
“Homem culto é aquele que,
de tudo a que assiste aumenta,
não os seus conhecimentos,
mas o seu estado de alma.”

— Fernando Pessoa

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2018

Pedro Miguel Ribeiro
Machado

Sonar Ultrassónico para cegos com Sonificação de
obstáculos

Ultrasonic Sonar for the Visually Impaired with
Obstacles Sonification

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2018

Pedro Miguel Ribeiro
Machado

Sonar Ultrassónico para cegos com Sonificação de
obstáculos

Ultrasonic Sonar for the Visually Impaired with
Obstacles Sonification

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quesitos necessários à obtenção do grau de Mestre em Engenharia Eletrónica
e Telecomunicações, realizada sob a orientação cient́ıfica do Professor
Doutor José Neto Vieira e coorientação do Professor Doutor Arnaldo
Oliveira, Professores Auxiliares do Departamento de Eletrónica, Telecomu-
nicações e Informática da Universidade de Aveiro.

To my father, thanks to whom I feel
(and know) I will never walk alone.

o júri / the jury

presidente / president Professor Doutor José Maria Amaral Fernandes
Professor Auxiliar da Universidade de Aveiro (por delegação da Reitora da Univer-

sidade de Aveiro)

vogais / examiners committee Professor Doutor José Manuel Neto Vieira
Professor Auxiliar da Universidade de Aveiro (orientador)

Professor Doutor Diamantino Rui da Silva Freitas
Professor Associado da Faculdade de Engenharia da Universidade do Porto

agradecimentos /
acknowledgements

Gostaria de iniciar este pequeno trecho de texto por deixar expresso o
meu agradecimento aos Professores Doutor José Vieira e Doutor Arnaldo
Oliveira, orientador e coorientador, respetivamente, não só pela valiosa
oportunidade que me concederam de realizar este trabalho, mas também
por toda a orientação cient́ıfica e prática ao longo destes meses, bem como
pelo esforço empregue na transmissão de seus conhecimentos e experiência,
que se revelaram imprescind́ıveis no decorrer do projeto.

A ńıvel académico, devo deixar também um agradecimento a todos os meus
colegas com os quais, ao longo do curso, eu trabalhei, discuti, errei, partilhei
frustrações, desesperei e, como consequência, aprendi, ganhei conhecimento
e experência que me ajudaram ao longo destes meses.

Gostaria de agradecer também ao Eduardo Miranda, à Catarina Santa
Comba e ao Daniel Almeida, meus colegas de laboratório destes últimos
tempos, não só pela ajuda disponibilizada, mas também pelas ocasionais
gargalhadas que permitiram os instantâneos aĺıvio e descompressão do es-
tado de esṕırito, fundamentais para a melhoria da minha produtividade e
bem-estar.

Não poderei esquecer-me de todas as pessoas que contribúıram para a
formação do meu Ser, nomeadamente faḿılia e amigos mais ı́ntimos. To-
das as caracteŕısticas do meu carácter foram moldadas pelas experiências e
vivências, sejam elas boas ou más, que partilhei com as mesmas. Destas
deverei destacar a minha Mãe, cuja resiliência e capacidade de luta me
permitiram ter a oportunidade de elaborar este documento.

Por fim, e não menos importante (de todo), quero deixar um especial
agradecimento à minha namorada Susana, não só pelo incondicional apoio
que me porporcionou, mas também pela inabalável fonte de motivação que
revelou ser para mim durante a elaboração desta Dissertação.

Resumo Nesta tese de mestrado pretende-se desenvolver um dispositivo portátil que
possa ser usado por pessoas com deficiência visual na ecolocalização de
obstáculos. Este dispositivo deverá ser dotado de capacidade de emissão e
deteção de ultrassons para funcionar como um sonar e permitir ainda o seu
funcionamento como altifalante paramétrico capaz de realizar a sonificação
dos obstáculos. Para tal, foi necessário desenvolver uma ADC Sigma-Delta
em FPGA que permita uma alta densidade na aquisição independente de um
grande número de canais num dispositivo de pequenas dimensões. Os testes
realizados com a ADC Sigma-Delta revelaram uma baixa distorção e uma
boa relação sinal rúıdo, comparáveis às ADCs do mesmo tipo existentes no
mercado. Está assim preparado o caminho para a construção do dispositivo.

Abstract In this master’s thesis it is intended to develop a portable device that can be
used by people with visual impairment in the echolocation of obstacles. This
device must be capable of transmitting and detecting ultrasound signals
to work as a sonar and still allow its operation as a parametric speaker
capable of performing the sonification of obstacles. To do this, it was
necessary to develop a Sigma-Delta ADC in FPGA that allows a high density
in the independent acquisition of a large number of channels in a small
device. Tests performed with the developed Sigma-Delta ADC revealed low
distortion and good signal-to-noise ratio, comparable to same type ADCs
available on the market. The path for the construction of the device is,
then, open.

Contents

Contents i

List of Figures v

List of Tables ix

List of Acronyms xi

1 Introduction 1

1.1 Motivation . 1

1.2 Proposed Work and Objectives . 2

1.3 Organisation . 3

2 State of the Art 5

2.1 Blindness and vision impairment . 5

Mobility and Environment Sensing . 5

Hearing and Echolocation . 7

2.2 Assisting Devices . 7

Cane equipped with sonar . 7

Sunglasses with Sonar . 7

NAVIG . 8

2.3 Parametric Speaker . 9

3 Sigma-Delta Converter 11

3.1 Introduction . 11

3.1.1 Sampling Methods . 11

3.1.2 Quantization noise . 12

3.1.3 Performance . 13

Signal-to-Noise Ratio . 13

Signal-to-Noise and Distortion Ratio 13

Spurious-free Dynamic Range . 14

Total Harmonic Distortion . 14

Resolution . 14

3.1.4 Delta Modulation . 14

3.1.5 Sigma-Delta Modulation . 17

First Order . 17

High-Order Sigma-Delta . 18

i

3.2 Design of the Modulator . 20
3.3 Implementation of the Sigma-Delta Modulator (Σ∆M) 23

3.3.1 Digital Interface . 23
Input Differential Buffer . 24
Sampling . 24
Output buffer . 24

3.3.2 Analog interface . 24
3.4 Tests and Results . 26

3.4.1 Experimental Set-up . 26
3.4.2 Results . 30

Output Power Spectrum Density . 31
Performance Indicators . 31

3.5 Results Analysis and Discussion . 31

4 Beamforming 35
4.1 Introduction . 35

4.1.1 Uniform Linear Array . 35
4.1.2 Planar Array . 36

4.2 Analog Reception, Digital Down Conversion and Processing 38
4.2.1 Analog Reception . 38
4.2.2 Coherent Detection/Downconversion 38
4.2.3 Quadrature Amplitude Modulated Signals 39
4.2.4 Downconverter mixer . 41

Moving Average Filter . 42
Oscillator . 44
Final Downsampling . 44
Receiver Channel . 44

4.3 Implementation . 45
4.3.1 Analog Reception . 45
4.3.2 Digital Downconversion . 47

CIC Filter . 47
Local Oscillator . 49
Mixer . 49
Frequency Shift . 50
Low Pass Filter . 50
Trigger Generator . 53

4.4 Tests and Results . 54
4.4.1 Analog Reception . 54
4.4.2 Digital Downconversion . 56

CIC Filter . 56
Downconversion followed by low-pass-filtering 57
Downconverter . 59

4.5 Results Analysis and Discussion . 61
4.5.1 Analog Reception . 61
4.5.2 Digital Downconversion . 62

CIC Filter . 62
Low Pass Filter . 62

ii

Downconverter . 63

5 Conclusions 65
5.1 Conclusions . 65
5.2 Future Work . 65

APPENDICES 67

A Performance Indicators 67
A.1 Introduction . 67

A.1.1 Discrete-time Random Processes . 67
Stationarity . 68
Ergodicity . 68

A.1.2 The Power Spectrum . 69
A.1.3 Welch’s Method of Power Spectral Density (PSD) Estimation 69

A.2 Spectral Analysis of the Output of the Σ∆M 70
A.3 Performance Indicators Computation . 71

A.3.1 Signal-to-Noise-Ratio . 72
A.3.2 Signal-to-Noise and Distortion Ratio 73
A.3.3 Spurious Free Dynamic Range . 74
A.3.4 Total Harmonic Distortion . 75

A.4 Validation . 76

B Interference of Ultrasonic Waves 81
B.1 Introduction . 81

B.1.1 Double-Slit Experiment . 81
B.1.2 Lloyd’s Mirror . 83

B.2 Experimental Verification . 84

C Σ∆ Modulator – VHDL implementation 87
C.1 Top-level file . 87
C.2 Sampling . 88

C.2.1 D-type Flip-flop . 88
C.2.2 Frequency Division . 89

C.3 Shift-Register . 90
C.4 Constraint File . 91

D Downconverter - VHDL Implementation 93
D.1 Top-Level File . 93
D.2 Trigger Generator . 96
D.3 1 bit D Flip-Flop . 98
D.4 CIC Filter . 99
D.5 Oscillator . 100
D.6 Mixer . 101
D.7 Low-Pass Filter with Downsampling . 101
D.8 Delay Block . 104
D.9 23 bits D Flip-Flop . 104
D.10 16 bits D Flip-Flop . 105

iii

D.11 Constraint File . 105
D.12 Block Diagrams . 107

D.12.1 Downconverter - Top-level file . 107
D.12.2 CIC filter . 108
D.12.3 Low-pass Filter with Downsampler . 109

Bibliography 111

iv

List of Figures

1.1 Basic graphic description of the system’s operation where both detection and
warning modes are depicted. 2

1.2 Parametric Speaker developed by [2]. 3

2.1 Traditional cane that facilitates blind people mobility [5]. 6

2.2 Free Kick at the 2016 Paralympic Games in Rio de Janeiro [7]. 6

2.3 Prototype of the Cane Equipped with Sonar [12]. 8

2.4 Prototype of the Sunglasses Equipped with Sonar. 8

2.5 Prototype of the NAVIG system [13]. 9

2.6 Sennheiser’s Audiobeam Parametric Speaker. 9

2.7 Sound pressure distribution in a plane for a centered beam [2]. 10

3.1 Aliasing Effect. 12

3.2 PSD of a sinusoidal signal with noise and harmonic components. 13

3.3 Delta Modulator block diagram. 15

3.4 Delta Modulator’s signals [20]. 15

3.5 Delta Modulator followed by its demodulator. 15

3.6 Delta Modulator’s linear model. 16

3.7 Sigma-Delta Modulator. 17

3.8 Simplified Sigma-Delta Modulator. 17

3.9 The Sigma-Delta Modulator linear model. 18

3.10 Two Different High-order Sigma Delta Modulators. 19

3.11 Linear model of a 2nd order Σ∆M. 19

3.12 Noise Shaping for different orders Σ∆M, a Nyquist sampling ADC and a simple
oversampling ADC[16]. 20

3.13 Simulink topology of the designed Σ∆M. 21

3.14 Bitstream modulation and noise shaping characteristic for a 40 kHz input sine
wave and 10 MHz sampling frequency. 22

3.15 Simulated performance indicators for different input frequencies. 23

3.16 Designed Σ∆M. 23

3.17 RC integrator and low-pass filter. 25

3.18 Audio Precision Portable One Plus audio test set. 26

3.19 Signal conditioning circuit for offset addition. 27

3.20 Calibratable offset signal conditioning circuit. 28

3.21 Σ∆M, with the calibratable signal conditioning circuit, DC supply LPF filter,
integrators and digital interface. 29

v

3.22 PMOD input ports front view on the Nexys 4 board [22]. 29

3.23 Board layout of the circuit used to take measurements to the Σ∆M. 30

3.24 Experimental set-up for measuring the Σ∆M performance. 30

3.25 Estimated PSD for both the hardware implemented and simulated Σ∆Ms,
when fin = 40kHz. 31

3.26 Measured performance indexes for both hardware implemented and simulated
Σ∆Ms. 32

3.27 Unpredictable behaviour of the simulated Σ∆M outside the signal and har-
monics band for some input frequencies. 33

4.1 Uniform Linear Array configuration [26]. 35

4.2 Some different geometries for the Planar Array [26]. 37

4.3 Azimuth (ϕ) and Elevation (Θ) Estimation in a Planar Array [26]. 38

4.4 Block diagram of a mixer [28]. 39

4.5 Representation of the passband in the form of a phasor dependent on its In-
phase and Quadrature components. 41

4.6 Basic downconverter. 41

4.7 Block diagram of the One-Stage Recursive Moving Average Filtering Process. 43

4.8 CIC Filter Frequency Response for two different values of K. 44

4.9 N -stage CIC Filter frequency response for different values of N [16]. 45

4.10 Theoretical version of each receiving channel of the Planar Array. 45

4.11 Designed Preamplifier for each reception channel. 46

4.12 Computed Transfer Function of the Filter. 48

4.13 Efficient Implementation of a CIC Filter [30]. 48

4.14 CIC Filter Block Diagram in Simulink. 48

4.15 Output Signal of the CIC Filter. 49

4.16 Frequency Responses of Both Moving Average Filters of the LPF. 51

4.17 Frequency Response of LPF Composed by the Two Cascaded Moving Average
Filters. 51

4.18 LPF implemented in Simulink. 52

4.19 FFT of the input and output signals of the LPF. 52

4.20 Delay Block implemented as a FIFO Shift Register [31]. 53

4.21 Receptor Implemented in a Breadboard. 54

4.22 Measured saturation on the output of the Preamplifier. 54

4.23 Experimental setup for the measurement of the received signal strength as a
function of distance; the emitter is on the left side, laying against the function
generator, and the receptor is on the right side. 55

4.24 Peak-to-peak voltage at the output of the Preamplifier as a function of distance. 55

4.25 PSD of the output of the Σ∆M when its input signal is a preamplified signal
with the source at a distance of 5m. 56

4.26 Signals recorded at the output of the CIC filter. 56

4.27 PSD of the signals recorded at the output of the CIC filter. 57

4.28 Experiment to test the LPF proper operation. 57

4.29 Output signal of the LPF when at input is a sine wave of frequency 40kHz. . 58

4.30 Output signal of the LPF when at input is a sine wave of frequency 41kHz. . 58

4.31 Output signal of the LPF when at input is a sine wave of frequency 42kHz. . 58

vi

4.32 Recorded In-Phase - I(t) - and Quadrature - Q(t) - signals for an input sine
wave of 41kHz. 59

4.33 Recorded In-Phase - I(t) - and Quadrature - Q(t) - signals for an input sine
wave of 39kHz. 60

4.34 PSD of the downconverted signal when the input is a 39kHz sine wave. 60
4.35 PSD of the downconverted signal when the input is a 40kHz sine wave. 61
4.36 PSD of the downconverted signal when the input is a 41kHz sine wave. 61

A.1 Estimated PSD of the same signal, with different segment sizes. 69
A.2 Different 64 sample length Windows Frequency Response. 70
A.3 Estimated PSD for a 40 kHz input sine wave. 71
A.4 Power spectra of the generated signals. 77
A.5 Normal Distribution PDF’s. 78

B.1 Thomas Young’s Double-slit Experiment[36]. 82
B.2 Geometric reference for the Double-Slit Experiment Analysis[36]. 82
B.3 Visualisation of the Lloyd’s Mirror phenomenon[37]. 83
B.4 Results from the Interference Measurement Experience. 86

D.1 Block diagram of the downconverter implemented in VHDL. 107
D.2 Block diagram of the CIC filter implemented in VHDL. 108
D.3 Block diagram of the LPF filter implemented in VHDL. 109

vii

viii

List of Tables

3.1 Performance indicators computed in the simulation for different sampling fre-
quencies, with input frequency of 40 kHz. 22

3.2 Performance indicators measured with 50 MHz of sampling frequency and
40kHz of input frequency. 33

4.1 PSD peaks for every input sine wave. 59

A.1 Computed and estimated through Welch’s Method Performance Indicators of
the MATLAB generated signal. 78

A.2 Parameters of the normal distributions (Mean - µ - and Standard Deviation -
σ) and extremes of the measured relative deviations. 79

B.1 Some Constructive and Destructive points in space computed in MATLAB. . 85

ix

x

List of Acronyms

Σ∆M Sigma-Delta Modulator.

ADC Analog-to-Digital Converter.

BRAM Block Random-Access Memory.

CIC Cascaded Comb-Integrator.

dB Decibel.

DM Delta Modulator.

DoA Direction of Arrival.

DTFT Discrete-time Fourier Transform.

ENOB Effective Number of Bits.

FFT Fast Fourier Transform.

FIFO First in, First out.

FPGA Field-Programmable Gate Array.

GBDP Gain-Bandwidth Product.

GIS Geographic Information System.

GPS Global Positioning System.

HPF High-Pass Filter.

HW Harware.

IBSF International Blind Sports Federation.

ILA Integrated Logic Analyser.

LPF Low-Pass Filter.

xi

LSB Least Significant Bit.

LVDS Low Voltage Differential Signalling.

MSB Most Significant Bits.

NS Noise Shaping.

NTF Noise Transfer Function.

OPAMP Operational Amplifier.

PCB Printed Circuit Board.

PDF Probability Density Function.

PMOD Peripheral Module.

PSD Power Spectral Density.

PWM Pulse-Width Modulation.

RF Radio-Frequency.

RMS Root Mean Square.

SFDR Spurious Free Dynamic Range.

SINAD Signal-to-Noise and Distortion Ratio.

SNR Signal-to-Noise Ratio.

STF Signal Transfer Function.

THD Total Harmonic Distortion.

ULA Uniform Linear Array.

UPA Uniform Planar Array.

VHDL VHSIC Hardware Description Language.

VHSIC Very High Speed Integrated Circuit.

WHO World Health Organisation.

ZOH Zero-Order Hold.

xii

Chapter 1

Introduction

1.1 Motivation

Blindness and visual impairment are disabilities that greatly increase the hazard of acci-
dents that might often result in injury and/or damage. The interaction of a person with the
surroundings involves the use of all senses in order to avoid dangerous incidents and vision
is, if not the most, one of the most important senses. Due to this fact, the independence of a
blind person is greatly affected.

Blind people often adapt to the disability and end up relying on other senses, being one of
them hearing. However, the sole reliance on this sense does not replace the safety that vision
bestows upon sighted people.

One important characteristic of hearing is echolocation, that is the ability to detect an
object at a distance and its relative position by sensing echoes. This sense is not quite
developed in humans. However, some outstanding cases of blind people have been reported
where they are able to safely navigate in the surroundings, successfully identifying objects
by sensing the echo of sounds such as mouth-clicks, mainly in cases of people that were born
blind or developed the disability in very early stages of their infant life, such as the case of
Daniel Kish[1].

That said, it is apparent that a person that develops this disability at a more advanced
age very seldom will develop the ability of echolocation.

Nowadays, it is relatively easy to identify electronically the direction of arrival of an echo.
This means that identifying the relative position of an object by sensing an echo can be
made with accuracy much superior to that of the untrained human hear. The technique that
achieves this is called beamforming and allows to both direct a beam of ultrasonic or even
Radio-Frequency (RF) waves as well as identify the Direction of Arrival (DoA) of the same
carrier coming from a source with some relative position.

Using a parametric speaker, both can be done and, thus, achieve a system that can identify
the location of an obstacle as well as direct a beam of ultrasonic waves towards it, that will
reflect on the object and sonify it, where it creates the semblance of being the obstacle the
sound source.

Such a system might be important in the adaptation of visually impaired people that
developed the ailment at a more advanced stage of life, when their echolocation sense is

1

underdeveloped and, thus, are not able to distinguish an echo coming from an obstacle from
the remaining echoes from the harmless surroundings.

1.2 Proposed Work and Objectives

It is intended to develop a portable sonar with parametric speaker that aids blind people
to detect obstacles.

An ultrasound emitter should emit ultrasonic pulses that radiate in a wide field, in order
to detect as much obstacles as possible with the echoes, whose DoA will be determined by
the sonar. However, only in very specific situations should danger be encountered and that
is when an obstacle is radially approaching the carrier of the system. In that case, due to
the Doppler Effect, the received echoes will present a slightly different and greater frequency,
because of a positive relative velocity. This frequency shift is the condition to look for in order
to activate the warning mode. In this mode, a Parametric Speaker will direct towards the
obstacle a beam of ultrasonic wave modulating an audible warning signal that will demodulate
due to non-linear effects of its interaction with the air. This way, it creates the illusion that
the obstacle is emitting an audible signal, easing its detection.

Figure 1.1 depicts the basic operation of the system.

(a) Sonar Detection. (b) Sonification of the obstacle.

Figure 1.1: Basic graphic description of the system’s operation where both detection and
warning modes are depicted.

The Parametric Speaker that is shown in Figure 1.2 has been previously designed and
implemented to perform this function [2], as well as the software to direct the beam using
the beamforming technique. The proposed work is to complement it with a sonar (that is
a phased array of ultrasound transducers) capable of receiving the said echoes, compute the
DoA and detect the risk of collision with an obstacle.

The following tasks should be completed:

2

Figure 1.2: Parametric Speaker developed by [2].

Analog-to-Digital Converter Estimating the DoA involves digital signal processing tech-
niques and, thus, the received echos must be sensed and sampled in order to perform
such task. The main objective in this task is to develop an Analog-to-Digital Con-
verter (ADC) that is as compact as possible, with the least hardware complexity that
is possible to attain without compromising good performance.

Downconversion For each received echo, it is needed to evaluate the frequency, phase and
amplitude of the received signal. In the downconversion process, where In-Phase and
Quadrature components of the received signal are extracted, allow to compute the phase
of the received signal, as well as its amplitude.

Beamformer From the data extracted from several downconverted received signals (from
each transducer of the array), it is possible to determine the DoA of the echo. This
computation is done by the beamformer.

1.3 Organisation

This document is divided in five chapters, which are briefly described here.

Chapter 1 A small introduction on the motives, objectives and organisation of this Thesis
is done.

Chapter 2 A brief description of the state-of-the-art on the subject. What is known about
blindness and echo location and some recent electronic aids.

Chapter 3 Some theory is introduced on the operation of a Σ∆M. The design and imple-
mentation of a Σ∆M is described, as well as the tests made. The results are presented
and analysed.

3

Chapter 4 The theory of DoA is presented. A reception channel is designed, implemented,
subjected to testing. The results are presented and discussed.

Chapter 5 Conclusion of the thesis and discussion of the objectives accomplished. Future
work is also discussed.

4

Chapter 2

State of the Art

2.1 Blindness and vision impairment

Vision impairment “refers to deficits in the ability of the person to perform vision-related
activities of daily living, such as: reading, orientation and mobility, and other tasks” [3].

Vision impairment, is classified having in mind the degree of difficulty the impairment
brings in the near and far fields of vision [4]. At a distance, the degrees of impairment are:

• Mild

• Moderate

• Severe

• Blindness

Thus, blindness is the most severe form of vision impairment, where the sense of vision is
diminished to none or close to it.

World Health Organisation (WHO) estimates that nearly 1.3 billion people in the world
suffer from some kind of vision impairment, 36 million of which suffer from blindness [4].

It is also expected that the risk of more people being affected by some sort of vision
impairment increases in the near future due to population increase and ageing.

Mobility and Environment Sensing

Mobility is the ability to move freely and easily between different locations in space. It is
safely done with a good interaction with the environment and such requires a precise sensing
of all the elements in the surrounding space.

The main challenge of people with severe vision impairment is the safe interaction with
their surroundings, due to the fact that vision is the most important sense that facilitates this.
Reliability on other senses is the key to a healthy interaction with the physical environment.

Nowadays, mobility for blind people is mainly possible due to the use of the traditional
cane, depicted in Figure 2.1.

The cane allows a person with visual disabilities to detect obstacles that might present
themselves at the ground level, like stairs or even posts. The sense that is most used with
the cane is touch, because an obstacle is detected when the cane hits is and, thus, vibrates.

5

Figure 2.1: Traditional cane that facilitates blind people mobility [5].

Other good example on how blind people rely on other senses is Blind Football, that
is currently regulated by International Blind Sports Federation (IBSF). The pitch must be
uncovered to allow optimum acoustics; the ball has a sound system inside that makes a
jiggling or rattling sound whenever it moves, so that players can better locate it; the field has
kickboards that run along the side lines in order to be physically sensed; and there are specific
areas for the presence of a guide that verbally guides the players [6]. Figure 2.2 depicts a Free
Kick during a Blind Football match. Notice the kickboard parallel to the sideline on the left
and the guide standing behind the goal, guiding the striking team.

Figure 2.2: Free Kick at the 2016 Paralympic Games in Rio de Janeiro [7].

6

Hearing and Echolocation

Hearing is the capability of perceiving sounds. Blind people, not being able to see, usu-
ally end up relying to a greater extent on their hearing capabilities when comparing to non
visually impaired people. In fact, neuroimaging studies have suggested that the brains of
early-blind people suffer structural changes due to this fact [8].

Echolocation is the ability to detect obstacles in the environment by sensing an echo. Bats
are known to move in space through such sensing. Some dolphin species navigate in murky
waters in the same way.

Humans are not so sensitive to these stimuli. However, a small number of blind people
was reported to have outstandingly applied echolocation to interact with the surroundings,
through the emission of sound signals such as mouth-clicks [9]. In fact, Bo N. Schenkman
and Mats E. Nilsson [10] showed that both blind and sighted people can effectively locate
obstacles at a near distance (less than 2 m), although blind people scored better, and that
outstanding echolocators’ performance was superior as well for greater distances.

Lore Thaler et al., studied this sense in expert echolocators with neuroimaging scans and
the findings suggest that the processing of the mouth-click echoes in the brain is similar to
that of vision in sighted people [11], adding evidence that states that blind brains adapt to the
lack of vision with other senses to increase capability of obstacles detection and navigation.

2.2 Assisting Devices

Besides the traditional cane shown in Figure 2.1, other kind of devices, technically more
advanced, have been emerging recently. Some examples will be discussed in this section.

Cane equipped with sonar

The traditional cane most blind people use allows one to sense a surface with its tip. As
a blind person moves in space and scans the surface with the tip of the cane with a circular
motion, a lot of area is left unprobed. This flaw leads to the danger of not detecting small
holes on the ground, and so the carrier of the cane might step on it and fall.

This cane, depicted in Figure 2.3, developed at University of Aveiro, is equipped with a
sonar probe in the middle of its length and detects holes in areas not probed with the tip of
the cane in an effort to complement the traditional white cane’s features. It then warns the
carrier of the hole existence through a vibration.

However, the major disadvantages it presents have to do with portability, given the fact
that it is relatively heavy and it does not detect obstacles at levels higher than the ground.

Sunglasses with Sonar

This device, also developed at the University of Aveiro, consists on sunglasses that are
equipped with sonar detection. Its main feature is to detect obstacles at head level and the
system is shown in Figure 2.4.

The glasses are equipped with two ultrasonic emitters that generate ultrasound pulses
and one receiver that receives the echoes. Whenever it detects an obstacle at head level
approaching it will send a sound warning to the carrier.

7

Figure 2.3: Prototype of the Cane Equipped with Sonar [12].

Figure 2.4: Prototype of the Sunglasses Equipped with Sonar.

The main disadvantage is that the equipment has no speaker and, thus, the sound warning
is sent to headphones. This way, whenever an obstacle is detected, the blind carrier will
momentarily lose his ability to listen to other ambient noises in order to focus on the warning
signal. Most blind people are not comfortable with this trade-off.

NAVIG

This device is intended to help visually impaired people avoid obstacles, while mapping the
carrier’s location using Global Positioning System (GPS), adapted Geographic Information
System (GIS) and computer vision. Its prototype is depicted in Figure 2.5.

The fusion of GPS, GIS and computer vision is mainly intended to precisely locate the
users position. Besides that, the computer vision module detects relatively small and un-
expected objects that might appear, as well as guide the blind person towards an intended
object (mail box, for example), through a sound system that needs headphones to correctly
operate.

8

Figure 2.5: Prototype of the NAVIG system [13].

2.3 Parametric Speaker

A Parametric Speaker is a device that enables to project sound waves in a very specific
direction, as opposed to a conventional speaker, that scatters around the sound waves.

Its applications vary creatively and it is mainly intended to place the sound in a very
specific location, preserving a degree of privacy. In a commercial brochure [14], Sennheiser
recommends its Parametric Speaker, depicted in Figure 2.6, in situations like Museum ex-
hibitions, some automatic machines, like ATM’s and voting booths, workspaces and other
situations where confidential information might be transmitted in audio signals.

Figure 2.6: Sennheiser’s Audiobeam Parametric Speaker.

The same brochure states that the parametric speaker, whenever targeting the beam to a
place where it is supposed to reflect, it becomes also audible. This way it creates the illusion
that a sound is coming from that point of reflection.

This phenomenon is intended to be explored in this project, once it should be easier to

9

detected an obstacle in space by ”hearing it” when it is the only one in the surrounding space
emitting a certain audible signal.

The Parametric Speaker developed in [2] and depicted in Figure 1.2, that is intended to be
used in this system, showed an overall good behaviour. It was shown to be able to correctly
steer a modulated beam of ultrasound waves towards the intended direction, according to
user inputs, although minor deviations were detected.

In fact, tests revealed that the angle resolutions in both azimuth an elevation angles were
measured to be around 1o, at a distance of 85cm from the transducer array.

Figure 2.7 shows the result of an experiment made in [2]. The sound pressure was measured
at a distance of 85cm from the Parametric Speaker, when it was emitting a centered beam,
i.e., set with 0o azimuth and elevation angles. It shows the higher sound pressure zones in red
and the lower pressure zone in blues. It is visible that the higher pressure zones are around
the origin, as it is intended.

Figure 2.7: Sound pressure distribution in a plane for a centered beam [2].

10

Chapter 3

Sigma-Delta Converter

3.1 Introduction

The detection of objects in a sonar system involves the reception of some ultrasonic system
and its posterior processing. This said, one fundamental step of this process involves Analog-
to-Digital conversion.

In this chapter, a brief overview on some ADC systems is made, specially the Σ∆ ADC,
whose main characteristics are explored and, later, it is implemented in Field-Programmable
Gate Array (FPGA) and analog electronics and its performance measured and analysed.

3.1.1 Sampling Methods

Sampling is the method used to convert an analog signal into a digital one, extracting
several samples from the first at a constant rate, called sampling frequency, and there are two
main ways to do it.

The first way, and the most conventional, is done at a rate higher, although near, the
double of the signal’s highest frequency, its Nyquist rate. The Nyquist Theorem states that
a signal should be sampled at a frequency greater than the double of its highest frequency,
avoiding the so called aliasing phenomenon.

Let’s consider a generic and analog signal in the time domain, xa(t), and its Fourier
Transform, Xa(f). Sampling the analog signal with a stream of unit impulses (delta func-
tion), separated from each other by a constant time period, Ts, meaning a constant sampling
frequency, Fs, results in a discrete signal [15]:

xa(n) = x(nTs), −∞ < n <∞ (3.1)

And, in the frequency domain:

Xa(f) = Fs

∞∑
k=−∞

X(f − kFs) (3.2)

This means that the frequency spectrum of the original signal gets shifted of kfs frequency
units and so it is replicated an infinite number of times, each replica centred at multiples of the
sampling frequency. In the case that fs is smaller than twice the bandwidth of the baseband
spectrum, every replicas overlap, creating the aliasing phenomenon, as illustrated in Figure

11

3.1, resulting in added frequency components to the baseband spectrum and, thus, undesired
interferences.

Figure 3.1: Aliasing Effect.

Therefore, considering non-idealities in practice, it is necessary to always sample a signal
with a sampling frequency slightly greater than its Nyquist frequency.

This leads to the need of a Low-Pass Filter (LPF) with a narrow transition band to filter
the continuous signal, protecting the output from aliasing. This filter will be called aliasing
filter and its required transition band is not just difficult to implement, but also expensive.

The second way to sample a signal is less demanding on the LPF’s transition band require-
ments. It’s called oversampling and it consists on sampling with a frequency much higher
than the signal’s bandwidth. Considering a generic signal x(t), with a baseband bandwidth
B, sampling with a rate fs implies that the low-pass filter’s transition band will begin at
B and end at frequency fs − B. In oversampling, beeing that fs � B, the transition band
required is wide, comparing to the Nyquist rate sampling case, resulting in a need of a less
complex and cheaper filter[16].

3.1.2 Quantization noise

Usually, quantization follows the sampling process, rounding the sampled value to the
nearest value of previously specified quantization levels, i.e., the division of the analog signal
amplitude range by several equally spaced levels.

Considering ∆ as the amplitude of level separation, i.e., the space between quantization
levels, the largest quantization error occurs when the quantized sample, before being rounded,
has a value that falls exactly in between two levels so, for some quantized value, the error
can be measured from −∆/2 to ∆/2, and it is assumed to be uniformly distributed along this
interval. Thus, the noise power is [17]:

Pn = σ2 =

∫ ∆/2

−∆/2

r2

∆
dr =

1

∆

[
r3

3

]∆/2

−∆/2

=
1

∆

2∆3

24
=

∆2

12
(3.3)

Being r the value of the quantization error or, in other words, the distance of the sampled
value from the nearest quantization level.

Considering that the quantization error is uniformly distributed along ∆, it adds white
noise and is not related to the analog signal. As such, both oversampling and Nyquist
rate sampling processes will be affected with the same noise power, dependent only on the
quantization resolution.

However, in oversampling, the noise power spreads over a wider frequency band, due to
its much greater sampling frequency[16]. Thus, inside the input signal’s baseband, comparing

12

to a Nyquist rate ADC, an oversampling converter has a smaller fraction of noise uniformly
distributed, reducing noise power inside the baseband and increasing Signal-to-Noise Ratio
(SNR).

3.1.3 Performance

Signal-to-Noise Ratio

The SNR quantifies the ratio between the power of a given signal and the power of the
noise it contains. It is usually expressed in Decibel (dB) and is calculated according to the
following equation:

SNR = 10× log10

(
Psignal
Pnoise

)
[dB] (3.4)

One way to compute the powers that make up the fraction in Equation 3.4 is to determine
the PSD of a signal, which is what characterises the scattering of power in the frequency
spectrum, find the frequency components correspondent to signal and to noise (and, eventu-
ally, to harmonics), and then sum the power present in the respective frequencies. It is usual
to find in a PSD harmonic components of the input signal, as illustrated in Figure 3.2. The
harmonic components can be discarded out of this computation, as they add power in the
noise band to a great extent, not being noise components, but the result of non-linear effects
imposed by a system.

Figure 3.2: PSD of a sinusoidal signal with noise and harmonic components.

Signal-to-Noise and Distortion Ratio

The Signal-to-Noise and Distortion Ratio (SINAD) measures the ratio between the signal
power and the noise and harmonics powers added together. Also often expressed in dB, it is,

13

so, given by:

SINAD = 10× log10

(
Psignal

Pnoise + Pharmonics

)
(3.5)

Spurious-free Dynamic Range

Spurious free dynamic range (SFDR) is the ratio of the Root Mean Square (RMS) value
of the signal to the RMS value of the worst spurious interference, regardless of where it
falls in the frequency spectrum, and it represents the smallest value of signal that can be
distinguished from a large interfering (spurious) signal.[18]. It is computed by:

SFDR = 10× log10 (Pfund)− 10× log10 (Pspur) (3.6)

Total Harmonic Distortion

The Total Harmonic Distortion (THD) is the ratio between the power in all the harmonic
components and the fundamental power and relates to the linearity of the ADC, meaning
that a lower THD value means less signal dependent distortion.[19]. Thus, its value in dB is
given by:

THD = 10× log10

N∑
n=1

Pharmn

Psignal

 (3.7)

Resolution

The resolution of an ADC quantifies the number of possible outputs when compared to the
input range. For example, given a N-bits ADC, its resolution is 1

2N
of its input peak-to-peak

value. It can also be stated that it measures the amount of voltage that a Least Significant
Bit (LSB) quantizes.

Due to introduced noise and distortions, however, some LSBs might be encoding noise
amplitudes that are greater than the resolution. Given this fact, only a portion of the N bits
encodes the input signal and it is named Effective Number of Bits (ENOB). The ENOB tells
the number of bits that encode useful information and can be computed by:

ENOB =
SINAD − 1.76

6.02
(3.8)

3.1.4 Delta Modulation

A Delta Modulator (DM) is an example of an oversampling converter. Its block diagram
is depicted in Figure 3.3.

The DM, through a feedback loop, is intended to perform periodically a two-level quanti-
zation of the difference between an input signal, X(s), and its approximation, Xq(s). Consid-
ering that the integrator acts as a LPF, when the mentioned difference is positive, meaning
that the input is greater than its approximation signal, the output sample, Y (s), is set to the
logic level 1 and so the integrator will increase its output by a small amount, ∆ (hence its

14

Figure 3.3: Delta Modulator block diagram.

name), getting it closer to the input sampled value. On the other way, if the difference is neg-
ative, the output of the modulator will be set to 0, decreasing the value of the approximated
signal by ∆ units. Such process is depicted in Figure 3.4.

Figure 3.4: Delta Modulator’s signals [20].

The demodulation of the output signal is based on the modulator’s principle. An inte-
grator converts the pulses from the modulator output to a stair shapped approximation of
the input signal and a LPF converts the later into the regenerated input signal. Figure 3.5
portrays a DM immediately followed by its demodulator.

Figure 3.5: Delta Modulator followed by its demodulator.

On the right-hand side of Figure 3.4 is evident the biggest limitation of this type of mod-
ulators. The input signal must have its frequency very well delimited, otherwise it might
change at a rate in which the modulator is not able to match with successive ∆ additions/-
subtractions, unless sampling frequency or the ∆ increased/decreased by the integrator are
adapted (which is highly unpractical) and thus creating undesired distortions to the mod-
ulated signal. This phenomenon is called slope overload and is caused by the modulator’s

15

topology.

Taking into account Figure 3.6, and considering the respective signals in the Z domain,
it’s easy to understand that the output signal is given by the error signal, E(z), added with
quantization noise, N(z):

Y (z) = E(z) +N(z) = X(z)−Xq(z) +N(z)

It is fair to assume that the noise introduced by quantization is negligible when compared
to the other signals:

Y (z) ≈ X(z)−Xq(z)

Given the fact that the integration in the Z domain involves a delay (one sampling period),
and having in mind that Xq(z) is an approximation of the input signal, the output of the DM
can be considered as approximately the difference between two consecutive input samples:

Y (z) ≈ X(z)−X(z − 1) (3.9)

It is now possible to conclude that the output of the DM is roughly a differentiation of the
input signal, making it highly sensitive to it’s variations and thus allowing input frequency
related phenomena, such as slope overload, to happen.

Being that the noise added to the system during quantization is a result of stochastic
process, it shows a non linear behaviour. Being so, in order to analyse its impact on the
system, the modulator is approximated to is linear model, illustrated in Figure 3.6, whose
signals are represented in the S domain.

Figure 3.6: Delta Modulator’s linear model.

The output of the modulator is given by:

Y (s) = E(s) +N(s) = X(s)− 1

s
Y (s) +N(s)

Solving for Y (s), it is obtained:

Y (s) =
s

s+ 1
[X(s) +N(s)] (3.10)

Being s = jω, it is easy to note that the DM acts as a High-Pass Filter (HPF) for both
the input signal and the quantization noise.

16

3.1.5 Sigma-Delta Modulation

First Order

The Σ∆M, also refered to as Delta-Sigma, is a variation of the previous oversampling
modulator. Considering Figure 3.5, the signal at the input of the demodulator’s LPF is:

Xq(s) =
1

s
Y (s) ≈ 1

s
[X(s)−Xq(s)] =

1

s
X(s)− 1

s
Xq(s)

Therefore, it is roughly equivalent to sample the difference between the input signal and
the modulated output, both separately integrated, and later recover with a LPF. In other
terms, the Σ∆M samples the difference between the integrated input and the approximated
output. This is the Σ∆M mathematical principle, and this modulator is depicted in Figure
3.7.

Figure 3.7: Sigma-Delta Modulator.

Given the fact that:

E(s) =
X(s)

s
− Xq(s)

s
=

1

s
(X(s)−Xq(s))

The Σ∆M represented in Figure 3.7 can be simplified by combining both integrators into
one, placed right after the adder, as depicted in Figure 3.8, now with the output named Y (s).

Figure 3.8: Simplified Sigma-Delta Modulator.

The quantization noise added by the comparator is a stochastic process. Being so, the
noise added to the system is non-linear and can not be described through some mathematical
relationship. In order to perform the noise impact analysis on the modulator, it’s topology is
approximated to a linear model, depicted in Figure 3.9, where the noise is referred to as N(s)
and so a linear behaviour is attained, which depends on the noise signal, that is non-linear.

The output of this block diagram is given by:

Y (s) =
E(s)

s
+N(s) =

1

s
[X(s)− Y (s)] +N(s)

17

Figure 3.9: The Sigma-Delta Modulator linear model.

Solving for Y (s), the following result is obtained:

Y (s) =
1

s+ 1
X(s) +

s

s+ 1
N(s) (3.11)

Considering the fact that s = jω and the absolute value of 1
s+1 tends to infinity, the term

(also known as Signal Transfer Function (STF)) has a transfer function similar to one of a
LPF and the term s

s+1 (the Noise Transfer Function (NTF)) represents a transfer function
similar to one of a HPF. Given this fact, it is possible to infer that the Σ∆M will not affect the
input signal, as long as its frequency content does not exceed the LPF cut-off frequency, and
the quantization noise will be pushed towards higher frequencies of the spectrum, reducing
the noise in the baseband to a greater extent. This occurrence is known as Noise Shaping
and it can be verified in Figure 3.12.

Considering Figure 3.8 and its signals in the Z domain, the output is:

Y (z) =
1

1− z−1
E(z) =

1

1− z−1
[X(z)− Y (z)]

Solving for Y (z), the expression results in:

Y (z) =
X(z) + Y (z − 1)

2
(3.12)

Therefore, opposing to the conclusions reached in equation 3.9, it is inferred that, contrary
to the DM, the Σ∆M’s output is not sensitive to its input variation and, therefore, it will not
exhibit the slope overload effect.

In conclusion, the Σ∆M is to perform better than the DM for it will present under no
circumstances slope overload distortion and it has the ability to significantly decrease the
noise density in the bandwidth of interest, that is, the baseband, increasing even more the
SNR of the recovered signal.

High-Order Sigma-Delta

High-order Σ∆Ms are implemented by cascading N integrators fed-back with the output
signal. Figure 3.10 depicts two examples of high-Order Σ∆M.

Figure 3.11 depicts a second order Σ∆M reduced to its linear model, where some non-
linear quantization noise, N(s), is added in the place of the comparator, which also acts as a
1 bit quantizer.

18

(a) 2nd Order.

(b) 3rd Order.

Figure 3.10: Two Different High-order Sigma Delta Modulators.

Figure 3.11: Linear model of a 2nd order Σ∆M.

Let its output be defined as the sum of N(s) and I2(s):

Y (s) = I2(s) +N(s) =
E2(s)

s
+N(s)

Being E2(s) = I1(s)− Y (s) and I1(s) = E1(s)
s , the previous expression can be stated as:

Y (s) =
E1(s)
s − Y (s)

s
+N(s)

Which, considering that E1(s) = X(s)− Y (s), and solving for Y (s), the transfer function
of the system can be obtained:

Y (s) =
1

s2 + s+ 1
X(s) +

s2

s2 + s+ 1
N(s)

Following the same procedure for the 3rd order Σ∆M, it yields the transfer function defined
as:

Y (s) =
1

s3 + s2 + s+ 1
X(s) +

s3

s3 + s2 + s+ 1
N(s)

It is, then, easily deducted that, for a N-order Σ∆M, its transfer function, as a function

19

of the input signal (X(s)) and the quantization noise (N(s)) is given by:

Y (s) =
1

N∑
n=0

sn
X(s) +

sN

N∑
n=0

sn
N(s) (3.13)

In terms of absolute value of the transfer function, being s = jω, for high frequencies,
the STF tends to zero, acting as a LPF. On the other hand, the term with greater power

on the denominator of the NTF gets much greater than the remaining terms, so
N∑
n=0

sn ≈ sN ,

reducing the NTF to sN

sN
, and, thus, it acts as a HPF. Since the STF has N poles and the

NTF has N poles and N coincident zeros, as the order of the Σ∆M increases, the number of
poles of the STF and the number of poles and zeros of the NTF also increase, increasing the
attenuation outside of the passband.

In practice, higher-order Σ∆Ms are more effective to filter the input signal higher frequen-
cies and quantization noise at lower frequencies. The effect of the N th order Σ∆M on the
noise (Noise Shaping (NS)) is the most notable one and it is depicted in Figure 3.12, as well as
the distribution of quantization noise in a Nyquist sampling ADC and a simple oversampling
ADC.

Figure 3.12: Noise Shaping for different orders Σ∆M, a Nyquist sampling ADC and a simple
oversampling ADC[16].

In conclusion, the higher the order of the Σ∆M, the more effective it is at pushing the
quantization noise towards high frequencies, at the expense of hardware simplicity. However,
stability problems might also occur, due to the increasing number of poles of both STF and
NTF.

3.2 Design of the Modulator

Given the desired portability of the overall system, hardware simplicity is a main goal of
the project. For that reason a FPGA implemented Σ∆M must be as simple as possible in
terms of hardware external to the FPGA.

That said, the implemented Σ∆M was a first-order one, having in mind that the benefits
are not worth the added complexity brought by a higher-order Σ∆M.

20

Initially, it was planned to implement the topology depicted in Figure 3.8. However, given
the need of an analog integrator in the feedback loop, so was needed an analog adder block,
that should be implemented with an Operational Amplifier (OPAMP) in a difference config-
uration with unity gain. Thus, the topology depicted in Figure 3.7 was chosen, implementing
the adder block with a differential input buffer, programmed in the FPGA. Although the
number of integrators doubled (a total of two resistors and two capacitors), the need for a
difference amplifier was eliminated and, so, the need for one OPAMP and four resistors. This
way, a simplified and equally functional Σ∆M was designed, with a minimum number of
electronic components outside of the FPGA.

After the selection of the topology, a simulation of the system followed in MATLAB’s
Simulink environment.

The integrators were simulated according to an RC transfer function:

HRC(s) =
1

1 + sRC
=

1

1 + sτ
(3.14)

The comparator implemented on the simulation was composed of a Zero-Order Hold
(ZOH), with the intention to hold an input value for a duration equal to the sampling period,
and a relay that would read the output of the ZOH and round it to its nearest digital value.
Therefore, these two blocks cascaded act as a 1-bit quantizer operating at a fixed sampling
frequency. Figure 3.13 depicts the Simulink block diagram of the simulated system, where
the red components correspond to the digital part of the modulator and the black ones to the
analog part.

Figure 3.13: Simulink topology of the designed Σ∆M.

Due to the fact that the differential input buffer on the Artix-7 FPGA does not support
3.3V Low Voltage Differential Signalling (LVDS) I/O standard, the system was designed for a
voltage range from 0V to 2.5V. As such, the sine wave at the Σ∆M’s input has an amplitude of
1.25V and DC component of equal value. In the simulation, the input signal has frequency of
40kHz, given the fact that the used ultrasound transducers operate at this central frequency.

Having in mind this central frequency, the RC integrators, which also act as LPF, were
designed for a cut-off frequency slightly above this frequency (approximately 48.2Hz, that is
a time constant τ = RC = 3.3µs).

The simulation was run for different sampling frequencies and the performance indicators
(SNR,SINAD, Spurious Free Dynamic Range (SFDR) and THD) where computed, while a
40kHz sine wave was at the input of the Σ∆M. The results are shown on Table 3.1

The irregularity of the SNR results is due to the fact that some sampling frequencies (like
12.5MHz) introduced a great amount of spurious in the noise band, raising the total noise
power and degrading SNR.

21

fs (MHz) SNR (dB) SINAD (dB) SFDR (dB) THD (dB)

10 103.4 43.0 43.1 -43.0

12.5 48.2 47.4 52.7 -55.1

20 107.0 64.2 64.2 -64.2

25 51.9 49.3 52.9 -52.7

50 90.4 68.5 69.1 -68.6

100 88.6 71.6 71.9 -71.9

Table 3.1: Performance indicators computed in the simulation for different sampling frequen-
cies, with input frequency of 40 kHz.

Given the results, 50MHz of sampling frequency were chosen because of the greater SNR
measured, in spite of the slightly lower remaining performance indicators.

Figure 3.14 shows the input and output signals, for a sampling frequency of 10MHz (chosen
so a better visualisation of the output signal could be obtained) and an input frequency of
40kHz, as well as the NS characteristic.

(a) Noise shaping. (b) Input and Output signals.

Figure 3.14: Bitstream modulation and noise shaping characteristic for a 40 kHz input sine
wave and 10 MHz sampling frequency.

Finally, with the sampling frequency set, the simulation was run for different input signal
frequencies. The results are shown in Figure 3.15.

22

Figure 3.15: Simulated performance indicators for different input frequencies.

3.3 Implementation of the Σ∆M

The design proposal for the Σ∆M is depicted in Figure 3.16. Inside the blue box lay the
digital components, implemented in VHDL and outside are the analog components that make
up the integrators.

Figure 3.16: Designed Σ∆M.

3.3.1 Digital Interface

The digital interface of the Σ∆M was implemented in a VHSIC Hardware Description
Language (VHDL) programmed FPGA and Figure 3.16 depicts its block diagram inside the
blue box, with inputs signP, signM and clk, a single output BufOut (bold letters) and internal
signals s IBufOut, s clk and s FFOut.

23

The VHDL implementation of the digital interface can be found in Appendix C.

Input Differential Buffer

As stated previously, the adding block of the chosen Σ∆M topology was implemented as
an input differential buffer (IBUFDS). This way, the output of the buffer would be the nearest
digital value to the difference between its inputs. A VHDL primitive, part of UNISIM library,
was available and used to implement this part of the circuit in a simple way, on the top level
file. The differential termination was chosen to be off, once the frequencies at both inputs
are expected to be relatively low (around 40kHz), not causing the reflection phenomenon
expected when high-frequency signals reach the buffer inputs. The low power attribute was
set to FALSE in order to improve the buffer’s performance and the IOSTANDARD was
defined to be LVDS 25, as VCCO = 3.3V powered LVDS signaling is not supported in Xilinx’s
7 series FPGA families [21], as it is the case with the used Artix-7 (due to this fact, the
remaining inputs and outputs were set to a LVCMOS25 IOSTANDARD).

Sampling

However, the output of the differential buffer is in no way synchronised with any clock
signal. In order to perform this, a D-type flip-flop was cascaded with the differential buffer. A
D-type flip flop sets its output as the input digital value at very specific time instants (in this
case, at its clock signal rising edge), remaining unaltered at other instants, independently of
the input value. Both the input differential buffer and the D-type flip-flop combined perform
the 1-bit quantization at sampling frequency fs = 50MHz. The output of the D flip-flop is
to be fed-back to the negative input of the differential buffer, right after being integrated.

The clock signal controlling the sampling moments, of frequency 50MHz, corresponds to
half the frequency of the internal clock of the FPGA used (division factor of 2). To implement
it, a frequency divider was described. The principles behind its operation is that, dividing the
input clock frequency by a division factor of N, the output signal is off during N

2 input periods
and on during the remaining. Provided that N is even, the output signal is a Pulse-Width
Modulation (PWM) signal with exactly 50% duty-cycle. Otherwise, it is on for N

2 −1 periods
and off for N

2 input clock periods.

Output buffer

The remaining VHDL component is an output buffer that allows the output signal of
the Σ∆M to be fed-back, through an analog circuit that is external to the FPGA. This
output buffer is also a primitive that is part of the UNISIM library and, as with the input
differential buffer, it was programmed in the top-level file. The drive attribute was set to 16,
the IO/standard was set to LVCMOS25 to maintain compatibility between the pins used and
the SLEW attribute, which sets the slew rate of the output buffer, was set to HIGH, so that
it could get a faster response and thus improving signal quality throughout the feedback loop.

3.3.2 Analog interface

Given the fact that the input differential buffer was set to have the LVDS 25 IOSTAN-
DARD, the output of the digital interface should have a digital high level of 2.5V. To achieve
this objective, experimentally, the output impedance of the BufOut output was measured at

24

DC to be 220Ω. Once the output range would vary from 0V to 3.3V, given this measured
output impedance, a resistor was connected with one terminal at the output and the other
at the ground. This resistor is depicted in Figure 3.16 with the reference R3. The purpose of
this resistor was to act alongside with the measured output impedance as a voltage divider
and, thus, lower the output voltage when on from 3.3V to 2.5V. As such, the value of this
resistor is given by the voltage divider expression:

2.5 =
R3

R3 + 220
× 3.3

Solving for R3, its value is then computed:

R3 =
220× 2.5

3.3− 2.5
= 687.5Ω

And so the connected resistor was one of 680Ω.

The integrators were chosen to be simple RC circuits. Let the circuit in Figure 3.17 be
considered.

Figure 3.17: RC integrator and low-pass filter.

The output voltage is:

vo(t) =
1

C

∫
i(t)dt =

1

C

∫
vi(t)− vo(t)

R
dt

For high input frequencies, as the circuit acts as a low-pass filter, the output voltage is
negligible when compared to the input voltage, and so:

vo(t) ≈
1

C

∫
vi(t)

R
dt

Thus, the circuit behaves as a voltage integrator at high frequencies, which is the required
operation for the feedback loop. At low frequencies (s = jω ≈ 0), the output of the circuit is
approximately the same as the input signal:

Vo(s) =
ZC

R+ ZC
Vi(s) =

1
sC

R+ 1
sC

Vi(s) =
1

1 + sRC
Vi(s) ≈ Vi(s)

This is the desired behaviour because it is intended to subtract the input signal to its
approximation and later quantize it. This is a characteristic from a DM and, as it was

25

previously stated, a Σ∆M is a variation of the first, so some characteristics are mutual to
both.

Being so, the needed cut-off frequency of both integrators should be slightly above the
intended centre frequency (40kHz). A 10kΩ resistor and a 330pF capacitor were chosen for
both integrators (R1 and C1 and R2 and C2 in Figure 3.16), making the cut-off frequency
approximately 48.2kHz.

It was considered that the inputs of the differential buffer had infinite input impedance
and, thus, have no effect at the output of both integrators connected to its terminals.

3.4 Tests and Results

In order to measure the performance indicators of the Σ∆M, a sinusoidal signal ranging
from 0V to 2.5V was connected to the modulator, and its output bitstream recorded in the
FPGA memory and then analysed (this process is explored with more detail in Appendix A).

3.4.1 Experimental Set-up

The input sine wave is required to be as clean as possible, in order to better analyse
the noise and interference introduced by the modulator, which should not be ”contaminated”
with the input signal imperfections. To achieve this requirement, the Audio Precision Portable
One Plus, an audio measurement instrument capable of low-noise and low-distortion sine wave
generation was used and it is shown in Figure 3.18.

Figure 3.18: Audio Precision Portable One Plus audio test set.

The equipment can only generate zero DC offset wave forms. Being so, a signal condi-
tioning circuit was needed to add a DC offset so a signal with a required voltage range at
the input of the modulator could be attained. The chosen configuration was of a capacitor
followed by a voltage divider fed with the FPGA’s 3.3V Vss. This way, the output signal
should be the input signal with an offset of equal value of the voltage divider DC output, and
its maximum value must not exceed 3.3V. The circuit is represented in Figure 3.19.

The offset is determined in a DC analysis of the circuit. Therefore, the capacitor C acts
as an open circuit or, in other words, an infinite impedance. The offset is, then, computed
by:

Voffset =
R2

R1 +R2
Vss

26

Figure 3.19: Signal conditioning circuit for offset addition.

Solving for R1:

R1 =
Vss − Voffset
Voffset

R2

Knowing that the required offset is halfway between the voltages for the digital values of
’0’ and ’1’:

Voffset =
V + − V −

2
=

2.5− 0

2
= 1.25V

And setting the value of R2 at 10kΩ, the computed value of R1 is, then:

R1 = 16.4kΩ

The effect of the capacitor C at low frequencies has to be taken into account, since it
adds a HPF behaviour and depends on resistors R1 and R2, in parallel. Its cut-off frequency
should be low and is given by the following expression:

fc =
1

2π (R1//R2)C

It was chosen a 100nF capacitor, making its cut-off frequency fc = 256Hz.

The resistors used on the circuit have a tolerance of 5% and a precise offset voltage is
in practice unachievable. To work around the problem, the resistor R1 was divided into one
resistor of 15kΩ in series with a variable resistor of 2.2kΩ, as it is shown in Figure 3.20. This
way, it is possible to calibrate the circuit to present an output offset of 1.25V, in spite of the
deviations that might occur in the resistors.

Since the output of the conditioning signal represented in Figure 3.20 and designed until
now is to be connected to the input of the Σ∆M depicted in Figure 3.16, one must take into
account the input impedance of the modulator so that the offset does not deviate from its
designed value.

At low frequencies, the input impedance of the Σ∆M is much greater than R2 in Figure
3.19 due to the positive input of the differential buffer’s impedance, so, as seen from the

27

Figure 3.20: Calibratable offset signal conditioning circuit.

input of the signal conditioning circuit, there’s a parallel between R2 and an input impedance
that is much greater and, thus, the equivalent is approximately R2, so its effect on the offset
voltage is negligible.

Finally, given the fact that the circuits described so far are to be integrated in a FPGA
system, the voltage source of 3.3V might contain high frequency noise components. Given this
fact, a RC LPF was designed with a 100Ω resistor and a 68µF capacitor, making its cut-off
frequency fc = 23.4Hz, to filter the DC voltage source. This way, the DC voltage source is
now cleaner. It should be noted that the equivalent impedance of the circuits connected to
the output of this filter is much greater than 100Ω (Figure 3.20), which is the resistor that is
part of this filter, not having a damaging impact on the filtered voltage source level.

The schematics for the resulting analog circuit are depicted in Figure 3.21.

Concerning the reduction of noise added in the analog interface, it was designed in a
Printed Circuit Board (PCB) with a ground plane. The PCB would be connected in a
Peripheral Module (PMOD) input (as illustrated in Figure 3.22) on the Nexys-4 board for
testing.

Referring to Figure 3.22, Pin 1 was programmed to be the positive terminal of the dif-
ferential input buffer, Pin 7 to be the negative terminal, Pin 4 was programmed to be the
output of the output buffer and the remaining Pins 2,3 and 9 to 10 where set to level ’0’ for
minimising interferences and, thus, reduce the noise.

Taking into consideration the high frequency signal available at the output Pin 4, the
PCB was designed so that the components were as close as possible and with vertically
placed resistors, minimising the eventually added noise due to smaller wavelengths.

The PCB layout is depicted in Figure 3.23.

The capture of the bitstream for posterior analysis involved storing its bits in a Block
Random-Access Memory (BRAM) that allowed to store 131072 words with a maximum size
of 36 bits, each. To take advantage of this fact, a serial-to-parallel converter block was
implemented in VHDL. The purpose of this block is to capture 36 bits of the output bitstream

28

Figure 3.21: Σ∆M, with the calibratable signal conditioning circuit, DC supply LPF filter,
integrators and digital interface.

Figure 3.22: PMOD input ports front view on the Nexys 4 board [22].

and store them as a word in the BRAM. Its operation lies on the basis operation of a shift-
register, where an input bit is shifted into a N-bit word. In fact, its 36 bit parallel output is
changing at a rate of 50MHz, i. e., an input bit is shifted and the output immediately reflects
this change, concatenating the input bit with the 35 Most Significant Bits (MSB). However,
a counter signal is incremented at the same frequency as the sampling one. When it reaches
the number of intended bits to be stored it is reset and an additional output (a triggering
signal) is put to a high level for a single cycle duration, triggering Vivado’s Integrated Logic
Analyser (ILA) to store a 36 bit word in the BRAM.

Refer to section C.3 for more details on the VHDL implementation of the described shift
register.

Given the fact that the quatization happening in the Σ∆M is a stochastic process, the
increase of the number of periods of the input signal recorded has benefits in terms of reliability
in the measurement of performance indicators, such as SNR and THD, for example, because
they are statistically determined.

The entire experimental set-up for the measurements of the Σ∆M performance can be

29

Figure 3.23: Board layout of the circuit used to take measurements to the Σ∆M.

Figure 3.24: Experimental set-up for measuring the Σ∆M performance.

seen depicted in Figure 3.24.

3.4.2 Results

The Audio Precision equipment was set to generate a fixed frequency sine wave, that was
to be put at the input of the Σ∆M depicted in Figure 3.21. Then, the respective generated
bitstream was recorded with Vivado’s ILA and later processed with MATLAB for PSD es-
timation and computation of the performance indicators (SNR, SINAD, SFDR and THD).
This process is further explored in Appendix A.

The process was repeated for several input frequencies and the generated bitstreams were
stored and processed altogether.

30

Output Power Spectrum Density

The estimated PSD for both the simulated and implemented Σ∆Ms, when the input signal
has a frequency of 40kHz is depicted in Figure 3.25.

Figure 3.25: Estimated PSD for both the hardware implemented and simulated Σ∆Ms, when
fin = 40kHz.

Performance Indicators

The measured performance indicators as a function of the input frequency, for both the
simulated and Harware (HW) implemented Σ∆Ms, are depicted in Figure 3.26.

3.5 Results Analysis and Discussion

The simulated Σ∆M, pictured in Figure 3.13, turned out to exhibit an unpredictable
behaviour that added vast amounts of spurious interferences outside the signal and distortion
bands for some input frequencies. This phenomenon can be verified in Figure 3.27.

Since this phenomenon adds power to the noise band and, thus, degrades SNR, SINAD
and SFDR, it justifies the somewhat unstable variation of the performance indicators for
the simulated modulator. However, it can be stated that the figures of merit for both cases
increase quality with input frequency.

At lower frequencies and due to the achieved frequency resolution of the PSD, the fun-
damental lobe was wide, encompassing within it lobe some harmonics. Due to this fact, the
SNR and SFDR presented good results at low input frequencies. Thus, they should not be
considered in the analysis.

The THD decreases with frequency partially because, given the fact that the PSD is
estimated in a band of 125kHz of width, as the input frequency increases, less harmonics
fit inside this band, decreasing the THD. The last measured result showing in its respective
bode plot is that of a 50kHz input, whose first harmonic stands at 100kHz and, so, inside the

31

(a) SNR. (b) SINAD.

(c) SFDR. (d) THD.

Figure 3.26: Measured performance indexes for both hardware implemented and simulated
Σ∆Ms.

band of analysis. The next input frequency measured was of 63kHz and its first harmonic
stood outside the 125kHz bandwidth. According to Equation 3.7, the THD for non existing
harmonics power is then infinite.

The main reason for the difference in the values of performance indicators between the
simulated and the hardware implemented Σ∆Ms lies in the noise floor. In the simulated
Σ∆M, in general, the recorded noise floor was lower than in the one implemented in HW.
Being so, the noise power was lower and, as a consequence, both SNR and SINAD were,
generally, higher in the simulated case. Also, generally speaking, the top signal power in the
HW implemented Σ∆M was slightly lower and its harmonics presented greater harmonics
power, as it is visible in Figure 3.25, increasing the THD when compared to the simulated
modulator. Only at 63kHz did the simulated Σ∆M present a worse performance indicator
and it was SFDR, as seen in Figure 3.26. Again, this took place due to the high concentration
of spurious power in the noise band.

In Table 3.2 is shown the different figures of merit when the input signal is a 40 kHz
sinusoid.

32

(a) fin = 63kHz. (b) fin = 80kHz.

Figure 3.27: Unpredictable behaviour of the simulated Σ∆M outside the signal and harmonics
band for some input frequencies.

SNR SINAD SFDR THD

64.06 dB 45.49 dB 45.97 dB -45.55 dB

Table 3.2: Performance indicators measured with 50 MHz of sampling frequency and 40kHz
of input frequency.

Finally, it must be noted that the values of SNR and SINAD, being dependent on the
total noise power, depend also on the bandwidth of the analysis, i. e., if the bandwidth of
analysis were to be decreased, assuming frequency resolution remains unchanged, the total
noise power would also decrease and so SNR and SINAD would benefit from it and come
closer in value. Hereupon, the ENOB, which is computed by Equation 3.8, can be computed
using SNR instead of SINAD.

The ENOB is the the resolution that can be achieved by an ideal ADC, i. e., one that
adds no distortion ([23]). Substituting the values of the expression, it yields:

ENOB =
SNR− 1.76

6.02
=

64.06− 1.76

6.02
= 10.35 bits

Which, taking into consideration the 2.5V dynamic range of the Σ∆M, its accuracy allows
to measure precisely:

∆Vin =
2.5V

2ENOB
= 1.92mV

A simple ADC was achieved with a performance similar to the one observed in some
commercial 12-bit ADCs, like Microchip’s MCP3201, for example, whose ENOB at an input
frequency of 40kHz and 5V reference voltage was of about 10.5 bits [24].

33

34

Chapter 4

Beamforming

4.1 Introduction

Beamforming is a signal processing technique in which several sensors organised as an
array collect and process several spatial samples of a propagating wave [25] in order to localise
or receive a message from a source or even characterise the medium through which the wave
propagates [26].

The most common forms of sensor arrays are the Uniform Linear Array (ULA) and the
Uniform Planar Array (UPA), and they are to be described in the following sections.

4.1.1 Uniform Linear Array

In a ULA configuration, the sensors are found distributed along a line and equally spaced
from each other, as it is depicted in Figure 4.1, where a planar wave-front that is about to
interact with the array at an angle Θ, also called DoA, is also represented. The wave-front is
considered linear as a mean to simplify the following calculations.

Figure 4.1: Uniform Linear Array configuration [26].

35

The DoA is defined as the angle that the direction of propagation of the wave that is
interacting with the array makes with respect to its normal and it is depicted in Figure 4.1
with the greek letter Θ.

In this specific situation, the reference sensor is the rightmost one, given the fact that the
wave-front will hit it first. The remaining sensors will interact with the wave following time
delays dependent on the distance between sensors and the DoA.

In the general case where there are L sensors (elements), the wave-front will reach every
lth sensor with a delay τl, defined by:

τl =
d(l − 1)

v
sin(Θ), 1 ≤ l ≤ L, Θ ∈ [−π;π] (4.1)

Being v the velocity of the wave propagation.
Considering the wave-front some signal s(t) modulated in frequency with a much greater

carrier frequency fc, making it a narrowband signal, the received signal at every lth sensor is
given by:

yl(t) = s(t)e−jωc(t−τl) (4.2)

The derived expression states that the delay that each sensor presents induces a phase-shift
since, according to Euler’s formula:

e−jωc(t−τ) = cos(ωc × t− ωc × τl) + j sin (ωc × t− ωc × τl)

Therefore, the analysis of the time delay in a sensor part of an ULA is, essentially, the
same as the analysis of the phase-shift, when in respect to a reference sensor.

Combining all of the sensors of the array, it is obtained:

y(t) =
L∑
l=1

s(t)e−jωc(t−τl) (4.3)

In its essence, this kind of array performs spatial filtering. Being so, it is important to
limit its parameters in a way that spatial aliasing can be avoided. Such condition is [27]:

d <
λ

2
(4.4)

4.1.2 Planar Array

A planar array has its sensors dispersed over a two-dimensional plane [26] and, thus,
several geometries are possible, as depicted in Figure 4.2. Its main advantage over the ULA
lies in the fact that it can measure two different incidence angles: azimuth and elevation, and
it is depicted in Figure 4.3.

Referring to Figure 4.3, let a Planar Array have M ×N sensors, distributed uniformly on
the XY plane. Let m be the index that coordinates each sensor along the x-axis (1 ≤ m ≤M)
and n along the y-axis (1 ≤ n ≤ N), so each sensor can be referred to with the ordered pair
(m,n). The delay with respect to the reference sensor along the x-axis is defined as:

τm =
d1(m− 1)

v
sin θ cosϕ

36

(a) Square Array. (b) Circular Array.

(c) Cross Array. (d) Triangular Array.

Figure 4.2: Some different geometries for the Planar Array [26].

The delay with respect to the reference sensor along the y-axis is, then:

τn =
d2(n− 1)

v
sin Θ sinϕ

The delay at each mth,nth sensor is made up of both components and so:

τm,n = τm + τn =
d1(m− 1)

v
sin θ cosϕ+

d2(n− 1)

v
sin Θ sinϕ (4.5)

Following the same deduction pattern as in the case of the ULA, being some baseband
signal s(t) modulated with some carrier frequency fc(t) much greater than its bandwidth, the
signal arriving at each mth,nth sensor is:

ym,n(t) = s(t)e−jωc(t−τm,n) (4.6)

The resulting signal is the sum of the signal captured along both the x-axis and the y-axis:

y(t) =
M∑
m=1

s(t)e−jωc(t−τm) +
N∑
n=1

s(t)e−jωc(t−τn)

Which can be stated as:

y(t) =

N∑
n=1

[
M∑
m=1

s(t)e−jωc(t−τm)

]
e−jωc(t−τn) (4.7)

37

Figure 4.3: Azimuth (ϕ) and Elevation (Θ) Estimation in a Planar Array [26].

Referring to Equation 4.3, Equation 4.7 states that a planar array is mathematically defined
as a sum of ULAs [2].

4.2 Analog Reception, Digital Down Conversion and Process-
ing

4.2.1 Analog Reception

Depending on the emitter’s signal amplitude and the distance of the echo travels, the
electric signal at the receptor may have a small amplitude, at a range of few mV. Given this
fact, prior to its conversion to the digital domain, it must be amplified.

Given the characteristics of the digital signal at the output of the Σ∆M, depicted in Figure
3.25, and given the fact that the expected input frequencies are located in the band 39-41
kHz, it is safe to say that the referred PSD represents a bandpass signal, centred at 40 kHz,
which is quite narrow when compared to the analysed band of 0-125kHz. Being so, treating
the signal in baseband, i. e., centred at 0 Hz should facilitate its processing. Such is done
through coherent detection, where the carrier phase information is extracted from the rest of
the information received (in this case, phase differences).

4.2.2 Coherent Detection/Downconversion

Coherent demodulation is based on the assumption that some baseband signal carrying
information is modulated with some other carrier frequency, i.e., multiplied, shifting its fre-
quency spectrum forward to be centred at the said carrier frequency, fc. Recovering the
baseband frequency components from the modulated signal is done with a mixer, as it is
illustrated in Figure 4.4.

Let x(t) be the input signal, a sine wave of frequency f0, modulating a carrier with a
frequency fc (shifted by the same amount in frequency):

x(t) = cos [2π(f0 − fc)t]

38

Figure 4.4: Block diagram of a mixer [28].

Let o(t) be the signal generated by the local oscillator and a sine wave of frequency fc:

o(t) = cos (2πfct)

The mixer will multiply both signals and, thus, the output signal, y(t) is, then, defined
as:

y(t) = x(t)× o(t) = cos [2π(fo − fc)t] cos (2πfct)

Bearing in mind the following trigonometric product identity:

cosα cosβ =
cos (α− β) + cos (α+ β)

2
=

cos (α− β)

2
+

cos (α+ β)

2

The output of the mixer can then be stated as:

y(t) =
cos [2π(f0 − fc − fc)t]

2
+

cos[2π(f0 − fc + fc)t]

2
=

cos (2πf0t)

2
+

cos[2π(f0 − 2fct)]

2

The result indicates that the output of the ideal mixer comprises the sum of the baseband
signal with itself shifted in frequency by the double of the carrier frequency, both presenting
half of their original amplitude.

Low-pass filtering y(t) eliminates its high-frequency components and effectively recovers
the bandpass signal.

In essence, the mixer is able to shift both left and right a limited bandpass signal centred
in some carrier frequency, fc, by the same amount, originating two different bandpass signals,
one centred in 0 Hz, called baseband, and the other centred in 2fc Hz.

4.2.3 Quadrature Amplitude Modulated Signals

Any bandpass signal, x(t) can be represented by an infinite sum of complex functions [29],
as it is defined in Fourier series:

39

x(t) =
+∞∑

n=−∞
cne

jnw0t

Being x(t) a real waveform, the negative indexes are complex conjugate of the respective
positive ones, i. e., c−n = cn∗ and so the previous expression can be stated as:

x(t) = Re

{
c0 + 2

+∞∑
n=1

cne
jnw0t

}
(4.8)

As it was previously specified, in the case of a passband signal, whose frequency com-
ponents lay inside a band away from the reference, the coefficient for which n = 0 is null.
Considering as well the fact that the band is centred in some frequency fc, Equation 4.8 can
be written as:

x(t) = Re

{(
2

+∞∑
n=1

cne
jn(w0−wc)t

)
ejwct

}
(4.9)

Equation 4.9 states that a baseband signal is the product of a bandpass signal by its
carrier frequency. Let g(t) be the passband signal, centered in its centre frequency, ωc:

g(t) = 2
+∞∑
n=1

cne
jn(w0−wc)t

And so Equation 4.9 can be rewriten as:

x(t) = Re
{
g(t)ejwct

}
Which, according to Euler’s formula, is:

x(t) = Re {g(t) cosω0t+ jg(t) sinω0t} (4.10)

Equation 4.10 allows one to understand the way one real baseband signal, x(t), can be
represented with an In-phase component, I(t) = g(t) cosωct, and a Quadrature component,
Q(t) = g(t) sinωct, both components dependent on its passband component, g(t). Often is
x(t) represented as a phasor in a complex plane (hence these kinds of signals are also named
complex signals), where I(t) defines the real, in-phase coordinate and Q(t) the imaginary,
quadrature coordinate, as it is illustrated in Figure 4.5. This way is easy to verify that both
the phase (Φ) and amplitude of the real signal x(t) depend solely on the amplitude of its
complex coordinates.

In essence, modulating a complex signal in its In-phase and Quadrature forms allows one
to easily represent it as a function of its phase, Φ, and amplitude, A, being:

Φ(t) = tan−1 Q(t)

I(t)
A(t) =

√
Q(t)2 + I(t)2

This process is called downconversion and such representation allows to easily compute
the phase difference between transducers in an array and, thus, it becomes easier to compute
the azimuth and elevation angles ϕ and Θ, respectively.

40

Figure 4.5: Representation of the passband in the form of a phasor dependent on its In-phase
and Quadrature components.

4.2.4 Downconverter mixer

Extracting the In-phase and Quadrature components of a complex signal is based on
mixing it with two sine waves of the same frequency (the carrier frequency, fc), in which
one is phase shifted of 90o to obtain the quadrature component. The basic downconverter is
depicted in Figure 4.6.

Figure 4.6: Basic downconverter.

As it was previously stated, the coherent detection shifts a bandpass signal to the left and
to the right of the carrier frequency. Given that the only band of interest is situated at low
frequencies, a LPF is used to eliminate the component of the signal that was shifted right.

Being it implemented in FPGA, some adjustments will have to be performed. In a first
place, the output of the Σ∆M will be connected to the input of the downconverter. Its
bitstream presents a bandwidth that is quite big when compared to the one of the signal
of interest, and it includes the quantization noise from the Σ∆M. Therefore, downsampling
followed by low-pass filtering is desirable before the downconversion process. Also, 1 bit sam-
ples are not desired at the downconverter, given the fact that they have an undesired level of
resolution. A Moving Average Filter presents a solution to this problem, while downsampling
and low-pass filtering the Σ∆M output signal.

41

Moving Average Filter

A moving average filter takes a fixed number of input samples (K), averages its values
and outputs the result. Its output is mathematically defined as:

y[n] =
1

K

K−1∑
k=0

x[n− k] (4.11)

In the Z domain, it is:

Y (z) =
1

K

K−1∑
k=0

X(z)× z−K

And so, its transfer function, defined in the Z domain is:

H(z) =
Y (z)

X(z)
=

1

K

K−1∑
k=0

z−K (4.12)

The geometric series states the following:

M−1∑
m=0

a× zm = a
1− zM

1− z

Equation 4.12 is a geometric series. Therefore, it can be mathematically described as:

H(z) =
1

K

1− z−K

1− z−1
(4.13)

That is:

Y (z)− Y (z)z−1 =
X(z)−X(z)z−K

K
(4.14)

The equivalent, in the discrete time domain is:

y[n] =
x[n]− x[n−K]

K
+ y[n− 1] (4.15)

Equation 4.15 is the recursive implementation of the Moving Average Filter. When com-
pared to Equation 4.11, it shows reduced number of additions [16]. Equation 4.13 can be
factored into two separate processes (integration and differentiation):

Y (z) =

[
1

1− z−1
×
(
1− z−K

)] X(z)

K

Since that it will have to be followed by a downsampling block (that will keep only every
Kth sample), and taking into account the noble identities of decimation, it is possible to
implement the filter as it is depicted in Figure 4.7 [15], reducing the delay time of the comb
block and, thus, hardware complexity.

This configuration is called Cascaded Comb-Integrator (CIC) filter and it presents several
advantages [16] where, among them, are:

• No filter coefficients and, thus, no memory is required to store them;

42

Figure 4.7: Block diagram of the One-Stage Recursive Moving Average Filtering Process.

• Hardware simplicity.

To analyse the filter’s frequency response, refer to Equation 4.13. Considering that z =
ejω, it can be rewritten as:

H(ejω) =
1

K

1− e−jωK

1− e−jω
=

1

K

e−j
ω
2
K

e−j
ω
2

ej
ω
2
K − e−j

ω
2
K

ej
ω
2 − e−j

ω
2

(4.16)

According to an Euler Identity, that states the following:

ejΘ − e−jΘ

2j
= sin Θ⇔ ejΘ − e−jΘ = 2j × sin Θ

Equation 4.16 can be written as:

H(ejω) =
1

K
e−j

ω
2

(K−1) sin
(
ω
2K
)

sin
(
ω
2

) , 0 ≤ ω ≤ 2π (4.17)

Equation’s 4.17 zeros depend solely on the cosine located at the numerator of the rightmost
fraction. Being so:

sin
(ω

2
K
)

= 0⇒ ω

2
K = mπ, m = 0,±1,±2,±3, ...

Solving for ω results:

ω =
2mπ

K
⇔ f

fs
=
m

K

Solving for f , then, results in the frequencies for which the frequency response is zero:

f = m× fs
K

(4.18)

The derived expression allows one to understand that the zeros, besides repeating, get
closer to the origin for greater amounts of K, as can be seen illustrated in Figure 4.8.

One alternative implementation is a N -stage one, where N CIC filters are cascaded.
Equation 4.13, then, goes:

H(z)N =

[
1

K

1− z−K

1− z−1

]N
=

1

KN

[
1− z−K

]N [1

1− z−1

]N
This is the same as cascading N integrators, downsampling as a factor of K, and then

cascading N differentiators and, for greater N , the steeper the frequency response is, as
illustrated in Figure 4.9.

43

Figure 4.8: CIC Filter Frequency Response for two different values of K.

Oscillator

One problem that arises with the implementation of the downconverter in Figure 4.6 is
the oscillator. Being it digital, the signal it outputs has to be stored in memory. The better
the resolution of this signal, the memory required to store its samples becomes greater. One
way to reduce this memory is to store only the samples equivalent to the maximum, minimum
and zeros of this signal, for only one period, and repeating them over and over. Being so, its
output should be:

osc(t) = ..., 0, 1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0, ...

At a sampling frequency fs = 4× fc = 160kHz.

For this reason, the sampling frequency of the CIC filter has to be the same in order to
allow synchronisation, i. e., 160kHz.

Final Downsampling

The output of the mixer should have frequency components below 1kHz. Having a sam-
pling frequency rate of 160kHz, a decimation process is desired in order to reduce bandwidth
and, thus, unnecessary higher-than-required frequency components, i. e., noise.

Receiver Channel

Having into account what has been describer in the last sections, each receiver channel
that is to be implemented is depicted in Figure 4.10.

44

Figure 4.9: N -stage CIC Filter frequency response for different values of N [16].

Figure 4.10: Theoretical version of each receiving channel of the Planar Array.

4.3 Implementation

4.3.1 Analog Reception

Each receiver depicted in Figure 4.10 will use a transducer MA40S4R by Murata and the
designed Preamplifier that is going to amplify the voltage signal that the transducer receives
is depicted in Figure 4.11.

The chosen OPAMP was the MCP6021 because, not only is it rail-to-rail, but it also
presents a Gain-Bandwidth Product (GBDP) of 10Mhz. This means that, for a gain of 100,
its bandwidth should be:

BW =
GBWP

G
=

10MHz

100
= 100kHz

Which, both Gain and Bandwidth, should be enough for the sought application.

The OPAMP is powered with the FPGA sources, i. e., 3.3V and 0V and was chosen to
implement the amplifier.

45

Figure 4.11: Designed Preamplifier for each reception channel.

Refering to Figure 4.11, the output of the OPAMP is computed according to the following
expression:

Vout = −R2

R1
+ VREF (4.19)

Where VREF is a DC voltage at the positive terminal of the OPAMP.
R2 should be has high as possible, otherwise, at high frequencies, being the negative input

terminal equivalent to a ground, this resistor will act as if it were in parallel with the load
impedance and, thus, alter the amplifier’s gain. Accordingly, and knowing that R1 has to be
100 times lower (the selected gain is 100), the following resistors were selected:

R1 = 10kΩ R2 = 1MΩ

It is desirable to make use of the whole signal range at the output, that is, from 0 to 3.3V,
and so the output DC component should be half of this range. Consequently, VREF = 1.65V ,
and it is to be attained with resort to a voltage divider with two resistors of equal value (R3

and R4 in Figure 4.11):

R3 = R4 = 100kΩ

Also, there is now a need to eliminate the DC component of the signal at the input of the
amplifier, which is done by adding a capacitor in series between the transducer (vin) and the
amplifier. It acts, together with R1, as a high-pass filter, and its cut-off frequency is:

fc =
1

2πR1C

Choosing C = 47nF , it results in fc ≈ 340Hz.
Once that, as seen on Chapter 3, the Σ∆M’s input signal should range from 0V to 2.5V,

a new voltage divider is, then, needed at the output of the OPAMP (R5 and R6 in Figure
4.11) and so:

Vo =
R6

R5 +R6
Vi ⇔ R5 = R6

Vi − Vo
Vo

=
3.3− 2.5

2.5
⇔ R5 = 0.32×R6

46

The input impedance of the Σ∆M at 40 kHz is:

zin =

√
(10kΩ)2 +

(
1

2π × 40kHz × 330pF

)2

= 15.7kΩ

The resistors R5 and R6 have to be, at least, two orders of magnitude lower, so:

R5 = 150Ω R6 = 470Ω

At last, the voltage source from the FPGA that supplies the amplifier and the voltage
divider might be contaminated with high-frequency noise. Therefore, it is recommended to
filter it. A RC filter (with a small resistor, Rfilt, so its voltage drop is low and a high
capacitance, Cfilt, so its cut-off frequency is as low as possible) is a simple solution and so it
was chosen. The selected values were Rfilt = 10Ω and Cfilt = 1µF . Also, a capacitor could
have been connected to the VREF node of the voltage divider.

4.3.2 Digital Downconversion

The digital blocks that will be described in the following pages were implemented in VHDL
and their coded implementation can be found in Appendix D.

CIC Filter

As previously stated, the main purpose of the CIC filter is to filter the output of the Σ∆M
and reduce the sample rate on the downconverter.

Once it is required a sample rate of 160 kHz at the output of the moving average filter,
and knowing the sample rate at its input is 50 MHz, the downsampling rate, K, is:

K =
fsin
fsout

=
50MHz

160kHz
= 312.5

A rational downsampling factor is unattainable and, thus, the filter will be designed in a
way that it is going to sample the output of the Σ∆M with a rate twice as high. Each sample
output by the modulator will be summed twice in order to compute the average and, so, the
result will be the same.

The downsampling rate, then, is:

K =
100MHz

160kHz
= 625

According to Equation 4.18, the first null of the transfer function of this filter is:

f =
m

K
× fs =

1

625
× 100MHz = 160kHz

Which is four times greater than the frequency of interest. The transfer function of the
filter is represented in Figure 4.12, where it can be seen that a signal with a frequency of
about 40 kHz suffers from an attenuation of just a little over 0.45dB.

Referring to Figure 4.7, where it is depicted that the input of the downsampler is the
result of an integration, i. e., at each sample of the output of the Σ∆M, the delayed output
of the same integrator is added (delayed by one sampling period), and the output of the comb
block that follows the downsampler is computed by subtracting to an output sample of the

47

Figure 4.12: Computed Transfer Function of the Filter.

downsampler its previous output. The CIC filter can, then, be represented by the topology
depicted in Figure 4.13, that is followed by a division.

Figure 4.13: Efficient Implementation of a CIC Filter [30].

The resulting CIC filter was simulated in Simulink, where a sinusoid was sampled in a
Σ∆M similar to the one simulated in Chapter 3, and its output was connected to the input
of the filter. The simulated filter is depicted in Figure 4.14.

Figure 4.14: CIC Filter Block Diagram in Simulink.

The output signal of the simulated filter, in both time and frequency domains can be
analysed in Figure 4.15.

In Figure 4.15 one can visualise the frequency component of 40kHz that was put through
the Σ∆M as well as the number of samples per period (four), a reminiscent of the sample

48

(a) Time domain. (b) Frequency Domain.

Figure 4.15: Output Signal of the CIC Filter.

rate at the output of the CIC filter - fs = 4× fin = 160kHz.

As seen in Figure 4.15a, each sample at the output of the filter is a rational number
between −1 and 1. For that reason, one must take into account how such measures will be
implemented in binary form. It was chosen a fixed point format represented in 16 bits for the
output words, with the two leftmost bits representing the integer part and the remaining bits
representing the fractional part of the sample. In others words, it is a Q2.14 format with one
sign bit.

The constant to be divided in the end, 625, is represented in 10 bits. Being so, it was
represented in format Q10.0 (integer). The samples must be, then, represented in format
Q12.14, because when a sample of format Q12.14 is divided by a number of format Q10.0
results in a number of format Q2.14.

Given the 1 bit-length input, it was represented between −1 and 1 with the Q12.14 format,
in twos complement, if the input was, respectively, bit 0 or 1.

Local Oscillator

It was previously stated that the local oscillator is to generate a cycle with the zeros,
maxima and minima of a 40 kHz sine wave.

For this reason, the oscillator’s operation was based in a multiplexer, whose select signal
was incrementing at a rate of 160 kHz, and its output represented in Q2.14 format.

Mixer

The mixer takes two inputs in Q2.14 format and multiplies both, resulting in a Q4.28
format. However, given that one of the inputs is coming from the oscillator and is guaranteed
to be 0, 1 or −1, it is safe to say that the output might be represented in format Q2.14. There-
fore, the mixer discards the two MSB and the 14 LSB from the result of the multiplication
and outputs the remaining.

49

Frequency Shift

The 90o phase shift represented in Figure 4.10 is equivalent to a delay, once the sam-
pling frequency is 4 times greater than the frequency of the oscillator. Being so, it is to be
implemented with a D-type flip-flop whose clock runs with a frequency of 160 kHz.

Low Pass Filter

The LPF that follows the mixer will be implemented using 2 cascaded moving average
filters, followed by downsampling. The benefits of cascading two of these filters lies on the
possibility of selecting which frequencies can be eliminated. In order to do this, and having
in mind Equation 4.18, where it says that the zeroes repeat and depend on the number of
samples to average, K, one filter will be designed to have the first zero in a given, desired,
frequency and the other filter will be designed to have a zero in a frequency where the first
lobe of the transfer function of the first filter is maximum, as seen in Figure 4.16. This way,
the cascaded moving average filters will present a sharper frequency response, with more
attenuation outside of the bandpass.

The first moving average filter will be designed to present the first zero (m = 1) at
frequency 2kHz. Being so, and knowing that the sample rate at the filter is 160 kHz, the
number of samples to average is with Equation 4.18:

f = fs ×
m

K
⇔ K = fs ×

m

f
= 160kHz × 1

2kHz
= 80

Results, then, a moving average filter whose frequency response nulls are located at mul-
tiples of 2kHz. Being so, the first lobe will have a maximum at 3kHz, that is, then, the first
zero of the frequency response of the next moving average filter, that must have the following
number of samples to average:

K = fs ×
1

3kHz
= 53.333 ≈ 53

Figure 4.16 shows the frequency responses of both moving average filters overlapped.

The analysis of Figure 4.16 allows one to understand that the zeroes of both filters are
not always interleaved, due to the fact that the filters present zeros at multiples of differ-
ent frequencies (2kHz and 3kHz).Being so, the downsampler following the LPF will have a
downsampling factor of 20, reducing the sampling rate from 160 kHz to 8 kHz and, thus, its
output’s frequency spectrum will spread through the band from 0 to 4 kHz.

The frequency response of the LPF, composed by both moving average filters cascaded,
is represented in Figure 4.17.

50

Figure 4.16: Frequency Responses of Both Moving Average Filters of the LPF.

Figure 4.17: Frequency Response of LPF Composed by the Two Cascaded Moving Average
Filters.

This filter was implemented using Matlab’s Simulink and the diagram is shown in Figure
4.18.

Three sine waves of frequencies 1kHz, 2kHz and 2.5kHz were added up, alongside a DC
component, and put at the input of the filter. Figure 4.19 depicts the Fast Fourier Transform
(FFT) of both input and output signals.

As can be observed in Figure 4.19, the frequency component of 2kHz, which was standing
in a local minimum of the filter’s frequency response, was completely removed. The frequency
component of 2.5kHz of the input signal, which stood in a local maximum of the frequency

51

Figure 4.18: LPF implemented in Simulink.

(a) Input. (b) Output.

Figure 4.19: FFT of the input and output signals of the LPF.

response, was the one to suffer greater attenuation (without being completely removed),
followed by the 1kHz frequency component, which stood inside the main lobe, although in a
region prone to slight attenuation levels. The DC component appears to remain unaltered.

Although not presenting a perfect rejection band, this decimation filter seems appropriate
for filtering narrow bandpass signals (like the ones depicted in Figure 3.25), after baseband
conversion.

In order to implement this filter, care has to be taken in the number of bits inside the filter,
because each cascaded moving average filter will be divided by a constant integer number (80
and 53, respectively). The biggest constant, 80, is represented with 7 bits, thus, assuming
its representation in a fixed point format Q7.0, the samples inside the filter will have to be
processed in format Q9.14 in order to output format Q2.14 samples, meaning a total of 23
bits samples.

The delay blocks can be implemented with synchronous First in, First out (FIFO) shift
registers. Such block might be implemented cascading several D-type Flip-flops, as it is shown
in Figure 4.20.

The delay block represented in Figure 4.20 will delay each input sample by four clock
cycles. Every clock cycle the input of each D-type Flip-flop is passed to the next one. Being
so, a delay block that is intended to delay a signal by an amount of K sampling cycles will
require K cascaded D-type Flip-flops, as long as they run on the same clock and it has the
same frequency as the sample rate.

In order to implement the delay block, D-type Flip-flops whose input and output bit
length was 23 were designed and cascaded together in VHDL.

52

Figure 4.20: Delay Block implemented as a FIFO Shift Register [31].

The downsampler block was implemented using a D-type Flip-flop at the output of the
filter, meaning a 16 bit length input and output ports, running with a clock 20 times lower
than the output of the LPF sample rate. This way, the output sample rate of this Flip-flop
will be 20 times lower.

The implementation of this filter was made having each integrator and comb of each
moving average filter running in parallel.

Trigger Generator

In order to keep all blocks synchronised, a trigger generator block is needed.

This block is going to accept a global clock signal of frequency 100MHz, increment and,
eventually, reset several counters at this rate. Parallel to these processes, other processes will
output one pulse whenever the correspondent counter resets.

One trigger signal will trigger the Σ∆M to sample at a rate of 50MHz. Being so, its
counter will reset every time it reaches the value 2 and start over incrementing from the value
1. This way, every time this counter resets, a pulse is output. This event occurs at a frequency
of:

f =
100MHz

2
= 50MHz

Likewise, another trigger signal will trigger several events that must occur at a frequency
of 160 kHz. Thus, the counter, that restarts every time from the value 1, must be reset every
time it reaches the value:

100MHz

160kHz
= 625

Whenever this dedicated counter signal reaches 625, it is reset and a single pulse is output.

At last, the trigger that will control the final downsampling, which will output a sample
rate of 8kHz, and, thus, the trigger pulse will be output at the same rate, will do so every
time a counter signal reaches:

100MHz

8kHz
= 12500

This way it is ensured that all blocks in the downconverter are synchronised to a global
clock signal.

53

4.4 Tests and Results

4.4.1 Analog Reception

The circuit schematised in Figure 4.11 was implemented on a breadboard, whose input
was connected to an ultrasonic receiver MA40S4R, alongside with the analog integrators of
the Σ∆M and connected to the FPGA board input ports in order to capture analog signals
and convert them to the digital domain.

Figure 4.21: Receptor Implemented in a Breadboard.

To simulate a received wave, an ultrasonic emitter MA40S4S was connected to a function
generator set to a 40kHz signal. Later, the emitter and receptor were set apart at a known
distance and the tests took place. In a first place, with the emitter and receptor 50 cm apart,
the saturation on the preamplifier was tested. The result is depicted in Figure 4.22.

Figure 4.22: Measured saturation on the output of the Preamplifier.

A second test involved measuring the output of the preamplifier with different distances
separating the emitter and the receiver, with a 5.9V (peak-to-peak) signal at the emitter’s
terminals. In order to do that, as it is show in Figure 4.23, both the emitter and receptor
were put on top of file cabinets with wheels, to ease the mobility and, thus, better change the

54

distance, and were posteriorly aligned. The receptor will be still throughout the experiment
and the receptor will be the one to be moved away. The floor tiles were 50cmx50cm squares
and were used as reference to align the cabinets and to measure the distances.

Figure 4.23: Experimental setup for the measurement of the received signal strength as a
function of distance; the emitter is on the left side, laying against the function generator, and
the receptor is on the right side.

The measurements of peak-to-peak voltage at the output of the Preamplifier as a function
of distance are explicit in Figure 4.24.

d (m) Vpp (V)

0.5 2.32

1.0 1.14

1.5 0.86

2.0 0.30

2.5 0.20

3.0 0.40

3.5 0.14

4.0 0.07

4.5 0.14

5.0 0.09

Figure 4.24: Peak-to-peak voltage at the output of the Preamplifier as a function of distance.

At last, with the emitter and receptor at a distance of 5m from each other, the received
signal was captured and converted at the Σ∆M and its output was recorded and analysed in
MATLAB in order to determine its PSD. However, this time the signal at the terminals of
the emitter was measured to be 4.4V peak-to-peak. The result is depicted in Figure 4.25.

55

Figure 4.25: PSD of the output of the Σ∆M when its input signal is a preamplified signal
with the source at a distance of 5m.

4.4.2 Digital Downconversion

CIC Filter

In order to test the CIC filter, a sine wave ranging from 0 to 2.5V and with frequency 40
kHz was sampled in the Σ∆M, that was followed by the filter, in a setup similar to the one
depicted in Figure 3.24. The samples output by the CIC filter were then stored in memory and
later analysed in Matlab, where there were made functions to convert the recovered samples
in Q2.14 format to double format in order to compute and determine the PSD.

The experiment was made for the desired decimation factor M = 625 and for one about
ten times lower, M = 63.

The output signals in the time domain are depicted in Figure 4.26, whereas their PSD are
shown in Figure 4.27.

(a) M=625. (b) M=63.

Figure 4.26: Signals recorded at the output of the CIC filter.

56

(a) M=625. (b) M=63.

Figure 4.27: PSD of the signals recorded at the output of the CIC filter.

Downconversion followed by low-pass-filtering

The test of the LPF requires a downconverted digital signal at its input. Therefore, an
analog sine wave must be sampled by the Σ∆M, filtered by the CIC and then mixed with the
digital oscillator signal. This setup is schematised by the block diagram depicted in Figure
4.28 and it was implemented in VHDL.

Figure 4.28: Experiment to test the LPF proper operation.

At the input of the portrayed system, several analog sine waves were input directly from
a function generator, each with different frequency: 40kHz, 41kHz and 42 kHz. The results
are depicted in Figures 4.29, 4.30 and 4.31, respectively.

57

(a) Time Domain. (b) Frequency Domain.

Figure 4.29: Output signal of the LPF when at input is a sine wave of frequency 40kHz.

(a) Time Domain. (b) Frequency Domain.

Figure 4.30: Output signal of the LPF when at input is a sine wave of frequency 41kHz.

(a) Time Domain. (b) Frequency Domain.

Figure 4.31: Output signal of the LPF when at input is a sine wave of frequency 42kHz.

The power peaks of each PSD is stated in Table 4.1.

58

fin (kHz) 40 41 42

Peak (dB) -16.6 -18.6 -42.0

Table 4.1: PSD peaks for every input sine wave.

Downconverter

All the described blocks were assembled together in VHDL following their described op-
eration and synchronisation in order to create the downconverter.

After that, several sine waves of different frequencies (39kHz, 40kHz and 41kHz) were
input and both the In-phase and Quadrature signals were recorded and processed for further
analysis.

Figures 4.32 and 4.33 show fractions of both In-phase and Quadrature signals recorded
for an input sine wave of 41 kHz and 39kHz, respectively.

Figure 4.32: Recorded In-Phase - I(t) - and Quadrature - Q(t) - signals for an input sine wave
of 41kHz.

The downconverted signal is given by:

x(t) = I(t) + jQ(t)

In MATLAB, x(t) was computed with the recovered In-phase and Quadrature components
that were recorded and its PSD was determined through Welch’s method. Figures 4.34, 4.35
and 4.36 depict the result for, respectively, input frequencies of 39kHz, 40kHz and 41kHz.

59

Figure 4.33: Recorded In-Phase - I(t) - and Quadrature - Q(t) - signals for an input sine wave
of 39kHz.

Figure 4.34: PSD of the downconverted signal when the input is a 39kHz sine wave.

60

Figure 4.35: PSD of the downconverted signal when the input is a 40kHz sine wave.

Figure 4.36: PSD of the downconverted signal when the input is a 41kHz sine wave.

4.5 Results Analysis and Discussion

4.5.1 Analog Reception

In Figure 4.22 is stated that the signal range at the output of the preamplifier (0V to
2.44V) is nearly that of the Σ∆M input and the DC offset (1.23V) is also near the theoretical
one valued 1.25V. This rather small deviation is mainly due to the use of resistors with 5%
tolerance that induce a small error on both the DC offset on the inverter’s amplifier positive
terminal, as well as in its gain.

In Figure 4.24, it is quite visible an attenuation effect of a propagating ultrasonic wave

61

with distance. However, it is also observable, at some points in space (namely at 3m and
4.5m) an increase in signal strength in respect to the previous point in space. This observed
phenomenon was even more evident in closer points in space, it was studied, and the rea-
son behind this turned out to be the effect of Lloyd’s mirror, that, due to reflections on the
ground, created constructive and destructive interferences that were dependent on the dis-
tance between emitter and receiver, as well as their height from the reflection plane (more
on this topic on Appendix B). Hence, the signal increases its strength at some points, where
there is constructive interference, and decreases it where there is destructive interference.

Figure 4.25 allows to conclude that, at a 5 meters range of the emitter from the receptor,
the received signal of 40kHz is heavily protruding from the rest of the frequency spectrum.
It is visible some power distributed along the low frequencies region, thought to be provoked
by the fact that the circuit was mounted on breadboard and, thus, noise-prone. However, the
SFDR is about 40dB, which means that the most powerful frequency component outside the
band of interest (39-41kHz) is close to 10000 times lower than the power of the fundamental
signal.

This helps lead to the conclusion that, considering that a reflection would not attenuate
an ultrasonic wave or, at least, to a great extent, an object at a distance of 2.5m is easily
detected, which is a reasonable distance, given the requirements of the sonar. Due to the
fact that the voltage measured at the emitter’s terminals was 4.4V peak-to-peak and the
maximum voltage is 20 V peak-to-peak [32], increasing this range is perfectly feasible.

4.5.2 Digital Downconversion

CIC Filter

As deduced previously, for a CIC filter with a downsampling factor of 625 and an input
sampling rate of 100 MHz, its output would have a sample rate of 160 kHz. For a 40kHz
signal, this means four samples per period at the output of the CIC filter. Such can be
observed in Figure 4.26a. Its PSD, that is represented in Figure 4.27a states clearly that the
signal has a frequency of 40kHz.

On the other hand, when an input sine wave is sampled in the Σ∆M and put through
a CIC filter with downsampling factor of 63, the output in the time domain resembles more
like a sine wave, as shown in Figure 4.26b, although contaminated with noise, due to a larger
bandwidth that contains harmonics, as depicted in Figure 4.27b.

Low Pass Filter

Inspecting Figures 4.29b, 4.30b and 4.31b, it is possible to understand that the mixer is
effectively converting a bandpass signal to the baseband.

Table 4.1 shows that the operation of the filter is close to the expected one. The input
sine wave of frequency 41kHz suffer a slightly greater attenuation when compared with the
40kHz input. The 42 kHz input, although not being completely eliminated as expected and
shown in Figure 4.19 , it suffered an attenuation of about 20dB more. In linear terms, it
means that its output amplitude is about 100 times smaller. Such can be observed in Figures
4.30a and 4.31a, where the later shows an amplitude of about 100 times lower.

The peak observed in Figure 4.31a shows a phenomenon where a sample is output with a
value much lower than the remaining samples shown. This apparently random phenomenon

62

also happens for positive samples and it might be due to noise components, mainly the one
at 2kHz that is ineffectively eliminated. Besides that the signal is quite noisy due to its low
amplitude. However, fundamental components of 2kHz are not expected at reception, and so
this phenomenon should not cause concern.

Figure 4.30a shows an almost perfect sine wave with a period of about 1ms, which is
equivalent to a frequency of 1kHz, which is an expected behaviour.

Figure 4.29a shows an almost DC signal, which was the expected behaviour. According to
Figure 4.29b, the most powerful frequency component is 3Hz. This deviation is most certainly
due to the uncertainty of the function generator.

Downconverter

Figures 4.34, 4.35 and 4.36 show the PSD of the downconverted signals for inputs of,
respectively, 39kHz, 40kHz and 41kHz. They all reflect the expected behaviour, because,
knowing they were mixed with a 40kHz signal, the baseband components should be, respec-
tively, −1kHz, 0kHz and +1kHz.

Figures 4.32 and 4.33 show the result of the downconversion, i. e., the In-phase and
Quadrature components of two different modulated signals.

Figure 4.32 results from an input of 41kHz and, thus, it is a baseband signal of 1kHz.
Because of this positive frequency, the phase shift of 90o or pi/2 rad delays the In-phase
component in time to form the Quadrature component and, thus, it is shifted right in relation
to the In-phase component. On the other hand, Figure 4.33 results from an input of 39kHz,
representing a baseband signal of -1kHz. Being the baseband signal’s frequency negative, a
positive phase shift of 90o advances the Quadrature component in time and, thus, it is shifted
left when compared to the In-phase component.

63

64

Chapter 5

Conclusions

5.1 Conclusions

The first main objective of this project is considered successfully accomplished. A simple
ADC was designed, with few passive components and, at the carrier frequency, a performance
that was close to that of some commercial options available.

This way, it is possible to implement the system with a simple ADC that is integrated
within the implemented hardware, without the need of many components, eliminating the
need to buy a commercially available one, and obtaining similar performances. It helps re-
duce costs as well as improve the portability of the system, which is a major requirement.

The second task was also completed. A reception channel was designed and shown to
be able to detect echoes coming from reasonable distances. Also, the downconverter would
output signals whose PSD would clearly indicate small frequency shifts due to obstacles
velocity. The In-Phase and Quadrature components that where recovered enabled to extract
instantaneous amplitude and phase of the receiving signal, that are the main requirements to
be able to implement the beamformer.

It was shown that a reception channel of ultrasound carrier can be implemented with most
of its complexity implemented in FPGA, which is also a great contribution for portability in-
crease and cost reduction.

Besides these objectives, there were implemented functions in MATLAB that enabled the
computation of performance indicators with good precision. The indicators are SNR, SINAD,
THD and SFDR and the methods used are described in detail in Appendix A.

5.2 Future Work

The future work of this project, in a first phase, is to finish the third proposed task,
i. e., design and implement the beamformer. This is done after multiplying the reception
channel designed in Chapter 4 and estimate the DoA from relating all extracted phases from
each channel. This step might as well include the implementation of an array of ultrasound
receivers, ideally in PCB.

An alternative implementation is to make an array of ultrasound transceivers and switch

65

between two modes: reception and emission. This way, a single array might be involved in
the estimation of the DoA as well as in operating as a parametric speaker in order to sonify
the detected object, integrating the work developed and presented on this thesis with the one
presented in [2].

Having done this, the system will have to be submitted to tests in order to determine the
optimum modulation of the emitting signal as well as the best audio signal possible to be
detectable in spite of other ambient noises. The main objective is to try to make the audible
signal stand out of the remaining noises, easing the echolocation of the obstacle.

A last, tests should be performed with blind people in order to detect flaws and improve
the system.

66

Appendix A

Performance Indicators

A.1 Introduction

It is described in this section the mathematical analysis performed on the Σ∆M output
signal in order to estimate the distribution of power throughout a specified frequency spectrum
and, thus, compute the performance indicators of the modulator.

The main intention is to evaluate the PSD of the output signal of the Σ∆M, determine the
power inside the input signal band (signal power), the equivalent to its harmonics (harmonics
power) and the power distributed in the remaining frequency components (noise power). The
several performance indicators are ratios of these computed values, as it is to be discussed.

A.1.1 Discrete-time Random Processes

A random or stochastic process is a physical phenomenon whose future output or result
cannot be predicted within a reasonable experimental error and, thus, cannot be described
by an explicit mathematical relationship[33]. In order to fully understand the data, several
experiments will have to be performed, i. e., different time observations resulting in several
recorded time histories. These time histories records, collectively, are called the ensemble and
it defines the random process, through some averaging properties.

The expected value (also said average value) of a random process at discrete time n1 is
computed by averaging over the ensemble at the said moment:

µ(n1) = lim
N→∞

1

N

N∑
i=1

xi[n1] (A.1)

On the other hand, its mean square value is computed by averaging, at moment n1, over
the squared ensemble:

ψ2(n1) = lim
N→∞

1

N

N∑
i=1

x2
i [n1] (A.2)

Furthermore, the average product of the data values at times n1 and n1 + k, is said to be

67

the autocorrelation function at time n1 and delay k, and is given by:

Rxx(n1, k) = lim
N→∞

1

N

N∑
i=1

xi[n1]xi[n1 + k] (A.3)

The autocorrelation function provides information about de degree of linear dependence
between two random variables. For example, if:

Rxx(n, k) = lim
N→∞

1

N

N∑
i=1

x[n]x[n+ k] = 0

The random variables x[n] and x[n+k] are uncorrelated and one can not be estimated from
the knowledge of the other’s value [34].

One other way to interpret the autocorrelation function of random data is that it measures
how well future values of data can be predicted from past observations[33]. Given a null
result, as stated previously, it is possible to infer that there is no correlation between random
variables and, so, it is not possible to predict the future value. Otherwise, if Rxx(n, k) = 1,
there is a perfect direct linear correlation and, if Rxx(n, k) = −1, there is a perfect inverse
linear correlation.

Stationarity

A stochastic process is said to be stationary when its expected value, mean square value
and autocorrelation function remain constant at a given time nx. In other words, the averaged
value over the ensemble remains constant with changes in the time domain.

Otherwise, it is considered a sufficient condition if any of the averaging constants just
described is not constant in time for the process to be considered non-stationary.

Ergodicity

A stochastic stationary process is said to be ergodic when, with probability 1, all its
statistical averages can be predicted from a single waveform of the process ensemble via time
averaging[35].

This way, only one time history is sufficient, i.e., one realization, to be able to estimate
the statistical averages of the process. Given only one time realization, x[n], with N samples,
its mean value, provided that the number of samples is large, is given by:

µx(N) =
1

N

N∑
n=0

x[n] (A.4)

Its mean squared value is defined as:

ψ2(N) =
1

N

N∑
n=0

x2[n] (A.5)

And, finally, its autocorrelation function is:

Rxx(k) =
1

N

N∑
n=0

x[n]x[n+ k] (A.6)

68

A.1.2 The Power Spectrum

The Power Spectrum, also called Power Spectral Density, is defined as the Discrete-time
Fourier Transform (DTFT) of the autocorrelation function[35]:

Pxx(f) = T
∞∑

m=−∞
Rxx[m]ejωmT (A.7)

Thus, the PSD provides a frequency domain description of the process[34].

A.1.3 Welch’s Method of PSD Estimation

As stated in Equation A.7, the PSD can only be precisely computed for an infinite number
of samples. In practice, such is not possible. On account of that, several methods of PSD
estimation arose, being Welch’s Method the one explored here.

The Welch’s Method was based on previous methods, namely Bartlett’s Method, in wich
a discrete signal with a finite sample number would be divided in smaller, adjacent segments,
each of them used to compute a Power Spectrum, and then all the resulting Power Spectrums
would be averaged together, resulting in the estimated PSD. In order to do this, the signals
would have to be ergodic in order to compute precise approximations of power distribution
in the frequency spectrum.

This process results in a statistically stable spectral estimate[35], involving a trade off
between the required smoothness in the spectral estimate versus the frequency resolution,
controlled by the length of each segment (number of samples), i.e., for an increasing length
of each segment, there are less PSD’s averaged together and, thus, the frequency resolution
increases, decreasing the smoothing degree of the resulting estimated PSD, as it is illustrated
in Figure A.1.

(a) Segment Size: 512 samples. (b) Segment Size: 128 samples.

Figure A.1: Estimated PSD of the same signal, with different segment sizes.

Welch’s Method modified the described segment-and-average methods by windowing the
segments and overlapping them[35]. Overlapping increases the number of segments whose
spectra is averaged, decreasing the PSD estimate variance. On the other hand, windowing
reduces spectral leakage, by selecting a window that presents attenuated sidelobes, as depicted

69

(a) Rectangular Window. (b) Hanning Window.

(c) Hamming Window. (d) Nuttall Window.

Figure A.2: Different 64 sample length Windows Frequency Response.

in Figure A.2, where it is obvious that the rectangular window (used in the other methods)
has the worst sidelobe attenuation and the Nuttall Window has the best.

Spectral leakage, in practice, adds power to the noise band, increasing the noise floor level
and, thus, degrading the performance indicators dependent on the noise power, such as SNR.

A.2 Spectral Analysis of the Output of the Σ∆M

To measure the performance indicators, a low distortion sine wave is put at the input of
the Σ∆M. Being the input periodic, considering that comparator on the Σ∆M adds random,
non-linear noise and that the output depends to a great extent on the input, it is fair to
conclude that the output is ergodic, i. e., it’s expected value (mean), mean squared value and
auto-correlation function are constant in time, for all time histories taken. As such, the first
step in the spectral analysis is data acquisition, being that one time history is sufficient to
achieve fulfilling results.

The maximum memory capacity of the FPGA device used (Nexys 4 with XC7A100T Artix-
7) would only allow to capture 131072 words of 36 bits each, meaning a total of 4718592 bits,
captured at 50 MHz of sampling frequency. At this sampling frequency, a 1 kHz input sine
wave would have about 94 periods sampled, which should be considered enough to achieve a
good level of precision in the averaged PSD.

70

Followed a reduction of the sampling frequency with lowpass filtering, enabling a bet-
ter analysis of the power distribution at lower frequencies. It was chosen a nem sampling
frequency of 250 kHz:

fs=50e6; %Initial sampling frequency
M=fs/250e3; %Decimation factor
output = decimate(output,M); %Downsampling + LPF
output = output-mean(output); %DC component removal
fs = fs/M; %New sampling frequency
L = length(output); %New bitstream length

Next step was to apply the Welch’s Method in order to estimate the PSD of the resulting
decimated bitstream. A Nuttal window of 512 samples in length was chosen in order to reduce
spectral leakage and, thus, avoid a noise floor above its effective level. The chosen overlapping
factor was 0.5 and the number of FFT points used to estimate de PSD was 216:

wind size = 512; %Window size
[P,F] = pwelch(output,nuttallwin(wind size),wind size/2,2ˆ16,fs); %Welch's Method

Figure A.3 depicts the resulting PSD of the generated bitstream for a 40kHz sine wave at
the Σ∆M’s input, sampled at a frequency of 50 MHz, where the fundamental frequency and
respective harmonic (80 and 120kHz) components protrude from the noise floor.

Figure A.3: Estimated PSD for a 40 kHz input sine wave.

A.3 Performance Indicators Computation

The basis for the computation of the performance indicators lies in identifiyng which
frequency relates to the several signal components - signal, harmonics and noise.

As such, the method applied involves the computation of local minima, dividing the
spectrum in different lobes, recognize the fundamental frequency, its harmonics and the noise
components and, at last, compute the power in each frequency component.

71

A.3.1 Signal-to-Noise-Ratio

In MATLAB, it is pretended to separate a signal whose frequency band is centered in f
and rests between frequencies fc1 and fc2 (fc1 < f < fc2), discarding the fist n harmonic
components, assuming that the following components may be negligible when comparing to
noise levels.

In a first stage, the PSD of the noisy signal is estimated through Welch’s method, as
previously described, and the power contained in each frequency bin is then determined:

[Pxx,F] = pwelch(x,nuttallwin(wind size),wind size/2,NFFT,fs);
df = mean(diff(F)); %Frequency resolution
Pxx = df.*Pxx; %Total power in each frequency bin

Follows the identification of the values of the fundamental frequency and its harmonics in
the spectrum:

fund = F(find(Pxx==max(Pxx))); %Fundamental Frequency

%Computation of a vector with the fundamental frequency and harmonics to be
%excluded from noise power computation
k=1; %Harmonic index (1st, 2nd, ...)
harms = fund; %Harmonics vector (fundamental included)
while k≤n %n is the number of harmonics to exclude

if fund*(k+1) ≤ fs/2 %Inside the PSD band
harms = [harms fund*(k+1)]; %Consider as harmonic

else break;
end
k = k+1;

end

And then the respective lobes:

%Local minima in PSD function to determine lobe widths
[Min, Locs] = findpeaks(-10*log10(Pxx));

f lims = 0; %Vector that contains beginning and end frequencies of fundamental and ...
harmonic lobes

k = 1;
i=1;
f1 = 0; %Beginning of a lobe
f2 = 0; %End of a lobe

%Creation of a vector, f lims, with the lobe limits of each harmonic and
%the fundamental
while k≤length(harms)

while(F(Locs(i))≤harms(k)) %Get the beginning of the lobe
f1 = F(Locs(i));
i = i+1;
if i==length(Locs) %Stop in the last minimum

break;
end

end
f2 = F(Locs(i)); %End of the lobe (minimum right next to f1)
f lims = [f lims f1 f2]; %Concatenate
k = k+1; %Next Harmonic

end

f lims = f lims(2:end); %Discard first index (equals zero)

72

Follows the computation of the powers inside each lobe, that are computed by summing
up the powers of the frequency bins inside the respective lobe:

sp = 0; %Signal power
np = 0; %noise power
i=1; %Index for frequency array
k=1; %Index for harmonic component

%Signal and Noise powers computation
for i=1:length(Pxx)

if F(i)≥f lims(2*k-1) & F(i)≤f lims(2*k) %Harmonics/Fundamental band
if k==1 %Fundamental lobe

sp = sp + Pxx(i); %Signal Power
else %Harmonic lobe (do nothing)
end

elseif F(i) > f lims(end) %Noise band w/o harmonics
np = np + Pxx(i); %Noise power

else %Noise band w/ Harmonics
if i>1 && F(i-1) == f lims(2*k) %End of Harmonic lobe

k = k+1; %Next Harmonic
if (k==length(f lims)/2+1) %Out of band (f>fs/2)

break; %Break cycle
end

end
if F(i) ≤ F(Locs(1)) %Discard DC component
else

np = np + Pxx(i); %Noise Power
end

end
end

At last, the PSD is computed, according to Equation 3.4:

out = 10*log10(sp/np);

The code presented was implemented in a MATLAB function, given as input arguments
the sampling frequency (fs), the number of harmonics to be discarded (n) and, of course, the
signal that is intended to be analysed (x).

A.3.2 Signal-to-Noise and Distortion Ratio

As for the SINAD estimation, it is intended to obtain an approximation of the PSD of a
noisy signal through Welch’s method in order to determine the power available in the signal
and noise bands, including the frequency bins corresponding to distortion and compute the
SINAD. In order to accomplish that, in a first moment the fundamental frequency lobe should
be identified:

fund = F(find(Pxx==max(Pxx))); %Fundamental Frequency

%Local minima in PSD function to determine Fundamental Ferquency lobe width
[Min, Locs] = findpeaks(-10*log10(Pxx));

i=1;
f1 = 0; %Fundamental frequency lobe minimum frequency
f2 = 0; %Fundamental frequency lobe maximum frequency
while F(Locs(i))<fund

f1 = F(Locs(i));
i = i+1;

end

73

f2 = F(Locs(i));

Then, the fundamental frequency, as well as the noise with distortion powers are to be
computed:

sp = 0; %Signal Power
np = 0; %Noise+Distortion Power

for i=1:length(F)
if F(i) ≤ F(Locs(1)) %DC component (discarded)
elseif F(i) ≥ f1 & F(i) ≤ f2 %Inside lobe (signal band)

sp = sp + Pxx(i);
else %Outside lobe (noise band)

np = np + Pxx(i);
end

end

Finally, the SINAD is computed, accordingly with Equation 3.5:

out = 10*log10(sp/np);

The code presented was implemented in a function, given as input parameters the sampling
frequency, fs and the noisy signal that is to be analysed, x.

A.3.3 Spurious Free Dynamic Range

In order to computed SFDR in MATLAB, it is necessary to compute the power of the
fundamental frequency and the biggest power present outside this band.

On the algorithm, the first step is to identify the spectral area containing the fundamental
frequency, i. e., the lobe limits:

fund = F(fund idx); %Fundamental Frequency

%Local minima in PSD function to determine Fundamental Frequency lobe width
[Min, Locs] = findpeaks(-10*log10(Pxx));

i=1;
f1 = 0; %Fundamental Frequency lobe minimum frequency
f2 = 0; %Fundamental Frequency lobe maximum frequency
while F(Locs(i))<fund

f1 = F(Locs(i));
i = i+1;

end
f2 = F(Locs(i));

It follows the identification of the most powerful noise and distortion component , i. e.,
the spurious:

max spur = 1; %Index of maximum spurious location
Pow = 0; %Maximum spurious power
for i=1:length(Pxx)

if F(i) ≤ F(Locs(1)) %Ignore DC component
elseif F(i) < f1 | F(i) > f2 %Noise band

if Pxx(i) > Pow
max spur = i;
Pow = Pxx(max spur); %Greatest power so far

end
end

end

74

The algorithm ends with the SFDR computation:

out = 10*log10(Pxx(fund idx))-10*log10(Pow);

The code presented was implemented in a MATLAB function, given as input parameters
the sampling frequency, fs and the noisy signal that is to be analysed, x.

A.3.4 Total Harmonic Distortion

The algorithm starts by identifying the harmonics location in frequency:

k=1; %Harmonic index
harms = fund; %Start in fundamental frequency
aux = 0;

while k≤n %n is the number of harmonics taken into consideration
aux = fund*(k+1); %k-th harmonic
if aux ≤ fs/2 %k-th harmonic inside interest band

harms = [harms fund*(k+1)];
else break;
end
k = k+1; %Next harmonic

end

The next step of the algorith is to find each harmonic lobe extremes and putting them
together on a vector:

[Min, Locs] = findpeaks(-10*log10(Pxx)); %Local minima

f lims = 0; %Lobes extremes vector
k = 1; %Harmonic index
i=1; %Minimum index
f1=0; %Lobe minimum
f2=0; %Lobe maximum

while k≤length(harms)
while(F(Locs(i))≤harms(k)) %frequencies under the given harmonic

f1 = F(Locs(i)); %Lobe minimum frequency
i = i+1;
if i==length(Locs) %end of loop on last local minimum

break;
end

end
f2 = F(Locs(i)); %Lobe maximum frequency
f lims = [f lims f1 f2]; %lobe extremes are concatenated into the vector
k = k+1; %Next harmonic

end
f lims = f lims(2:end); %First vector element is discarded (f lims(1)=0)

It follows the computation of the signal and the combined harmonics power:

sp = 0; %Signal Power
hp = 0; %Harmonics Power
i=1; %Frequency index
k=1; %Harmonic index

for i=1:length(Pxx)
if F(i) ≤ F(Locs(1)) %Discard DC component
elseif F(i)≥f lims(2*k-1) & F(i)≤f lims(2*k) %Inside lobes

if k==1 %Inside signal power lobe
sp = sp + Pxx(i);

75

else %Inside harmonic lobe
hp = hp + Pxx(i);

end
else %Outside lobes

if i>1 && F(i-1) == f lims(2*k) %End of harmonic lobe
k = k+1; %Next harmonic
if k==n+1 %Last of considered harmonics (break loop)

break;
end
if (k==length(f lims)/2+1) %Last harmonic inside interest band (break loop)

break;
end

end
end

end

The algorithm ends with the computation of the THD in dB:

out = 10*log10(hp/sp);

The code presented was implemented in a function, given as input parameters the sampling
frequency, fs, the noisy signal that is to be analyzed, x and the number of harmonics that
are to be taken into consideration on the THD computation, n.

A.4 Validation

In order to verify the correct operation of the described functions for the estimation of the
performance indicators, in MATLAB, it was generated a signal comprised of a fundamental
frequency with two harmonics and zero-mean random noise. Theoretically, the powers of each
component (fundamental frequency, harmonics and random noise) were calculated, following
the determination of such indicators (computed), later compared to the output results of the
functions (estimated).

Considering the discrete nature of the signals, the power of a finite and periodic signal
with fundamental period N is given by[15]:

P =
1

N

N∑
n=0

|x(n)|2 (A.8)

Equation A.8 will be used to compute the powers (fundamental, harmonics and noise)
needed to calculate the theoretical values of the indicator performances.

In MATLAB, firstly, a signal with fundamental frequency of 400 Hz, a total duration of a
hundred periods and sampling frequency of 4kHz is implemented, alongside with its first two
harmonics, of amplitude 1/4 and 1/16 of its total amplitude:

fs = 4000; %Sampling frequency
Ts = 1/fs; %Sampling period
f = 400; %Fundamental frequency
N = 10*100; %Number of points for the sine wave (100 periods)
t = [0:N-1]*Ts; %Time vector
T = 1/f; %Fundamental period
f2 = 2*f; %First Harmonic
f3 = 3*f; %Second Harmonic

A =1; %Amplitude of the fundamental frequency

76

A2 = A/4; %Amplitude of the first harmonic
A3 = A2/4; %Amplitude of the second harmonic

%Definition of the sine wave with harmonics
fund = A*cos(2*pi*f*t); %Fundamental
h1 = A2*cos(2*pi*f2*t); %1st Harmonic
h2 = A3*cos(2*pi*f3*t); %2nd Harmonic
harms = h1 + h2;
x = fund + harms; %Resulting signal

The zero-mean random noise is implemented with 1/10 of the fundamental frequency
amplitude and then added to the signal:

n = A/10*rand(1,length(x)); %10% of the fundamental signal amplitude
n = n-mean(n); %Zero mean
x n = x+n; %Noisy signal

Figure A.4 depicts the Power spectra of the generated signal, with and without noise, ob-
tained using the described Welch method with a Nuttall window. The harmonic components,
as well as the fundamental frequency are quite clear in both cases.

(a) Clean signal PSD. (b) Noisy signal PSD.

Figure A.4: Power spectra of the generated signals.

The following step involved the theoretical computation of the powers of the fundamental
signal, harmonic distortion and noise, accordingly with Equation A.8:

fund power = mean(fund.ˆ2);
harm power = mean(harms.ˆ2);
noise power = mean(n.ˆ2);

Finally, the algorithm computes the performance indicators according to Equations 3.4,
3.5, 3.6 and 3.7:

snr calc = 10*log10(fund power/harm power); %Theoretical SNR value
sinad calc = 10*log10(fund power/ (harm power + noise power)); %Theoretical SINAD value
sfdr calc = 10*log10(mean(fund.ˆ2)) - 10*log10(mean(h1.ˆ2)); %Theoretical SFDR value
thd calc = 10*log10(harm power / fund power); %Theoretical THD value

Running the simulation, the results on Table A.1 have been achieved:

77

Indicator Computed (dB) Estimated (dB) Relative Deviation (%)

SNR 27.76 28.22 1.66

SINAD 11.67 11.69 0.171

SFDR 12.04 12.03 0.0831

THD -11.78 -12.02 2.03

Table A.1: Computed and estimated through Welch’s Method Performance Indicators of the
MATLAB generated signal.

Being the added noise a random variable, the indicators, which depend on the noise power,
end up being random as well, such as the relative deviations. Being so, to better understand
how different the estimated and computed values might be, the same simulation was run
100000 times, the relative deviations obtained registered and a normal distribution curve was
drawn. The curves are depicted in Figure A.5 and the parameters are represented in Table
A.2.

(a) SNR. (b) SINAD.

(c) SFDR. (d) THD.

Figure A.5: Normal Distribution PDF’s.

The results in Table A.2 show that the estimated results will most likely differ at a low
degree from the computed values. The SNR and THD represent greater averages, although
not quite high, as well as maximum values. However, due to its low dispersion (given by the
standard deviation), it is highly unlikely that such maximum relative deviations occur.

78

µ σ Maximum Minimum

SNR 1.71% 0.72% 5.53% 7.29e-4%

SINAD 0.49% 0.37% 2.69% 9.41e-6%

SFDR 0.43% 0.33% 2.24% 4.27e-5%

THD 2.21% 0.64% 4.94% 8.31e-4%

Table A.2: Parameters of the normal distributions (Mean - µ - and Standard Deviation - σ)
and extremes of the measured relative deviations.

Given the results, it is safe to conclude that the method used to estimate the performance
indicators will most likely be accurate.

79

80

Appendix B

Interference of Ultrasonic Waves

Wave propagation, although having different natures, such as electromagnetic and me-
chanical, behaves with a huge amount of similarities. Simply put, electromagnetic waves
differ from mechanical waves in a way in which it does not need a medium to be propagated
[36].

The following pages will describe phenomena that were initially verified with light waves.
Nonetheless, the same phenomena are verified in sound wave propagation, although much
slower.

B.1 Introduction

There are two conditions that must be met in order to attain spacial interference of waves
and they are [36]:

• They must be coherent, i. e., they must maintain a constant phase difference;

• Their sources must be monochromatic, i. e., of only a single wavelength.

Interference happens when 2 different waves that follow the described conditions overlap
in space, creating what is called a constructive interference when they are in phase (amplifying
each other) and destructive interference when they are in quadrature (cancelling each other
out).

B.1.1 Double-Slit Experiment

Thomas Young’s double-slit experiment demonstrates this phenomenon. It uses a mono-
chromatic light source that is aimed at two parallel slits standing close together. The light
passing through each slit starts propagating as if it were a new source. Being so, both waves
are coherent and monochromatic. A screen standing parallel to and apart from the slits’ plane
can capture the interferences pattern , as illustrated in Figure B.1.

Let two slits, s1 and s2, hit by a monochromatic wave, be separated by a distance d and
standing from a screen at a distance L, as it is depicted if Figure B.2. Let a point P be
at a distance r1 from one slit and r2 from the other and at a height y from the horizontal
plane standing exactly in between the slits, where it intersects in point Q. Theta is the angle
between the said plane and the line connecting points Q and P .

81

(a) Constructive and Destructive Interferences
in Space.

(b) Resulting Pattern on the Screen.

Figure B.1: Thomas Young’s Double-slit Experiment[36].

Figure B.2: Geometric reference for the Double-Slit Experiment Analysis[36].

The interference at point P depends on the phase difference between the waves coming
from sources s1 and s2, which is related to the difference in travelled space, i. e., the path
difference:

δ = d sin Θ (B.1)

In its turn:

sin Θ =
y√

y2 + L2

And, thus, the path difference becomes:

δ = d× y√
y2 + L2

(B.2)

82

Whenever there is a constructive interference, both waves in point P are in phase, which
means that the path difference is a multiple of the wavelength:

δ = nλ⇔ nλ = d
y√

y2 + L2
(B.3)

Solving for L gives:

L =

√(
dy

nλ

)2

− y2 (B.4)

Which are the points in space where constructive interference occurs.

Whenever destructive interference occurs, at point P , both waves are in quadrature, mean-
ing that the path difference is an odd multiple of half of the wavelength:

δ = (2n+ 1)
λ

2
⇔ (2n+ 1)

λ

2
= d

y√
y2 + L2

(B.5)

Solving for L gives:

L =

√[
2dy

(2n+ 1)λ

]2

− y2 (B.6)

Which are the points in space where destructive interference occurs.

B.1.2 Lloyd’s Mirror

Lloyd’s mirror is a phenomenon that allows to generate the same pattern as the Double-
Slit Experiment with just one slit, that acts as a single source. When a reflective plane
(mirror) is placed beneath this source, reflections occur and end up simulating the existence
of a virtual source under the reflective plane, at the same distance as the real source. This
can be visualised in Figure B.3

Figure B.3: Visualisation of the Lloyd’s Mirror phenomenon[37].

83

Referring to Figure B.3, the path difference between the covered distances from the real
and virtual sources is:

∆ = d× sin Θ = d
x√

x2 +D2

Whenever a wave hits a reflective medium and gets reflected, it undergoes a phase shift of
180o[36], which is equivalent to an increase of half a wavelength in the path difference. Being
so, the path difference for the Lloyd’s Mirror phenomenon is:

∆ = d
x√

x2 +D2
+
λ

2

Just like in the Double-Slit Experiment case, also for the Lloyd’s Mirror situation happens
constructive interference whenever the path difference is a multiple of the wavelength:

∆ = mλ⇔ d
x√

x2 +D2
+
λ

2
= mλ

Solving for D gives:

D =

√(
2dx

λ(2m− 1)

)
− x2 (B.7)

And whenever there’s destructive interference, the path difference is an odd multiple of
half of the wavelength:

∆ = (2m+ 1)
λ

2
⇔ mλ⇔ d

x√
x2 +D2

+
λ

2
= (2m+ 1)

λ

2

Solving for D results in:

D =

√(
dx

λm

)2

− x2 (B.8)

B.2 Experimental Verification

In order to verify this phenomenon, an experimental setup similar to the one depicted in
Figure 4.23 and described in its Section was set.

Firstly, knowing at which height the transducers were (0.59m), the frequency of the carrier
- 40kHz - (and, thus, its wavelength - 8.6mm - assuming ambient temperature - v=343m/s),
and for several different values of m on Equations B.7 and B.8, the several points in space
where constructive and destructive interferences occur were computed, through MATLAB.
Some results are shown in Table B.1, rounded toward the millimetre.

84

m Constructive (m) Destructive (m)

35 2.278 2.243

36 2.210 2.177

37 2.145 2.114

38 2.083 2.054

39 2.025 1.996

40 1.969 1.942

41 1.916 1.890

42 1.865 1.841

43 1.817 1.794

44 1.771 1.748

45 1.727 1.705

46 1.684 1.664

47 1.643 1.624

48 1.604 1.585

49 1.567 1.548

50 1.530 1.513

51 1.496 1.479

52 1.462 1.446

53 1.430 1.414

54 1.398 1.383

Table B.1: Some Constructive and Destructive points in space computed in MATLAB.

Knowing these points, both emitter and receptor transducers are to be put at said dis-
tances and the signal strength (peak-to-peak voltage) is to be measured at the output of the
preamplifier.

The distances between transducers from 1.5m to 2m to measure signal strength where
chosen because there were 24 interference points computed in this space and the closest
reflective plane (a wall) was standing at a greater distance (around 2.3m), as it is desired to
avoid interferences coming from another mirror.

The results follow in Figure B.4.
The peak-to-peak voltage results showed a constant oscillation around the measured value

with an amplitude of about 0.02V and the distance between transducers was rounded to the
centimetre due to the difficulty to align the transducers with millimetric precision.

Nonetheless, although some fluctuations are visually observable in the plot, the peak-to-
peak voltages at the output of the preamplifier were always higher at computed constructive
interference distances than the ones at destructive interference points of space.

85

d (m) Interf. Vpp (V)

1.50 C 1.0

1.51 D 0.4

1.53 C 0.9

1.55 D 0.6

1.57 C 1.0

1.59 D 0.6

1.60 C 0.8

1.62 D 0.6

1.64 C 1.0

1.66 D 0.6

1.68 C 1.0

1.71 D 0.6

1.73 C 1.0

1.75 D 0.3

1.77 C 1.0

1.79 D 0.4

1.82 C 1.1

1.84 D 0.4

1.87 C 0.8

1.89 D 0.4

1.92 C 0.7

1.94 D 0.2

1.97 C 0.7

2.00 D 0.3

Figure B.4: Results from the Interference Measurement Experience.

86

Appendix C

Σ∆ Modulator – VHDL
implementation

C.1 Top-level file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.all;

Library UNISIM;

use UNISIM.vcomponents.all;

entity SigmaDelta is

port(SignP : in std_logic;

SignM : in std_logic;

BufOut : out std_logic;

clk : in std_logic;

);

end SigmaDelta;

architecture Behavioral of SigmaDelta is

signal s_clk, s_IBufOut, s_FFOut : std_logic;

begin

--INPUT DIFFERENTIAL BUFFER

DifBuf : IBUFDS

generic map (

-- Differential Termination

DIFF_TERM => FALSE,

-- Low power (TRUE) vs. performance (FALSE)

IBUF_LOW_PWR => FALSE,

IOSTANDARD => "DEFAULT")

port map (O => s_IBufOut, -- Buffer output

-- Diff buffer positive terminal

87

I => SignP,

-- Diff buffer negative terminal

IB => SignM

);

--FREQUENCY/CLOCK DIVIDER

clkDiv: entity work.ClkDividerN(Behavioral)

--Division Factor

generic map(divFactor => 2

)

port map(clkIn => clk, -- input is FPGA's internal clock

clkOut => s_clk); -- output is an internal signal

--D-TYPE FLIP-FLOP

DFF: entity work.dflipflop(Behavioral)

port map(dataIn => s_IBufOut, --input is IBUFDS's output

dataOut => s_FFout, --output is OBUF's input

enable => '1', --always enabled

sysclk => s_clk --clock is output of clock divider

);

--OUTPUT BUFFER

OBUF1: OBUF

generic map (DRIVE => 16, -- drive strength

IOSTANDARD => "DEFAULT",

SLEW => "Fast") --Fast slew rate

port map (O => BufOut, -- Buffer output

I => s_FFOut -- Buffer input is Flip-Flops's output

);

end Behavioral;

C.2 Sampling

C.2.1 D-type Flip-flop

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Dflipflop is

port(dataIn : in std_logic; --input port (1 bit)

dataOut : out std_logic; --output port (1 bit)

sysclk : in std_logic; --external clock input

enable : in std_logic --enable input

);

end Dflipflop;

88

architecture Behavioral of Dflipflop is

begin

process(sysclk)

begin

if(rising_edge(sysclk)) then

--only if "enable" signal is on

if(enable = '1') then

--input equals output at clock rising edge

dataOut <= dataIn;

end if;

-- otherwise, maintains value

end if;

end process;

end Behavioral;

C.2.2 Frequency Division

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD.all;

entity ClkDividerN is

generic map(divFactor : natural := 2); --division factor

port map(clkIn : in std_logic; --input clock signal

clkOut : out std_logic --output clock signal

);

end ClkDividerN;

architecture Behavioral of ClkDividerN is

--Signal to count the number of input clock cycles

signal s_divCounter : natural;

begin

assert(divFactor >= 2);

process(clkIn)

begin

if (rising_edge(clkIn)) then

--when N periods have passed

if (s_divCounter = divFactor - 1) then

--output turns off

clkOut <= '0';

--counter resets

s_divCounter <= 0;

89

else

--N/2 clock cycles have passed

if (s_divCounter = (divFactor / 2 - 1)) then

--output turns on

clkOut <= '1';

end if;

--counter signal increments

s_divCounter <= s_divCounter + 1;

end if;

end if;

end process;

end Behavioral;

C.3 Shift-Register

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.all;

entity shift_register is

generic (N : integer); --Number of output bits

port(Data_in : in std_logic;

Data_out : out std_logic_vector(N-1 downto 0);

sysclk : in std_logic; --Clock input

en : in std_logic; --Enable

trig : out std_logic --Trigger signal

);

end shift_register;

architecture Behavioral of shift_register is

signal count : integer; --counter signal

signal tmp : std_logic_vector(N-1 downto 0); --output

begin

process(sysclk) --this process controls the counter signal

begin

if(rising_edge(sysclk)) then

if(count = N-1) then --N bits shifted at this point

count <= 0; --Counter is reset

trig <= '1'; --trigger signal set to high level

else --Otherwise,

count <= count + 1; --counter is incremented

trig <= '0'; --trigger is forced to low level

end if;

end if;

end process;

90

--this process shifts the output signal, while inserting the input bit

process(sysclk)

begin

if(rising_edge(sysclk)) then

--(N-1) least significant bits concatenated with the input bit

tmp <= tmp(N-2 downto 0) & Data_In;

end if;

end process;

Data_out <= tmp;

end Behavioral;

C.4 Constraint File

##CLOCK

set_property PACKAGE_PIN E3 [get_ports clk]

set_property IOSTANDARD LVCMOS25 [get_ports clk]

create_clock -period 10.000 -name sys_clk_pin -waveform {0.000 5.000}

-add [get_ports clk]

IBUFDS INPUTS

##Positive Terminal

set_property PACKAGE_PIN K2 [get_ports SignP]

set_property IOSTANDARD LVDS_25 [get_ports SignP]

##Negative Terminal

set_property PACKAGE_PIN K1 [get_ports SignM]

set_property IOSTANDARD LVDS_25 [get_ports SignM]

OBUF

set_property PACKAGE_PIN J4 [get_ports BufOut]

set_property IOSTANDARD LVCMOS25 [get_ports BufOut]

91

92

Appendix D

Downconverter - VHDL
Implementation

To ease the comprehension of some implemented blocks (namely, Top-level file, CIC filter
and LPF), in Section D.12 can be found the respective block diagrams with the signals used,
as well as input and output ports also represented.

D.1 Top-Level File

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_STD.all;

Library UNISIM;

use UNISIM.vcomponents.all;

entity downconverter is

port(clk : in std_logic; --Clock input(internal - 100MHz)

signP : in std_logic; --Positive terminal of IBUFDS

signM : in std_logic; --Negative terminal of IBUFDS

bufOut : out std_logic --Output for SDM's feedback loop

);

end downconverter;

architecture Behavioral of downconverter is

--Trigerring signals

signal s_50MHz, s_160kHz, s_8kHz : std_logic;

--Output of input differencial buffer

signal ibufds_out : std_logic;

--Sigma-Delta Modulator output

signal sdm_out : std_logic;

--Output of the CIC filter

signal cic_out : signed(15 downto 0);

93

--Output of the Oscillator

signal osc_out : signed(15 downto 0);

--In-phase branch mixer output

signal mix_out_i : signed(15 downto 0);

--Quadrature branch mixer output

signal mix_out_q : signed(15 downto 0);

--90 Phase Shift Block output signal

signal shift_ph_out : signed(15 downto 0);

--In-Phase branch LPF output

signal lpf_out_i : signed(15 downto 0);

--Quadrature branch LPF output

signal lpf_out_q : signed(15 downto 0);

--Enable debug of the output signals (disable optimisation)

attribute dont_touch : string;

attribute dont_touch of lpfI : label is "true";

attribute dont_touch of lpfQ : label is "true";

begin

-- Trigger Signals Generator

ccu: entity work.CCU(Behavioral)

port map(clk_in => clk,

clk_50MHz => s_50MHz,

clk_160kHz => s_160kHz,

clk_8kHz => s_8kHz);

--Input Differential Buffer

DifBuf : IBUFDS

generic map (

-- Differential Termination

DIFF_TERM => FALSE,

-- Low power (TRUE) vs. performance (FALSE)

IBUF_LOW_PWR => FALSE,

IOSTANDARD => "DEFAULT")

port map (O => ibufds_out, -- Buffer output

-- Diff_p buffer input

I => SignP,

-- Diff_n buffer input

IB => SignM

);

--SDM's Flip-Flop

DFF1: entity work.DFlipFlop(Behavioral)

port map(dataIn => ibufds_out,

enable => '1',

sysclk => s_50MHz,

dataOut => sdm_out);

94

--Output Buffer

OBUF1: OBUF

generic map (DRIVE => 16,

IOSTANDARD => "DEFAULT",

SLEW => "Fast")

port map (O => BufOut, -- Buffer output

I => sdm_out -- Buffer input

);

-- CIC filter instantiation

cic: entity work.CIC_filter(Behavioral)

generic map(M => 625)

port map(x => sdm_out,

clkIn => clk,

clkOut => s_160kHz,

y => cic_out);

-- Oscillator instantiation

osc: entity work.oscillator(Behavioral)

port map(clkIn => s_160kHz,

output => osc_out

);

--**********************************

-- In-phase branch

--**********************************

--Mixer

mix1: entity work.mixer(Behavioral)

port map(signalIn => cic_out,

oscIn => osc_out,

trig => s_160kHz,

output => mix_out_i);

--LPF

lpfI: entity work.lpf(Behavioral)

port map(inPort => mix_out_i,

outPort => lpf_out_i,

clkIn => s_160kHz,

clkOut => s_8kHz

);

--**********************************

-- Quadrature branch

--**********************************

--Phase-shift (90)

dff2: entity work.DFlipFlop_16bits(Behavioral)

port map(dataIn => osc_out,

95

dataOut => shift_ph_out,

sysclk => s_160kHz

);

--Mixer

mix2: entity work.mixer(Behavioral)

port map(signalIn => cic_out,

oscIn => shift_ph_out,

trig => s_160kHz,

output => mix_out_q);

--LPF

lpfQ: entity work.lpf(Behavioral)

port map(inPort => mix_out_q,

outPort => lpf_out_q,

clkIn => s_160kHz,

clkOut => s_8kHz

);

end Behavioral;

D.2 Trigger Generator

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.all;

entity CCU is

port(clk_in : in std_logic; --input clock

clk_50MHz : out std_logic; --50MHz output

clk_160kHz : out std_logic; --160kHz output

clk_8kHz : out std_logic) --8kHz Output

end CCU;

architecture Behavioral of CCU is

--output signals

signal s_clk_50MHz, s_clk_160kHz, s_clk_8kHz : std_logic := '0';

--counters

signal s_count_50MHz, s_count_160kHz, s_count_8kHz : integer := 1;

begin

--Counter Increment process

cnt8k: process(clk_in)

begin

if(rising_edge(clk_in)) then

if(s_count_8kHz = 12500) then --100M/8k = 12500

s_count_8kHz <= 1; --restart counter

96

else

s_count_8kHz <= s_count_8kHz + 1; --increment

end if;

end if;

end process cnt8k;

--Output update Process

clk8k: process(s_count_8kHz)

begin

if (s_count_8kHz = 12500) then --if restarting

s_clk_8kHz <= '1'; --output pulse

else

s_clk_8kHz <= '0';

end if;

end process clk8k;

--Counter Increment process

cnt160k: process(clk_in)

begin

if(rising_edge(clk_in)) then --100M/160k = 625

if(s_count_160kHz = 625) then --restart counter

s_count_160kHz <= 1;

else

s_count_160kHz <= s_count_160kHz + 1; --increment

end if;

end if;

end process cnt160k;

--Output update process

clk160k: process(s_count_8kHz)

begin

if (s_count_160kHz = 625) then --if restarting

s_clk_160kHz <= '1'; --output pulse

else

s_clk_160kHz <= '0';

end if;

end process clk160k;

--Counter Increment Process

cnt50M: process(clk_in)

begin

if(rising_edge(clk_in)) then

if(s_count_50MHz = 2) then --100M/50M = 2

s_count_50MHz <= 1; --restart counter

else

97

s_count_50MHz <= s_count_50MHz + 1; --increment

end if;

end if;

end process cnt50M;

--Output update process

clk50M: process(s_count_50MHz)

begin

if (s_count_50MHz = 2) then --if restarting

s_clk_50MHz <= '1'; --output pulse

else

s_clk_50MHz <= '0';

end if;

end process clk50M;

clk_50MHz <= s_clk_50MHz;

clk_160kHz <= s_clk_160kHz;

clk_8kHz <= s_clk_8kHz;

end Behavioral;

D.3 1 bit D Flip-Flop

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Dflipflop is

port(dataIn : in std_logic;

dataOut : out std_logic;

sysclk : in std_logic;

enable : in std_logic

);

end Dflipflop;

architecture Behavioral of Dflipflop is

begin

process(sysclk)

begin

if(rising_edge(sysclk)) then

if(enable = '1') then

dataOut <= dataIn;

end if;

end if;

end process;

98

end Behavioral;

D.4 CIC Filter

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity CIC_filter is

generic(M : integer := 625);

port(x : in std_logic;

clkOut : in std_logic;

clkIn : in std_logic;

y : out signed(15 downto 0)

);

end CIC_filter;

architecture Behavioral of CIC_filter is

--sign extended version of the input

signal x_sxt : signed(24 downto 0) := (others => '0');

--x1[n] = x[n] + x1[n-1]

signal x1 : signed(24 downto 0) := (others => '0');

--output of the downsampler

signal y1 : signed(24 downto 0) := (others => '0');

-- output of the integrator part (input of the comb)

signal cmb_out : signed(24 downto 0) := (others => '0');

--output of the integrator and, thus, of the CIC filter

signal int_out : signed(24 downto 0) := (others => '0');

begin

--Integrator Process

int: process(clkIn)

begin

if rising_edge(clkIn) then

if (x='0') then

x_sxt <= "1111111111100000000000000"; -- -1

elsif (x='1') then

x_sxt <= "0000000000100000000000000"; -- 1

end if;

x1 <= x_sxt + x1; --integration

end if;

end process;

cmb_out <= x1;

99

--Comb Process

comb: process(clkOut)

begin

if rising_edge(clkOut) then

int_out <= (cmb_out - y1)/M; --Comb with division

y1 <= cmb_out;

end if;

end process;

y <= int_out(15 downto 0);

end Behavioral;

D.5 Oscillator

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.all;

entity oscillator is

port(clkIn : in std_logic;

output : out signed(15 downto 0)

);

end oscillator;

architecture Behavioral of oscillator is

--Counter (select signal)

signal s_count : std_logic_vector(1 downto 0) := (others => '0');

begin

--Counter Process

process(clkIn)

begin

if(rising_edge(clkIn)) then --Reset select signal

if (s_count = "11") then

s_count <= "00";

else

s_count <= std_logic_vector(unsigned(s_count) + 1); --increment

end if;

end if;

end process;

output <= "0100000000000000" when (s_count = "00") else -- 1 in Q2.14

"1100000000000000" when (s_count = "10") else -- -1 in Q2.14

"0000000000000000"; -- 0 in Q2.14

100

end Behavioral;

D.6 Mixer

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.all;

entity mixer is

port(signalIn : in signed(15 downto 0);

oscIn : in signed(15 downto 0);

trig : in std_logic;

output : out signed(15 downto 0)

);

end mixer;

architecture Behavioral of mixer is

--Result of the multiplication of both inputs (Q4.28)

signal s_mult : signed(31 downto 0);

begin

process(trig)

begin

if(rising_edge(trig)) then

s_mult <= signalIn * oscIn;

end if;

end process;

output <= s_mult(29 downto 14); --Q2.14

end Behavioral;

D.7 Low-Pass Filter with Downsampling

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.all;

entity lpf is

port(inPort : in signed(15 downto 0);

outPort : out signed(15downto 0);

clkIn : in std_logic;

clkOut : in std_logic

);

end lpf;

101

architecture Behavioral of lpf is

--First Integrator output

signal s1 : signed(22 downto 0);

--First Delay Output

signal s2 : signed(22 downto 0) := (others => '0');

--First Comb output

signal s3 : signed(22 downto 0) := (others => '0');

--Second Integrator output

signal s4 : signed(22 downto 0) := (others => '0');

--Second Delay Output

signal s5 : signed(22 downto 0) := (others => '0');

--Second Comb output

signal s6 : signed(22 downto 0) := (others => '0');

--Integrators output

signal int_1_out, int_2_out : signed(22 downto 0) := (others => '0');

--Combs output

signal comb_1_out, comb_2_out : signed(22 downto 0) := (others => '0');

--Output of the Downsampler

signal s_out : signed(22 downto 0) := (others => '0');

--First Delay Constant

constant K1 : integer := 80;

--Second Delay Constant

constant K2 : integer := 53;

begin

-- First delay block instantion

d1: entity work.delay(Behavioral)

generic map(M => K1)

port map(inPort => s1,

outPort => s2,

clk => clkIn

);

--Second delay block instantiation

d2: entity work.delay(Behavioral)

generic map(M => K2)

port map(inPort => s4,

outPort => s5,

clk => clkIn

);

--First Integrator

p1: process(clkIn)

begin

if(rising_edge(clkIn)) then

s1 <= s1 + inPort;

end if;

102

end process p1;

int_1_out <= s1;

-- First comb

p2: process(clkIn)

begin

if(rising_edge(clkIn)) then

s3 <= (int_1_out - s2)/K1;

end if;

end process p2;

comb_1_out <= s3;

--Second Integrator

p3: process(clkIn)

begin

if (rising_edge(clkIn)) then

s4 <= s4 + comb_1_out;

end if;

end process p3;

int_2_out <= s4;

--Second comb

p4: process(clkIn)

begin

if (rising_edge(clkIn)) then

s6 <= (int_2_out - s5)/(K2);

end if;

end process p4;

comb_2_out <= s6;

--Downsampling

dff: entity work.DFlipFlop_23bits(Behavioral)

port map(dataIn => comb_2_out,

dataOut => s_out,

sysclk => clkOut

);

--Output port of the filter

outPort <= s_out(15 downto 0); --Q2.14

end Behavioral;

103

D.8 Delay Block

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity delay is

--Delay M samples

generic(M : integer := 1);

port(inPort : in signed(22 downto 0);

outPort : out signed(22 downto 0);

clk : in std_logic := '0'

);

end delay;

architecture Behavioral of delay is

--Array of M D Flip-Flops

type delay_block is array (M downto 0) of signed(22 downto 0);

signal del : delay_block;

begin

--First Flip-Flop input is connected to input port

del(0) <= inPort;

-- Cascading the M D-type Flip-Flops

G: for I in 0 to M-1 generate

dffx: entity work.DFlipFlop_23bits(Behavioral)

port map(dataIn => del(i),

dataOut => del(i+1),

sysclk => clk

);

end generate;

outPort <= del(M);

end Behavioral;

D.9 23 bits D Flip-Flop

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity DFlipFlop_23bits is

port(dataIn : in signed(22 downto 0);

dataOut : out signed(22 downto 0);

sysclk : in std_logic

104

);

end DFlipFlop_23bits;

architecture Behavioral of DFlipFlop_23bits is

begin

process(sysclk)

begin

if(rising_edge(sysclk)) then

dataOut <= dataIn;

end if;

end process;

end Behavioral;

D.10 16 bits D Flip-Flop

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity DFlipFlop_16bits is

port(dataIn : in signed(15 downto 0);

dataOut : out signed(15 downto 0);

sysclk : in std_logic

);

end DFlipFlop_16bits;

architecture Behavioral of DFlipFlop_16bits is

begin

process(sysclk)

begin

if(rising_edge(sysclk)) then

dataOut <= dataIn;

end if;

end process;

end Behavioral;

D.11 Constraint File

Clock signal

##Bank = 35, Pin name = IO_L12P_T1_MRCC_35, Sch name = CLK100MHZ

set_property PACKAGE_PIN E3 [get_ports clk]

set_property IOSTANDARD LVCMOS25 [get_ports clk]

105

create_clock -period 10.000 -name sys_clk_pin -waveform

{0.000 5.000} -add [get_ports clk]

##Pmod Header JC

##Bank = 35, Pin name = IO_L23P_T3_35, Sch name = JC1

set_property PACKAGE_PIN K2 [get_ports signP]

set_property IOSTANDARD LVDS_25 [get_ports signP]

##Bank = 35, Pin name = IO_L21P_T3_DQS_35, Sch name = JC4

set_property PACKAGE_PIN J4 [get_ports bufOut]

set_property IOSTANDARD LVCMOS25 [get_ports bufOut]

##Bank = 35, Pin name = IO_L23N_T3_35, Sch name = JC7

set_property PACKAGE_PIN K1 [get_ports signM]

set_property IOSTANDARD LVDS_25 [get_ports signM]

106

D.12 Block Diagrams

D.12.1 Downconverter - Top-level file

Figure D.1: Block diagram of the downconverter implemented in VHDL.

107

D.12.2 CIC filter

Figure D.2: Block diagram of the CIC filter implemented in VHDL.

108

D.12.3 Low-pass Filter with Downsampler

Figure D.3: Block diagram of the LPF filter implemented in VHDL.

109

110

Bibliography

[1] https://www.youtube.com/watch?v=A8lztr1tu4o.

[2] Rui F. Cordeiro. Digital Beam-steering in a Parametric Array. Master’s thesis, University
of Aveiro, 2012.

[3] World health organisation’s international classification of diseases, 11th edition. 2018.

[4] http://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-
impairment.

[5] https://brailleworks.com/free-white-cane/.

[6] Football Five-A-Side Laws - B1 Category. International Blind Sports Federation, 2017.

[7] http://www.ibsasport.org/photos/36/football-5-a-side-blind-football-at-
the-rio-2016-paralympic-games.

[8] Corinna M Bauer, Gabriella V Hirsch, Lauren Zajac, Bang-Bon Koo, Olivier Collignon,
and Lotfi B Merabet. Multimodal mr-imaging reveals large-scale structural and func-
tional connectivity changes in profound early blindness. PloS one, 12(3):e0173064, 2017.

[9] Lore Thaler, Galen M Reich, Xinyu Zhang, Dinghe Wang, Graeme E Smith, Zeng Tao,
Raja Syamsul Azmir Bin Raja Abdullah, Mikhail Cherniakov, Christopher J Baker,
Daniel Kish, et al. Mouth-clicks used by blind expert human echolocators–signal de-
scription and model based signal synthesis. PLoS computational biology, 13(8):e1005670,
2017.

[10] Bo N Schenkman and Mats E Nilsson. Human echolocation: Blind and sighted persons’
ability to detect sounds recorded in the presence of a reflecting object. Perception,
39(4):483–501, 2010.

[11] Lore Thaler, Stephen R Arnott, and Melvyn A Goodale. Neural correlates of natural
human echolocation in early and late blind echolocation experts. PLoS one, 6(5):e20162,
2011.

[12] Pedro R. M. Rosa. Bengala de apoio a cegos com deteção de buracos. Master’s thesis,
University of Aveiro, 2009.

[13] Adrien Brilhault, Slim Kammoun, Olivier Gutierrez, Philippe Truillet, and Christophe
Jouffrais. Fusion of artificial vision and gps to improve blind pedestrian positioning. In
New Technologies, Mobility and Security (NTMS), 2011 4th IFIP International Confer-
ence on, pages 1–5. IEEE, 2011.

111

https://www.youtube.com/watch?v=A8lztr1tu4o
http://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
http://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://brailleworks.com/free-white-cane/
http://www.ibsasport.org/photos/36/football-5-a-side-blind-football-at-the-rio-2016-paralympic-games
http://www.ibsasport.org/photos/36/football-5-a-side-blind-football-at-the-rio-2016-paralympic-games

[14] http://av.loyola.com/products/audio/pdf/audiobeam.pdf.

[15] J.G. Proakis and D.G. Manolakis. Digital Signal Processing. Pearson Prentice Hall, 2007.

[16] S. Park and Motorola. Motorola Digital Signal Processors: Principles of Sigma-delta
Modulation for Analog-to-digital Converters. Motorola, 1993.

[17] S. Haykin. Digital Communication Systems. Wiley, 2013.

[18] Walt Kester. Understand SINAD, ENOB, SNR, THD, THD+ N, and SFDR so you
don’t get lost in the noise floor. Citeseer, 2009.

[19] E. Janssen and A. van Roermund. Look-Ahead Based Sigma-Delta Modulation. Analog
Circuits and Signal Processing. Springer Netherlands, 2011.

[20] A.B. Carlson and P.B. Crilly. Communication System. Tata McGraw-Hill Education,
2010.

[21] 7 Series FPGAs SelectIO Resources - User Guide. Xilinx, Inc., 2011.

[22] Nexys 4 FPGA Board Reference Manual. Digilent, Inc., 2016.

[23] The effective number of bits (ENOB) of my R&S digital oscilloscope, 2018.

[24] MCP3201 Datasheet - 2.7V 12-Bit A/D Converter with SPI Serial Interface. Microchip
Technology, Inc., 2007.

[25] Barry D Van Veen and Kevin M Buckley. Beamforming: A versatile approach to spatial
filtering. IEEE assp magazine, 5(2):4–24, 1988.

[26] P.S. Naidu. Sensor Array Signal Processing. Taylor & Francis, 2000.

[27] S. Haykin and K.J.R. Liu. Handbook on Array Processing and Sensor Networks. Adaptive
and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and
Control. Wiley, 2010.

[28] https://en.wikipedia.org/wiki/Frequency mixer.

[29] L.W. Couch. Digital and Analog Communication Systems. Prentice-Hall international
editions. Pearson, 2013.

[30] http://www.dsplog.com/2007/07/01/example-of-cascaded-integrator-comb-
filter-in-matlab/.

[31] D.L. Perry. VHDL: Programming by Example. McGraw-Hill Education, 2002.

[32] MA40S4S/MA40S4R Datasheet, year=2017, publisher=Murata Manufacturing Co.

[33] J.S. Bendat and A.G. Piersol. Engineering applications of correlation and spectral anal-
ysis. J. Wiley, 1993.

[34] M.H. Hayes. Statistical digital signal processing and modeling. John Wiley & Sons, 1996.

[35] S.L. Marple. Digital Spectral Analysis with Applications. Prentice-Hall, 1987.

112

http://av.loyola.com/products/audio/pdf/audiobeam.pdf
https://en.wikipedia.org/wiki/Frequency_mixer
http://www.dsplog.com/2007/07/01/example-of-cascaded-integrator-comb-filter-in-matlab/
http://www.dsplog.com/2007/07/01/example-of-cascaded-integrator-comb-filter-in-matlab/

[36] R.A. Serway and J.W. Jewett. Physics for Scientists and Engineers. Brooks/Cole, 2003.

[37] Application Note 49 - Theory of Lloyd’s Mirror Interferometer. Newport Corporation,
2012.

113

114

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Proposed Work and Objectives
	Organisation

	State of the Art
	Blindness and vision impairment
	Mobility and Environment Sensing
	Hearing and Echolocation

	Assisting Devices
	Cane equipped with sonar
	Sunglasses with Sonar
	NAVIG

	Parametric Speaker

	Sigma-Delta Converter
	Introduction
	Sampling Methods
	Quantization noise
	Performance
	Signal-to-Noise Ratio
	Signal-to-Noise and Distortion Ratio
	Spurious-free Dynamic Range
	Total Harmonic Distortion
	Resolution

	Delta Modulation
	Sigma-Delta Modulation
	First Order
	High-Order Sigma-Delta

	Design of the Modulator
	Implementation of the sdm
	Digital Interface
	Input Differential Buffer
	Sampling
	Output buffer

	Analog interface

	Tests and Results
	Experimental Set-up
	Results
	Output Power Spectrum Density
	Performance Indicators

	Results Analysis and Discussion

	Beamforming
	Introduction
	Uniform Linear Array
	Planar Array

	Analog Reception, Digital Down Conversion and Processing
	Analog Reception
	Coherent Detection/Downconversion
	Quadrature Amplitude Modulated Signals
	Downconverter mixer
	Moving Average Filter
	Oscillator
	Final Downsampling
	Receiver Channel

	Implementation
	Analog Reception
	Digital Downconversion
	CIC Filter
	Local Oscillator
	Mixer
	Frequency Shift
	Low Pass Filter
	Trigger Generator

	Tests and Results
	Analog Reception
	Digital Downconversion
	CIC Filter
	Downconversion followed by low-pass-filtering
	Downconverter

	Results Analysis and Discussion
	Analog Reception
	Digital Downconversion
	CIC Filter
	Low Pass Filter
	Downconverter

	Conclusions
	Conclusions
	Future Work

	APPENDICES
	Performance Indicators
	Introduction
	Discrete-time Random Processes
	Stationarity
	Ergodicity

	The Power Spectrum
	Welch's Method of psd Estimation

	Spectral Analysis of the Output of the sdm
	Performance Indicators Computation
	Signal-to-Noise-Ratio
	Signal-to-Noise and Distortion Ratio
	Spurious Free Dynamic Range
	Total Harmonic Distortion

	Validation

	Interference of Ultrasonic Waves
	Introduction
	Double-Slit Experiment
	Lloyd's Mirror

	Experimental Verification

	 Modulator – VHDL implementation
	Top-level file
	Sampling
	D-type Flip-flop
	Frequency Division

	Shift-Register
	Constraint File

	Downconverter - VHDL Implementation
	Top-Level File
	Trigger Generator
	1 bit D Flip-Flop
	CIC Filter
	Oscillator
	Mixer
	Low-Pass Filter with Downsampling
	Delay Block
	23 bits D Flip-Flop
	16 bits D Flip-Flop
	Constraint File
	Block Diagrams
	Downconverter - Top-level file
	CIC filter
	Low-pass Filter with Downsampler

	Bibliography

