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Abstract: We consider a model of a composite material with “inextensible
membrane type” interface conditions. An analytic solution of a stationary
heat conduction problem in an unbounded doubly periodic 2D composite
whose matrix and inclusions consist of isotropic temperature dependent ma-
terials is given. In the case when the conductive properties of the inclusions
are proportional to that of the matrix, the problem is transformed into a
fully linear boundary value problem for doubly periodic analytic functions.
The solution makes it possible to calculate the average properties over the
unit cell and discuss the effective conductivity of the composite. We present
numerical examples to indicate some peculiarities of the solution.
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1 Introduction

The importance and applications of composite materials are increasing very
fast in the last decades. In part, this is due to their very flexible potentialities
to distinguish and use a great set of different physical properties which may
be described through different meanings (e.g. within mechanical, thermal and
electrical senses).

Thus, it is important to propose, understand and analyse different mod-
els of composite materials in view of their potential use in different appli-
cations. This can be achieved having in mind the unique character of the
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detailed microstructure of the composites, but their different properties are
also significatively dependent on the boundary conditions which describe
their interfaces. Namely, in a composite material we typically have several
reinforcements such as particles, flakes and fibers which are embedded in a
matrix of metals, polymers or ceramics. Although the shape is determined
by the matrix when holding all that items, it is the combination and in-
teraction of all them that determine the overall physical properties of the
matrix. There, the boundary conditions play a crucial role. Moreover, it is
also natural to allow different conditions on different parts of the boundary.
Sometimes, it is also relevant to consider the boundary conditions as trans-
mission conditions in some bounded manifold in the interior of the domain.
This allows the proposal materials to have thermal and electrical conduction
of very different strengths.

From the mathematical point of view, all that need to be formulated in
appropriate function spaces within which the boundary conditions must agree
(e.g. by using trace theorems, etc.). So, when proposing a model, it should
exist a compromise and interaction between the needs from the applications
and the convenient theoretical setting; see, e.g., [1, 2, 6, 7, 10, 11, 12, 13, 16].

In the case of randomly distributed components, effective properties of
such composites were successfully studied, for example, in [3, 14, 15, 17,
21, 23, 26, 28], while analytical and numerical results for composites with
a periodic structure can be found in [4, 6, 9, 18, 24, 25]. An extensive and
complete overview of the employed methods can be found in the fundamental
work [22].

Bearing all this in mind, in the present paper we are proposing a model of
a composite material which is also determined by some general boundary con-
ditions (and so incorporating different scenarios). We construct an exact so-
lution for the unbounded doubly periodic nonlinear composite under specific
assumptions on material properties of the components. Namely, we consider
the static thermal conductivity problem of unbounded 2D anisotropic com-
posite materials with circular non-overlapping inclusions in the square unit
periodicity cell geometrically forming a doubly periodic structure. We sup-
pose that each component of the composite is imperfectly embedded in the
matrix. Namely, the boundary interface conditions are the so-called “inex-
tensible membrane type”. It allows very flexible properties on the interfaces
upon the choice of different sequences of fixed parameters on the boundary.
The conductivities of the matrix and the inclusions depend on the tempera-
ture. The key assumption is that ratios of the component conductivities are
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independent of the temperature. The external flux is assumed to be arbi-
trarily oriented with respect to the composite symmetry. We determine the
temperature and flux distributions and derive the effective conductivity of
such composites.

The spaces where we will consider the problem are convenient to prove
the existence and uniqueness of a corresponding solution (upon some condi-
tions). This will allow us to understand also the general properties of such
solution and to interpret their most useful properties as it concerns the me-
chanical and physical behaviour. In particular, this will be also done with
the help of some software. In our case, we will be particularly concerned with
the description of the effective conductivity tensor of a steady-state heat con-
duction problem in 2D unbounded doubly periodic composite materials with
temperature dependent conductivities.

2 Formulation of the problem

We consider a lattice in the complex plane (identified with C ∼= R2), with
complex variables being denoted by z := x + ıy (for real numbers x and y).
As the representative cell, we take the unit square

Q(0,0) :=

{
z = t1 + ıt2 ∈ C : −1

2
< tp <

1

2
, p = 1, 2

}
.

Let E :=
⋃

m1,m2

{m1 + ım2} be the set of the lattice points, where m1,m2 ∈ Z.

The cells corresponding to the points of the lattice E will be denoted by

Q(m1,m2) = Q(0,0) +m1 + ım2 :=
{
z ∈ C : z −m1 − ım2 ∈ Q(0,0)

}
.

It is considered the situation when mutually disjoint disks (i.e., inclusions) of
(possible) different radii Dk := {z ∈ C : |z − ak| < rk} with the boundaries
∂Dk := {z ∈ C : |z − ak| = rk} (for k = 1, 2, . . . , N) are located inside the
cell Q(0,0) and periodically repeated in all the cells Q(m1,m2). Let us denote
by

D0 := Q(0,0) \

(
N⋃
k=1

Dk ∪ ∂Dk

)
the connected domain obtained by removing of the inclusions from the cell
Q(0,0).
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Figure 1: 2D double periodic composite with inclusions.

We investigate the entire infinite composite where the matrix and inclu-
sions occupy domains

Dmatrix =
⋃

m1,m2

((D0 ∪ ∂Q(0,0)) +m1 + ım2)

and

Dinc =
⋃

m1,m2

N⋃
k=1

(Dk +m1 + ım2)

with thermal conductivities λm = λm(T ) and λk = λk(T ), respectively. Here,
the temperature T is defined in the whole R2. We assume that the conduc-
tivities λm, λk (k = 1, . . . , N) are continuous bounded positive functions on
R.

We search for the steady-state distribution of the temperature and heat
flux within such a composite. The problem is equivalent to determining the
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function T = T (x, y) satisfying the nonlinear differential equations

∇(λm(T )∇T ) = 0, (x, y) ∈ Dmatrix, (2.1)

∇(λk(T )∇T ) = 0, (x, y) ∈ Dinc. (2.2)

We assume that the non-ideal contact conditions on the boundaries be-
tween the matrix and inclusions are satisfied:

Tm(t) = Tk(t), (2.3)

λm(Tm(t))
∂Tm(t)

∂n
− λk(Tk(t))

∂Tk(t)

∂n
= γk(Tk(t))

∂Tk(t)

∂s
, t ∈

⋃
m1,m2

∂Dk,

(2.4)
where γk is a given function (the so-called resistance coefficient), the vector
n = (n1, n2) is the outward unit normal vector to ∂Dk, the vector s is the
outward unit tangent vector to ∂Dk, and

Tm(t) := lim
z→t,z∈D0

T (z), Tk(t) := lim
z→t,z∈Dk

T (z).

Let us mention that the usually adopted ideal contact conditions consist in
demanding the continuity of the temperature and the thermal flux. Here,
we use a relaxation of one of these conditions and allow certain discontinu-
ities. Namely, in (2.3), according to the Fourier’s law, we assume that the
thermal flux jump across the boundary is proportional to the thermal flux
of an inclusion within the tangent direction, caused by heat flow around the
inclusions.

It is worth mentioning that our boundary value problem can be used for
the characterization of other physical or mechanical processes. We meet anal-
ogous boundary contact conditions in classical problems of solid mechanics
for elastic media known as “inextensible membrane type” conditions. For
more details, we refer to [5] where different types of boundary contact con-
ditions are described.

We assume that the average flux vector of intensity A is directed at an
angle θ to axis Ox (see Fig. 1) which does not coincide, in general, with the
orientation of the periodic cell. This gives the following conditions∫

∂Q
(top)
(m1,m2)

λm(T )Tydt = −A sin θ, (2.5)
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∫
∂Q

(right)
(m1,m2)

λm(T )Txdt = −A cos θ. (2.6)

Note that, in general, the flux is not periodic. However, since there are
no sources and sinks in the composite, the energy conservation law dictates∫

∂ Q(m1,m2)

λm(T )
∂T

∂n
dt = 0. (2.7)

This, in turns, allows us to replace conditions (2.5) and (2.6) with those
defined on the opposite sides of the cell.

3 Reformulation of the problem

To solve the problem, we use the Kirchhoff transformation (cf. [20]) and
introduce new continuous functions fm and fk (k = 1, . . . , N)

fm(T ) =

T∫
0

λm(ξ) dξ, fk(T ) =

T∫
0

λk(ξ) dξ. (3.1)

Then, using the representations (3.1) and changing the dependent variables
as

um(x, y) = fm(Tm(x, y)), uk(x, y) = fk(Tk(x, y)), (3.2)

the original equations (2.1) and (2.2) can be transformed into the Laplace
equations

∆um = 0, (x, y) ∈ Dmatrix, (3.3)

∆uk = 0, (x, y) ∈ Dinc. (3.4)

The functions fm and fk are monotonic increasing functions of temperature
and, therefore, there exist their inverses f−1

m and f−1
k . The contact conditions

(2.3) and (2.4) can be rewritten now as follows:

um = Fk(uk), (x, y) ∈
⋃

m1,m2

(∂Dk +m1 + ım2), (3.5)

∂um
∂n
− ∂uk

∂n
=
γk(Tk)

λk(Tk)

∂uk
∂s

, (x, y) ∈
⋃

m1,m2

(∂Dk +m1 + ım2), (3.6)
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where the functions
Fk(ξ) := fm(f−1

k (ξ)) (3.7)

are defined for all ξ ∈ R. Note that, in general, the functions um and uk
may have different values on the interface ∂Dk. The derivative of Fk can be
computed as follows

F ′k(ξ) =
f ′m(f−1

k (ξ))

f ′k(f
−1
k (ξ))

=
λm(Tk)

λk(Tk)
, (3.8)

where ξ = fk(Tk). If we suppose that λm(Tk)
λk(Tk)

and γk(Tk)
λk(Tk)

are proportional
nonlinear coefficients, namely,

λm(Tk) = ckλk(Tk), γk(Tk) = dkλk(Tk), (3.9)

then all functions Fk are linear:

Fk(ξ) = hk + ckξ. (3.10)

This property is satisfied for any T ∈ R by some positive real constants ck.
From (3.1) we have fm(0) = 0 and fk(0) = 0, and, therefore, hk = 0. Thus,
conditions (3.5)-(3.6) become

um = ckuk, (x, y) ∈
⋃

m1,m2

(∂Dk +m1 + ım2), (3.11)

∂um
∂n
− ∂uk

∂n
= dk

∂uk
∂s

, (x, y) ∈
⋃

m1,m2

(∂Dk +m1 + ım2). (3.12)

Note that ∫
Γ

∂um
∂n

dt = 0, Γ ⊂ Dmatrix, (3.13)

for any closed curve Γ in the matrix. Moreover, since there is no source
(sink) inside the composite (neither in the matrix nor in any inclusion), the
same condition is satisfied for any closed simply connected curve within the
inclusion ∫

Γk

∂uk
∂n

dt = 0, Γk ⊂ Dk. (3.14)
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Finally, the conditions (2.5) and (2.6) are transformed into the following:∫
∂Q

(top)
(m1,m2)

umydt = −A sin θ, (3.15)

∫
∂Q

(right)
(m1,m2)

umxdt = −A cos θ. (3.16)

Let us introduce new harmonic functions

ũk(x, y) = ckuk(x, y) (3.17)

inside the inclusions. Then, the transmission conditions (3.5) and (3.6) be-
come

um = ũk, (x, y) ∈
⋃

m1,m2

(∂Dk +m1 + ım2), (3.18)

∂um
∂n
− 1

ck

∂ũk
∂n

=
dk
ck

∂ũk
∂s

, (x, y) ∈
⋃

m1,m2

(∂Dk +m1 + ım2). (3.19)

4 Solution of the problem

We will solve the problem (3.3), (3.4), (3.15), (3.16), (3.18), (3.19) using the
same approach as in [9]. We shall now outline some basic facts which we
apply.

Let us introduce complex potentials ϕ(z) and ϕk(z) which are analytic
in D0 and Dk, and continuously differentiable in the closures of D0 and Dk,
respectively, by using the following relations

u(z) =


Re (ϕ(z) +Bz), z ∈ Dmatrix,

2ck
ck+1

Reϕk(z), z ∈ Dinc,
(4.1)

where B is an unknown constant belonging to C. Besides, we assume that
the real part of ϕ is doubly periodic in D0, i.e.,

Reϕ(z + 1)− Reϕ(z) = 0, Reϕ(z + ı)− Reϕ(z) = 0.
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It is shown in [18] that ϕ is a single-valued function in Dmatrix. The harmonic
conjugate to u is a function v which has the following form:

v(z) =


Im (ϕ(z) +Bz), z ∈ Dmatrix,

2ck
ck+1

Imϕk(z), z ∈ Dinc,
(4.2)

with the same unknown constant B.
For the determination of the flux ∇u(x, y), we introduce the derivatives

of the complex potentials:

ψ(z) := ∂ϕ
∂z

= ∂um
∂x
− ı∂um

∂y
−B, z ∈ D0,

ψk(z) := ∂ϕk

∂z
= ck+1

2ck

(
∂ũk
∂x
− ı∂ũk

∂y

)
, z ∈ Dk.

(4.3)

Applying the Cauchy-Riemann equations ∂um
∂n

= ∂vm
∂s
, ∂ũk

∂n
= ∂ṽk

∂s
the

equality (2.4) can be written as

∂vm
∂s

(t)− 1

ck

∂ṽk
∂s

(t) =
dk
ck

∂ũk
∂s

(t), |t− ak| = rk. (4.4)

Integrating the last equality on s, we arrive at the relation

vm(t)− 1

ck
ṽk(t) =

dk
ck
ũk(t) + C, (4.5)

where C is an arbitrary constant. We put C = 0 since the imaginary part
of the function ϕ is determined up to an additive constant which does not
impact on the form of u. Using (4.2), we have

Imϕ(t) = −ImBt+
2

ck + 1
Imϕk(t) +

2dk
ck + 1

Reϕk(t). (4.6)

Using now (4.1), we are able to write the equality (2.3) in the following form:

Reϕ(t) = −ReBt+
2ck
ck + 1

Reϕk(t). (4.7)

Adding the relation (4.7) and (4.6) multiplied by ı, and using Reϕk = ϕk+ϕk

2
,

Imϕk = ϕk−ϕk

2ı
, t − ak =

r2k
t−ak

, we rewrite the conditions (2.3) and (2.4) in

terms of the complex potentials ϕ(z) and ϕk(z):

ϕ(t) = (1 + ıµk)ϕk(t)− (ρk − ıµk)ϕk(t)−Bt, (4.8)
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where

ρk =
1− ck
ck + 1

, µk =
dk

ck + 1
. (4.9)

Representing the function ϕk in the form ϕk(z) =
∞∑
l=0

αk(z−ak)l, |z−ak| ≤ rk,

and by using the relation t =
r2k
t−ak

+ ak on the boundary |t − ak| = rk, one
get

[ϕ(t)]′ = −
(

rk
t− ak

)2

ϕ′(t). (4.10)

Thus, after differentiating (4.8), we arrive at the following R-linear boundary
value problem on each contour |t− ak| = rk:

ψ(t) = (1 + ıµk)ψk(t) + (ρk − ıµk)
(

rk
t− ak

)2

ψk(t)−B (4.11)

with the unknown constant B = B1 + ıB2. An algorithm for solving such
R-linear boundary value problem is developed and described in detail in [18].
We use this approach in our computations.

5 Effective conductivity

We assume that the effective conductivity tensor Λe depends on the average
temperature 〈T 〉 and is defined in the following way:

〈λ(T )∇T 〉 = Λe(〈T 〉)〈∇T 〉, or Re(〈T 〉)〈λ(T )∇T 〉 = 〈∇T 〉, (5.1)

where Re = Λ−1
e is the effective resistance tensor. A similar definition to

(5.1) has been used in [27]. Here, the operator 〈·〉 is defined as

〈f〉 =

∫∫
Q(m1,m2)

f(x, y) dxdy.

Note that definition (5.1) needs further justification as the question arises
whether the approach is invariant with respect to the averaging cell. We will
discuss this issue later during the computations.
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We represent all elements involved in (5.1) in terms of solutions um and
uk of the problem (3.3)-(3.6). For the total flux in the x-direction, we have∫∫

Q(m1,m2)

λ(T )
∂T

∂x
dxdy =

∫∫
D0+m1+ım2

λm(Tm)
∂Tm
∂x

dxdy

+
N∑
k=1

∫∫
Dk+m1+ım2

λk(Tk)
∂Tk
∂x

dxdy

=

∫∫
Q(m1,m2)

∂um
∂x

dxdy +
N∑
k=1

∫∫
Dk+m1+ım2

∂uk
∂x

dxdy.

Using the first Green’s formula∫∫
U

(ψ∆ϕ+∇ϕ · ∇ψ) dV =

∮
∂U

ψ (∇ϕ · n) dS (5.2)

with ψ = x or ψ = y and ϕ(x, y) = um in D0 (or ϕ(x, y) = uk in the
respective domain Dk) and formulas (3.3), (3.4), (3.6), (3.9) and (3.17), we
obtain

qx :=

∫∫
Q(m1,m2)

λ(T )
∂T

∂x
dxdy = −A cos θ −

N∑
k=1

dk
ck

∮
∂(Dk+m1+ım2)

x
∂ũk
∂s

ds,

and similarly

qy :=

∫∫
Q(m1,m2)

λ(T )
∂T

∂y
dxdy = −A sin θ −

N∑
k=1

dk
ck

∮
∂(Dk+m1+ım2)

y
∂ũk
∂s

ds.

According to the Cauchy–Riemann condition ∂ũk
∂s

= −∂ṽk
∂n

, we get

qx = −A cos θ +
N∑
k=1

dk
ck

∮
∂(Dk+m1+ım2)

x
∂ṽk
∂n

ds

= −A cos θ +
N∑
k=1

dk
ck

∫∫
Dk+m1+ım2

∂ṽk
∂x

dxdy
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qy = −A sin θ +
N∑
k=1

dk
ck

∮
∂(Dk+m1+ım2)

y
∂ṽk
∂n

ds

= −A sin θ +
N∑
k=1

dk
ck

∫∫
Dk+m1+ım2

∂ṽk
∂y

dxdy.

Thus,
〈λ(T )∇T 〉 = [qx, qy]

>, (5.3)

where the components qx and qy can be found via a solution ψk (cf. also the
notations (4.3)) of the R-linear conjugation problem (4.11) as

ıqx + qy = −ıAe−ıθ + 2
N∑
k=1

µk

∫∫
Dk+m1+ım2

ψk(z)dxdy.

Or, using the mean value theorem for harmonic functions, we get

ıqx + qy = −ıAe−ıθ + 2π
N∑
k=1

µkr
2
kψk(ak).

Due to Gauss-Ostrogradsky formula and the boundary condition (2.3),
the components of the term 〈∇T 〉 in (5.1) are defined as∫∫

Q(m1,m2)

∂T

∂x
dxdy =

∫∫
D0+m1+ım2

∂Tm
∂x

dxdy +
N∑
k=1

∫∫
Dk+m1+ım2

∂Tk
∂x

dxdy

=

∮
∂D0+m1+ım2

Tm(s) cos(ns, ei) ds

+
N∑
k=1

∮
∂Dk+m1+ım2

[Tk(s)− Tm(s)] cos(nks , ei) ds

=

∮
∂D0+m1+ım2

Tm(s) cos(ns, ei) ds

=

∮
∂D0+m1+ım2

f−1
m (um(x, y)) cos(ns, ei) ds,
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where ns and nks are the outward unit normal vectors to ∂D0 +m1 + ım2 and
∂Dk +m1 + ım2, respectively, and ei is the basis vector. Analogously,∫∫

Q(m1,m2)

∂T

∂y
dxdy =

∮
∂D0+m1+ım2

f−1
m (um(x, y)) cos(ns, ej) ds.

Finally, the average temperature is given by

〈T 〉 =

∫∫
Q(m1,m2)

T (x, y) dxdy

=

∫∫
D0+m1+ım2

f−1
m (um(x, y)) dxdy +

N∑
k=1

∫∫
Dk+m1+ım2

f−1
k (uk(x, y)) dxdy. (5.4)

Note that it is more convenient to first compute the components of the effec-
tive resistance tensor Re from the second formula in (5.1) and then find the
effective conductivity tensor Λe = R−1

e .

6 Numerical analysis

The algorithm mentioned above is realized in the Maple 14 software.
In our computations we consider a composite where four inclusions are

situated inside the cell Q(0,0) with the centers (defined in the notations of
complex variables): a1 = −0.18 + 0.2ı, a2 = 0.33 − 0.34ı, a3 = 0.33 + 0.35ı,
a4 = −0.18 − 0.2ı. The radii of the inclusions are the same rk = R = 0.145
(cf. Fig. 2). Thus, the volume fraction of the inclusions for such composite
is ν = 4πR2 = 0.2642. For this choice, the inclusion boundaries are situated
very close to each other (the minimal distance is 0.02).

Further, we suppose to have the heat flows in the x-direction (θ = 0) with
intensity A = −1. We choose the conductivities functions

λm(T ) = sinT + 2, λk(T ) = 10 · (sinT + 2)

which are positive periodic proportional with the constant ck = 0.1 (cf.
Fig. 3), and γk(T ) with the constant dk = 0; 2; 10 (cf. (3.9)).

Note that the following statement is true.
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Figure 2: Configuration of the unit cell with four inclusions considered in
computation

Figure 3: The functions λm and λk.

Theorem 6.1 Let λm, λk and γk be periodic functions with the same period
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τ satisfying (3.9). Then the effective conductivity tensor Λn defined in (5.1)
is also a periodic matrix function with the same period τ .

Proof. First note that if Tn is a solution of the boundary value problem
(2.1)-(2.6) then Tn + τ is also a solution of this problem and, for any unit
cell Q(m1,m2), we have

〈Tn+τ〉 = 〈Tn〉+τ, ∇(Tn+τ) = ∇Tn, and λn(Tn+τ) = λn(Tn). (6.1)

Now recall that by definition (5.1) we have

〈λn(Tn + τ)∇(Tn + τ)〉 = Λn(〈Tn + τ〉)〈∇(Tn + τ)〉. (6.2)

Applying (6.1) in (6.2), we obtain

〈λn(Tn)∇Tn〉 = Λn(〈Tn〉+ τ)〈∇Tn〉.

Since the tensor Λn is uniquely defined in (5.1), we get

Λn(〈Tn〉+ τ) = Λn(〈Tn〉) (6.3)

for any 〈Tn〉. 2

Note that in the linear case the temperature is defined up to an arbitrary
additive constant, and this constant is not involved in the determination of
the effective conductivity of a composite material. Generally speaking, this
is not the case for nonlinear problems, and the additive constant, appearing
during the stage of solving the linear problem (3.3)-(3.16), influences on the
computation of the effective conductivity tensor of the equivalent nonlinear
composite.

Here, we evaluate the effective resistance tensor Re by the interpolation
method and then we get Λe = R−1

e . Two equivalent procedures are used for
obtaining a discrete data set of the effective resistance tensor components
Rx
e , R

y
e , R

xy
e , R

yx
e suggested in [19].

(i) First, one can solve the corresponding linear boundary value problem
in a doubly periodic domain preserving its uniqueness by any appropri-
ately chosen condition (for example, here we impose that the function
u = u∗ satisfies the condition u∗(0) = 0). Then, to evaluate the proper-
ties of the composite material, one can compute the average tempera-
ture and the effective resistivity for each particular unit cell presenting
the data as the functional relationship Re = Re(〈T 〉).
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Figure 4: Component Λx
e of the effective conductivity tensor Λe computed

by combination of two methods for dk = 0; 2; 10.

Figure 5: Component Λy
e of the effective conductivity tensor Λe computed

by combination of two methods for dk = 0; 2; 10.
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Tracing cells belonging to the strip, we get a set of points which are
not dense enough at the top of the sinusoid considered in Theorem 6.1.
Therefore, we used a second method.

(ii) Namely, we consider an arbitrary cell in the original domain and build
a set of solutions to the linear boundary value problem in the form u =
u∗ +C, where C is an arbitrary constant. Then, for every constant C,
the components of the effective resistance tensor, Re, and the average
temperature, 〈T 〉, are functions of the parameter C. Changing the
value of C continuously from −∞ to∞, one receives the sought for the
effective conductivity tensor of the composite as a continuous function
of the average temperature. It is clear that this procedure does not
depend on the chosen cell.

Naturally, for the conductivities of the composite components analyzed
in this example and for the fact proved in Theorem 6.1, the nonlinear
character of the relationship is observed only within the finite interval
of the parameter C.

Note that both methods allow one to determine two components of the effec-
tive resistance tensor Re for each one of the two orthogonal flux directions.
Thus considering θ = 0, we define Rx

e = Rx
e (〈T 〉) and Ryx

e = Ryx
e (〈T 〉), and

choosing θ = π/2 we find Ry
e = Ry

e(〈T 〉) and Rxy
e = Rxy

e (〈T 〉). As a result,
the entire tensor Re(〈T 〉) is defined.

In view of having a more accurate interpolation procedure, we use both
suggested methods and calculate 141 data (Rx

e , R
yx
e , R

xy
e , R

y
e) with respect to

the average temperature 〈T 〉 ∈ [−10, 10]. For the chosen configuration it
guarantees a computational error less than 10−6. The components Λx

e and
Λy
e of the effective conductivity tensor Λe = R−1

e are presented in Fig. 4 and
Fig. 5, respectively, for different dk = 0; 2; 10.
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