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ABSTRACT

Due to their catalytic properties, selectivity, and efficiency, enzymes are excellent 

biocatalysts. In particular, laccases are versatile multi-copper oxidases with great interest for a 

wide plethora of biotechnological and environmental applications. Even though several laccase-

catalysed processes have been reported at an industrial level, the high costs of their downstream 

processing required to provide biocatalysts with high purity levels, stability and activity remains 

one of the main drawbacks when economically evaluating the overall processes. Aqueous biphasic 

systems based on ionic liquids (ILs) can be foreseen as a promising alternative approach for the 

extraction and activity maintenance/improvement of enzymes, essentially due to the designer 

solvents ability of ionic liquids. However, to take advantage of this feature and to use the full 

potential of IL-based aqueous biphasic systems, it is necessary to understand the effect of ILs as 

phase-forming constituents and how they affect the enzymes extraction and activity. In order to 

overcome the lack of information on this topic in the literature, in this work, IL-based aqueous 

biphasic systems were investigated to extract and enhance the laccase activity, in order to gather 

evidences that could be used to improve the enzymes downstream processing. To this end, a wide 

screening of imidazolium-, pyridinium-, pyrrolidinium-, piperidinium-, tetraalkylphosphonium-, 

and tetraalkylammonium-based ILs as phase-forming components of ABS was carried out. 

Furthermore, these ILs were used to create ABS combined with salts, polymers and used as 

adjuvants in polymer-based ABS. Most ABS comprising ILs revealed to be highly efficient 

extraction platforms, allowing the complete extraction of laccase for all the conditions tested, and 

with an enzyme activity enhancement by more than 50%. Overall, the obtained results demonstrate 

that laccase preferentially partitions to the most hydrophilic phase in ABS comprising ILs, both 

used as adjuvants or as phase-forming components, corresponding to the phase in which the IL is 

enriched. Furthermore, the IL chemical structure of the IL plays a significant role in the enzyme 

activity, where ILs with a higher number of hydroxyl groups seem to be relevant to improve the 

laccase activity.

Keywords: Laccase; Oxidative Enzymes; Extraction; Activity; Aqueous Biphasic Systems; Ionic 

liquids.



1 Introduction

Enzyme biocatalysis undergone significant developments in the last decades in the production 

of high-value products in a variety of industries [1]. Due to their excellent catalytic properties, 

selectivity, efficiency, low toxicity and biodegradability, enzymes are excellent biocatalysts to be 

used in mild reaction conditions. Oxidative enzymes have been applied in a wide variety of 

processes [2], such as delignification and biobleaching [3, 4], dye degradation [5-7], 

bioremediation [8], ethanol production [9], biosensors [10] and in the production of 

pharmaceutical drugs [11, 12]. In fact, within their relevant applications, the pharmaceutical sector 

can be highlighted, in which the first drug synthesized by an oxidative enzyme was actinocin, an 

effective compound to fight cancer by blocking the transcription of the tumour cell DNA [13]. An 

additional example includes the coupling of katarantine and vindoline to produce vinblastine, an 

anti-cancer drug [14]. 

Laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) are versatile multi-copper 

oxidases [15], capable of oxidizing a large number of phenolic and non-phenolic molecules due to 

their low substrate specificity, using oxygen as electron acceptor and generating water as a by-

product [16]. Due to their wide range of biotechnological and environmental applications [17], 

laccase is one of the most used oxidative enzyme. In particular, laccase presents a great potential 

in different processes related with pulp and paper [18], food [19] and textile industries [20], as 

well as in novel fields such as bioremediation [21], biosensing [22] and lignocellulosic 

biorefineries [23].  

Even though several laccase-catalysed processes have been reported at an industrial level over 

the last decades [24, 25], due to its high relevance and wide plethora of applications, the high costs 

of the downstream processing of enzymes required to provide biocatalysts with high purity levels, 

stability and activity remains one of the main drawbacks when economically evaluating the overall 

processes [26]. On an attempt to overcome these limitations, the use of ionic liquids (ILs) has been 

investigated in the development of more efficient downstream processes for enzymes, as well as 

to provide more sustainable enzymatic reactions, particularly when the substrates have low water 

solubility [27]. The interest in ILs as a novel class of solvents for protein purification and 

biocatalytic transformations is mainly due to their designer solvents ability and excellent 

performance to act as extraction and/or reaction media [28-33]. 

Depending on the enzymes purity requirement, multiple bioprocessing steps may be required, 

including chromatography and other polishing steps such as ultrafiltration. Among these 



processes, aqueous biphasic systems (ABS) have been recognized as an economic and efficient 

downstream processing tool to be used in the separation and purification of biomolecules from 

complex biological matrices [34]. Traditional ABS consists of two immiscible aqueous-rich phases 

based on polymer/polymer, polymer/salt or salt/salt combinations. However, typical 

polymer/polymer ABS display two hydrophobic phases, while polymer/salt ABS show a highly 

hydrophobic polymer-rich phase and a hydrophilic salt-rich phase. Therefore, there is always a 

restricted polarity difference between the two phases, which may limit their performance in the 

selective extraction and purification of proteins. The introduction of ILs in ABS was first reported 

by Rogers and co-workers [35], and since then the potential of ILs as phase-forming components 

of ABS has been recognized in the presence of several salts, amino acids, carbohydrates or 

polymers [31, 36-38]. Essentially due to their capability to act as designer solvents, tailored 

polarities of the ABS coexisting phases can be obtained, thus leading to tailored affinities and 

improved extractions [39]. 

ABS based on ILs and salts or polymers have been proposed as effective separation and 

purification strategies for several biomolecules, such as proteins and enzymes [28, 30, 40-44]. IL-

based ABS have been also reported as effective in the extraction and in maintaining the activity of 

enzymes [42]. Moreover, the stability of oxidative enzymes in presence of ILs has been proved 

[45, 46]. Although traditional polymer/polymer and polymer/salt ABS have been investigated for 

the extraction of oxidative enzymes, including laccase [47], to the best of our knowledge, the 

application of IL-based ABS for the extraction or purification of laccase, was not previously 

addressed. 

Since ILs are designer solvents and in order to take advantage of that characteristic to reach 

the full potential of IL-based ABS, in this work, a wide range of imidazolium-, pyridinium-, 

pyrrolidinium-, piperidinium-, tetraalkylphosphonium-, and tetraalkylammonium-based ILs were 

evaluated in ternary and quaternary ABS, as phase-forming compounds or adjuvants, respectively, 

for the extraction of laccase and their effect upon the enzyme activity. Ternary ABS composed of 

ILs and potassium citrate buffer (C6H5K3O7/C6H8O7) at pH 8, potassium citrate (C6H5K3O7) or 

polypropylene glycol 400 (PPG 400) were studied; quaternary ABS composed of polymer/salt 

(PPG 400 + K2HPO4) and polymer/polymer (PPG 400 + poly(ethylene)glycol 400/PEG 400) with 

ILs as adjuvants at three different concentrations (1, 3 and 5 wt%) were also investigated. The 

phase-forming abilities of the different ILs were determined through the characterization of the 

respective liquid-liquid phase diagrams, followed by studies on the extraction of laccase in these 

systems and enzyme activity. Several operational conditions, namely the type of system, the IL, 



salt, polymer and enzyme concentrations were investigated, allowing to address some of the main 

molecular mechanisms and driving forces ruling the laccase partition in IL-based ABS. 

2 Experimental Section

2.1 Materials

2.1.1 Chemicals 

The ILs investigated in this work were: 1-butyl-3-methylimidazolium chloride ([C4mim]Cl; 

purity > 99%), 1-butyl-3-methyl-imidazolium bromide ([C4mim]Br; purity > 99%), 

tetrabutylphosphonium chloride ([P4444]Cl; purity > 95%), tetrabutylphosphonium bromide 

([P4444]Br; purity > 95%), tetraethylammonium bromide ([N2222]Br; purity > 98%), 

tetrapropylammonium bromide ([N3333]Br; purity > 98%), tetrabutylammonium bromide 

([N4444]Br; purity > 98%),  ([Ch][Ac]; purity > 98%), cholinium bitartrate ([Ch][Bit]; purity > 

98%), cholinium chloride ([Ch]Cl; purity > 99%), cholinium dihydrogen citrate ([Ch][DHCit]; 

purity > 98%), cholinium dihydrogen phosphate ([Ch][DHP]; purity > 99%), cholinium glycolate 

([Ch][Gly]; purity > 97%), 1-butyl-2-methylpyridinium chloride ([C4mpy]Cl; purity > 99%), 1-

butyl-1-methylpyrrolidinium chloride ([C4mpyrr]Cl; purity > 99%), 1-butyl-1-

methylpiperidinium chloride ([C4mpip]Cl; purity > 99%). Phosphonium- and ammonium-based 

ILs were purchased from Cytec (USA) and Sigma–Aldrich (Spain), respectively. Imidazolium-, 

cholinium- and pyridinium-based ILs were supplied by Iolitec (Germany), except [Ch][Bit], 

[Ch]Cl, [Ch][DHCit] that were acquired from Sigma-Aldrich (Spain) and [Ch][Gly] that was 

synthesized by us according to well-established protocols [48]. The chemical structure of all the 

ILs investigated on this work are presented in Table 1.

Table 1 – Chemical structures of the investigated ILs.

[C4mim]Cl [C4mim]Br [P4444]Cl [P4444]Br



[N2222]Br [N3333]Br [N4444]Br [Ch][Ac]

[Ch][Bit] [Ch]Cl [Ch][DHCit] [Ch][DHP]

[Ch][Gly] [C4mpy]Cl [C4mpyrr]Cl [C4mpip]Cl

Potassium citrate (C6H5K3O7), citric acid (C6H8O7), polypropylene glycol with an average 

molecular weight of 400 g∙mol–1 (PPG 400), polyethylene glycol with an average molecular weight 

of 400 g∙mol–1 (PEG 400) and 2,2’-azino-bis(3-ethylbenzathiazoline-6-sulfonic) acid (ABTS) 

were supplied by Sigma-Aldrich (Spain). The water employed was treated with a Milli-Q® Integral 

water purification apparatus from Merck Millipore. A summary of all the chemicals employed on 

this work is provided on Table 2.

Table 2 – Summary of the chemical reagents used on this work.

Chemicals Purity (%) Supplier CAS number

[C4mim]Cl > 99 Iolitec 79917-90-1

[C4mim]Br > 99 Iolitec 85100-77-2

[P4444]Cl > 95 Cytec 2304-30-5

[P4444]Br > 95 Cytec 3115-68-2

[N2222]Br > 98 Sigma-Aldrich 71-91-0

[N3333]Br > 98 Sigma-Aldrich 1941-30-6



[N4444]Br > 98 Sigma-Aldrich 1643-19-2

[Ch][Ac] > 98 Iolitec 14586-35-7

[Ch][Bit] > 98 Sigma-Aldrich 87-67-2

[Ch]Cl > 99 Sigma-Aldrich 67-48-1

[Ch][DHCit] > 98 Sigma-Aldrich 77-91-8

[Ch][DHP] > 99 Iolitec 83846-92-8

[Ch][Gly] > 97 Synthesized in-home

[C4mpy]Cl > 99 Iolitec 112400-85-8

[C4mpyrr]Cl > 99 Iolitec 479500-35-1

[C4mpip]Cl > 99 Iolitec 845790-13-8

C6H5K3O7 99 Sigma-Aldrich 866-84-2

C6H8O7 99.5 Sigma-Aldrich 77-92-9

PPG 400 - Sigma-Aldrich 25322-69-4

PEG 400 - Sigma-Aldrich 25322-68-3

ABTS > 98 Sigma-Aldrich 30931-67-0

2.1.2 Biological reagents

Commercial laccase (Novozym® 51003; EC 1.10.3.2; 1000 LAMU.g-1), from Myceliophthora 

thermophila was kindly supplied by Novozymes (Denmark). This enzyme was produced by 

submerged fermentation of genetically modified Aspergillus oryzae. According to product 

datasheet, provided by Novozymes, this laccase is stored at pH 8.2. 

2.2 Experimental Procedure

Determination of binodal curves, tie-lines and tie-line lengths. The cloud point titration 

method was used to determine the new binodal curves at 25±1°C, according to a protocol 

previously described [49]. The binodal curves were then fitted using Equation 1, proposed by 

Merchuk et al. [50]:

                                                     (1)𝑌 = 𝐴 exp⌈(𝐵𝑋0.5) ― (𝐶𝑋3)⌉



where  and  correspond to the weight fractions percentages of each phase-forming compound; 𝑋 𝑌

 is the salt or PPG and  is the IL or PEG depending on the constituents of the ABS. ,  and  𝑋 𝑌 𝐴 𝐵 𝐶

are fitting parameters obtained by least-squares regression from the experimental data.

Tie-lines (TLs) were gravimetrically determined at 25±1°C according to the method proposed 

by Merchuk et al. [50], and already applied to IL-based ABS [51]. Additional details on the TLs 

and tie-line lengths (TLLs) determination can be found in the Supplementary Information (SI).

Screening of IL-based ABS for active laccase extraction. The compositions of the ternary 

mixtures used in the extractions studies of laccase were chosen based on: i) phase diagrams 

determined in this work for the systems composed of [C4mim]Cl, [C4mim]Br, [P4444]Cl, [P4444]Br, 

[N2222]Br or [N4444]Br + C6H5K3O7/C6H8O7 + H2O and ii) phase diagrams already published, 

namely the ABS formed by [Ch][Ac], [Ch][Bit], [Ch]Cl, [Ch][DHCit], [Ch][DHP] or [Ch][Gly] + 

PPG 400 + H2O [40], [C4mpy]Cl, [C4mpyr]Cl or [C4mpip]Cl + C6H5K3O7 + H2O [51], and 

[N3333]Br + C6H5K3O7/C6H8O7 + H2O [52]. The experimental phase diagrams data (in weight 

fraction) for the systems not reported in the literature are presented in the SI, Table S1. Ternary 

mixtures within the biphasic region were prepared with C6H5K3O7, C6H5K3O7/C6H8O7 at pH 8 or 

PPG 400, IL and laccase solution in distilled water (7.5 µL·mL-1). A summary of the compositions 

of the ternary mixtures investigated are presented in Tables S2 – S3 in the SI. Each system 

containing laccase was vigorously stirred in a vortex, left to equilibrate for at least 2 h at 25±1°C 

and centrifuged at 10000 rpm for 20 min to achieve the thermodynamic equilibrium and separation 

between the two phases. Then, the phases were separated, their volumes were ascertained, and 

laccase activity was measured in both phases with the procedure described below.

Determination of the extraction efficiency and partition coefficient of active laccase in 

IL-based ABS. Laccase activity measured according to the protocol described below provides a 

measurement of the concentration of active enzyme present in each phase of each ABS. The 

extraction efficiency of active laccase (EE%) was considered as the percentage ratio between the 

laccase activity in the IL-rich phase to that in the opposite phase, according to Equation 2:

                        (2)𝐸𝐸% =  
[𝑙𝑎𝑐]𝐼𝐿 × 𝑣𝐼𝐿

[𝑙𝑎𝑐]𝐼𝐿 × 𝑤𝐼𝐿 +  [𝑙𝑎𝑐]𝑠𝑎𝑙𝑡/𝑃𝑃𝐺 × 𝑤𝑠𝑎𝑙𝑡/𝑃𝑃𝐺

where  is the activity of laccase (U·L-1),  represents the volume of each phase, and the [𝑙𝑎𝑐] 𝑣

subscripts ,  and  represent the IL-, salt-, and PPG-rich phases, respectively.𝐼𝐿 𝑠𝑎𝑙𝑡 𝑃𝑃𝐺

The activity partition coefficient  of laccase in each phase was obtained using Equation 𝐾𝑎𝑐𝑡

3:



                                          (3)𝐾𝑎𝑐𝑡 =  
[𝑙𝑎𝑐]𝐼𝐿

[𝑙𝑎𝑐]𝑠𝑎𝑙𝑡/𝑃𝑃𝐺

where the subscripts  and  or  indicate the phase were the laccase activity is measured, 𝐼𝐿 𝑠𝑎𝑙𝑡 𝑃𝑃𝐺

respectively.

Screening of ILs as adjuvants in polymer-salt and polymer-polymer ABS for laccase 

partition/activity. The best ILs identified in IL-based ABS were tested as adjuvants in 

representative polymer-salt and polymer-polymer ABS, namely formed by PPG 400 + K2HPO4 

and PPG 400 + PEG 400. The selected ILs used as adjuvants were [Ch][Ac], [Ch][DHCit] and 

[Ch][DHP]. The experimental liquid-liquid equilibrium data (weight fraction) for these systems 

are presented in the SI, Tables S4-S7. The ternary mixtures were prepared with PPG 400, K2HPO4 

or PEG 400, IL and laccase aqueous solution (7.5 µL·mL-1). The laccase activity measurement 

procedure was the same as described below, and its extraction efficiency ( ) was determined 𝐸𝐸%

according to Equation 4:

                                            (4)𝐸𝐸% =  
[𝑙𝑎𝑐]𝑠𝑎𝑙𝑡/𝑃𝐸𝐺 ×  𝑣𝑠𝑎𝑙𝑡/𝑃𝐸𝐺

[𝑙𝑎𝑐]𝑠𝑎𝑙𝑡/𝑃𝐸𝐺 ×  𝑣𝑠𝑎𝑙𝑡/𝑃𝐸𝐺 +  [𝑙𝑎𝑐]𝑃𝑃𝐺 ×  𝑣𝑃𝑃𝐺

where  is the activity of laccase (U·L-1),  represents the volume of each phase, and the [𝑙𝑎𝑐] 𝑣

subscripts ,  and  represent the salt-, PEG- and PPG-rich phases, respectively.𝑠𝑎𝑙𝑡 𝑃𝐸𝐺 𝑃𝑃𝐺

For each phase, the pH values were determined using a Mettler Toledo U402-M3-S7/200 

micro electrode, and the presence/quantification of the IL was determined by 1H NMR 

spectroscopy. Further details on the IL determination/quantification procedure can be found in the 

SI.

Laccase activity. The laccase activity was determined according to a method previously 

described [53]. For that purpose 100 µL of laccase solution was mixed with 0.5 mL of ABTS 0.2 

mM, and 1.4 mL of citrate/phosphate buffer 0.05/0.1M at pH 4.5. The increase in absorbance was 

measured in kinetic model of a UV-Vis spectrophotometer (Agilent 8453) at 420 nm. The laccase 

activity was estimated using Equation 5:

       (5) 
U
L =

𝑎𝑏𝑠·𝑚𝑖𝑛 ―1 × fdil × 106

ε                          

where ε is ABTS molar extinction coefficient (36000 M-1cm-1 at 420 nm), abs·min-1 is the increase 

in absorbance per minute, fdil is the dilution factor of the sample, 106 is the conversion factor from 

M to μM. One unit (U) of laccase activity is defined as the amount of enzyme required to form 1 



μmol of ABTS˙+ per minute, and laccase activities are expressed in U·L-1. Blank control samples 

were always analysed to ascertain possible interferences of the phase-forming components on the 

activity assays.

Proteins profile assessment. The proteins profile of each phase was assessed by SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) using an Amersham ECLTM Gel from GE 

Healthcare Life Sciences. The samples were mixed with the buffer sample (1:1, v/v) and 

dithiothreitol and heated at 95±1°C for 5 min. Electrophoresis was run on polyacrylamide gels 

(stacking: 4 % and resolving: 20 %) with a running buffer consisting of 250 mM Tris HCl, 1.92 

M glycine, and 1 % (w/v) SDS at 135V for 90 min. The gel was stained with Coomassie Brilliant 

Blue G-250 and then distained. A molecular weight full-range marker (VWR) was used as protein 

standards.



3 Results and Discussion

3.1 Extraction/activity of laccase in IL-based ABS 

In the last years there has been an increasing interest in the use of ILs in the field of 

biocatalysis and enzyme purification [54, 55]. Previous works showed that ILs may have beneficial 

or deleterious effects on the stability of enzymes and their activity [56, 57]. To take advantage of 

the ILs designer solvents aptitude and to use the full potential of IL-based ABS, it is necessary to 

understand the effect of ILs as a phase-forming constituents and how they affect the enzymes 

extraction and activity. For that purpose a wide range of ILs used as ABS phase-forming 

constituents were screened, namely tetraalkylammonium-, tetraalkylphosphonium-, imidazolium-, 

pyridinium-, pyrrolidinium- and piperidinium-based IL combined with the bromide, chloride, 

acetate, bitartrate, dihydrogen citrate, dihydrogenphosphate and glycolate anions. The binodal 

curves of each system, required for the design of appropriate extraction routes, were obtained in 

this work for the systems composed of [C4mim]Cl, [C4mim]Br, [N2222]Br, [N4444]Br, [P4444]Br and 

[P4444]Cl + C6H5K3O7/C6H8O7 + H2O and are presented in the SI, Figure S1. The experimental 

weight fraction data are also given in the SI (Table S1). The remaining ternary phase diagrams 

used in this work were obtained from the literature: ABS formed by [Ch][Ac], [Ch][Bit], [Ch]Cl, 

[Ch][DHCit], [Ch][DHP] or [Ch][Gly] + PPG 400 + H2O [40]; [C4mpy]Cl, [C4mpyr]Cl or 

[C4mpip]Cl + C6H5K3O7 + H2O [51]; and [N3333]Br + C6H5K3O7/C6H8O7 + H2O [52]. In all the IL 

+ salt systems, the top phase corresponds to the IL-rich phase and the bottom phase corresponds 

to the salt-rich phase; for the IL + polymer systems, the top phase corresponds to the polymer-rich 

phase while the bottom phase corresponds to the IL-rich phase.

Initial studies were carried out with different concentrations of laccase, ranging from 3.75 to 

15 µL·mL-1, in selected ABS, to investigate the effect of increasing protein concentration on 

laccase partition and activity and to infer the most appropriate concentration to be used. This 

laccase concentration range was selected to give similar enzyme activity to those achieved during 

its production by fermentation, based on a previously published paper by us [58]. The results are 

presented in Figure S2 in the SI, showing that it is possible to extract laccase for the IL-rich phase 

using concentrations up to 15 µL·mL-1, with no saturation of the phases and/or any precipitation 

of the enzyme at the interface. Therefore, all the investigated ABS in this work were loaded with 

an intermediate laccase concentration – 7.5 µL·mL-1, whose compositions of the ABS investigated 

are given in Table 3. All the mixture points studied were selected based on the corresponding phase 

diagrams in order to be close to the binodal curves, maximizing the amount of water in the systems, 



which is beneficial when dealing with proteins/enzymes. Also, it is important to highlight that all 

the ABS composed of C6H5K3O7/C6H8O7 buffer were set at pH 8, since it consists in the optimum 

pH value of the laccase under study, based on a preliminary study of the laccase activity as a 

function of the pH (see SI, Figure S3) – being in accordance with the information provided by the 

supplier in the product datasheet. The comparison between the laccase activity in the top and 

bottom phases, as well as the extraction efficiencies (EE%) and partition coefficient of the active 

laccase (Kact) are given in Table 3. 

Table 3 – Results for active laccase partition (Kact), extraction efficiency (EE%), and laccase 

activity in the top and bottom phases using different IL-based ABS.

ABS

Mixture 

composition 

(wt%)

Kact EE%

Laccase activity 

(U·L-1)

top phase

Laccase activity  

(U·L-1)

bottom phase

[C4mim]Br +

C6H5K3O7/C6H8O7 pH 8

32% IL

22% salt
1.76 64 70.2 123.6

[C4mim]Cl +

C6H5K3O7/C6H8O7 pH 8

35% IL

22% salt
-- -- ND ND

[N2222]Br +

C6H5K3O7/C6H8O7 pH 8

31% IL

20% salt
1.45 59 483.6 702.0

[N3333]Br +

C6H5K3O7/C6H8O7 pH 8

30% IL

20% salt
-- -- 53.4 ND

[N4444]Br +

C6H5K3O7/C6H8O7 pH 8

28% IL

12% salt
-- -- ND ND

[P4444]Cl + 

C6H5K3O7/C6H8O7 pH 8

28 % IL

15% salt
-- -- ND ND

[P4444]Br +

C6H5K3O7/C6H8O7 pH 8

28 %IL

10% salt
-- -- ND ND

[C4mpip]Cl + C6H5K3O7
30% IL

25% salt
-- -- ND ND

[C4mpyr]Cl + C6H5K3O7
30% IL

25% salt
-- -- 176.4 ND

[C4mpy]Cl + C6H5K3O7
30% IL

25% salt
-- -- ND ND

[Ch]Cl + PPG 400
15% IL

25% PPG
2.21 69 160.2 353.4

[Ch][Ac] + PPG 400
12% IL

20% PPG
-- -- SP 464.4

[Ch][Gly] + PPG 400
10% IL

25% PPG
-- -- SP 343.2



[Ch][DHP] + PPG 400
15% IL

15% PPG
-- -- SP 469.8

[Ch][DHCit] + PPG 400
21% IL

25% PPG
2.05 67 226.8 698.4

[Ch][Bit] + PPG 400
12% IL

35% PPG
-- -- ND 5.06

ND: laccase activity not detected; SP: small phase – laccase activity not measured

The results summarized in Table 3 allow to analyse the impact of ILs on the laccase 

partitioning in IL-based ABS and its activity. No laccase activity was detected for the top and 

bottom phases in the ABS composed of [C4mim]Cl, [N4444]Br, [P4444]Cl, [P4444]Br, [C4mpip]Cl 

and [C4mpy]Cl. In addition, laccase activity is very low in the ABS composed of [C4mim]Br, 

[N3333]Br, [Ch]Cl, [Ch][Gly], [Ch][Bit] and [C4mpyr]Cl. Since ABS composed of these ILs were 

not able to maintain laccase activity, probably due to their interference with the copper-active site 

of the enzyme [59], they appear to be not-suitable for the design of purification processes for this 

high-value biomolecule, and thus these ABS were discarded for further studies. The inhibition of 

the laccase activity in presence of some imidazolium-based ILs was previously reported by us [60]. 

On the other hand, [N2222]Br, [Ch][Ac], [Ch][DHCit] and [Ch][DHP] are the most effective ILs 

concerning both laccase extraction and activity preservation, meaning that quaternary alkyl 

ammoniums, with short alkyl side chains, are beneficial to deal with the laccase oxidative enzyme. 

These ILs were then selected for further studies of laccase extraction and activity.

3.1.1 Effect of mixture composition on laccase partition/activity in IL-based ABS

The partition and activity of an enzyme in an ABS depends on the properties, composition 

and volumetric ratio of both top and bottom phases. ABS mixtures of different compositions were 

evaluated for the systems previously selected: [N2222]Br + C6H5K3O7/C6H8O7 + H2O; [Ch][Ac] + 

PPG 400 + H2O; [Ch][DHCit] + PPG 400 + H2O and [Ch][DHP] + PPG 400 + H2O. Laccase 

partition and activity results are presented in Table 4.

Table 4 – Results for active laccase partition (Kact), extraction efficiency (EE%), and laccase 

activity in the top and bottom phases using different mixture compositions of each IL-based ABS. 

ABS
Mixture 

composition 
(wt%)

TLL Kact EE (%)

Laccase activity  

(U·L-1)

top phase

Laccase activity  

(U·L-1)

bottom phase



31% IL
20% salt 55 0.69 73 484 702[N2222]Br

+
C6H5K3O7/C6H8O7 24% IL

26% salt 55 0.83 31 558 672

12% IL
20% PPG 44 -- -- SP 470

9% IL
35% PPG 44 -- 100 ND 708

[Ch][Ac]
+

PPG 400

6% IL
41% PPG 44 -- 100 ND 326

15% IL
15% PPG 44 -- 100 ND 464

10% IL
30% PPG 44 -- 100 ND 828

[Ch][DHP]
+

PPG 400

7% IL
35% PPG 44 -- 100 ND 804

21% IL
25% PPG 45 -- -- SP 698

15% IL
40% PPG 45 -- 100 ND 1044

[Ch][DHCit]
+

PPG 400

12% IL
48% PPG 45 -- 100 ND 1098

ND: laccase activity not detected; SP: small phase – laccase activity not measured

Considering the complete partition of laccase obtained with cholinium-based ABS, the 

increase of the PPG 400 concentration and decrease of the IL concentration in the initial mixture 

composition was further evaluated, while maintaining the same tie-line length (TLL) and changing 

the volume ratio for all the extractions. It is important to remark that for all ABS evaluated, no 

degradation and precipitation of the enzyme, at the interface or in any phase, was observed. From 

the obtained results, it was found that the cholinium-based ILs present an excellent performance 

concerning the extraction of laccase towards the IL-rich phase, achieving extraction efficiencies 

of 100% for all studied systems in which the volume of the IL-rich phase was sufficient to perform 

the determination of laccase activity. This partitioning behaviour was confirmed by sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE); the protein profile of each 



fraction can be found in the SI, Figure S4. Although some delay on the gel run was found on the 

wells containing IL-rich samples, due to the interference of the ILs (composed of ions) with the 

electric flow of the electrophoresis, it was possible to proper qualitatively identify laccase in each 

sample. Laccase preferentially partitions to the IL-rich bottom phase, with the exception of the 

[N2222]Br-based ABS, where the extraction was not complete and the laccase partitions between 

the two phases. It is important to highlight that the ABS composed of [N2222]Br is formed by an 

IL and C6H5K3O7/C6H8O7 pH 8, and in these IL-salt-systems, the IL-rich phase corresponds to the 

most hydrophobic phase [40], which is the opposite to that occurring in the IL-PPG 400-systems 

in which the phase enriched in IL is the most hydrophilic phase. Thus, these results suggest that 

the hydrophobicity/hydrophilicity of the ABS phases plays a major role in the partition behaviour 

of active laccase, although other specific interactions occurring with the IL chemical structure may 

also play a role [61].

Although the complete extraction of laccase towards the IL-rich phase occurs in systems 

formed by cholinium-based ILs and PPG 400, a strong effect of the IL anion is however observed 

in laccase activity. The results given in Table 4 show that the laccase activity decreases in the 

following order of the cholinium-based anions: [DHCit]->[DHP]->[Ac]-. Furthermore, the results 

obtained for cholinium-based ILs, shown in Table 4, indicate that the modification of the initial 

mixture composition (and consequently the systems’ volume ratio) has a significant influence on 

the laccase activity in the IL-rich phase. In general, the activity of the enzyme decreases as the 

concentration of IL increases in the mixture composition. Thus, laccase activity differences 

obtained for the same IL at different mixture compositions, with a similar TLL and thus similar 

differences in the compositions between the two phases, are essentially related with the phases’ 

volumes and saturation effects that may occur (related with the changes on the volume ratio).

Among the investigated cholinium-based ILs, [Ch][DHCit] is the most effective IL in the 

enzyme activity preservation/enhancement in the IL-rich phase, allowing to infer that also the IL 

chemical structure, and particularly the IL anion, plays an important role in the tailoring of the 

ABS polarity and subsequent partition of laccase. For these reasons, this study suggests that 

[Ch][DHCit]-based ABS is the best option, since it allowed the complete extraction of laccase in 

a single step with an enzyme activity higher than 1000 U·L-1.

3.2 Extraction/activity of laccase in ABS comprising ILs as adjuvants

The formation of ABS using ILs requires large amounts of these chemicals. A more 

economical alternative is the formation of conventional polymer-polymer or polymer-salt ABS 



using ILs as adjuvants, at lower concentrations. This possibility was explored using the best ILs 

identified before. For this purpose, two conventional ABS were selected: a polymer-salt ABS 

(PPG 400 + K2HPO4) and a polymer-polymer ABS (PPG 400 + PEG 400), using ILs as adjuvants 

at 1, 3 and 5 wt%.

The effects of the IL and its concentration upon the binodal curve of PPG 400 + K2HPO4 + 

H2O were evaluated and are presented in SI, Figure S5. In general, the curves show that, for all the 

ILs studied, the IL concentration of 5 wt% increased the biphasic region of the systems, meaning 

that lower amounts of the phase-forming compounds are required to form the ABS. After 

performing the extraction of laccase using these ABS composed of 5 wt% of IL, other percentages 

of adjuvant were further tested, namely 1 and 3 wt%, and for which the binodal curves were also 

determined (SI, Figure S5). The binodal curves using 1 wt% of IL are very  close to those without 

any adjuvant, meaning that at such low concentrations the IL has a negligible effect in ABS 

formation. Higher concentrations are required in order to obtain a more pronounced effect in the 

phase diagrams and respective monophasic/biphasic regimes. In all these systems, the top phase 

corresponds to the PPG 400-rich phase and the bottom phase corresponds to the K2HPO4-rich 

phase.

The influence of ILs as adjuvants at the three previously mentioned concentrations (1, 3 

and 5 wt%) in IL-salt ABS on laccase partition was investigated. For all the conditions tested, 

including for the systems without IL, a preferential partition of laccase to the bottom salt-rich 

phase was found, with its complete extraction achieved in one-step for all cases (EE% = 100%). 

The previous results regarding the ternary systems composed of IL + PPG 400 + H2O show that 

laccase migrates preferentially to the IL-rich phase – the most hydrophilic phase in the system. 

The results for the quaternary systems composed of PPG 400 + K2HPO4 + H2O + IL show the 

same behaviour, with the preferential partition of laccase to the salt-rich phase – the most 

hydrophilic phase in these systems, and in which the IL is retained (the complete partition of the 

IL was determined; the salt-rich phase is completely enriched in IL). A common mixture 

composition was chosen in the biphasic region of these systems: 27 wt% of PPG 400 + 5 wt% of 

K2HPO4 + (1, 3 or 5) wt% IL. Although complete extraction was obtained for all the conditions in 

this study (see SI, Table S8), significant differences were found regarding the laccase activity in 

the salt-rich phase, as depicted in Figure 1. The respective detailed values and pH values of the 

phases are given in the SI, Table S8.



Figure 1 – Relative activities (%) of laccase in the bottom salt-rich phase of the systems composed 

of PPG 400 + K2HPO4 + H2O + 1, 3 or 5 wt% of ILs as adjuvants.

It is clear from Figure 1 that the IL anion plays a critical role in the activity of the enzyme, 

in agreement with the literature [62]. Laccase is more active in systems with the anions [DHCit]− 

and [DHP]−, when compared to the system in which no IL is added, while a decrease in activity is 

found for the IL containing the anion [Ac]−. The systems formed by [Ch][DHCit] and [Ch][DHP] 

as adjuvants provide a 50 % and 40 % increase of activity, whilst for [Ch][Ac] a 20 % decrease in 

activity was observed when compared to the control system (without IL). Overall, the laccase 

activity decreases in the order: [DHCit]− > [DHP]− >> [Ac]−. This trend is in agreement with that 

obtained in ABS formed by the same ILs and PPG 400, meaning that even at lower concentrations 

and in different type of systems the effect of the ILs chemical structure prevails. Furthermore, 

there are no significant differences on the enzyme activity between the three concentrations tested, 

which means that the IL chemical structure appears to be more relevant than the IL amount present 

in the systems.

In the studied polymer-salt quaternary ABS, high activity of laccase after the extraction 

process was attained in the best conditions tested, being even higher to those obtained with the 

respective ternary systems, namely for ABS composed of water, PPG 400 and [Ch][DHCit] or 

[Ch][DHP]. This is quite relevant since there is the possibility of achieving excellent results 

concerning both the extraction and activity of laccase using lower concentrations of IL. 



As a last approach, ILs were also tested as adjuvants in ABS composed of two different water-

soluble polymers for the partition and activity of laccase. It has been shown that polymer-polymer 

ABS can be easily formed depending on the type of polymers combined [36]. The polymers PEG 

400 and PPG 400 were chosen since both are water soluble, nontoxic (considered as safe) [63], 

and have been approved for human injections and oral application, being widely applied by the 

chemical, food and pharmaceutical industries [64]. In order to evaluate the effect of ILs as 

adjuvants in this type of polymer-polymer-based ABS, the ILs previously selected – [Ch][Ac], 

[Ch][DHP] and [Ch][DHCit] – were studied at the same concentrations (1, 3 and 5 wt%). The 

experimental phase diagrams were obtained, and the schematic representation of the binodal 

curves are shown in the SI, Figure S6. As observed before with ABS formed by polymers and 

salts, it was found that by using ILs as adjuvants (1, 3 and 5 wt%) in polymer-polymer systems it 

is possible to lower the amounts of phase-forming compounds required to form the ABS. In all 

these systems, the top phase corresponds to the PPG-400-rich phase and the bottom phase 

corresponds to the PEG-400-rich phase.

After the characterization of the phase diagrams, the impact of the cholinium-based IL as 

adjuvants in each PPG 400 + PEG 400 ABS was studied in the laccase partition and activity. 

According to the gathered results, laccase completely partitions to the bottom PEG-400-rich phase, 

achieving an extraction efficiency of 100% for all the conditions tested without using IL, and also 

with the three ILs at the three different concentrations. For this type of systems and for all the 

studied concentrations of IL, the complete partition of the IL to the bottom PEG-rich phase was 

observed. These results allow to corroborate the idea that ILs and laccase present a  higher affinity 

for more hydrophilic phases, being the phosphate-rich phase in the systems formed by polymers 

and salts and the PEG-400-rich phase in the systems formed by two polymers.

Although the complete extraction was obtained for all the conditions under study (see SI, 

Table S9), significant differences were found regarding the laccase activity in the various systems, 

as depicted in Figure 2. The detailed values and pH values of the coexisting phases are presented 

in the SI, Table S9. 



Figure 2 – Relative activities (%) of laccase in the PEG-400-rich phase of the systems composed 

of PPG 400 + PEG 400 + H2O + (1, 3 or 5 wt%) ILs. 

For all the conditions tested, the enzyme activity increases in the bottom PEG-rich phase when 

compared with the control system (without IL), except for the system composed of 1 wt% 

[Ch][DHP] where no signficant differences are seen. The obtained results also show that the 

laccase activity decreases in polymer-polymer ABS, since higher values were obtained using the 

system composed of PPG 400 + K2HPO4 + ILs as adjuvants. It is interesting to notice that the 

obtained laccase activity results and partitioning among the ABS phases reinforce the high 

hydrophilic nature of the enzyme: the enzyme partitions, once again, to the most hydrophilic phase 

in polymer-polymer systems.

Comparing the different adjuvants used, [Ch][DHCit] displays the best capacity to improve 

the laccase activity, as previously observed for polymer-salt systems. Once again it is proved that 

the IL chemical structure plays a significant role. This trend is in close agreement with our previous 

work on the finding of alternative solvents to improve the laccase activity, in which eutectic 

mixtures formed by [Ch][DHCit] and polyols were found as the most promising [65]. Overall, 

chemical structures with a higher number of hydroxyl groups are beneficial to improve the laccase 

activity [65], which is the case of [Ch][DHCit] amongst the several cholinium-based ILs 

investigated. 



Overall, the obtained results allow to conclude that laccase preferentially partitions to the most 

hydrophilic phase in systems formed by ILs and polymers or salts, both used as adjuvants or as 

phase-forming components, and particularly to the phase in which the IL is enriched. Furthermore, 

the IL chemical structure of the IL has a significant impact in the enzyme activity, where ILs with 

a higher number of hydroxyl groups appear as promising to improve the laccase activity. In this 

sense, evidences were gathered that could be useful to improve the extraction efficiency of 

enzymes downstream processing, and that may take advantage of the designer solvent ability of 

ILs to selectively extract laccase from complex fermentation broths.

4 Conclusions

In this work, we studied different types of ABS comprising ILs to extract and improve the 

activity of laccase aiming at gather evidences that could allow the design of effective downstream 

processes. Three types of IL-based ABS have been evaluated: ternary systems composed of IL + 

(polymer or salt) + water and quaternary systems composed of (polymer + salt + water + ILs as 

adjuvants) and (polymer + polymer + water + ILs as adjuvants). From the wide range of ILs 

evaluated, cholinium-based ILs were identified as the most promising candidates concerning the 

development of an effective extraction process for laccase, providing also high activity values. 

Several evidences support a clear preference of laccase to the most hydrophilic phase of the ABS, 

independently of the type of system investigated, which is also the phase in which the IL is 

enriched. Both ternary and quaternary IL-based ABS showed promising results; however, ABS 

composed of polymers, salts and ILs as adjuvants should be highlighted as they provided the 

complete extraction of laccase (extraction efficiency = 100%) in a single-step, with an 

improvement on its activity to values higher than 150%. Furthermore, the use of ILs as adjuvants 

presents the advantage of requiring lower amounts of the ABS phase-forming compounds, 

confirmed by the shift in the respective binodal curves of the phase diagrams, as well as a small 

concentration of IL, thus contributing to decrease the costs associated with the process. 

[Ch][DHCit], the cholinium-based IL with more hydroxyl groups in its chemical structure, was 

identified as the most promising IL studied, corroborating the idea that the chemical structure of 

the IL plays a significant role in the enzymes partitioning and activity in ABS, and as such giving 

insights on the best strategy to develop effective downstream processes for laccase.



Acknowledgements

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, 

UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the FCT/MEC and 

when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. This work 

was also financially supported by the project "IL2BioPro” (PTDC/BII-BBF/030840/2017), funded 

by FEDER, through COMPETE2020 - Programa Operacional Competitividade e 

Internacionalização (POCI), and by national funds (OE), through FCT/MCTES. The NMR 

spectrometers are part of the National NMR Network (PTNMR) and are partially supported by 

Infrastructure Project Nº 022161 (co-financed by FEDER through COMPETE 2020, POCI and 

PORL and FCT through PIDDAC). E.V. Capela and A.P.M. Tavares acknowledges FCT for the 

PhD grant SFRH/BD/126202/2016 and for the research contract and exploratory project 

IF/01634/2015, respectively. A.P.M. Tavares also acknowledges the Short Term Scientific 

Mission grant (ECOST-STSM-CM1206-110116-068796) and financial support from COST-IL 

action. 

References

[1] J.-M. Choi, S.-S. Han, H.-S. Kim, Industrial applications of enzyme biocatalysis: current status 
and future aspects, Biotechnology advances, 33 (2015) 1443-1454.

[2] M. Yadav, H. Yadav, Applications of ligninolytic enzymes to pollutants, wastewater, dyes, 
soil, coal, paper and polymers, Environmental chemistry letters, 13 (2015) 309-318.

[3] G. Singh, K. Kaur, S. Puri, P. Sharma, Critical factors affecting laccase-mediated biobleaching 
of pulp in paper industry, Applied microbiology and biotechnology, 99 (2015) 155-164.

[4] A.P.M. Tavares, J.A. Gamelas, A.R. Gaspar, D.V. Evtuguin, A.M. Xavier, A novel approach 
for the oxidative catalysis employing polyoxometalate–laccase system: application to the oxygen 
bleaching of kraft pulp, Catalysis communications, 5 (2004) 485-489.

[5] A.P.M. Tavares, R.O. Cristóvão, J.A. Gamelas, J.M. Loureiro, R.A. Boaventura, E.A. Macedo, 
Sequential decolourization of reactive textile dyes by laccase mediator system, Journal of chemical 
technology and biotechnology, 84 (2009) 442-446.

[6] A.P.M. Tavares, R.O. Cristóvão, J.M. Loureiro, R.A. Boaventura, E.A. Macedo, Optimisation 
of reactive textile dyes degradation by laccase–mediator system, Journal of chemical technology 
and biotechnology, 83 (2008) 1609-1615.

[7] R.M. Bento, M.R. Almeida, P. Bharmoria, M.G. Freire, A.P.M. Tavares, Improvements in the 
enzymatic degradation of textile dyes using ionic-liquid-based surfactants, Separation and 
purification technology, 235 (2020) 116191.



[8] D.E. Dodor, H.-M. Hwang, S.I. Ekunwe, Oxidation of anthracene and benzo[a]pyrene by 
immobilized laccase from Trametes versicolor, Enzyme and microbial technology, 35 (2004) 210-
217.

[9] A.D. Moreno, D. Ibarra, J.L. Fernández, M. Ballesteros, Different laccase detoxification 
strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast 
Kluyveromyces marxianus CECT 10875, Bioresource technology, 106 (2012) 101-109.

[10] M.M. Rodríguez-Delgado, G.S. Alemán-Nava, J.M. Rodríguez-Delgado, G. Dieck-Assad, 
S.O. Martínez-Chapa, D. Barceló, R. Parra, Laccase-based biosensors for detection of phenolic 
compounds, TrAC Trends in analytical chemistry, 74 (2015) 21-45.

[11] S. Nicotra, M.R. Cramarossa, A. Mucci, U.M. Pagnoni, S. Riva, L. Forti, Biotransformation 
of resveratrol: synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophtora 
thermophyla and from Trametes pubescens, Tetrahedron, 60 (2004) 595-600.

[12] M. Mogharabi, M.A. Faramarzi, Laccase and laccase‐mediated systems in the synthesis of 
organic compounds, Advanced synthesis & catalysis, 356 (2014) 897-927.

[13] J. Osiadacz, A.J. Al-Adhami, D. Bajraszewska, P. Fischer, W. Peczyñska-Czoch, On the use 
of Trametes versicolor laccase for the conversion of 4-methyl-3-hydroxyanthranilic acid to 
actinocin chromophore, Journal of biotechnology, 72 (1999) 141-149.

[14] A. Kunamneni, S. Camarero, C. García-Burgos, F.J. Plou, A. Ballesteros, M. Alcalde, 
Engineering and applications of fungal laccases for organic synthesis, Microbial cell factories, 7 
(2008) 32.

[15] P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle, G. Sannia, Laccases: a never-
ending story, Cellular and molecular life sciences, 67 (2010) 369-385.

[16] L. Arregui, M. Ayala, X. Gómez-Gil, G. Gutiérrez-Soto, C.E. Hernández-Luna, M.H. de los 
Santos, L. Levin, A. Rojo-Domínguez, D. Romero-Martínez, M.C. Saparrat, Laccases: structure, 
function, and potential application in water bioremediation, Microbial cell factories, 18 (2019) 
200.

[17] A.D. Moreno, D. Ibarra, M.E. Eugenio, E. Tomás‐Pejó, Laccases as versatile enzymes: from 
industrial uses to novel applications, Journal of chemical technology & biotechnology, 95 (2020) 
481-494.

[18] R. Saleem, M. Khurshid, S. Ahmed, Laccases, manganese peroxidases and xylanases used 
for the bio-bleaching of paper pulp: an environmental friendly approach, Protein and peptide 
letters, 25 (2018) 180-186.

[19] V.E. Manhivi, E.O. Amonsou, T. Kudanga, Laccase-mediated crosslinking of gluten-free 
amadumbe flour improves rheological properties, Food chemistry, 264 (2018) 157-163.

[20] J. Su, J. Noro, J. Fu, Q. Wang, C. Silva, A. Cavaco-Paulo, Coloured and low conductive 
fabrics by in situ laccase-catalysed polymerization, Process biochemistry, 77 (2019) 77-84.

[21] F. Reda, R. El-Mekkawy, N. Hassan, Detoxification and bioremediation of sulfa drugs and 
synthetic dyes by Streptomyces mutabilis A17 laccase produced in solid state fermentation, 
Journal of pure and applied microbiology, 13 (2019) 85-96.



[22] J.H. Coelho, A.P. Eisele, C.F. Valezi, G.J. Mattos, J.G. Schirmann, R.F. Dekker, A.M. 
Barbosa-Dekker, E.R. Sartori, Exploring the exocellular fungal biopolymer botryosphaeran for 
laccase-biosensor architecture and application to determine dopamine and spironolactone, Talanta, 
204 (2019) 475-483.

[23] S. Giacobbe, A. Piscitelli, F. Raganati, V. Lettera, G. Sannia, A. Marzocchella, C. Pezzella, 
Butanol production from laccase-pretreated brewer’s spent grain, Biotechnology for biofuels, 12 
(2019) 47.

[24] C. Pezzella, L. Guarino, A. Piscitelli, How to enjoy laccases, Cellular and molecular life 
sciences, 72 (2015) 923-940.

[25] A. Kunamneni, F.J. Plou, A. Ballesteros, M. Alcalde, Laccases and their applications: a patent 
review, Recent patents on biotechnology, 2 (2008) 10-24.

[26] A. Antecka, M. Blatkiewicz, T. Boruta, A. Górak, S. Ledakowicz, Comparison of downstream 
processing methods in purification of highly active laccase, Bioprocess and biosystems 
engineering, 42 (2019) 1635-1645.

[27] M.K. Potdar, G.F. Kelso, L. Schwarz, C. Zhang, M.T. Hearn, Recent developments in 
chemical synthesis with biocatalysts in ionic liquids, Molecules, 20 (2015) 16788-16816.

[28] X. Chen, J. Liu, J. Wang, Ionic liquids in the assay of proteins, Analytical methods, 2 (2010) 
1222-1226.

[29] M.G. Freire, A.F.M. Claudio, J.M. Araujo, J.A.P. Coutinho, I.M. Marrucho, J.N.C. Lopes, 
L.P.N. Rebelo, Aqueous biphasic systems: a boost brought about by using ionic liquids, Chemical 
society reviews, 41 (2012) 4966-4995.

[30] J.F.B. Pereira, S.P.M. Ventura, F.A. e Silva, S. Shahriari, M.G. Freire, J.A.P. Coutinho, 
Aqueous biphasic systems composed of ionic liquids and polymers: a platform for the purification 
of biomolecules, Separation and purification technology, 113 (2013) 83-89.

[31] E.V. Capela, M.V. Quental, P. Domingues, J.A.P. Coutinho, M.G. Freire, Effective separation 
of aromatic and aliphatic amino acid mixtures using ionic-liquid-based aqueous biphasic systems, 
Green chemistry, 19 (2017) 1850-1854.

[32] S. Galai, A. de los Rios, F. Hernández-Fernández, S.H. Kacem, F. Tomas-Alonso, Over-
activity and stability of laccase using ionic liquids: screening and application in dye decolorization, 
RSC Advances, 5 (2015) 16173-16189.

[33] A. Domínguez, O. Rodríguez, A.P.M. Tavares, E.A. Macedo, M.A. Longo, M.Á. Sanromán, 
Studies of laccase from Trametes versicolor in aqueous solutions of several methylimidazolium 
ionic liquids, Bioresource technology, 102 (2011) 7494-7499.

[34] P.-Å. Albertsson, Partition of proteins in liquid polymer–polymer two-phase systems, Nature, 
182 (1958) 709-711.

[35] K.E. Gutowski, G.A. Broker, H.D. Willauer, J.G. Huddleston, R.P. Swatloski, J.D. Holbrey, 
R.D. Rogers, Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of 
water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations, 
Journal of the american chemical society, 125 (2003) 6632-6633.



[36] A.L. Grilo, M.R. Aires-Barros, A.M. Azevedo, Partitioning in aqueous two-phase systems: 
fundamentals, applications and trends, Separation & purification reviews, 45 (2016) 68-80.

[37] M. Iqbal, Y. Tao, S. Xie, Y. Zhu, D. Chen, X. Wang, L. Huang, D. Peng, A. Sattar, M.A.B. 
Shabbir, Aqueous two-phase system (ATPS): an overview and advances in its applications, 
Biological procedures online, 18 (2016) 18.

[38] K.S. Nascimento, P. Rosa, K. Nascimento, B. Cavada, A. Azevedo, M. Aires-Barros, 
Partitioning and recovery of Canavalia brasiliensis lectin by aqueous two-phase systems using 
design of experiments methodology, Separation and purification technology, 75 (2010) 48-54.

[39] J.F.B. Pereira, L.P.N. Rebelo, R.D. Rogers, J.A.P. Coutinho, M.G. Freire, Combining ionic 
liquids and polyethylene glycols to boost the hydrophobic–hydrophilic range of aqueous biphasic 
systems, Physical chemistry chemical physics, 15 (2013) 19580-19583.

[40] M.V. Quental, M. Caban, M.M. Pereira, P. Stepnowski, J.A.P. Coutinho, M.G. Freire, 
Enhanced extraction of proteins using cholinium‐based ionic liquids as phase‐forming components 
of aqueous biphasic systems, Biotechnology journal, 10 (2015) 1457-1466.

[41] Y. Pei, J. Wang, K. Wu, X. Xuan, X. Lu, Ionic liquid-based aqueous two-phase extraction of 
selected proteins, Separation and purification technology, 64 (2009) 288-295.

[42] F. Deive, A. Rodriguez, A. Pereiro, J. Araújo, M. Longo, M. Coelho, J.C. Lopes, J. Esperança, 
L. Rebelo, I. Marrucho, Ionic liquid-based aqueous biphasic system for lipase extraction, Green 
chemistry, 13 (2011) 390-396.

[43] M. Taha, M.V. Quental, E.V. Capela, M.G. Freire, S.P.M. Ventura, J.A.P. Coutinho, Good's 
buffer ionic liquids as relevant phase‐forming components of self‐buffered aqueous biphasic 
systems, Journal of chemical technology and biotechnology, 92 (2017) 2287-2299.

[44] E.V. Capela, A.E. Santiago, A.F.C.S. Rufino, A.P.M. Tavares, M.M. Pereira, A. Mohamadou, 
M.R. Aires-Barros, J.A.P. Coutinho, A.M. Azevedo, M.G. Freire, Sustainable strategies based on 
glycine-betaine analogues ionic liquids for the recovery of monoclonal antibodies from cell culture 
supernatants, Green chemistry, 21 (2019) 5671-5682.

[45] A.P.M. Tavares, O. Rodriguez, E.A. Macedo, Peroxidase biocatalysis in water-soluble ionic 
liquids: activity, kinetic and thermal stability, Biocatalysis and biotransformation, 30 (2012) 417-
425.

[46] A.P.M. Tavares, O. Rodriguez, E.A. Macedo, Ionic liquids as alternative co‐solvents for 
laccase: Study of enzyme activity and stability, Biotechnology and bioengineering, 101 (2008) 
201-207.

[47] S.C. Silvério, O. Rodríguez, A.P.M. Tavares, J.A. Teixeira, E. Macedo, Laccase recovery 
with aqueous two-phase systems: enzyme partitioning and stability, Journal of molecular catalysis 
B: enzymatic, 87 (2013) 37-43.

[48] N. Muhammad, M.I. Hossain, Z. Man, M. El-Harbawi, M.A. Bustam, Y.A. Noaman, N.B. 
Mohamed Alitheen, M.K. Ng, G. Hefter, C.-Y. Yin, Synthesis and physical properties of choline 
carboxylate ionic liquids, Journal of chemical & engineering data, 57 (2012) 2191-2196.

[49] C.M.S.S. Neves, S.P.M. Ventura, M.G. Freire, I.M. Marrucho, J.A.P. Coutinho, Evaluation 
of cation influence on the formation and extraction capability of ionic-liquid-based aqueous 
biphasic systems, The journal of physical chemistry B, 113 (2009) 5194-5199.



[50] J.C. Merchuk, B.A. Andrews, J.A. Asenjo, Aqueous two-phase systems for protein 
separation: studies on phase inversion, Journal of chromatography B: biomedical sciences and 
applications, 711 (1998) 285-293.

[51] H. Passos, A.R. Ferreira, A.F.M. Cláudio, J.A.P. Coutinho, M.G. Freire, Characterization of 
aqueous biphasic systems composed of ionic liquids and a citrate-based biodegradable salt, 
Biochemical engineering journal, 67 (2012) 68-76.

[52] T.E. Sintra, R. Cruz, S.P.M. Ventura, J.A.P. Coutinho, Phase diagrams of ionic liquids-based 
aqueous biphasic systems as a platform for extraction processes, The journal of chemical 
thermodynamics, 77 (2014) 206-213.

[53] P. Ander, K. Messner, Oxidation of 1-hydroxybenzotriazole by laccase and lignin peroxidase, 
Biotechnology techniques, 12 (1998) 191-195.

[54] S.P.M. Ventura, F.A. e Silva, M.V. Quental, D. Mondal, M.G. Freire, J.A.P. Coutinho, Ionic-
liquid-mediated extraction and separation processes for bioactive compounds: past, present, and 
future trends, Chemical reviews, 117 (2017) 6984-7052.

[55] U. Kragl, M. Eckstein, N. Kaftzik, Enzyme catalysis in ionic liquids, Current opinion in 
biotechnology, 13 (2002) 565-571.

[56] S.-F. Wang, T. Chen, Z.-L. Zhang, D.-W. Pang, Activity and stability of horseradish 
peroxidase in hydrophilic room temperature ionic liquid and its application in non-aqueous 
biosensing, Electrochemistry communications, 9 (2007) 1337-1342.

[57] H. Zhao, Methods for stabilizing and activating enzymes in ionic liquids — a review, Journal 
of chemical technology and biotechnology, 85 (2010) 891-907.

[58] A.P.M. Tavares, M. Coelho, J.A.P. Coutinho, A. Xavier, Laccase improvement in submerged 
cultivation: induced production and kinetic modelling, Journal of chemical technology & 
biotechnology: international research in process, Environmental & clean technology, 80 (2005) 
669-676.

[59] H. Liu, L. Zhu, M. Bocola, N. Chen, A.C. Spiess, U. Schwaneberg, Directed laccase evolution 
for improved ionic liquid resistance, Green chemistry, 15 (2013) 1348-1355.

[60] O. Rodríguez, R.O. Cristóvão, A.P.M. Tavares, E.A. Macedo, Study of the alkyl chain length 
on laccase stability and enzymatic kinetic with imidazolium ionic liquids, Applied biochemistry 
and biotechnology, 164 (2011) 524-533.

[61] A. Benedetto, P. Ballone, Room temperature ionic liquids meet biomolecules: a microscopic 
view of structure and dynamics, ACS sustainable chemistry & engineering, 4 (2015) 392-412.

[62] J.L. Kaar, A.M. Jesionowski, J.A. Berberich, R. Moulton, A.J. Russell, Impact of ionic liquid 
physical properties on lipase activity and stability, Journal of the american chemical society, 125 
(2003) 4125-4131.

[63] R. Sadeghi, M. Maali, Toward an understanding of aqueous biphasic formation in polymer–
polymer aqueous systems, Polymer, 83 (2016) 1-11.

[64] H.J. Moon, M.H. Park, M.K. Joo, B. Jeong, Temperature-responsive compounds as in situ 
gelling biomedical materials, Chemical society reviews, 41 (2012) 4860-4883.



[65] M.L. Toledo, M.M. Pereira, M.G. Freire, J.P. Silva, J.A.P. Coutinho, A.P.M. Tavares, 
Laccase activation in deep eutectic solvents, ACS sustainable chemistry & engineering, 7 (2019) 
11806-11814.



Highlights:

 Several ionic liquids were investigated in aqueous biphasic systems to extract laccase and 
improve its activity.

 Aqueous biphasic systems containing [Ch][DHCit] leads to the best results.
 The complete extraction of laccase was achieved in a single step.
 The activity of the biocatalyst was enhanced by 50%.
 The number of hydroxyl groups in the IL plays an important role in the activity 

improvement.
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