the anisotropy of the tissue increases the difficulty of formulating robust constitutive relationships.
In most soft tissues, these simplifications have enabled researchers to work with more manageable
problems, enabling progress in the understanding of the mechanics of soft tissues.

The total stress (σij) and strain (εij) can be deconstructed into two linear parts that naturally
decompose the basic constituents of soft tissue [55,56]. On one hand, the volumetric, spherical or
hydrostatic part is associated with the ground substance, mainly fluid, which provides no significant
stiffness against shear deformations but is highly incompressible. On the other hand, shear stiffness is
provided by the stroma, which governs the deviatoric components, the fiber and protein structure of
the ECM.

σij = −pδij + τij p = −1/3σkk (1)

εij = −vδij + dij v = −1/3εkk (2)

where δij is the delta of Kronecker, p is the hydrostatic pressure, v is the volumetric strain, τij is
the deviatoric stress tensor and dij is the deviatoric strain tensor. The previous relations can be
combined to derive a constitutive relation, which is linear at first approximation and is similarly
divided into volumetric and deviatoric components.

σij = λδijεkk + 2µεij (3)

where λ and µ are known as the Lamé constants, which characterize the elastic behavior of the material
and must be obtained experimentally. The constant λ has no direct physical meaning; nevertheless,
it is often associated with the bulk modulus K = λ + 2/3µ, which describes the response in volume
change under volumetric pressure. Since the compressibility of soft tissues tends toward that of
water, which is orders of magnitudes higher than shear stiffness provided by the stroma, a good
approximation is K ≈ λ. As for the constant µ, it is usually called shear modulus and represents
the resistance to shear deformation and can be written in terms of elasticity modulus and Poisson’s
ratio µ = E/(2(1 + ν)) [57]. The volumetric and deviatoric decomposition naturally splits the former
linear constitutive relationship into

p = 3Kv τij = 2µdij (4)

Nevertheless, these parameters and assumptions do not provide a full representation of
the behavior of soft tissues; they are limited to low levels of strain, such as image-guided interventions.
New methodologies to interrogate other mechanical properties, such as shear viscosity and shear
nonlinearity, are now appearing. The viscoelasticity of soft tissues implies the search for high order
models that characterize the dispersion associated with shear wave propagation. As input, some
studies have used the shear wave group velocity, which approximates as a series of derivative
orders [58,59]. Likewise, taking advantage of the acoustoelasticity phenomenon, wherein the shear
wave velocity is altered when a stress is applied due to wave propagation, new parameters become
measurable [60–62]. For the specific case of nonlinear values, several theoretical methodologies
have been proposed, and some experimental results have been obtained through acoustoelasticity,
high amplitude shear wave propagation and nonlinear shear wave interaction [63]. The extracted
information refers to the structure and functionality of the tissue, allowing one to identify conditions
that elasticity alone is not able to capture so that the diagnosis is refined.
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2.3. Viscoelasticity

From the mechanical viewpoint, two phenomena contribute to the time-dependent or rheological
behavior of soft tissues: viscoelasticity and poroelasticity [64]. Although both viscosity and porosity
contribute additively to the same phase lag between stress and strain dynamics, they are commonly
quantified as an unique value called viscosity within the elastography community. However,
viscoelasticity and poroelasticity stem from fundamentally different origins and are only separable
playing with space and time scales. In other words, at large-size scales, tissues are viscoelastic in
the short-time period and poroelastic in the long-time period, whereas the small-size scales, tissues are
poroelastic in the short-time period and viscoelastic in the long-time period [65], which is clinically
intractable given the limited region and frequency ranges. For this reason, it might be appropriate to
rename viscoelastic elastography to rheological or dynamic elastography.

Soft tissues are generally assumed to be decomposed into their porous solid phases and their fluid
phases [66]. The high fluid content in tissues is combined with the poroelastic structure of the ECM
to allow motion between components under load, creating a time delay in the strain and triggering
the viscoelastic response [67]. This biphasic nature implies a phase lag between the stress and strain
associated with a relaxation time, or in the case of oscillatory mechanical tests, a phase angle. Then it
would be advisable to start considering time-dependent effects, since the strain response to load
and unload conditions is a function of time, often called the velocity of deformation. During the loading
cycle there is dissipation of energy, reflecting the existence of hysteretic effects. At the same time,
the strain evolution is slowed to allow the viscous flow to settle. Thus, the duration and rate of loading
define the dynamics of the tissue strain. Without this characteristic, the stress during physiological
activities would be harmful to the active structure [68].

One of the key features of viscoelastic tissues comes from the physics of wave propagation, where
the dispersion is defined as a compound expression of the poroelastic and microstructural media
governed by the complex fibrous multiscale microstructure of the stroma [69–72]. It is also known that
the amplitude and intensity of waves decays proportionally to the distance traveled. Additionally,
in a highly viscous environment, where the microvasculature and hemodynamics play an important
role, it is observed that wave phase velocity changes with frequency, and wave amplitude is affected
by geometric factors, such as boundary conditions and the sizes of scattering particles, similar or
smaller than the wavelength [73]. Another important point is that the frequency-dependent behavior
complicates the comparison of different technologies, since each author chooses a suitable range [6].
Neglecting the viscous part introduces bias for the estimation of elasticity, since the effect of wave
dispersion is ignored.

The possibility of explaining these mechanical parameters by the internal structure and function of
the tissue seems to be the key to improving the specificity of a pathology diagnosis. Collagen by itself
exhibits viscoelastic behavior, attributed to fiber and fibril sliding and the crosslinking density; however,
due to its short time of relaxation, it seems that the global response is dominated by non-collagenous
components [74]. Elastin has been found to contribute to stress relaxation, since when it was removed
in arteries, the relaxation time dropped significantly [75]. Nonetheless, PGs are considered to be
the main viscous constituents, via embedding the collagen fibers and creating a lubricating effect.
Their hydrophilia generates hydrostatic pressure, which, coupled with HA [76] and its large molecular
size, entails water attraction, filling the porous matrix [77]. The roles of PGs and HA have been
reviewed in tumor biology [78] and in inflammatory processes [79]. They are capable of acting as
signaling pathways, interacting with diverse receptors, which affect the ultrastructure of the ECM that
is transformed during inflammatory and neoplastic diseases [80]. In the case of pregnancy, as the time
of delivery approaches, an inflammatory process is triggered, during which the proportion of PGs to
collagen increases; therefore, higher viscosity is expected [81–83]. As for fibrosis disorders, there is an
increased deposition of ECM constituents, especially collagen, accompanied by PGs and HA that help
in cell signaling and proliferation [84]. A better understanding of these proteins and their relationship
with viscosity might allow for the development of concrete diagnostic and therapeutic strategies.
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Similarly, higher smooth muscle cell (SMC) tone in the carotid wall has been linked to higher
viscosity [85]. For its part, it has been seen that there is an increase in SMC in the internal walls
of the cervix as delivery approaches, and at the time of induction it became the most sensitive
part [86]. In the liver, the development of fibrosis has been accompanied by an increase of
SMC actin [87]. Investigations about the arterial viscoelasticity linked it to wall pressure [88].
From the perspective of tumors, there are changes at the cellular level which promote different reactions
of the stroma. In breasts, the viscosity of lesions has been studied in order to discriminate the nature of
the masses [89–92]. Higher viscosity was registered compared to healthy tissue and different ranges
allowed researchers to distinguish between benign and malignant lesions.

Thus far, most studies have ignored this behavior, relying only on approaches based on linear
elasticity simplifications. Although this has enabled progress to be made in quantitative imaging
techniques, diagnoses sometimes fail because they do not deal with all the information. [93]. To reduce
false-negative and false-positive results and to better understand pathological changes in soft tissues,
extended dynamic mechanical parameters such as viscosity need to be investigated [94] and eventually
be used as new diagnostic biomarkers. Ex vivo studies evidence the predictive relationship between
viscosity and pathology; for instance, the marked Ex vivo neuronal demyelination with development
of apparent vacuoles associated with a loss of interneuronal connections and thus with a reduction of
matrix dimensionality, causing an observed alteration of viscosity [72,95–97]. The collected data from
either traditional testing methods (creep and relaxation tests) or state-of-the-art imaging combined with
the current computational power are allowing for the retrieval of viscous parameters from empirical or
computational models. Table 1 presents a preview of the experimental evidence from which viscosity
parameters have been estimated with different methods, along with applications to soft tissues whose
results are described later in the manuscript.

Table 1. Qualitative overview of the work done on the description of the viscoelastic nature of
selected soft tissues. The techniques that have achieved remarkable results are: shear wave dispersion
ultrasound vibrometry (SDUV), dynamic mechanical analysis (DMA), magnetic resonance elastography
(MRE), shear wave elastography (SWE) and torsional wave elastography (TWE). KVFD: Kelvin–Voigt
fractional derivate; KV: Kelvin–Voigt.

Technique Soft Tissue Study Objective Method Reference

SDUV Liver in vivo porcine Regular characterization
Dispersion curve
Voigt model Chen et al. [98]

Liver in vivo Regular characterization
Dispersion curve
Voigt model Chen et al. [99]

Liver in vitro rat Fibrosis staging Dispersion curve
Voigt model Lin et al. [100]

Prostate in vitro Regular characterization
Dispersion curve
Voigt model Mitri et al. [101]

Breast in vivo Malignant vs. Benign vs. Healthy state Dispersion curve
Voigt model Kumar et al. [89]

DMA Prostate in vitro Healthy vs. Cancerous state Dispersion curve
KVFD model Zhang et al. [102]

MRE Breast in vivo Malignant vs. Benign vs. Healthy state Phase offset
imaging reconstruction Sinkus et al. [103]

Breast in vivo Malignant vs. Benign vs. Healthy state Transversely isotropic
model Sinkus et al. [104]

Liver in vivo Transplant rejection
Attenuation Measuring Ultrasound
Shearwave Elastography (AMUSE) Nenadic et al. [105]

Liver in vivo Regular characterization
Dispersion curve
Zener model Klatt et al. [106]

Liver in vivo Fibrosis staging
Dispersion curve
Zener model Asbach et al. [107]

Prostate in vivo Prostate cancer vs. Benign prostatitis
Phase offset
imaging reconstruction Li et al. [108]

SWE Liver in vivo Fibrosis
Shear Wave
Dispersion Slope Sugimoto et al. [109]

Liver in vivo Healthy vs. Fibrosis staging Shear Wave
Spectroscopy Deffieux et al. [110]

TWE Cervix Ex vivo Regular characterization Dispersion curve
KV and KVFD model Callejas et al. [111]
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It is important to note that if tissues are precompressed when they are examined, the estimation
of parameters will be biased, as the time-dependency of the response is relevant. Changes over
time due to mechanical stimulation are attributed to rapid alterations in cellular activity, mainly
the synthesis and modification of components of the ECM (collagen and proteinases) [112]. To avoid
this situation, preconditioning protocols should be proposed whenever the specimen studied allows
it, so that a stabilization in the response is achieved [113]. With the aim of capturing this material
behavior, the most popular approach considers soft tissues as uniphase solids and their response
to external loads or deformation is represented as a lumped relationship. This method uses linear
viscoelastic models that generally include a solid-related characteristic (e.g., spring) and a viscous
fluid element (e.g., dashpot). To name a few, Maxwell, Kelvin–Voigt (KV) and Zener viscoelastic
models provide information on how the different scales are linked to each other [98,111]. However,
in order to fit a model when the soft tissue shows several characteristic times, generalized linear
viscoelastic models are used, such as generalized Maxwell or KV models [114,115]. When large strains
are expected, these linear models are not suitable; thus, the proposed Fung’s quasilinear viscoelastic
model is frequently adopted [116].

One of the models in the literature most used to fit the parameters is the KV model, due to its
simplicity [117]. Other models have been explored, such as Maxwell; fractional derivative versions of
the above; and combined models, such as the springpot model [118]. The KV formulation in terms of
the stress tensor (Equation (1)), assuming constitutive and viscous linearity have been derived with
the aim of simplifying equations [119]. Following the references found in the literature [120–122],

p = 3Kv + 3ηvv̇

τij = 2µdij + 2ηḋij

(5)

where K is the compressional modulus; η and ηv are the shear and volumetric viscosities, respectively;
and v̇ and ḋij are the derivate of the volumetric and deviatoric strains, respectively.

Assuming incompressibility, only deviatoric components (τij, p = ν = 0) are considered.
According to the schematic representation of the KV model, the total stress is the sum of the elastic
and viscous terms,

σij = τij = 2µdij + 2ηḋij = 2µεij + 2ηε̇ij (6)

Following the same steps as in the Kelvin–Voigt model, the implementation of the Maxwell
model stems from the strain tensor of Equation (2). For the same reasons stated for the KV case
(dij, p = ν = 0), exclusively deviatoric components are considered. Only elastic and viscous
components of the deviatoric term of the strain tensor are adopted,

dij = τij/2µ, ḋij = τij/2η (7)

The constitutive equation for this model is obtained by adding the elastic and viscous terms by,

ḋij = τ̇ij/2µ + τij/2η (8)

All this evidence suggests that the viscous phase may become a biomarker for the characterization
of microstructural changes [123–127]. Table 2 shows some indications of the current status of this
parameter in terms of limitations and characteristics that have been specified for some ultrasound
elastography methods. Phase-sensitive imaging techniques might become a monitoring tool for early
diagnose, able to keep track of quick dynamic changes in the tissue, before significant or unclear
changes in elasticity and also reducing the number of unnecessary biopsies [1,128].
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Table 2. Comparison of the current methods that have been able to successfully estimate viscosity
parameters using ultrasound elastography.

Method Advantages Disadvantages

Shear wave speed dispersion
curve: estimation of vicosity
parameters by fitting a
rheological model

Most relevant and extended
technique
Considerable amount of previous
work for different types of organs to
compare with
Depends on shear wave methods:
noninvasive both internally
and externally in contact with
the soft tissue

No consensus on the most
appropriate rheological model for
soft tissue characterization
Studies report values of viscosity
for a specific rheological model
(not comparable)

Shear Wave Dispersion Imaging Dispersion slope value: physical
quantity not based on a rheological
model (model-free)

Integrated into commercial
ultrasound systems not accessible
for researchers (black box
software)

Shear Wave Spectroscopy: new
signal processing of the SSI data
(Supersonic Shear Imaging)

Frequency-dependent measurement
of the shear wave speed,
quantitative and noninvasive

Limits its use to scans via SSI

2.4. Nonlinearity

One of the main hypotheses about the pathology-mediated origin of nonlinearity changes
is based on the nonlinear character of the strain response. The organization of collagen fibers
and elastin, as well as their amounts, combined with the synthesis and degradation processes that are
experienced due to growth and remodeling enhance the nonlinear behavior [129,130]. Additionally,
the stress–strain behavior of the stroma is nonlinear between tension and compression, with a stiffer
response and reduced extensibility in tension, and a more compliant response in compression [131,132].

Several experimental studies, including the recent study of Aristizabal et al. [94], estimated
the nonlinear shear modulus in Ex vivo samples. Particularly, that paper was about Ex vivo kidneys
diagnosing end-stage renal disease, for which a better contrast in the diagnosis was shown. Based on
the principle of acoustoelasticity, the feasibility of obtaining nonlinear parameters through changes in
the deformation and its consequent interaction with the propagated wave is proven. The application
of a deformation and the use of radio frequency ultrasonic signals to quantify it, was the work
of Goenezen et al. [133]; they obtained spatial maps of nonlinear elastic parameters in patients
with malignant and benign tumors. Their conclusions highlight a greater magnitude in the case
of malignant tumors. In the context of preterm birth assessment, Myers et al. [131] investigated
the interaction between mechanical and chemical properties of several cervical samples from different
human hysterectomy specimens: non-pregnant patients with previous vaginal deliveries; non-pregnant
patients with no previous vaginal deliveries; and pregnant patients at the time of cesarean section.
The samples were tested under confined compression, unconfined compression and tension. Results
indicated that the cervical stroma has a nonlinear behavior that could be explained with an accurate
multi-scale model.

The significant hyperelasticity that soft tissues exhibit can manifest itself as quantifiable shear
wave harmonic generation (via ultrasonic shear elastography); the stored strain energy is variable
with the fiber orientation. Taking this opportunity, an efficient application of nonlinear or hyperelastic
constitutive equations for either finite element analysis or experimental analysis requires the derivation
of a strain energy function to consider an adequate stress–strain relationship. A diversity of approaches
to nonlinear mechanics have been developed since Landau and Murnaghan [134,135], which are
particularly well-suited for nonlinear wave modeling; then came the recent proposals lead by Ogden,
Mooney-Rivlin, Yeoh and Fung [136,137] which cover adjustment theories based on modeling of
physiological mechanics [138].
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These behaviors can be modeled from the perspective of the continuum, making the assumption
of Landau third and fourth-order elastic constants (TOEC and FOEC),

Sij = λδijεkk + 2µεij +Aε2
ij + 2Bεijεkk + C(εkk)

2 + h.o.t. (9)

limited to the third order, where A,B and C are the TOEC, and δij is the delta of Kronecker,
and where Sij is the second Piola–Kirchoff Stress tensor [139]. The simplification of nonlinear strain
energy function in the case of incompressible tissues, and extended to fourth order, was derived by
Hamilton [140], and it is considered as the most representative.

Sij = 2µεij +Aε2
ij + 4D(trε2

ij)εij (10)

Experimentally, nonlinear parameters can either be estimated by measuring the change
of apparent speed of shear wave propagation after a precompression [141], or by quantifying
the cumulative harmonic generation during the propagation of shear waves across nonlinear
tissue [142]. The nonlinear shear wave equation depending on TOEC and FOEC in the soft solid
isotropic state was derived by Hamilton and Zabolotskaya [140]. Then, through a strain energy function
they were able to separate the compressional and shear parts. In that approach, nonlinear propagation
depends only on three elastic constants of the first (linear), the third and the fourth-order (nonlinear).
Therefore, the generation of harmonics in soft tissue and biomaterials is likely to be studied under
this prism. However, it is also possible to describe a theoretical model of shear waves propagating
in soft biological tissue induced remotely by the nonlinear radiation force of the focused ultrasound.
The spatial and temporal profiles of the shear displacement confirm the results of the mathematical
modeling previously described. The experimental procedures based on acustoelasticity techniques are
also performed to obtain the nonlinear coefficients of the Burgers Equation by describing the behavior
of tissue [63]. For example, another experience in this line of research is the use of MRE by visualizing
the nonlinear propagation of shear waves providing valuable information about the nonlinear
mechanical behavior of the soft tissue [143]. From this procedure, it is shown that both odd and even
higher harmonics are processed, with their amplitudes depending on the actuator details, the image
geometry and the nonlinear properties of the tissue. With an adequate analysis of the displacement,
it is possible to derive the harmonics that arise from the nonlinear soft tissue response. They have been
extracted, for example, in phantoms at 600 and 750 Hz. Thus, if strain energy is modulated, it is feasible
to determine the nonlinear biomechanical properties of the tissue [51]. The second approach has
been proposed in combination with torsional wave elastography, described later [144,145] following
Landau’s theory [134] and its adaptation for quasi-incompressible media coupled with multiscale
hyperelastic models [146,147]. The formulations of the nonlinear torsional wave propagation on a
hyperelastic material should be taken into account in cylindrical coordinates characterized by strain
energy functions [148,149].

Analogously, it is also possible to accurately and quantitatively recover the local Landau
A parameter. The characterization of the shear nonlinearity of soft tissues by applying
the acoustoelasticity techniques in quasi-fluids could be correlated to the ultrasonic shear wave
speed [150]. But these theories should be tackled by more profound studies due to the dispersion
and variability of the outputs. It is also possible to deduce the nonlinear coefficients in the modified
Burgers model using the numerical simulation from the quadratic wave equation rewritten in its
nondimensional form [63]. It has been introduced to calculate nonlinear parameters of hydrogels
and in Ex vivo porcine kidneys [94], but the cubic orders are valid under a relation that should be
verified in some cases depending on acoustic nonlinearity [140].

In summary, since shear waves are believed to be far more sensitive to tissue classification than
standard compressional waves, but they are complicated to quantify, some experimental observations
may tangentially suggest that nonlinear mechanical properties may be a key signature withh which to
quantify and classify soft tissue behavior [151–156]. The advantages and disadvantages of the current
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scene of nonlinearity in biomechanics are summarized in the Table 3. Therefore, the focus on developing
nonlinear models in the clinical field will provide a better understanding of soft tissue biomechanics
alongside new diagnostic biomarkers. Techniques such as shear wave elastography and torsional
waves are postulated to be crucial tools, sensitive to the measurements of these nonlinear parameters,
provided a consistent and efficient complete formulation is established.

Table 3. Summary of the current state of implementation of nonlinearity in the quantification of soft
tissue mechanical properties.

Advantages Disadvantages

New set of parameters to interpret biological
and physiological disorders

Several proposed models to be chosen depending on
the problem, pathology or tissue considered

Characterization of tissue microscale in terms
of harmonics

Inhomogeneus measurements due to the nature of
propagation in the tissue

Open questions that add a new branch in biomedical
engineering

Mathematically intractable in exact terms

3. Clinical Applications

Since the 80s, elastography has gradually become a widely applied medical imaging
technique [157]. The different techniques of elastography are based on the assumption that soft tissues
are deformed more than rigid tissues, and that these differences can be quantified [158]. However,
this conventional perspective is undergoing a change of scenery; recently, emphasis has been placed
on the complex structures that soft tissues exhibit, deeming not only elastic but strongly nonlinear
hyperelastic, viscoelastic and poroelastic behavior important. Linear elastic models have been used
extensively to characterize soft tissues by the biomechanics community, though it is known that this
simplification in the characterization provides incomplete information in their results. Additional
biomarkers, such as viscosity and nonlinearity, are herein proposed as hypotheses to enable new
diagnostic standards in a broad spectrum of pathologies. In the following subsections, because of
the prevalence of the diseases from which they suffer, the focus is on prostate, breast, liver and labor
disorders, not to mention that the conclusions could be extended to solid tumors, atherosclerosis
and osteoarticular syndromes, to name a few.

3.1. Prostate

Prostate cancer is the second most common cancer in men worldwide (almost 1.3 million
diagnoses) and the fifth leading cause of cancer death among men (350,000 deaths worldwide) [159].
Furthermore, the increase in longevity and awareness of the disease is leading to more men
requesting screening, which in turn will dramatically increase the number of patients diagnosed [160].
Barr et al. [161] provided an extensive study of guidelines and recommendations on the clinical use of
ultrasound elastography on the prostate.

Ex vivo and in vivo results have demonstrated that acoustic radiation force impulse (ARFI) can
be applied to visualize internal structures and to detect suspicious lesions in the prostate [162,163].
Among all the elastography techniques for prostate cancer detection that provide quantitative elasticity
results at present, transrectal SWE (TR-SWE) by Aixplorer R© (SuperSonic Imagine, Aix-en-Provence,
France) is the most prolific in terms of the number of publications. Recent in vivo studies on prostate
cancer diagnosis using TR-SWE presented auspicious results [151,164]. However, TR-SWE has some
drawbacks [165]: the pressure artifacts induced by the transducer, as the end-fire design of the probe
requires bending to image mid prostate and apex; the slow frame rate, i.e., one image per second;
the limited size of the ROI, since only half of the prostate is covered; the delay in stabilizing the signals
at each acquisition plane; and the signal attenuation in large prostates was making the evaluation of
the anterior transitional zone of said prostates difficult or impossible [166]. Most of the quantitative
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elastography results of tissue elasticity of the prostate have been achieved by using TR-SWE in different
states of in vivo prostatic tissue [151,166–170]. The frequency range is expected to be between 50
and 450 Hz according to other TR-SWE publications [171]. By analyzing these results, differentiation
between benign and malignant tissue in terms of stiffness is not a trivial matter, since ranges of
values overlap. In order to discriminate in vivo malignant tissues from benign tissues using TR-SWE,
Correas et al. [164] and Barr et al. [151] proposed Young’s modulus thresholds of 35 and 37 kPa
respectively. According to their conclusions, these thresholds provided additional criteria for prostate
cancer detection and biopsy guidance and enabled a substantial reduction in the number of biopsies.

The application of point shear wave elastography (pSWE) allowed Zhai et al. [172] to reconstruct
the shear modulus values from excised human prostates with different pathologies. The limitation of
the work was the low spatial resolution, which may cause variations in the reconstructed shear
modulus. Another in vivo study by Zheng et al. stated that pSWE could effectively measure
the stiffness of prostate nodular lesions between prostate cancer and benign prostatic hyperplasia [173].
Even so, the authors specified that the limited detected depth and the fixed box dimensions of the target
region of interest (ROI) could hamper the broader application of pSWE technology.

As for the viscoelastic characterization of human prostatic tissue, few studies based on ultrasound
elastography have addressed the issue. Shear wave dispersion ultrasound vibrometry (SDUV), one
of the few techniques that has been used in the prostate, consists of monitoring the propagation
of the shear wave by a separate ultrasound detector and reconstruction of the wave speed from
two different phases [98] (refer to Figure 3 for an illustrative example of the principle). The in vitro
study of Mitri et al. [101] used a KV model aimed at the characterization of the mechanical shear
parameter for frequencies between 50 and 400 kHz. They obtained shear elastic modulus values of
1.31–12.81 kPa and viscosity values between 1.10 and 6.82 Pa.s. These data proved the viscoelastic
nature of the properties of prostatic tissue.
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Figure 3. Illustration of shearwave dispersion ultrasound vibrometry (SDUV) principle. A harmonic
shear wave is produced by a push beam; the propagation is monitored by separated detection beams
at two positions. The shear wave speed is reconstructed from its phase φ1, φ2, separated a distance ∆r.

Two other studies used a Kelvin–Voigt fractional derivative (KVFD) constitutive law, a more
generalized case of the KV model, for measuring the variation of the complex Young’s modulus E∗

between normal and cancerous prostatic tissue [102,174]. In the first in vitro study, Zhang et al. [102]
extracted the complex Young’s modulus by fitting data from a dynamic mechanical analysis (DMA)
test to a KVFD model. In Table 4 the viscosity parameter and the order of the fractional derivative
associated with the KVFD Young’s modulus is presented. In the second Ex vivo study, Hoyt et al. [174],
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made a comparative study between crawling wave spectroscopy and the same DMA test used in
the first study for two samples of human excised prostate. Results showed relative similarities between
techniques with errors below 12%. In any case, the sample sizes were too small to be statistically
significant in both studies.

Table 4. Viscosity parameters derived from different methods, including a Kelvin–Voigt fractional
derivative (KVFD) fitting using dynamic mechanical analysis (DMA), KV fitting on shear wave
dispersion ultrasonic vibrometry (SDUV) and magnetic resonance elastography (MRE) results of
prostatic tissue. Values are reported as means and standard deviations.

Tissue State Viscosity
Parameter (Pa.s)

Fractional Derivate
Order Method Reference

Healthy 3.61 ± 1.25 0.215 ± 0.042 DMA Zhang et al. [102]
Cancerous 8.65 ± 3.40 0.225 ± 0.03

Healthy 1.10–6.82 (range) - SDUV Mitri et al. [101]

Benign prostatitis 2.13 ± 0.21 - MRE Li et al. [108]
Cancerous 6.56 ± 0.99 -

In the field of MRE some studies have addressed the generation of shear waves using transurethral
devices. Chopra et al. [175] designed a transurethral actuator to produce shear waves in the prostate
with adequate propagation at a reasonable frequency. A canine experiment demonstrated the feasibility
of transurethral MRE in vivo. Shear waves have a penetration depth of 3–5 cm, as opposed to 15 cm
for an external driver, allowing high spatial resolution. An alternative to the invasive transurethral
driver was subsequently proposed by Arani et al. [176]. The driver was tested in prostate-mimicking
gelatin phantoms to explore the imaging parameters of transurethral MRE and to determine whether
they encompass the requirements for prostate cancer localization. A more recent study carried out
by Reiter et al. [177] investigated the limitations present in MRI, such as interobserver variability
and low specificity. For this purpose, fourteen fresh prostate specimens from men were examined.
A piezoelectric actuator induced radially converging shear waves in the sample. The results of
the work suggested that prostate MRE has the potential to improve the diagnostic performance of
multiparametric MRI. An in vivo study carried out by Li et al. [108] showed that MRE could be used to
distinguish between prostate cancer and benign prostatic disease in terms of shear viscosity. The study
included 18 patients (eight with prostate cancer, 10 with prostatitis). The mean shear viscosity was
significantly higher in prostate cancer (6.56 ± 0.99 Pa.s) than in benign prostatitis (2.13 ± 0.21 Pa.s).

Further experimental characterization studies of prostatic tissue are required to accurately model
the real viscoelastic behavior of the prostatic tissue in all its conditions. As far as we know, no clinical
studies taking into account the effect of the nonlinearity of prostate tissues have been reported.

3.2. Breast

The International Agency for Research on Cancer concluded in 2018 [159] that breast cancer
is the most commonly diagnosed (over 2 million cases) and leading cause of cancer death (over
600,000 cases worldwide) among females. In the last few decades, several studies have compared
the efficacy of the diagnosis of mammary elastography versus conventional ultrasound in the evaluation
of different breast lesions. Ultrasound evaluation is established through the BIRADS classification [178],
while the elastographic assessment is based on building a pattern between stress and size
relationships [179,180]. Despite these efforts, it remains a significant healthcare problem, and what is
more, countries in transition are experiencing a rise in their rates [181].

The representative clinical cases whose applications are relevant to include are benign lesions,
malignant lesions and lymphatic and metastatic lesions [182]. The anatomy of the breast has allowed
several elastography-based studies to be performed for the characterization and detection of masses.
An extensive work of the World Federation of Ultrasound in Medicine and Biology (WFUMB) dealing
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with the guidelines and recommendations for clinical use of ultrasound elastography on the breast
could be consulted for further information about elastography systems and their cut off values [183].
However, no clear consensus has been reached as to what measure of the shear modulus should be used
and what ROI is the most appropriate for the estimation of elasticity. What is clear is that malignant
lesions show a larger shear modulus than benign [92,184–190]. Still, several forms of misdiagnosis have
been considered. The size of the lesion combined with a high density of the tissue could complicate
the detection [191]. If benign and malignant lesions overlap, the power of the elasticity estimation
is reduced [171,192]. Another issue comes from the effect of calcification: the surrounding zones are
hardened, making the elasticity estimation higher. If the ROI selected matches this area, a misdiagnosis
may be expected [193].

In contrast, viscosity is emerging as a better indicator, especially for tumor differentiation [194].
The first studies in using this parameter for in vivo diagnosis were attempted by Qiu et al. [195].
They compared the retardation times of benign and malignant lesions. The time for the benign state was
clearly larger than the malignant. This was justified because malignant tumors increase their collagen
and crosslinking densities, while there is a reduction of proteoglycans that declines the lubricating
effect. Benign lesions are dominated by the fluid viscous phase of the tissue, hypothesized in part to
be the lubricated motion of collagen. Those results are opposed to the studies on the quantification of
the shear viscosity summarized in Table 5. Sinkus et al. performed two in vivo studies using MRE [103]
and transversely isotropic models [104]. The idea behind the use of models with transverse waves
is to remove the contribution of compressional spurious waves in order to reconstruct viscoelastic
parameters. The SDUV technique has also been used in combination with viscoelastic models [89]
(refer to Figure 4 for the reconstruction process). Another recent study on in vivo tissue applied
the data from the creep test to a first order KV model fit, where the retardation time allowed them
to distinguish between benign, malignant and healthy tissue [196]. These techniques are not feasible
to compare, since, as previously stated, soft tissues are frequency-dependent and each author uses a
different range of frequencies. The common finding that emerged was that shear viscosity was higher
in all malignant states, and despite the great dispersion showed, these masses were heterogeneous in
terms of their viscosity values. Additionally, the studies inferred that the maximum values were well
correlated with malignant diagnosis in MR mammographies, encouraging further exploration.

Table 5. Viscosity parameters are calculated for the malignant, benign and healthy states in the breast
tissue. The methods applied were magnetic resonance elastography (MRE), transverse acoustic
waves and shear wave dispersion ultrasound vibromerty (SDUV). Values are reported as means
and standard deviations.

Tissue State Viscosity Parameter
(Pa.s) Method Reference

Malignant 2.40 ± 1.70 MRE Sinkus et al. [103]
Benign 2.10 ± 1.40
Healthy 0.55 ± 0.12

Malignant 3.00 ± 0.80 Transverse Acoustic
Waves

Sinkus et al. [104]

Benign 2.40 ± 1.90
Healthy 0.70 ± 0.55

Malignant 8.22 ± 3.36 SDUV + Kelvin-Voigt Kumar et al. [89]
Benign 2.83 ± 1.47
Healthy 1.41 ± 0.67
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Figure 4. An illustrative process for the estimation of the viscosity parameter of a malignant mass.
(a,b) Maps of particle velocity; (c) a k-space map displaying the phase velocity with the energy of
each frequency; (d) the final result as a dispersion curve, based on the phase velocity, which is fitted
using a Voigt model for estimation of viscoelastic parameters. Source: PLoS ONE, modified from 2018
Kumar et al. [89].

Bernal et al. [141] focused on the detection of early breast cancer in vivo by nonlinear quantification.
In their study they implemented a technique that combines shear wave elastography with a prestress
that modifies the shear wave speed due to the Landau-type elastic nonlinearity, to measure
the nonlinear shear modulus. The mean values of the nonlinear parameter A were −95 kPa for
healthy tissue, −619 kPa for benign lesions, and −806 kPa for malignant lesions, a considerable
variability that show signs of its utility.

These techniques suggest a promising scenario, but the recent expansion of elastography among
all device designers and manufacturers has led to a dizzying increase in the number of tests whose
results call for consistency improvements [197]. Despite this, it has been exhibited that both linear
and nonlinear elastography, possibly together, promise better sensitivity and specificity with which to
characterize benign and malignant mammary lesions [198].

3.3. Liver

Over two million people are estimated to die every year due to chronic liver diseases: one million
due to complications of cirrhosis and the rest due to viral hepatitis and hepatocellular carcinoma [199].
These diseases remain a burdening health problem [200] that demands better mechanisms for
prevention, correct detection and treatment [201]. Different organizations have published a quite
number of reviews of utlrasound elastography and clinical guidelines, and they can be consulted to
deepen knowledge in the technical and clinical domains [2,8,202–206].
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There are several tests available in the clinical protocols to assess the extent of fibrosis and cirrhosis.
The most common is a percutaneous liver biopsy, a procedure performed without hospital admission
that consists of introducing a biopsy needle through the ribs to the liver [207]. Although it is a
standardized method to determine the state of the liver, its limitations stem from being an invasive
method, which can cause minor or severe complications [208]. Additionally, the liver is a large organ
and the biopsy represents only 1 of 50,000 of its total volume, whereby it can provide false negatives
or misinterpretations of the real state of the disease [209,210]. The METAVIR scale and the Scheuer
classification [211] divides fibrosis into five stages. Stage 0: there is no fibrosis. Stage 1: mild fibrosis.
Stage 2: fibrosis extends to areas near the portal vein. Stage 3: fibrosis extends out from the areas of
the portal vein. In this stage, many bridges of fibrosis connect the portal vein with the central areas
of the liver. Stage 4: fibrosis has evolved to cirrhosis, which is an advanced pathological stage with
distortion of the hepatic vasculature and architecture [212].

The most important advance for fibrosis staging has been obtained with the appearance of
transient elastography (TE) using Fibroscan R© (Echosens, Paris, France), which has pioneered efforts
since its first commercialization in 2003. Fibroscan R© generates images corresponding to the propagated
elastic wave associated with values of hepatic rigidity measured in kilopascals (kPa). In vivo results of
Ziol et al. [213] and Castera et al. [214] indicate that TE allows differentiating significant states of fibrosis.
Chon et al. in [215] confirmed in a meta-analysis that TE is more accurate for detecting F4 fibrosis
than mild fibrosis. Similar results were obtained by Afdhal et al. [216]. Transient elastography has
been shown to be effective in diagnosing cirrhosis (stage F4 fibrosis) and generally in distinguishing
significant fibrosis (≥F2) from non-significant fibrosis (F0 and F1). Cassinoto et al. [217] made a
comparison study between TE and 2D-SWE and pSWE using biopsy as a gold standard. Results
demonstrate that shear wave elastography (SWE) is more accurate in the diagnosis of severe fibrosis
than TE. Similar results can be found in [218–220]. However, the distinction between individual
fibrosis stages is still not well validated. These studies did not change the frequency of vibration,
thereby disregarding the viscoelastic properties of the liver, and this presumably could lead to errors
in the early detection of liver fibrosis because the elasticity can be kept within normal values in those
stages [110,220].

The highly viscoelastic structure of the liver suggests a strong diagnostic potential of viscosity,
since shear wave velocity is frequency-dependent; this means that it is possible to in vivo quantify
the tissue viscosity from the dispersion curves [99,122,221–223]. The elasticity of the liver depends
mainly upon the fibrosis stage, but additionally on factors such as edema, inflammation, extrahepatic
cholestasis and congestion [224]. For these cases of hepatic diseases, having an additional biomarker
to quantify the stage of the disease may yield a significant advantage. Viscosity also plays a vital role
in cases where the contrast of the elastography is not good enough [128].

In terms of attenuation of shear waves, viscosity has been used to propose a technique to separate
transplanted livers with severe rejection from livers with no rejection by Nenadic et al. [105]. The study
computed the attenuation of shear wave elastography (AMUSE), which allows the characterization of
viscoelastic parameters without using rheological models. Shear wave velocity and attenuation of 15
transplanted livers in patients with severe rejection were measured; the results were correlated with
biopsy findings, confirming a high ratio of concordance.

SSI was also used to staging liver fibrosis, with several studies reporting that shear wave imaging
was more accurate than TE [225,226], but again, SWE can not reliably differentiate between mild
stages of fibrosis. The importance of this potential biomarker has led to supersonic shear imaging
(SSI) to recently release AIXPLORER MACH30 R© (SuperSonic Imagine, Aix-en-Provence, France) with
new liver tools as the viscosity imaging feature. Figure 5 shows and imaging of a healthy liver with
real-time viscosity values.
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Figure 5. Measuring real-time viscosity of a volunteer patient using supersonic imagine (SSI)
AIXPLORER MACH30 R©. The image on the left shows a healthy patient, while the right
subfigure clearly distinguishes differences in the viscosity of a cirrhotic liver. Courtesy of Pr
V.Vilgrain—Hopital Beaujon.

Conversely, several authors obtained results that have shown that viscosity does not notably
improve liver fibrosis staging [99,110]. The works of Chen et al. [98] and Lin et al. [100] used SDUV,
reporting values of 1.96 ± 0.34 Pa·s for the in vivo healthy porcine liver and 1.07 ± 0.12 (F0),
1.22 ± 0.25 (F1), 1.61 ± 0.17 (F2), 1.64 ± 0.11 (F3) and 1.61 ± 0.21 Pa·s for the in vivo fibrotic rat
liver, respectively. But the common understanding is that viscosity in the human liver increases with
higher fibrosis stages, as summarized in Table 6. Likewise, a recent study of Sugimoto et al. [109]
has tried to overcome the limitations of the former studies by enrolling subjects with a single etiology,
and using the dispersion slope value instead of a simple Voigt model since there is no consensus
in the clinical/elastography community with the most appropriate rheological model for soft tissue
characterization. They put the focus of dispersion slope measurements on the lack of practical guidance.
Furthermore, the work has confirmed that shear wave speed (SWS) is superior to shear wave dispersion
slope in delimiting the degree of fibrosis. On the other hand, they found that the dispersion slope is
superior to SWS in the prognostics of the degree of necroinflammation.

Table 6. Human liver range of viscoelastic biomarkers for healthy state and different grades of fibrosis.
Results were obtained using magnetic resonance elastography (MRE) and shear wave pectroscopy (SW
spectroscopy). Values are reported as means and standard deviations.

Tissue State Viscosity Parameter
(Pa.s) Method Reference

Healthy 6.7 ± 1.3 MRE + Zener model Klatt et al. [106]
Healthy 7.3 ± 2.3 MRE + Zener model Asbach et al. [107]
Healthy 2.0 ± 0.8 (F0) SW spectroscopy Deffieux et al. [110]

2.3 ± 0.7 (F1)

Fibrosis 2.6 ± 0.5 (F2) SW spectroscopy Deffieux et al [110]
2.7 ± 1.9 (F3)
3.7 ± 2.5 (F4)

Fibrosis 14.4 ± 6.6 (F3–4) MRE + Zener model Asbach et al. [107]

Moreover, it has been found that shear wave dispersion is strongly correlated with the degree
of steatosis in non-alcoholic fatty liver (NAFLD). In the most severe cases NAFLD could progress to
cirrhosis, requiring liver transplant [227]. Preliminary Ex vivo and in vivo studies in mouse, porcine,
duck and goose livers manifest that viscosity may become a key biomarker in distinguishing fatty
liver [128].

Recent publications have highlighted the interest MRE causes as a method for detection
and staging of liver fibrosis. Sherman et al. [228] examined performance characteristics of the enhanced
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liver fibrosis (ELF) index compared to MRE. The conclusions stated that the ELF index was a highly
sensitive and specific marker of cirrhosis when compared with MRE. A posterior study evaluated
the relationship between an increase in liver stiffness on MRE and fibrosis progression in nonalcoholic
fatty liver disease (NAFLD) [229]. The prospective cohort study included 102 patients who underwent
contemporaneous MRE and liver biopsy. The study concluded that a 15% increase in liver stiffness on
MRE may be associated with histological fibrosis progression. Although high mortality is associated
with significant hepatic fibrosis, data on the estimated prevalence of liver fibrosis in the general
population is scarce. Kang et al. [230] carried out a study with 2170 participants. The prevalence values
of significant and advanced liver fibrosis were 5.1% and 1.3% in the overall health-clinic cohort.

Viscosity imaging seems to be an essential non-invasive biomarker, providing additional
information to diffuse liver pathology. Even so, it is believed that suboptimal shear wave signal
quality measured in vivo could be one of the causes of worse performance of viscosity over elasticity.
The precise quantification of the viscosity is a challenging inquiry; besides, the selected viscoelastic
model determines the accuracy of the results. Exploring the nonlinear parameters to evaluate the degree
of fibrosis has not yet been achieved at any level.

3.4. Labor Disorders

The World Health Organization (WHO) estimated in 2017 that approximately 15 million babies
would be born preterm (<37 weeks of gestation); this is a rate above 1 in 10 newborns [86]. The problem
of cervical insufficiency is intimately related to the mechanical properties of the cervix, and hence
any approach must involve means to quantify the biomechanical state of the cervix. The mechanical
parameters are sensitive to the collagen remodeling that progresses throughout cervical ripening,
and which ultimately controls the cervix’s mechanical ability to dilate [231].

Cervical tissue elasticity has been studied extensively. The first investigations were carried out by
using static elastography (SE) [232]. However, researchers have claimed since then that we should not
depend on SE to capture the changes that the cervical tissue undergoes during gestation because it
highly depends on the pressure applied by the operator. Standardization of the measurement method
is a call in many in vivo studies [233,234]. Molina et al. [235] came up with the idea of restricting
the induced probe displacement. Controlling the pressure was an objective of Hernandez et al. [236],
using a reference elastomer material [237]. Thus far it seems that there is no way to bypass the limitation
of strain elastography [234,238,239].

Research moved towards looking for solutions, adopting the dynamic technique named shear
wave elasticity imaging (SWEI) [51,240]. It has been widely used for the assessment of cervical
changes [4,241–245]. Carlson et al. [4] measured SWS in human Ex vivo samples. Results showed
that SWS was able to distinguish between ripened and unripened cervical tissue. Feltovich et al. [233]
proposed the elasticity as an interesting biomarker for physicians, since the elastic modulus varies more
than 80 kPa while SWS varies from approximately 1.2 to 5.5 m/s over the cervix. Carlson et al. [246]
found in a longitudinal study that stiffness decreased over the course of pregnancy, and the same
group explored the feasibility of SWS in capture the cervical softness in pre and post ripening in
women experiencing induction for labor [241]. Peralta et al. [247] used the commercial SSI to quantify
the cervical stiffness at four ROIs, which evidenced that microstructural changes generate a measurable
shear stiffness reduction that gradually undergoes throughout gestation. This remodeling has been
further investigated in the regions of the external os that have been proven to be softer than the internal
os [235,248]. If pregnant women score small strain values at the internal os, it is unusual to experience
spontaneous preterm birth [248]. SWS was found to decrease versus gestational age at the internal
os [243]. Related results were obtained by Muller [242] in pregnant women compared to a control
group. SWS before and after prostaglandin application were measured prior to term induction of labor
in 20 women. Significant results were obtained (2.53 ± 0.75 m/s before and 1.54 ± 0.31 m/s 4 h after
prostaglandin application) [241]. Authors also compared SWS between pregnant women in the first
trimester and the third one; results of 4.42 ± 0.32 m/s and 2.13 ± 0.66 m/s were reported respectively.
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Although the SWEI technique has been effective in the cervical tissue description, it presents
some limitations: first, shear waves are highly attenuated due to the microstructural complexity of
the cervix, and secondly, the complexity of producing adequate shear waves in its boundaries. The use
of torsional waves (shear elastic waves that propagate radially and in-depth in a curved geometry
to sense soft tissue architecture) has been demonstrated to enable a new class of characterization to
quantify the mechanical functionality of any soft tissue [249–252].

Given these limitations, Melchor et al. [253] and Callejas et al. [111] introduced a novel technique,
torsional wave elastography (TWE). The method is based on the transmission of shear waves by a
rotational electromechanical actuator and received by a sensing ring. One of the advantages of this
technique when compared with SWEI, is that it is highly adequate for cylindrical, small organs, such
as the uterine cervix, since TWE generates low energy that does not generate rebounds as SWEI.
Torsional wave elastography was used to quantify the stiffness of cervix in pregnant women in vivo
by Masso et al. [254]. Preliminary results reveal that TWE could become an advantageous technique
capable of quantifying the decrease of cervical stiffness during gestation.

Up to this point, the studies presented earlier have ignored the viscosity and nonlinearity of
the uterine cervical tissue. Substantial hydration changes and inflammatory processes are well known
to occur during maturation, as is collagen decrimping, which suggests that viscous and nonlinear
parameters may be of significant importance. TWE explored viscosity in Ex vivo cervix tissue—results
are shown in Table 7 and Figure 6 [111]—and nonlinear parameters by the harmonic generation of
torsional shear waves [145].

Figure 6. Fitting of the most popular rheological models to the experimental results obtained
by rheometry (the lowest frequencies) and TWE (the highest frequencies) in the cervix Ex vivo.
The Kelvin–Voigt (KV), Kelvin–Voigt fractional derivative (KVFD) and Zener models are successfully
adjusted while the Maxwell model is not able to represent the full frequency range satisfactorily. Source:
Sensors, reproduced from 2017 Callejas et al. [111].
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Table 7. Viscoelastic parameters of Ex vivo cervical tissue using data from rheometry (R), torsional
wave elastography (TWE) and a combination of both techniques (R + TWE) for Kelvin–Voigt
(KV) and Kelvin–Voigt fractional derivative (KVFD) models. Values are reported as means
and standard deviations.

Models Rheometry (R) TWE R + TWE

Elasticity µ (kPa)

KV 1.79 ± 0.08 2.43 ± 0.26 1.92 ± 0.15
KVFD 0.92 ± 0.15 2.06 ± 0.11 2.01 ± 0.24

Viscosity η (Pa.s)

KV 6.34 ± 0.95 4.59 ± 0.29 4.5 ± 0.25
KVFD 23 ± 9.84 4.23 ± 0.22 4.64 ± 0.09

Fractional Derivative Power α

KVFD 0.25 ± 0.15 0.97 ± 0.02 0.98 ± 0.01

McFarlin et al. [255] suggested that cervical ultrasonic attenuation, which is theoretically linked
to compressional viscosity (independent from shear viscosity), could identify women at risk of
spontaneous preterm birth (SPTB). It seemed that low attenuation may be an additional biomarker
with which to identify SPTB. SWEI was conducted in vivo on the pregnant cervix of Rhesus macaque,
divided into two groups; ripened and unripened specimens [81]. Authors found dispersion (the slope
of dispersion curve of SWS versus frequency) in both groups (median 5.5 m/s/kHz, interquartile
range: 1.5–12.0 m/s/kHz). Peralta et al. [71] proposed Maxwell’s model as the best model to use
in preliminary estimations of cervical viscoelastic properties. Myers et al. [256] suggested that since
the cervical tissue is mechanically anisotropic, the uniaxial response of Ex vivo human cervix samples
would depend on the load direction.

Jiang et al. [257] employed 3D multifrequency MRE to the uterus and analyzed the viscoelasticity
of the uterine tissue in healthy volunteers. They observed that the uterine corpus has higher
elasticity, but similar viscosity compared with the cervix, in terms of complex shear modulus (uterine
corpus = 2.58 ± 0.52 kPa vs. cervix = 2.00 ± 0.34 kPa). They concluded that the proposed technique
shows sensitivity to structural and functional changes of the endometrium and myometrium during
the menstrual cycle. Shi et al. [258] measured the compressive viscoelastic mechanical properties of
Ex vivo human cervical tissue using indentation and an inverse finite element analysis, to conclude
that the human cervix is nonlinear and the area of the internal os is stiffer than the external os.

No human in vivo measurements of cervical viscosity changes during gestation have yet been
reported in the literature, and no measurements of nonlinear biomarkers have been published as far as
we know.

4. Discussion

In perspective, the purpose of this review was to present ground and clinical evidence that
goes a step beyond linear elasticity. Abnormalities in the viscosity and nonlinearity of soft tissues
are intimately linked to a broad range of pathologies, including labor disorders, solid tumors,
atherosclerosis, liver fibrosis and osteoarticular syndromes, just to name but a few. This suggests
that it is crucial to rethink where we are in terms of soft tissue mechanics and how pathologies affect
them, opening a timely opportunity of moving forward defining new mechanical biomarkers, enabling
earlier, more specific and precise diagnostic and therapeutic decision making.

On the one hand, viscoelasticity, or more generally, tissue rheology or dynamic dispersion, is
recognized from the physics of wave propagation as a compound expression of the rheological,
poroelastic and microstructural scattering phenomena governed by the complex fibrous multiscale
microstructure of the stroma, which mainly stems from the interaction of collagen and elastin with
the viscous proteoglycans, which undergo characteristic changes during pathologies.
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On the other hand, the significant hyperelasticity that soft tissues exhibit can manifest
itself as quantifiable shear wave harmonic generation, and one of the main hypotheses about
the pathology-mediated origin of nonlinearity changes is based on the crimping and crosslinking
of tissue fibers. In the same manner that shear waves have recently been believed far more
sensitive to tissue classification than standard compressional waves but are troublesome to quantify;
some experimental observations may tangentially suggest nonlinear mechanical properties may be a
key signature with which to quantify and classify and diagnose a range of soft tissue pathologies.

Only scarce clinical elastography measurements of viscous or nonlinear parameters have
been reported for diagnostic purposes, despite the promising perspectives that both unveil from
the underlying rationale and from Ex vivo or animal testings. For instance, within the field of labor
disorders, despite the decrimping of fibers along gestation as well as the inflammatory process,
it is suggested to be a strong diagnostic potential of those biomarkers. Nonetheless, no attempts to
measure viscoelastic and nonlinear parameters using elastography as biomarkers have been reported
in the literature, which opens a promising research field. Similarly, Ex vivo measurements together
with non-elastographic data evidence strong correlations between viscosity and pathology in the liver
and prostate, supporting promising clinical potential and opening future research prospects. Within
the field of breast cancer, only one attempt using shear wave elastography for nonlinear measurements
in vivo has been reported to date, combining elastography with a prestress that modifies the shear
wave speed due to the Landau-type elastic nonlinearity, though it exhibited limited repeatability. Still,
MRE delivers more extensive results with a clearly discriminant potential. Despite these preliminary
experiences, linear and nonlinear elastography, possibly together, promise an improved sensitivity
and specificity to characterize benign and malignant mammary lesions.

Regarding the limitations of these recent methodologies, it is difficult to describe them objectively,
since it is not possible to compare studies and draw conclusions. Viscosity measurement with ultrasonic
techniques is currently less extended than by MR techniques, but this shortcoming is only attributable
to the immaturity of the ultrasonic technique; thus, barriers to its future potential are foreseen.
The two origins of dispersion: viscosity and poroelasticity will probably remain indistinguishable
in vivo, since their separation would require measurements at timescales too far away. Hence,
a single biomarker will probably describe both. Evidence towards the potential of elastic nonlinearity
biomarkers has been provided, whilst the technology is still too immature to state any potential
limitations towards nonlinearity quantification.

The key open research questions involve a detailed formulation for the nonlinear and viscous
components of the microstructure as the ideal procedure to understand the changes and functions
in tissues that exhibit these behaviors. However, the diverse interactions between fluid components
and fibers do not allow the validation of complete models, where the stored energy is considered
individually for each component, ignoring physiological processes of mixed nature that should not
be underestimated. In the specific case of viscosity, the industry has already taken its firsts steps to
address it at the clinical level, and the challenge now is that commercial elastography techniques
must converge on a common framework for the estimation of viscosity and accurate differentiation
of disease states, not only regarding whether there is a pathological condition, but whether it is of
malignant or benign nature. In particular, ways to enhance the dispersion biomarker applicability,
by widening the interrogation frequency range, promise to enable not only storage and loss moduli,
but also poroelastic and a range of viscoelastic models simultaneously. This would yield more
profound understanding of tissue rheological ultrastructure and histology parameters, eventually
allowing prediction of how disease processes change mechanical properties. As regards nonlinearity,
it is a yet pending biomarker, an emerging concept where the still-modest clinical experiences such as
breast cancer A parameter promise strong diagnostic potential once the technical issues are solved.
Nonlinearity is, to our knowledge, still not available on commercial systems.

In conclusion, several front lines have been exposed, yet many other questions call for a response.
How do soft tissue properties change in the case of anisotropy tissues? How about on a cellular
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scale in the presence of tumors? How will the ultrasound elastography industry develop techniques
considering these biomarkers to adapt them to a real application? Quantitative answers to these
questions would definitely improve many clinical protocols.
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