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resumo 

 

 

Quer deliberadamente ou acidentalmente, os seres humanos têm vindo a 
introduzir espécies exóticas em novos habitats a um ritmo alarmante, sendo que 
as alterações climáticas que se têm vindo a sentir, por vezes promovem 
sinergeticamente este fenómeno. A avaliação de risco de espécies exóticas é 
essencial para apoiar a prevenção de novas introduções no caso de espécies 
que potencialmente representam algum impacto negativo nos vários 
componentes dos ecossistemas. Ao longo dos últimos 20 anos, a modelação 
estatística tem vindo a ser reconhecida como uma ferramenta útil na previsão 
dos riscos de invasão especificamente no caso de plantas exóticas. Nesta 
revisão sistemática, analisou-se a aplicação de modelos estatísticos na 
avaliação do risco de espécies de plantas exóticas, com a finalidade de avaliar 
como a aplicação destas ferramentas evoluiu ao longo do tempo, bem como 
identificar as abordagens utilizadas e finalmente as atuais limitações inerentes 
a estes estudos. Os resultados apoiam que os modelos estáticos e 
espacialmente explícitos de aprendizagem automática que preveem a 
distribuição potencial de espécies são as técnicas mais comummente utilizadas, 
embora algumas limitações pertinentes relacionadas com esses modelos 
tenham sido também identificadas. Concluiu-se que uma formalização dos 
protocolos de avaliação de risco deverá incluir de forma estandardizada a 
utilização de modelos de distribuição de espécies, tanto as técnicas como as 
abordagens deverão ser cientificamente comprovadas de forma a maximizar a 
precisão e diminuir os erros dos resultados.  
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abstract 

 
Either deliberately or by accident, humans have been introducing exotic species 
into novel habitats at an alarming rate and the ongoing climate change can 
synergistically promote this phenomenon, at times. Risk assessment of exotic 
species is essential to support the prevention of new introductions in the case of 
species that represent negative impacts on the various components of 
ecosystems. Over the last 20 years, statistical modelling has been recognized 
as a useful tool in predicting invasion risks specifically for exotic plants. In this 
systematic review, the application of statistical models to the risk assessment of 
alien plant species was analyzed to assess how the application of these tools 
has evolved over time, as well as to identify the approaches used and finally the 
current limitations inherent to these studies. The results support that static and 
spatially explicit machine learning models that predict potential species 
distribution are the most commonly used techniques, although some pertinent 
limitations related to these models have also been identified. It has been 
concluded that a formalization of risk assessment protocols should include the 
standardized use of species distribution models, and both techniques and 
approaches should be scientifically proven to maximize accuracy and reduce 
errors in results. 
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Introduction 

Biological Invasions 

Since the beginnings of invasion ecology, there have always been ambiguities as to 

what exactly defines and characterizes the phenomenon of a “biological invasion”. Valéry 

et al. (2008) argue that the reason for that is the researchers’ disagreement as to what 

should be the main criterion applied: either biogeographic barriers or the impacts in the 

ecosystems and society. In trying to reach a consensus, and after considering various 

approaches, Valéry et al. (2008) proposed a general definition: “A biological invasion 

consists of a species’ acquiring a competitive advantage following the disappearance of 

natural obstacles to its proliferation, which allows it to spread rapidly and to conquer novel 

areas within recipient ecosystems in which it becomes a dominant population”.  

The terminologies employed to define alien and invasive species also suffer from 

these uncertainties; Richardson et al. (2000) attribute this phenomenon to two main 

reasons, the first being the translation of terminology between languages (mainly from 

European languages to English), and the other being the scale of this thematic having grown 

so much since terms like “naturalization” were introduced.  

Recently, Blackburn et al. (2011) proposed a unified framework for biological 

invasions that acknowledges the need to distinguish species terminology and invasion 

stage taking into account both the biogeographical barriers to overcome by the species, 

and the proper management steps to deal with their impacts (Fig. 1). Not all alien species 

that manage to establish themselves outside their native range become invasive and 

detrimental to local biodiversity, which is why it’s important to have a clear distinction 

between “naturalized” and “invasive”, since the latter poses overall greater risks. 

Nonetheless, this framework doesn’t include the species impacts on the ecosystems, which 

is fundamental for the definition of “invasive species” in various international 

organizations, like the Convention on Biological Diversity (CBD) and the Intergovernmental 

Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). 
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The propagule pressure hypothesis is frequently described as the main driver of 

biological invasions. It’s defined by (Lockwood et al., 2005) as “…a composite measure of 

the number of individuals released into a region to which they are not native.”, and the 

hypothesis states that as the frequency of releases (introduction events) and number of 

individuals (propagules) increase, the propagule pressure also increases, leading to a higher 

probability of invasion occurrence. It is well known that globalization plays a major role in 

the increase of alien species introductions: the advances in technology allow for more, 

faster international trade routes and travels, which mean more movements of people and 

goods, which in turn, increase the possibilities of introducing alien species in nonnative 

ranges (Ehrenfeld, 2005; Meyerson and Mooney, 2007). 

 

 

Figure 1 – The proposed unified framework built by Blackburn et al. (2011), which emphasizes the 

distinction between species terminology, stage of invasion, the barriers a species must overcome, 

and the type of management most appropriate for each stage/species. The unfilled arrows represent 

the species progress along the process, and the alphanumeric codes represent species and population 

categories within the invasion stages. Source: Blackburn et al. (2011). 
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Plant Invasions 

Either deliberately or by accident, humans have been introducing plant species into 

new ranges at an alarming rate (Mack et al., 2000). As a result, roughly 3.9% of the existing 

vascular plant species have established themselves somewhere in the globe, outside their 

native range (van Kleunen et al., 2015). Ornamental horticulture trade is known to be the 

main cause of alien plant naturalization and invasion in the world, and coincidentally, some 

of the species characteristics most desirable in the market (like fast vegetative growth and 

abundant seedling emergence), are the same ones that promote their invasive behavior 

(van Kleunen et al., 2018). Specific anthropogenic aspects can be factored in the propagule 

pressure hypothesis, such as tourism, human population density and vehicle traffic (von 

der Lippe and Kowarik, 2007; Thuiller et al., 2005; Spear et al., 2013), which match the types 

of land cover known to be more prone to plant invasions, like agricultural, urban, and 

industrial land covers (Chytrý et al., 2009). 

The human population benefits, directly or indirectly, from the good functioning of 

the ecosystems; these benefits are more recently known as “Nature Contributions to 

People (NCP)” (ecosystem services), and they can range from simple concepts like air 

quality, food production, and water supply, to genetic resources and climate regulation 

(Diaz et al., 2018). Some impacts of plant invasions in these NCP include local/regional 

changes in the cycling of soil nutrients, fluctuations in fire regimes, decreased water quality 

and quantity, and losses in recreation and tourism revenues (Chamier et al., 2012; 

Ehrenfeld, 2003; Eiswerth et al., 2017; Zavaleta, 2000). But even though these impacts are 

heterogeneous and dependent on many variables, the loss of native biodiversity in invaded 

areas is on average, a guaranteed consequence (Vilà et al., 2011).  

It is estimated that the environmental transformations that come along with 

climate change will increase the invasiveness of some alien plant species; elevated CO2 

levels impact the growth of native and alien species alike, but if the alien species possess 

novel traits, that might give them an advantage to further their spread. Other indirect 

consequences related with the rise of temperatures and resource availability might cause 
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a ripple effect in nutrient cycling and water availability, aggravating habitat disturbances 

and affecting the ability of some native species to persist in those habitats (Weltzin et al., 

2003). These disturbances, if incorrectly timed (e.g. fluctuating fire regimes) can represent 

opportunities for invasive species to settle in, due to niche availability (Thuiller et al., 2007).  

 

Risk Assessment and Modelling Tools 

In 2014, the European Commission approved Regulation 1143/2014  on the 

prevention and management of the introduction and spread of invasive alien species, 

which lists a set of measures to be considered across the European Union, in order to 

enforce the prevention, detection, eradication, and management of the species of Union 

concern. Risk assessment is one of the measures expected to be carried out when deciding 

upon the inclusion of a certain species on the list of invasive alien species of Union concern. 

In light of this Regulation, Portugal has approved Decree-Law nº 92/2019 which establishes 

a legal scheme for the control of introduction of alien species, with the creation of a 

national list of species of which custody, production, or cultivation is forbidden. Prevention 

measures are the most cost-effective to tackle this threat in long term, so it makes sense 

to take precautionary action and asses the risks of establishment/invasion, if governments 

want to avoid wasting huge amounts of money dealing with the spread of an invasive 

species (Keller et al., 2007). Furthermore, very recently, the Intergovernmental Science-

Policy Platform on Biodiversity and Ecosystem Services (IPBES) has launched the first 

intergovernmental global assessment on invasive alien species, covering every aspect of 

this problem, from drivers and effects to management options and policy (Stoett et al., 

2019), which will be especially important to inform the lawmakers of the way forward. 

Kumschick et al. (2013) categorized risk assessment (RA) methods in 3 categories: 

qualitative, semiquantitative, and quantitative, according to the type of approach utilized. 

They figured that most RAs are semiquantitative, because even though the methods are 

naturally quantitative, the measurements are still qualitative. The most common 

approaches relate species geographical occurrences in nature to the characteristics of the 
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environment they currently occupy, using mathematical functions. The species niche is 

modelled according to the landscape characteristics of its current distribution, and then 

projected onto a geographical space, allowing researchers to build predictive maps of 

habitat suitability (Guisan and Zimmermann, 2000). These static models can take a variety 

of forms, in regression analyses (Haeuser et al., 2018), machine learning models (Szymura 

et al., 2018), simpler profiling techniques (Natale et al., 2018) and some authors might 

resort to more than one model in order to compare results (Magarey et al., 2018).  

A more uncommon approach to predict the spread of invasive species is the 

evaluation of population spread and growth over time, which provides a more dynamic 

overview of what to expect (Muthukrishnan et al., 2015). 

Point scoring systems, like the well-known Australian Weed Risk Assessment 

(AWRA), are usually question based assessments that generate a numerical score to 

determine if the species can or cannot be imported into the country (Pheloung et al., 1999). 

However, they require a previous analysis on the species ecology and its undesirable traits. 

For the AWRA, the species are declared as “accepted”, “rejected”, or “pending further 

evaluation”, and it’s proven to be an efficient tool (Gordon et al., 2008). Other similar 

protocols have emerged for other regions in the world; the European and Mediterranean 

Plant Protection Organization (EPPO) Pest Risk Analysis targets Europe and the Northern 

African region and it first assesses if the species can be considered as a pest, then 

proceeding to further evaluate its risk of invasion (Brunel and Petter, 2010); the German-

Austrian Black List Information System (GABLIS) was developed as more of a generic tool 

for not just plant species, however it’s not as prevalent as the other two (Essl et al., 2011). 

It’s up to the researchers to select the most appropriate approach, according to their goals 

and data sets available to them.  

Aims 

Plant invasions show no sign of slowing down; the imminent climate change and 

ever-growing human activity will only accelerate the rate at which they keep happening. 

For that reason, it’s important to improve the procedures that allow to prevent, anticipate 
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and early detect new invasions, evaluating the risk of expansion of plant species. To pursuit 

that main objective, we conducted a systematic review to (1) analyze the extent to which 

statistical models have been used to assess the risks of alien plant invasions, (2) identify its 

trends and patterns in that context, (3) evaluate how the scientific studies have evolved 

over time, (4) identify current limitations, and (5) discuss what might be missing from the 

field, or what it could benefit from in the future. 
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Methodology 

Overview 

The framework used was a standard procedure for literature reviews (Higgins and 

Green, 2011) with the aim to trace patterns of risk assessment in plant invasion modelling 

literature. This framework consists in two main steps: literature search and literature 

review, thoroughly explained in Fig. 2. 

 

elimination of duplicates inclusion/exclusion process 

Literature Review 

Full-text Read 

Categorization and Classification 

 

Literature Search 

Keyword Selection 

Advanced Search at ISI Web of Science and SCOPUS + Basic Search at Google Scholar 

Records Download 

 

A. Species Features 

• Number 

• Environment 

• Constitution 

• Habitat 

• Invasion stage 

B. Model Features 

• Extent 

• Data source 

• Model 

• Spatial explicitness 

• Static/Dynamic 

• Future Projections 

C. Risk Assessment 

Features 

• Type of RA 

• RA Expression 

Figure 2 – Analytical framework built for reviewing the use of statistical modelling tools in the risk 

assessment of alien plant invasions. First, a literature search was conducted in ISI Web of Science and 

SCOPUS, with carefully selected keywords. A third search in Google Scholar was conducted for reliability 

evaluation of the previous searches. After eliminating duplicates and submitting the records to an 

inclusion/exclusion process based on their titles, abstracts and keywords, a final list of records was carried 

to the actual review. Finally, the records were classified according to 3 categories regarding their studied 

species, used model, and risk assessment features. 
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Literature Search 

The literature search begins with selecting the keywords to be utilized in the search 

engines. For this review, the selection process followed the Population-Intervention-

Comparison-Outcome (PICO) strategy, in order to build the broadest set of keywords 

possible. Thus, the specification for this review is Population as “invasive plant”, 

Intervention as “modelling”, and the Outcome as “risk assessment”. 

For the Population aspect of this strategy, the set of keywords applied was one 

previously built by a team of researchers with a different goal in the field of plant invasions 

(Vaz et al., 2018), and then kindly provided to us for this research, as a total of 74 words or 

expressions related to “invasive plant”. Next, for the Intervention as “modelling”, only 3 

keywords were selected using Buchadas et al. (2017) as source. For the Outcome “risk 

assessment” 10 expressions were compiled based on Kumschick et al. (2013), as well as on 

the EU Regulation 1143/2014 on Invasive Alien Species. Hence, a list of the most common 

and unambiguous words or expressions was gathered, with the idea of broadening the 

search as much as possible. That list can be found below in Table 1, exactly as it was used 

onto each search engine’s search boxes.  
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Table 1 – List of keywords selected for the search engines, divided in the 3 categories representing the key 

aspects of this review, as well as their sources. 

Keyword List Source(s) 

"plant invader*" OR "introduced plant*" OR "non-native plant*" OR 

"nonnative plant*" OR "invasive plant*" OR "exotic plant*" OR "alien 

plant*" OR "plant invasion*" OR "nonindigenous plant*" OR "non-

indigenous plant*" OR "allochthonous plant*" OR "tree invader*" OR 

"introduced tree*" OR "non-native tree*" OR "nonnative tree*" OR 

"invasive tree*" OR "exotic tree*" OR "alien tree*" OR "tree 

invasion*" OR "nonindigenous tree*" OR "non-indigenous tree*" OR 

"allochthonous tree*" OR "forest invader*" OR "introduced forest*" 

OR "non-native forest*" OR "nonnative forest*" "invasive forest*" OR 

"exotic forest*" OR "alien forest*" OR "forest invasion*" OR 

"Nonindigenous forest*" OR "non-indigenous forest*" OR 

"allochthonous forest*" OR "introduced vegetation*" OR "non-native 

vegetation*" OR "nonnative vegetation*" OR "invasive vegetation*" 

OR "exotic vegetation*" OR "alien vegetation*" OR "nonindigenous 

vegetation*" OR "non-indigenous vegetation*" OR "allochthonous 

vegetation*" OR "shrub invader*" OR "introduced shrub*" OR "non-

native shrub*" OR "nonnative shrub*" OR "invasive shrub*" OR 

"exotic shrub*" OR "alien shrub*" OR "shrub invasion*" OR 

"nonindigenous shrub*" OR "non-indigenous shrub*" OR 

"allochthonous shrub*" OR "herb invader*" OR "introduced herb*" 

OR "Non-native herb*" OR "nonnative herb*" OR "invasive herb*" OR 

"exotic herb*" OR "alien herb*" OR "herb invasion*" OR 

"nonindigenous herb*" OR "non-indigenous herb*" OR 

"allochthonous herb*" OR "introduced landscape" OR "non-native 

landscape" OR "nonnative landscape" OR "invasive landscape" OR 

"exotic landscape" OR "alien landscape" OR "nonindigenous 

landscape" OR "non-indigenous landscape" OR "allochthonous 

landscape" OR "novel ecosystem*" 

Vaz et al. (2018) 

"risk assessment" OR "invasion risk" OR "risk analys?s" OR "risk 

evaluation" OR "risk of invasion" OR "risk of introduction" OR 

"introduction risk" OR "invasion potential" OR "establishment risk" 

OR "risk of establishment" 

Kumschick et al. (2013), 

EU Regulation 1143/2019 

"model*" OR "simulat*" OR "predict*" Buchadas et al. (2017) 
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The symbols between keywords are search engine operators, which allow for a 

more advanced and specific search, and work like mathematical expressions. A list of every 

operator used and its effects can be found below, in Table 2. 

Table 2 – List of operators used in the list of keywords, designed to allow for a more advanced search in the 

selected search engines, as well as their respective effects within the engine, and some examples. 

Search engine operator Effect Example 

“” (quotation marks) searches records containing the 

exact words 

“nonnative landscape” 

OR searches for records containing 

each word or both 

“nonnative landscape” OR 

“invasive landscape” 

* (asterisk) the search engine fills in after the 

words, meaning it could be anything 

after that specific word 

“introduced herb*” – will also 

search for “introduced herbs” 

? (question mark) searches for words where the 

question mark can be replaced by 

any character 

“risk analys?s” – will search for 

both “analysis” and “analyses” 

 

The time span for the search was from 1900 to 2018, and it was conducted during 

November 2018 at ISI Web of Science (http://webofknowledge.com) and SCOPUS 

(http://scopus.com), where the advanced search feature allows for a multi-topic search, 

and where each group of keywords corresponded to one topic. Utilizing the features 

available in each website, a list of every result in ISI Web of Science and SCOPUS was 

downloaded onto an excel sheet, where duplicates (results that appeared on both engines) 

were eliminated. 

A third search was conducted on Google Scholar to judge the reliability of the 

previous search, using the three main keywords (“invasive plant”, “risk assessment”, and 

“modelling”), but only retrieving the first 50 results, ordered by popularity, to check for any 

article that was missed by the first two engines, which were then added to the list of 

records. 

http://webofknowledge.com/
http://scopus.com/
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Before the literature review, this list of results was subjected to an 

inclusion/exclusion process, where only the title, keywords and abstract of every record 

was examined in order to evaluate which ones should be included in the second step of this 

review. The intent was to include only records that focus in the usage of statistical 

modelling tools to assess the risk of invasion by alien plant species. This way, unsuitable 

records that include some listed keywords but aren’t exactly about the specific field being 

reviewed are also discarded. The full text of the final list of records was downloaded and 

each record was numbered to facilitate the next process. 

 

Literature Review 

To begin the literature review, the next step involved reading the full text of every 

record in the final database and follow a previously built categorization and classification 

protocol. This protocol was divided in 3 groups of features regarding: A – species features, 

B – model features and C – risk assessment features, as detailed below in Table 3: 
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Table 3 – List of categories and classes used in the sorting of each record, divided by their features. Group A 

envelopes the categories regarding the species features. Group B envelopes the categories concerning the 

model features. Group C envelopes de categories relating to the risk assessment accomplished for each 

record. 

 

 

 Category Classes 

G
ro

u
p

 A
 

Nº of species Individual or Multispecies 

Environment Aquatic, Terrestrial, or NA 

Constitution Herbaceous, Shrub, Tree, or Several 

Continent Europe, Asia, South America, North America, Africa, Oceania, 

Antarctica, Global, or NA 

Invaded Habitat Freshwater, Riparian, Urban, others, Several, or NA 

Invasion Stage Introduced, Naturalized, or Invasive 

 

G
ro

u
p

 B
 

Extent Local, Regional, National, Multinational, Continental, or Global 

Data Source Existing Database, Field Data, Expert Data, Literature, or Remote 

Sensing 

Model Regression Analysis, Profile Techniques, Machine Learning, 

Decision Trees, Bayesian Approach, Ensemble Modelling, 

Population Dynamics, or Mechanistical Model 

Spatial Output Spatially Explicit or Not Spatially Explicit 

Temporal Output Static or Dynamic 

 

G
ro

u
p

 C
 

RA Output Potential Distribution, Invasion Risk, Predicted Species Richness, 

Population Dynamics, Point Scoring System, or None 

RA Method Qualitative, Semiquantitative, or Quantitative 

Impacts Environmental, Socio-economic, others 

Affected services Biodiversity, Health, Security, others 
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The number of species is classified as “Individual” when only one species is in focus 

in the study. However, when two or three species are individually modelled in the same 

article, instead of classifying it as “Multispecies”, that record was divided in two or three 

entries, which are then classified as “Individual” and further treated as two or three 

different entries for the rest of the process. This way it’s possible to more thoroughly 

explore relevant records, since it becomes possible to classify different studies within the 

same record. 

The species environment was almost always classified as either aquatic or 

terrestrial, although for the semi-aquatic species they were included in the terrestrial class. 

The NA (Not Applicable) class in this category usually applied to records where whole taxa 

were modelled but it wasn’t possible to determine the environment of every species.  

The species constitution was divided into the 3 usual terminologies: herbs, shrubs, 

and trees. The “Several” option, like in every other class where it applies, is used for 

instances where it’s not possible to distinguish the classes, either because it’s a larger 

number of species to specify, or because a whole taxon is considered. When encountering 

species of cacti, the size of the species determined if it was considered as a shrub or a tree, 

but never as an herb. When encountering a species of algae, they were considered as 

herbaceous. 

The “Several” option was more needed than generally for the invaded habitat 

category, since frequently the modelled area was larger enough to encompass more than 

one type of habitat. 

For the species invasion stage, in some articles, the only terminology used to 

describe the species in question was “nonnative” or “alien”, and in those cases, they were 

simply classified as “Introduced”, since there was no indication of it being already in a later 

stage of invasion. 

The model range is divided by tiers of geographical scales, from “Local” to “Global”, 

since many authors didn’t specify the area extension in distance units.  
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The data source for each of the studies was divided according to the authors’ own 

words on where it came from. “Expert Data” relates to information the authors claimed to 

have obtained from experts in their respective fields, regardless of that same data being 

available through other sources or not. “Existing Database” relates to any kind of database 

on any scale (regional, national, global, etc) where usually one can find occurrences for the 

species in question. 

The modelling technique classifications were grouped partly based on the works of 

Elith et al. (2006). For this review a couple more classifications were added since the variety 

of modelling tools available nowadays is much wider. “Profile Techniques” include systems 

such as BIOCLIM, DOMAIN, CLIMEX and the Mahalanobis Distance. “Regression Analysis” 

mostly comprise diverse forms of linear models like Generalized Linear Model, Generalized 

Linear Mixed Model and Additive Linear Model. “Machine Learning” models include 

Random Forest and Boosted Regression Trees, as well as the more common MaxEnt model. 

“Population Dynamics” was the selected terminology to embody models focused on the 

species populations dynamics, like the use of Integrodifference Equations, a FATE-HD 

model or Recruitment Curves. “Bayesian Approach” includes processes in which a Bayesian 

model or inference was used. Finally, “Ensemble Modelling” consists of instances where 

two or more related types of modelling tools were combined to achieve one final, more 

accurate model.  

After identifying which models are used, they were also classified according to their 

spatial and temporal outputs. Hybrid models, which include both static and dynamic 

components, were included in the “Dynamic” class. 

The Risk Assessment Output classification was split according to the diverse ways in 

which the results were presented in the records. “Potential Distribution” is the broader 

class, which includes potential distribution maps, habitat suitability maps and probabilities 

of occurrence. “Invasion Risk” includes mainly invasion risk maps and tables. “Population 

Dynamics” applies to “Population Dynamics” models where the results frequently show 

population growth and spread. “Predicted Species Richness” is a very specific class that 
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mainly included predicted species richness maps and tables. “Point Scoring System” 

concerns risk assessment processes, like the Australian Weed Risk Assessment System for 

example, as well as other similar methods. 

The RA Method characterization is inspired on the classification of the methods, 

described by Kumschick et al. (2013). “Semiquantitative” risk assessment applies when 

even though the methods used are quantitative, the measures and scales used for the 

assessment are qualitative, and therefore can’t be fully defined as quantitative or 

qualitative.  

The Impacts and Services Affected categories are dependent on the authors own 

concern with detailing those aspects in their works, but the idea was to divide them in the 

basic classes of impacts and their consequences for the environment and the society. 

 

Data Analyses 

Cohen’s Kappa testing 

 After classifying each record in the possible categories, and before proceeding to 

the principal component analysis, the data organized in text was converted into binary 

code. A new excel sheet was created, where instead of corresponding categories and 

classes to each numbered record, there’s only the corresponding classes and Yes (1) or No 

(0) answers for each of the records. For instance, record nº 1 would have a correspondence 

of 1 (Yes) to “Individual” and 0 (No) to “Multispecies”, and so on through the rest of the 

classes. This way the data can be further and thoroughly analyzed in the appropriate 

software.  

Cohen’s Kappa tests were ran for every pair of variables, previously titled classes, in 

IBM SPSS Statistics 24, using the Crosstabs function. These Cohen’s Kappa tests help in 

eliminating redundant information, by identifying which variables are significantly 

associated with each other. So the goal was to determine which of those classes were the 
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most relevant for this review, and therefore select which ones to carry onto the principal 

component analysis.  

A total of 1,032 pairs were evaluated (every class paired with each other), and 

according to the established criteria, a relevant pair of variables would have a Kappa value 

of at least 10%, either positively or negatively correlated (0,1 or -0,1), and a Significance (p 

value) less or equal to 0,05. 

 

Principal Component Analysis 

A Principal Component Analysis (PCA) is a statistical method that allows the user to 

highlight variations and patterns in a dataset comprised of observations whose variables 

might be correlated with each other. It digs out information from the classification matrix 

of the dataset, converting the correlations it finds between variables (or lack of 

correlations) into a two-dimensional space, usually a graph. Variables that are highly 

correlated tend to gather together, forming clusters in the resulting graph. 

For this review, a Cohen’s Kappa test was conducted on the variables available to 

reduce the amount of data in order to produce more accurate results. 
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Results 

Literature Search 

The first literature search, conducted using the ISI Web of Science search engine 

and using the keywords listed in the previous section, produced the results presented 

below (Fig. 3).  With only the keywords related to “Plant Invasions” there were a total of 

16,496 records. With the keywords related to “Plant Invasions” and “Risk Assessment”, 

there were a total of 538 records. Finally, with all three groups of keywords, “Plant 

Invasions”, “Risk Assessment” and “Model”, the number of records was 419, although only 

the first 389 were considered since the review was conducted in November of 2018, while 

these results are updated to July 1st 2019. 

 

Figure 3 – The cumulative number of papers retrieved during the search, per year, from the ISI Web Of Science 

search engine (updated July 1st 2019), on plant invasions, risk assessment within plant invasions, and 

modelling within risk assessment of plant invasions.  
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The second search, using the SCOPUS search engine resulted in 1,223 records. The 

third search, for evaluation purposes at Google Scholar (where only the first 50 records 

were selected) resulted in the addition of 4 records that were not selected in the previous 

search at ISI Web of Science or SCOPUS. 

After the inclusion/exclusion process that involved examining the title, keywords, 

and abstract of every record (for more details on this process refer to the previous section), 

and after removing duplicates (records that were selected on more than one search 

engine), 206 records were held for the next step, as summarized in Table 4: 

Table 4 – Number of records retrieved per search engine and their total. Number of records carried onto the 

literature review, after the inclusion/exclusion process. 

Search Engine Nº of records (3 keywords) 

ISI Web of Science 389 

SCOPUS 1,223 

Google Scholar (in the first 50 results) 4 (“new”) 

Total 1,616 

  

After inclusion/exclusion process and duplicates removal 206 

 

Literature Review 

After reading through the full-text of those 206 records, 59 were excluded as they 

didn’t meet all the inclusion requirements previously established. As a result of the 

categorization and classification process, and how one unique record might translate into 

various entries in the excel sheet where the data was organized, 147 records amounted to 

189 unique entries (or individual studies). A list of those records is provided in Appendix A. 

Group A – Species features 

Regarding the species features (category group A – refer to the previous section for 

more details on categories), the number of species in focus per entry was almost even 

between an “Individual” species and “Multispecies” (Fig. 4). 
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Concerning the species environment, most of the invasive species studied were 

terrestrial species (Fig. 5). 

 

 

 

 For most entries, the species in focus had multiple constitutions, which could not 

be distinguished into only one type. For the entries in which they could, herbaceous species 

and shrubs were more frequent than trees (Fig.6).  

 

 

78% 6% 16%

Terrestrial

Aquatic

NA

Figure 5 – Percentage of entries per Environment class. 

Figure 4 – Percentage of entries per Nº of Species class. 

47% 53%
Single

Multispecies

30% 28% 11% 31%

Herbaceous

Shrub

Tree

Several

Figure 6 – Percentage of entries per Constitution class. 
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When it comes to study region, North America and Europe have the most entries of 

studies completed by region. Out of 189 entries, 21 of them represent global studies and 3 

of them represent studies where location was not applicable (Fig. 7). 

 

 

Concerning the invasion stage of the species in focus, most of them are classified as 

“Invasive” (Fig. 8). 

 

 

There was a great number of possibilities regarding the type of habitat invaded in 

each of the entries, but most of the studies included more than one, therefore “Several” 

was the most common classification (Fig. 9). 

 

 

1%

1%

4% 5% 11% 13% 16% 21% 28%

Antarctica

NA

South America

Asia

Global

Oceania

Africa

Europe

North America

Figure 7 – Percentage of entries per Region class. 

12% 15% 73%

Naturalized

Introduced

Invasive

Figure 8 – Percentage of entries per Invasion Stage class. 
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Group B – Model features 

 

Regarding the model features (category group B – refer to the previous section for 

more details on categories), the most common data source was “Database”, used in more 

than half of the entries (Fig. 10). 

 

 

 

69%

6%

4%

4%

4%
2%

1%
2%

2%
1% 1% >1% 2% 2%

Several Freshwater Riparian Forest Urban

Arid desert Alps Frozen desert Grasslands Rangeland

Tundra NA Agricultural Wetland

Figure 9 – Percentage of entries per Invaded Habitat class. 

Figure 10 – Percentage of entries per Data Source class. 

3% 5% 7% 29% 56%

Expert Data

Remote Sensing

Literature

Field Data

Database
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Concerning the extent of the models used in each entry, “National” and “Regional” 

ranges amount to the majority of it, followed by “Local” models (Fig. 11). 

 

 

In relation to the actual modelling tools used in the studies, “Machine Learning” 

models are the most popular, followed by “Ensemble Modelling” (Fig. 12). 

 

 

 

 

 

 

1%

2%

4%

4%

10% 21% 24% 34%

Mechanistic Model

Bayesian Approach

Population Dynamics

Decision Trees

Profile Techniques

Regression Analysis

Ensemble Modelling

Machine Learning

Figure 12 – Percentage of entries per Model class. 

8% 13% 19% 29% 31%

Multinational

Global

Local

Regional

National

Figure 11 – Percentage of entries per Model Range class. 
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Regarding to the spatial explicitness of the models, there’s a clear prevalence of 

“Spatially Explicit” models (Fig. 13). 

 

 

 

The same overwhelming difference appears in favor of “Static” models (Fig. 14). 

 

 

 

Group C – Risk Assessment output and data 

 

Concerning the risk assessment output and data (category group C – refer to the  

previous section for more details on categories), “Potential Distribution” was the most 

common type of RA, followed by “Invasion Risk” (Fig. 15). 

8% 92%
Not Spatially Explicit

Spatially Explicit

Figure 13 – Percentage of entries per Spatial Output class. 

5% 95%
Dynamic

Static

Figure 14 – Percentage of entries per Temporal Output class. 
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 Finally, regarding the classification of the method used, “Qualitative” methods were 

more popular (Fig. 16). 

 

 

 

Cohen’s Kappa Testing Results 

 

 According to the established criteria for “relevant” variables (Kappa value of at least 

10% either positively or negatively correlated and significance less or equal to 0,05), and 

after analyzing which ones appeared more frequently, the selected variables are listed 

below in Table 5. For a complete list of variable combinations and their Kappa and 

significance values, see Appendix A.  

 

2%

2%

3%

6% 8% 21% 58%

Other

Population Dynamics

Predicted Species Richness

Point Scoring System

Invasion Risk

None

Potential Distribution

Figure 15 – Percentage of records per Risk Assessment Output class. 

34% 23% 22% 21%

Qualitative

Semiquantitative

NA

Quantitative

Figure 16 – Percentage of entries per Risk Assessment Method class. 
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Table 5 – Variables (classes) selected after running a Cohen's Kappa test to determine which ones are relevant 

for PCA analysis. 

Categories Variables (Classes) 

Model Regression Analysis, Profile Techniques, Machine Learning, Decision Trees, 

Bayesian Approach, Ensemble Modelling, Population Dynamics, and 

Mechanistic Model 

Spatially Explicit Spatially Explicit and Not Spatially Explicit 

Static/Dynamic Static and Dynamic 

RA Output Potential Distribution, Invasion Risk, Predicted Species Richness, Population 

Dynamics, Point Scoring System, and None 

RA Method Qualitative, Semiquantitative, and Quantitative 

 

 

Principal Component Analysis Results 

 The PCA was carried out on software Canoco 5 (Šmilauer and Lepš, 2014) with a 

total of 22 variables of 189 entries. The first two components account for 65% of the total 

variation (Table 6), and they are represented in the scatterplot illustrated in Fig. 17, where 

4 clusters of variables can be distinguished: 

• Cluster Set 1 – “Machine Learning” + “Spatially Explicit” + “Static”  

• Cluster Set 2 – “Ensemble Modelling” + “Potential Distribution” + “Qualitative” + 

"Semiquantitative 

• Cluster Set 3 – “Regression Analysis” + “Not Spatially Explicit” + “No RA " 

• Cluster Set 4 – Every remaining variable 

Table 6 – Summary of results of PCA with 22 variables for 189 samples (entries). Eigenvalues and cumulative 

percentage of total variance along 4 components. 

Component Eigenvalues Cumulative % variance 

1 0,570 57,0% 

2 0,080 65,0% 

3 0,068 71,8% 

4 0,062 78,0% 
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Figure 17 – PCA scatterplot of the 189 entries classified in relation to 5 cluster sets of 22 classes (variables), 

performed on Canoco 5®. “Risk Assessment data” refers to “Risk Assessment Method”. 
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Discussion 

Literature Search 

 The number of search results in the SCOPUS search engine (n=1,223) was 

abnormally larger than the number of results in the ISI Web of Science search engine 

(n=389), even though the same set of keywords was used, in the same order. This is 

probably due to the search engine’s “KEYWORDS+” feature, which automatically attributed 

keywords to every uploaded record, by relating it with other records about the same topics. 

These keywords were usually broader concepts, such as “biologic invasions”, so 

consequently, a huge part of the records that came up in the search results contained our 

selected keywords but related to other similar fields (mostly insect invasions, pest control 

and management, etc, but also management of plant invasions). However, these results 

were easily discarded in the inclusion/exclusion process, since the titles were usually 

enough to realize that those records did not meet the requirements. Another explanation 

is the number of active journals covered by both search engines, which is higher for SCOPUS 

than for ISI Web of Knowledge (Mongeon and Paul-Hus, 2016).  

 

Literature Review 

 During the inclusion/exclusion process it was possible to notice instances where 

some titles and/or abstracts did not directly reflect the content of the records. They were 

mostly records whose titles were of a more informal nature, instead of the standard, more 

precise and direct titles (Gallardo and Aldridge, 2015; Simberloff, 2008). 

After applying the inclusion/exclusion process to the records, there were still some 

of them (n=59) that were discarded while being reviewed. One of the reasons was simple 

human error and some misinterpretations in the inclusion/exclusion process of records. In 

addition, the idea was to be as inclusive as possible during that process, since it was 

preferable to include records to be discarded later than to exclude records that should be 

included. Another reason is the structuring of the title and/or abstract of records, which as 

previously mentioned above, didn’t always reflect the aims and the methodologies used. 
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This translated into some records not meeting the requirements, for example, not using 

statistical modelling tools. 

 Three of the Classes in the review framework (refer to the Methodology section), 

“Habitat”, “Impacts”, and “Ecosystem Services Affected” were not considered as variables 

for the Cohen’s Kappa Tests and the PCA. The classification of the habitat in each record 

varied a lot, which meant many different habitats to be considered, when even most of the 

records were classified with “Several” (most of the modelling was done at bigger scales). 

Furthermore, it’s possible that the terminology used for the habitats might have been 

redundant with the same habitats having different names in different records. In relation 

to the “Impacts” and the “Ecosystem Services Affected”, only a portion of the most recent 

records (mostly 2016 and up) mentioned those topics (Natale et al., 2018). Most articles 

focused on the general aspects of plant invasions without providing more in-depth 

assessment of its threats and impacts in that specific context (Faleiro et al., 2015; Thomas 

and Moloney, 2014). 

 An issue noticed to be more prevalent in older records was the interchangeable 

usage of the terms “invasive”, “naturalized”, and “established” when referring to the 

species in focus. This is a topic previously discussed by Richardson et al. (2000), where they 

assessed the different contexts in which the term “naturalized” was used in the field, and 

called for a standardization of invasion ecology terminology. In more recent records 

though, it’s possible to verify that those calls have been answered, since authors seem to 

make clearer and less open usage of those terms, improving the coherency of the studies 

(Lalla et al., 2018). 

 On the complete opposite side, however, some older records didn’t specify the 

stage of invasion in which the alien species being studied was. In these instances, the 

species were only described as “nonnative”, “alien”, or “exotic” (Zalba et al., 2000). In 

terms of invasion stage, for this review they were classified as “Introduced”, since there 

was no indication that they might have been in later stages of the invasion process. 
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Search Results 

 It’s noticeable the overwhelming bias towards the studying of terrestrial species, 

which reflects the more challenging nature of predicting de distribution of invasive species 

in aquatic ecosystems (Havel et al., 2015).  

 Although many records couldn’t be distinguished individually for the species 

constitution, most of the ones which did were either herbs or shrubs (Fig.6). Common traits 

of invasive species include vegetative growth and better dispersal mechanisms, which are 

also common traits amongst herbs and shrubs, which can become invasive more easily 

(Gao et al., 2018). 

It’s a fact that citizen science can help expand datasets and contribute to predicting 

distributions (Delaney et al., 2008), so in studies conducted at smaller scales, many times 

surveys and resident inquiries were incorporated in the studies. For this review, this type 

of data was included in the “Field Data” classification, and it comes as no surprise that most 

of the entries where field data was used, the scales of the models where mostly “Local” or 

“Regional”. 

 The “Point Scoring System” classification includes risk assessment procedures that 

might not include statistical modelling per se, due to the fact that the keywords selected 

(“simulat*” and “predict*”) don’t always imply their use.  

 

Integrative Results 

Four clusters of variables could be distinguished along the axis of the first two 

principal components (see Fig 17 – Results section). The first one comprises “Machine 

Learning” model types with “Static” and “Spatially Explicit”, which are two prevalent 

characteristics of species distribution models (SDMs), one of the most popular approaches 

when predicting species risk of invasion (Fan et al., 2018; Obiakara and Fourcade, 2018; 

Rodríguez-Merino et al., 2018). Within these approaches, are machine learning algorithms 

which, the results show, is the most used modelling tool for risk assessment, confirming its 

relation to static and spatially explicit models. During the reviewing process it was possible 

to notice a growing interest over the years in the utilization of machine learning algorithms, 

like MaxEnt (Manzoor et al., 2018; Obiakara and Fourcade, 2018; Wan and Wang, 2018). 
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The second cluster of variables relates the “Ensemble Modelling” approach with 

“Potential Distribution”, “Qualitative”, and “Semiquantitative” risk assessment outputs and 

data. Ensemble modelling consists in the combination of results from different (but related) 

modelling techniques. Usually, these modelling techniques are SDMs that would also work 

individually, but the assemblage of various approaches is intended to increase the accuracy 

of the predicted distribution (Capinha and Anastácio, 2011; Valavi et al., 2019). Potential 

distribution (or habitat/climatic suitability) maps are the most common risk assessment 

output for species distribution models. Since it combines multiple approaches, the method 

is commonly classified as qualitative (provides average qualitative measurements) or 

semiquantitative (Lalla et al., 2018; Luizza et al., 2016), hence their association with 

ensemble modelling. 

The third cluster of variables relates “Regression Analysis” approaches with “Not 

Spatially Explicit” and “No Risk Assessment”. Very little entries combined “Not Spatially 

Explicit” models with any type of risk assessment, since most of the outputs for risk 

assessment resulted of spatially explicit approaches (Fig. 13). However, some studies relied 

on regression analyses focused on features that might affect the potential distribution of 

some species (like seed dispersal and the variability of other traits) and how these intrinsic 

characteristics should be considered when performing risk assessment, posteriorly 

(Klonner et al., 2016). 

The fourth cluster of variables envelopes every remaining variable and its closeness 

to the origin point of the scatterplot reflects their lower impact on the variance. However 

it’s possible to observe certain variables closer to each other that correspond to a more 

specific type of risk assessment, namely the “Population Dynamics” model and risk 

assessment output, and “Dynamic” modelling, which very often showed up together during 

the review (Muthukrishnan et al., 2015; Pittman et al., 2015). These are usually dynamic 

analyses since they evaluate the spread of a population over time. 

 

Risk assessment over time 

Landis (2019) evaluated the progress of ecological risk assessment as a topic in the 

journal Risk Analysis, which started in the 1980s with the problematic of chemicals and 
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contaminated sites. The theme then spread into a variety of other subjects, and the author 

attributes the establishment of the journal as a “venue for the risk assessment of 

nonindigenous or invasive species” to Mark. C. Anderson (New Mexico State University) in 

2004, thanks to an assortment of articles by that author being published in that year, even 

though this subject was already seen as a valuable research topic before. According to 

Landis, these articles were very relevant in setting up a framework for general invasive 

species risk assessment (Andersen et al., 2004b; Andersen et al., 2004a). Since then, risk 

assessment of alien species has become a very defined individual subject, with the 

establishment of requirements and new and adapted frameworks being developed (Colnar 

and Landis, 2007; Roy et al., 2018; Ziller et al., 2019). 

According to the search results (Fig. 3), plant invasions have been brought to 

attention early in the 20th century, but only ramped up by the 1980/90s. Following that, 

the application of the risk assessment concept to alien plant invasions dates back to 1986 

(maximum of 1 paper per year until 1998, therefore not visible in the graphic) but the use 

of statistical models for this subject didn’t start till 1994. The development of better 

technology, that lead to more and different tools available (Magarey et al., 2018), and the 

awakening to the imminence of climate change and its impacts on the success of invasive 

species (Weltzin et al., 2003), should be partly responsible for the growing interest in this 

topic since the mid 2000s. 

 

Limitations 

One of the most common limitations to the application of statistical models to 

predict invasive species distribution relies on the assumption that those species preserve 

their niche in novel habitats (niche stability). It has been shown that niche shifts can happen 

during the naturalization of alien species (Early and Sax, 2014), and consequentially, the 

predicted risk of invasion from these approaches might turn out inaccurate. Still, in some 

cases researchers should be able to predict these niche dynamics by accounting species 

traits (like dispersal functions) into the utilized models, therefore improving the accuracy 

of their projections  (Atwater et al., 2018).  
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Insufficiency of data is another commonly found limitation when using statistical 

models for risk assessment purposes. Studies aiming to determine the naturalization 

success of introduced species rely on time since introduction (residence time) to increase 

the explanatory power of the models and accurately predict the future of those species 

(Wilson et al., 2007), but sometimes that information is simply unavailable or unknown. 

Occurrence data in global/regional databases, especially larger databases and ranges, 

sometimes lacks field investigation to validate its legitimacy and if it’s up-to-date; however, 

there are validation methods to decrease those inaccuracies in some models (Merow et al., 

2013). Even taxonomic identification difficulties might lead to an underrepresentation of 

the species in occurrence data; when possible, choosing databases that are carefully 

managed by legitimate institutions/organizations should help eliminate those problems. In 

addition, geographical locations with more people might mean more occurrence data than 

in lesser populated regions. 
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Conclusion 

Over time, with the development of computer technology and new approaches, the 

integration of statistical models into the risk assessment of alien plant invasions has grown 

in a very fast rate. Static and spatially explicit models that predict the potential distribution 

(or climatic/habitat suitability) are the most widely used, with outputs presented in a 

geographical space allowing a better visualization the risk of invasion/potential, current, 

and future distribution of a given alien species. Ensemble modelling as a method to improve 

the accuracy of these studies has grown to be on par with the use of single models. 

However, the limitations surrounding these approaches and precision of the results are 

commonly associated with the validity of the data and niche conservatism. Researchers 

should take these limitations into account and overcome them as possible, since 

technology is in constant evolution and there are ways to reduce the impact of limitations. 

 The standardization of the terminology around biological invasions is a process that 

took some years to fully lodge itself in this field, but which improved the coherency 

between different studies and the community. The same could be said for the 

methodologies followed when conducting risk assessment, considering that establishing 

certain general requirements for this process (instead of researchers going about it each in 

their own way) should increase the coherency of this field of study, even though some 

space for adaptation can be left open.  

 Investing in statistical modelling tools for the risk assessment of invasive alien 

species is the way to go about the problematic at hand. Despite current limitations, there 

is no simpler or more precise way of knowing where and when to act to prevent and 

manage the spread of invasive alien species, in order to minimize their impacts on the 

ecosystems, which is ultimately in the best interest of governments and societies. 
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Appendix B 

List of variable combinations and their respective Kappa and significance values 

Variable Combinations Kappa Value ≅ Significance 

Individual * Aquatic -0,001 0,968 

Individual * Terrestrial 0,291 0,000 

Individual * Herbaceous 0,158 0,021 

Individual * Several -0,571 0,000 

Individual * Shrub 0,374 0,000 

Individual * Tree 0,042 0,394 

Individual * Introduced -0,087 0,110 

Individual * Invasive 0,051 0,416 

Individual * Naturalized 0,032 0,528 

Individual * Continental 0,016 0,525 

Individual * Global -0,069 0,182 

Individual * Local 0,064 0,278 

Individual * Multinational -0,012 0,754 

Individual * National -0,003 0,960 

Individual * Regional 0,003 0,963 

Individual * Database -0,070 0,328 

Individual * Expert Data -0,016 0,621 

Individual * Field Data 0,091 0,181 

Individual * Literature -0,068 0,085 

Individual * Remote Sensing 0,065 0,050 

Individual * Bayesian Approach 0,004 0,872 

Individual * Decision Trees -0,051 0,086 

Individual * Ensemble Modelling -0,016 0,807 

Individual * Machine Learning 0,045 0,523 

Individual * Mechanistic Model -0,009 0,656 

Individual * Population Dynamics 0,086 0,004 

Individual * Profile Techniques 0,016 0,723 

Individual * Regression Analysis -0,076 0,223 

Individual * Not Spatially Explicit -0,054 0,215 

Individual * Spatially Explicit 0,047 0,215 

Individual * Dynamic 0,111 0,001 

Individual * Static -0,096 0,001 

Individual * Both -0,019 0,394 

Individual * CC 0,002 0,964 

Individual * LULC 0,025 0,124 

Individual * No -0,007 0,894 

Individual * Invasion Risk -0,008 0,848 

Individual * No RA -0,187 0,003 

Individual * Other 0,002 0,910 

Individual * Point Scoring Sys 0,079 0,037 

Individual * Population Dynamics 0,004 0,872 

Individual * Potential Distribution 0,143 0,044 

Individual * Predicted Species Richness -0,040 0,142 

Individual * Qualitative 0,175 0,013 

Individual * Quantitative 0,001 0,986 

Individual * Semiquantitative 0,005 0,943    

Multispecies * Aquatic 0,001 0,968 
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Multispecies * Terrestrial -0,317 0,000 

Multispecies * Herbaceous -0,148 0,021 

Multispecies * Several 0,538 0,000 

Multispecies * Shrub -0,349 0,000 

Multispecies * Tree -0,037 0,394 

Multispecies * Introduced 0,078 0,110 

Multispecies * Invasive -0,054 0,416 

Multispecies * Naturalized -0,028 0,528 

Multispecies * Continental -0,014 0,525 

Multispecies * Global 0,061 0,182 

Multispecies * Local -0,058 0,278 

Multispecies * Multinational 0,010 0,754 

Multispecies * National 0,003 0,960 

Multispecies * Regional -0,003 0,963 

Multispecies * Database 0,071 0,328 

Multispecies * Expert Data 0,013 0,621 

Multispecies * Field Data -0,085 0,181 

Multispecies * Literature 0,059 0,085 

Multispecies * Remote Sensing -0,056 0,050 

Multispecies * Bayesian Approach -0,003 0,872 

Multispecies * Decision Trees 0,044 0,086 

Multispecies * Ensemble Modelling 0,015 0,807 

Multispecies * Machine Learning -0,043 0,523 

Multispecies * Mechanistic Model 0,007 0,656 

Multispecies * Population Dynamics -0,074 0,004 

Multispecies * Profile Techniques -0,014 0,723 

Multispecies * Regression Analysis 0,069 0,223 

Multispecies * Not Spatially Explicit 0,047 0,215 

Multispecies * Spatially Explicit -0,054 0,215 

Multispecies * Dynamic -0,096 0,001 

Multispecies * Static 0,111 3,329 

Multispecies * Both 0,017 0,394 

Multispecies * CC -0,002 0,964 

Multispecies * LULC -0,021 0,124 

Multispecies * No 0,008 0,894 

Multispecies * Invasion Risk 0,007 0,848 

Multispecies * No RA 0,170 0,003 

Multispecies * Other -0,002 0,910 

Multispecies * Point Scoring Sys -0,069 0,037 

Multispecies * Population Dynamics -0,003 0,872 

Multispecies * Potential Distribution -0,146 0,044 

Multispecies * Predicted Species Richness 0,035 0,142 

Multispecies * Qualitative -0,167 0,013 

Multispecies * Quantitative -0,001 0,986 

Multispecies * Semiquantitative -0,004 0,943    

Aquatic * Herbaceous 0,124 0,011 

Aquatic * Several 0,018 0,704 

Aquatic * Shrub -0,106 0,035 

Aquatic * Tree -0,084 0,215 

Aquatic * Introduced 0,077 0,231 

Aquatic * Invasive -0,016 0,470 
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Aquatic * Naturalized -0,022 0,748 

Aquatic * Continental 0,222 0,001 

Aquatic * Global -0,087 0,192 

Aquatic * Local -0,097 0,103 

Aquatic * Multinational 0,028 0,701 

Aquatic * National 0,050 0,294 

Aquatic * Regional -0,005 0,922 

Aquatic * Database 0,036 0,238 

Aquatic * Expert Data -0,052 0,472 

Aquatic * Field Data -0,005 0,922 

Aquatic * Literature -0,067 0,353 

Aquatic * Remote Sensing -0,055 0,445 

Aquatic * Bayesian Approach -0,032 0,615 

Aquatic * Decision Trees 0,069 0,330 

Aquatic * Ensemble Modelling -0,064 0,238 

Aquatic * Machine Learning 0,036 0,426 

Aquatic * Mechanistic Model -0,026 0,664 

Aquatic * Population Dynamics -0,047 0,503 

Aquatic * Profile Techniques -0,004 0,960 

Aquatic * Regression Analysis 0,029 0,609 

Aquatic * Not Spatially Explicit 0,005 0,939 

Aquatic * Spatially Explicit -0,001 0,939 

Aquatic * Dynamic 0,050 0,487 

Aquatic * Static -0,006 0,487 

Aquatic * Both 0,106 0,098 

Aquatic * CC 0,077 0,231 

Aquatic * LULC -0,018 0,724 

Aquatic * No -0,027 0,102 

Aquatic * Invasion Risk 0,085 0,233 

Aquatic * No RA -0,014 0,803 

Aquatic * Other -0,018 0,724 

Aquatic * Point Scoring Sys 0,028 0,701 

Aquatic * Population Dynamics -0,032 0,615 

Aquatic * Potential Distribution -0,025 0,398 

Aquatic * Predicted Species Richness 0,080 0,249 

Aquatic * Qualitative 0,036 0,426 

Aquatic * Quantitative -0,012 0,836 

Aquatic * Semiquantitative -0,021 0,710    

Terrestrial * Herbaceous 0,059 0,187 

Terrestrial * Several -0,331 0,000 

Terrestrial * Shrub 0,179 0,000 

Terrestrial * Tree 0,073 0,008 

Terrestrial * Introduced -0,027 0,381 

Terrestrial * Invasive 0,047 0,511 

Terrestrial * Naturalized 0,002 0,953 

Terrestrial * Continental -0,026 0,039 

Terrestrial * Global 0,050 0,080 

Terrestrial * Local 0,059 0,089 

Terrestrial * Multinational -0,033 0,094 

Terrestrial * National -0,033 0,476 

Terrestrial * Regional -0,017 0,699 
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Terrestrial * Database -0,060 0,348 

Terrestrial * Expert Data 0,011 0,499 

Terrestrial * Field Data 0,103 0,020 

Terrestrial * Literature -0,073 0,000 

Terrestrial * Remote Sensing 0,014 0,411 

Terrestrial * Bayesian Approach -0,002 0,893 

Terrestrial * Decision Trees -0,034 0,024 

Terrestrial * Ensemble Modelling 0,066 0,100 

Terrestrial * Machine Learning -0,100 0,041 

Terrestrial * Mechanistic Model 0,009 0,351 

Terrestrial * Population Dynamics 0,022 0,150 

Terrestrial * Profile Techniques 0,029 0,233 

Terrestrial * Regression Analysis -0,002 0,962 

Terrestrial * Not Spatially Explicit -0,050 0,030 

Terrestrial * Spatially Explicit 0,135 0,030 

Terrestrial * Dynamic 0,014 0,411 

Terrestrial * Static -0,043 0,411 

Terrestrial * Both -0,002 0,893 

Terrestrial * CC -0,027 0,381 

Terrestrial * LULC 0,006 0,447 

Terrestrial * No 0,047 0,511 

Terrestrial * Invasion Risk -0,006 0,780 

Terrestrial * No RA -0,082 0,029 

Terrestrial * Other -0,008 0,342 

Terrestrial * Point Scoring Sys 0,010 0,632 

Terrestrial * Population Dynamics -0,002 0,893 

Terrestrial * Potential Distribution 0,167 0,011 

Terrestrial * Predicted Species Richness -0,023 0,096 

Terrestrial * Qualitative 0,062 0,205 

Terrestrial * Quantitative -0,021 0,564 

Terrestrial * Semiquantitative 0,058 0,138    

Herbaceous * Introduced 0,021 0,752 

Herbaceous * Invasive 0,002 0,968 

Herbaceous * Naturalized -0,025 0,691 

Herbaceous * Continental 0,018 0,607 

Herbaceous * Global 0,027 0,671 

Herbaceous * Local -0,096 0,167 

Herbaceous * Multinational 0,080 0,110 

Herbaceous * National -0,012 0,869 

Herbaceous * Regional 0,000 1,000 

Herbaceous * Database 0,018 0,776 

Herbaceous * Expert Data 0,021 0,618 

Herbaceous * Field Data -0,077 0,290 

Herbaceous * Literature -0,028 0,592 

Herbaceous * Remote Sensing 0,078 0,081 

Herbaceous * Bayesian Approach -0,006 0,838 

Herbaceous * Decision Trees 0,031 0,435 

Herbaceous * Ensemble Modelling -0,170 0,018 

Herbaceous * Machine Learning 0,018 0,804 

Herbaceous * Mechanistic Model 0,004 0,887 

Herbaceous * Population Dynamics 0,065 0,104 
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Herbaceous * Profile Techniques 0,104 0,000 

Herbaceous * Regression Analysis -0,107 0,133 

Herbaceous * Not Spatially Explicit 0,008 0,882 

Herbaceous * Spatially Explicit -0,004 0,882 

Herbaceous * Dynamic 0,078 0,081 

Herbaceous * Static -0,036 0,081 

Herbaceous * Both -0,041 0,190 

Herbaceous * CC 0,021 0,752 

Herbaceous * LULC -0,021 0,356 

Herbaceous * No 0,018 0,656 

Herbaceous * Invasion Risk -0,024 0,672 

Herbaceous * No RA -0,162 0,022 

Herbaceous * Other -0,021 0,356 

Herbaceous * Point Scoring Sys -0,018 0,717 

Herbaceous * Population Dynamics 0,028 0,367 

Herbaceous * Potential Distribution 0,173 0,005 

Herbaceous * Predicted Species Richness -0,061 0,106 

Herbaceous * Qualitative 0,115 0,112 

Herbaceous * Quantitative 0,068 0,336 

Herbaceous * Semiquantitative -0,020 0,778  
    

Several * Introduced 0,094 0,150 

Several * Invasive -0,038 0,462 

Several * Naturalized -0,035 0,571 

Several * Continental 0,014 0,668 

Several * Global 0,044 0,477 

Several * Local -0,137 0,047 

Several * Multinational 0,039 0,420 

Several * National -0,060 0,413 

Several * Regional 0,105 0,150 

Several * Database 0,045 0,483 

Several * Expert Data 0,081 0,051 

Several * Field Data -0,198 0,006 

Several * Literature 0,123 0,014 

Several * Remote Sensing -0,026 0,551 

Several * Bayesian Approach -0,008 0,786 

Several * Decision Trees -0,006 0,878 

Several * Ensemble Modelling 0,025 0,726 

Several * Machine Learning 0,065 0,371 

Several * Mechanistic Model -0,031 0,240 

Several * Population Dynamics -0,038 0,325 

Several * Profile Techniques -0,140 0,014 

Several * Regression Analysis 0,095 0,177 

Several * Not Spatially Explicit 0,092 0,090 

Several * Spatially Explicit -0,048 0,090 

Several * Dynamic -0,058 0,182 

Several * Static 0,029 0,182 

Several * Both -0,008 0,786 

Several * CC 0,065 0,318 

Several * LULC -0,021 0,338 

Several * No -0,024 0,571 

Several * Invasion Risk 0,062 0,258 
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Several * No RA 0,176 0,012 

Several * Other 0,013 0,564 

Several * Point Scoring Sys -0,023 0,631 

Several * Population Dynamics 0,025 0,413 

Several * Potential Distribution -0,241 0,000 

Several * Predicted Species Richness 0,102 0,005 

Several * Qualitative -0,079 0,277 

Several * Quantitative 0,022 0,749 

Several * Semiquantitative -0,118 0,098    

Shrub * Introduced -0,084 0,215 

Shrub * Invasive 0,001 0,991 

Shrub * Naturalized 0,086 0,183 

Shrub * Continental -0,014 0,703 

Shrub * Global -0,115 0,078 

Shrub * Local 0,277 0,000 

Shrub * Multinational -0,115 0,027 

Shrub * National -0,031 0,665 

Shrub * Regional -0,022 0,757 

Shrub * Database -0,078 0,202 

Shrub * Expert Data -0,079 0,075 

Shrub * Field Data 0,213 0,003 

Shrub * Literature -0,055 0,310 

Shrub * Remote Sensing -0,017 0,716 

Shrub * Bayesian Approach 0,033 0,309 

Shrub * Decision Trees 0,003 0,949 

Shrub * Ensemble Modelling 0,017 0,813 

Shrub * Machine Learning 0,027 0,702 

Shrub * Mechanistic Model 0,007 0,820 

Shrub * Population Dynamics 0,003 0,949 

Shrub * Profile Techniques -0,065 0,279 

Shrub * Regression Analysis -0,029 0,689 

Shrub * Not Spatially Explicit -0,047 0,412 

Shrub * Spatially Explicit 0,022 0,412 

Shrub * Dynamic 0,019 0,689 

Shrub * Static -0,008 0,689 

Shrub * Both 0,071 0,032 

Shrub * CC -0,115 0,089 

Shrub * LULC 0,055 0,021 

Shrub * No 0,006 0,881 

Shrub * Invasion Risk -0,014 0,814 

Shrub * No RA -0,029 0,689 

Shrub * Other -0,021 0,381 

Shrub * Point Scoring Sys 0,094 0,071 

Shrub * Population Dynamics -0,041 0,213 

Shrub * Potential Distribution 0,020 0,739 

Shrub * Predicted Species Richness -0,024 0,545 

Shrub * Qualitative -0,046 0,518 

Shrub * Quantitative -0,107 0,133 

Shrub * Semiquantitative 0,173 0,017    

Tree * Introduced -0,058 0,421 
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Tree * Invasive 0,030 0,322 

Tree * Naturalized -0,034 0,638 

Tree * Continental -0,034 0,638 

Tree * Global 0,060 0,411 

Tree * Local -0,044 0,531 

Tree * Multinational -0,025 0,712 

Tree * National 0,123 0,043 

Tree * Regional -0,104 0,099 

Tree * Database 0,015 0,723 

Tree * Expert Data -0,066 0,294 

Tree * Field Data 0,086 0,173 

Tree * Literature -0,095 0,175 

Tree * Remote Sensing -0,072 0,265 

Tree * Bayesian Approach -0,037 0,463 

Tree * Decision Trees -0,060 0,328 

Tree * Ensemble Modelling 0,168 0,011 

Tree * Machine Learning -0,127 0,029 

Tree * Mechanistic Model 0,054 0,238 

Tree * Population Dynamics -0,060 0,328 

Tree * Profile Techniques -0,005 0,941 

Tree * Regression Analysis 0,051 0,456 

Tree * Not Spatially Explicit -0,109 0,129 

Tree * Spatially Explicit 0,024 0,129 

Tree * Dynamic -0,072 0,265 

Tree * Static 0,013 0,265 

Tree * Both -0,037 0,463 

Tree * CC 0,034 0,636 

Tree * LULC -0,020 0,606 

Tree * No -0,001 0,980 

Tree * Invasion Risk -0,050 0,482 

Tree * No RA 0,013 0,849 

Tree * Other 0,065 0,089 

Tree * Point Scoring Sys -0,090 0,194 

Tree * Population Dynamics -0,037 0,463 

Tree * Potential Distribution 0,044 0,289 

Tree * Predicted Species Richness -0,053 0,366 

Tree * Qualitative 0,012 0,836 

Tree * Quantitative 0,018 0,796 

Tree * Semiquantitative -0,037 0,587    

Introduced * Continental 0,016 0,741 

Introduced * Global 0,064 0,374 

Introduced * Local -0,045 0,532 

Introduced * Multinational 0,067 0,305 

Introduced * National -0,136 0,036 

Introduced * Regional 0,091 0,174 

Introduced * Database 0,087 0,067 

Introduced * Expert Data -0,011 0,851 

Introduced * Field Data -0,121 0,070 

Introduced * Literature -0,050 0,454 

Introduced * Remote Sensing 0,039 0,522 

Introduced * Bayesian Approach -0,038 0,399 
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Introduced * Decision Trees -0,002 0,968 

Introduced * Ensemble Modelling -0,022 0,749 

Introduced * Machine Learning 0,037 0,555 

Introduced * Mechanistic Model 0,037 0,363 

Introduced * Population Dynamics -0,002 0,968 

Introduced * Profile Techniques 0,115 0,104 

Introduced * Regression Analysis -0,104 0,142 

Introduced * Not Spatially Explicit -0,019 0,785 

Introduced * Spatially Explicit 0,005 0,785 

Introduced * Dynamic -0,019 0,749 

Introduced * Static 0,004 0,749 

Introduced * Both -0,038 0,399 

Introduced * CC 0,036 0,623 

Introduced * LULC -0,020 0,553 

Introduced * No 0,001 0,984 

Introduced * Invasion Risk 0,083 0,231 

Introduced * No RA 0,003 0,970 

Introduced * Other -0,020 0,553 

Introduced * Point Scoring Sys 0,067 0,305 

Introduced * Population Dynamics 0,091 0,045 

Introduced * Potential Distribution -0,060 0,192 

Introduced * Predicted Species Richness -0,055 0,299 

Introduced * Qualitative -0,017 0,786 

Introduced * Quantitative 0,008 0,910 

Introduced * Semiquantitative -0,013 0,856  
    

Invasive * Continental -0,010 0,506 

Invasive * Global -0,024 0,453 

Invasive * Local 0,007 0,851 

Invasive * Multinational 0,004 0,873 

Invasive * National 0,125 0,014 

Invasive * Regional -0,096 0,049 

Invasive * Database -0,059 0,379 

Invasive * Expert Data -0,013 0,494 

Invasive * Field Data 0,028 0,569 

Invasive * Literature 0,023 0,329 

Invasive * Remote Sensing 0,006 0,742 

Invasive * Bayesian Approach 0,016 0,219 

Invasive * Decision Trees 0,013 0,441 

Invasive * Ensemble Modelling -0,032 0,475 

Invasive * Machine Learning -0,027 0,614 

Invasive * Mechanistic Model -0,017 0,119 

Invasive * Population Dynamics -0,016 0,335 

Invasive * Profile Techniques -0,002 0,936 

Invasive * Regression Analysis 0,063 0,128 

Invasive * Not Spatially Explicit 0,005 0,852 

Invasive * Spatially Explicit -0,011 0,852 

Invasive * Dynamic -0,009 0,660 

Invasive * Static 0,021 0,660 

Invasive * Both 0,016 0,219 

Invasive * CC -0,039 0,259 

Invasive * LULC 0,008 0,387 
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Invasive * No 0,025 0,725 

Invasive * Invasion Risk -0,026 0,322 

Invasive * No RA 0,013 0,750 

Invasive * Other -0,007 0,461 

Invasive * Point Scoring Sys -0,027 0,236 

Invasive * Population Dynamics -0,014 0,295 

Invasive * Potential Distribution 0,078 0,258 

Invasive * Predicted Species Richness 0,009 0,563 

Invasive * Qualitative 0,047 0,381 

Invasive * Quantitative -0,058 0,159 

Invasive * Semiquantitative 0,027 0,531  
    

Naturalized * Continental 0,029 0,587 

Naturalized * Global 0,004 0,958 

Naturalized * Local 0,030 0,671 

Naturalized * Multinational -0,091 0,183 

Naturalized * National -0,064 0,295 

Naturalized * Regional 0,076 0,232 

Naturalized * Database -0,035 0,426 

Naturalized * Expert Data 0,071 0,257 

Naturalized * Field Data 0,076 0,232 

Naturalized * Literature -0,035 0,609 

Naturalized * Remote Sensing -0,073 0,253 

Naturalized * Bayesian Approach -0,037 0,452 

Naturalized * Decision Trees -0,060 0,316 

Naturalized * Ensemble Modelling 0,088 0,187 

Naturalized * Machine Learning 0,002 0,966 

Naturalized * Mechanistic Model 0,050 0,258 

Naturalized * Population Dynamics 0,081 0,176 

Naturalized * Profile Techniques -0,120 0,097 

Naturalized * Regression Analysis -0,033 0,636 

Naturalized * Not Spatially Explicit 0,003 0,966 

Naturalized * Spatially Explicit -0,001 0,966 

Naturalized * Dynamic 0,061 0,345 

Naturalized * Static -0,011 0,345 

Naturalized * Both -0,037 0,452 

Naturalized * CC 0,072 0,319 

Naturalized * LULC -0,020 0,597 

Naturalized * No -0,012 0,617 

Naturalized * Invasion Risk 0,003 0,966 

Naturalized * No RA -0,033 0,636 

Naturalized * Other 0,062 0,100 

Naturalized * Point Scoring Sys 0,034 0,622 

Naturalized * Population Dynamics -0,037 0,452 

Naturalized * Potential Distribution -0,005 0,905 

Naturalized * Predicted Species Richness 0,020 0,732 

Naturalized * Qualitative -0,053 0,371 

Naturalized * Quantitative 0,124 0,074 

Naturalized * Semiquantitative -0,044 0,513    

Continental * Database 0,043 0,043 

Continental * Expert Data -0,034 0,634 
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Continental * Field Data -0,051 0,152 

Continental * Literature -0,040 0,538 

Continental * Remote Sensing -0,035 0,612 

Continental * Bayesian Approach -0,024 0,739 

Continental * Decision Trees -0,032 0,657 

Continental * Ensemble Modelling -0,050 0,205 

Continental * Machine Learning 0,038 0,222 

Continental * Mechanistic Model -0,020 0,773 

Continental * Population Dynamics 0,14 0,051 

Continental * Profile Techniques -0,043 0,462 

Continental * Regression Analysis -0,003 0,949 

Continental * Not Spatially Explicit -0,042 0,491 

Continental * Spatially Explicit 0,005 0,491 

Continental * Dynamic 0,113 0,105 

Continental * Static -0,009 0,105 

Continental * Both -0,024 0,739 

Continental * CC 0,080 0,108 

Continental * LULC -0,015 0,815 

Continental * No -0,014 0,194 

Continental * Invasion Risk 0,057 0,348 

Continental * No RA -0,049 0,240 

Continental * Other -0,015 0,815 

Continental * Point Scoring Sys -0,039 0,555 

Continental * Population Dynamics -0,024 0,739 

Continental * Potential Distribution 0,021 0,306 

Continental * Predicted Species Richness -0,030 0,682 

Continental * Qualitative -0,052 0,101 

Continental * Quantitative 0,046 0,278 

Continental * Semiquantitative 0,081 0,044    

Global * Database 0,111 0,013 

Global * Expert Data 0,066 0,286 

Global * Field Data -0,151 0,019 

Global * Literature -0,039 0,574 

Global * Remote Sensing -0,074 0,241 

Global * Bayesian Approach 0,036 0,455 

Global * Decision Trees -0,061 0,304 

Global * Ensemble Modelling -0,060 0,379 

Global * Machine Learning 0,021 0,732 

Global * Mechanistic Model 0,047 0,279 

Global * Population Dynamics -0,061 0,304 

Global * Profile Techniques 0,092 0,202 

Global * Regression Analysis -0,003 0,966 

Global * Not Spatially Explicit -0,002 0,980 

Global * Spatially Explicit 0,000 0,980 

Global * Dynamic -0,074 0,241 

Global * Static 0,014 0,241 

Global * Both -0,038 0,441 

Global * CC 0,064 0,374 

Global * LULC -0,020 0,588 

Global * No -0,010 0,698 

Global * Invasion Risk 0,054 0,447 
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Global * No RA 0,034 0,622 

Global * Other 0,059 0,111 

Global * Point Scoring Sys -0,032 0,639 

Global * Population Dynamics 0,036 0,455 

Global * Potential Distribution -0,035 0,416 

Global * Predicted Species Richness -0,054 0,342 

Global * Qualitative -0,090 0,135 

Global * Quantitative 0,002 0,979 

Global * Semiquantitative 0,055 0,422    

Local * Database -0,226 0,000 

Local * Expert Data -0,024 0,654 

Local * Field Data 0,319 0,000 

Local * Literature 0,027 0,661 

Local * Remote Sensing 0,016 0,769 

Local * Bayesian Approach -0,039 0,335 

Local * Decision Trees -0,015 0,769 

Local * Ensemble Modelling 0,021 0,769 

Local * Machine Learning -0,106 0,112 

Local * Mechanistic Model 0,024 0,505 

Local * Population Dynamics 0,188 0,000 

Local * Profile Techniques -0,058 0,395 

Local * Regression Analysis 0,053 0,465 

Local * Not Spatially Explicit 0,046 0,485 

Local * Spatially Explicit -0,014 0,485 

Local * Dynamic 0,164 0,003 

Local * Static -0,045 0,003 

Local * Both 0,067 0,101 

Local * CC -0,159 0,027 

Local * LULC 0,035 0,249 

Local * No 0,035 0,263 

Local * Invasion Risk -0,087 0,187 

Local * No RA 0,186 0,010 

Local * Other 0,035 0,249 

Local * Point Scoring Sys -0,010 0,864 

Local * Population Dynamics 0,067 0,101 

Local * Potential Distribution -0,081 0,113 

Local * Predicted Species Richness -0,057 0,235 

Local * Qualitative -0,212 0,002 

Local * Quantitative 0,026 0,719 

Local * Semiquantitative 0,066 0,363    

Multinational * Database 0,064 0,045 

Multinational * Expert Data -0,054 0,452 

Multinational * Field Data -0,116 0,024 

Multinational * Literature 0,015 0,837 

Multinational * Remote Sensing 0,043 0,548 

Multinational * Bayesian Approach 0,096 0,122 

Multinational * Decision Trees -0,049 0,483 

Multinational * Ensemble Modelling -0,033 0,548 

Multinational * Machine Learning 0,113 0,015 

Multinational * Mechanistic Model -0,026 0,649 
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Multinational * Population Dynamics -0,049 0,483 

Multinational * Profile Techniques -0,010 0,885 

Multinational * Regression Analysis -0,108 0,064 

Multinational * Not Spatially Explicit -0,078 0,276 

Multinational * Spatially Explicit 0,012 0,276 

Multinational * Dynamic -0,058 0,423 

Multinational * Static 0,007 0,423 

Multinational * Both -0,033 0,599 

Multinational * CC -0,043 0,514 

Multinational * LULC -0,018 0,711 

Multinational * No 0,016 0,368 

Multinational * Invasion Risk -0,078 0,276 

Multinational * No RA -0,066 0,261 

Multinational * Other -0,018 0,711 

Multinational * Point Scoring Sys 0,110 0,13 

Multinational * Population Dynamics -0,033 0,599 

Multinational * Potential Distribution 0,001 0,962 

Multinational * Predicted Species Richness 0,188 0,006 

Multinational * Qualitative 0,054 0,240 

Multinational * Quantitative -0,021 0,726 

Multinational * Semiquantitative 0,011 0,848    

National * Database 0,167 0,009 

National * Expert Data -0,081 0,052 

National * Field Data -0,072 0,321 

National * Literature -0,002 0,971 

National * Remote Sensing -0,090 0,038 

National * Bayesian Approach -0,041 0,173 

National * Decision Trees 0,026 0,498 

National * Ensemble Modelling 0,025 0,726 

National * Machine Learning -0,031 0,670 

National * Mechanistic Model 0,002 0,936 

National * Population Dynamics -0,071 0,069 

National * Profile Techniques -0,019 0,741 

National * Regression Analysis 0,095 0,177 

National * Not Spatially Explicit 0,092 0,090 

National * Spatially Explicit -0,048 0,090 

National * Dynamic -0,058 0,182 

National * Static 0,029 0,182 

National * Both -0,008 0,786 

National * CC -0,050 0,442 

National * LULC -0,021 0,338 

National * No 0,045 0,285 

National * Invasion Risk -0,092 0,091 

National * No RA 0,041 0,561 

National * Other -0,021 0,338 

National * Point Scoring Sys 0,039 0,420 

National * Population Dynamics -0,008 0,786 

National * Potential Distribution 0,019 0,757 

National * Predicted Species Richness 0,004 0,909 

National * Qualitative 0,113 0,120 

National * Quantitative -0,059 0,399 
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National * Semiquantitative -0,118 0,098    

Regional * Database -0,162 0,010 

Regional * Expert Data 0,095 0,030 

Regional * Field Data 0,041 0,575 

Regional * Literature 0,010 0,856 

Regional * Remote Sensing 0,119 0,010 

Regional * Bayesian Approach 0,031 0,338 

Regional * Decision Trees 0,035 0,394 

Regional * Ensemble Modelling 0,058 0,418 

Regional * Machine Learning -0,014 0,846 

Regional * Mechanistic Model -0,031 0,269 

Regional * Population Dynamics -0,035 0,394 

Regional * Profile Techniques 0,028 0,638 

Regional * Regression Analysis -0,068 0,338 

Regional * Not Spatially Explicit -0,085 0,137 

Regional * Spatially Explicit 0,040 0,137 

Regional * Dynamic -0,020 0,666 

Regional * Static 0,009 0,666 

Regional * Both -0,005 0,873 

Regional * CC 0,121 0,070 

Regional * LULC 0,016 0,500 

Regional * No -0,071 0,072 

Regional * Invasion Risk 0,146 0,010 

Regional * No RA -0,153 0,032 

Regional * Other -0,021 0,369 

Regional * Point Scoring Sys -0,048 0,346 

Regional * Population Dynamics -0,041 0,201 

Regional * Potential Distribution 0,077 0,209 

Regional * Predicted Species Richness 0,010 0,793 

Regional * Qualitative 0,157 0,029 

Regional * Quantitative 0,024 0,733 

Regional * Semiquantitative -0,036 0,621    

Database * Bayesian Approach -0,004 0,821 

Database * Decision Trees 0,002 0,931 

Database * Ensemble Modelling -0,060 0,303 

Database * Machine Learning 0,080 0,231 

Database * Mechanistic Model 0,006 0,696 

Database * Population Dynamics -0,017 0,491 

Database * Profile Techniques 0,019 0,618 

Database * Regression Analysis -0,024 0,661 

Database * Not Spatially Explicit 0,002 0,953 

Database * Spatially Explicit -0,003 0,953 

Database * Dynamic -0,038 0,169 

Database * Static 0,047 0,169 

Database * Both -0,004 0,821 

Database * CC 0,107 0,025 

Database * LULC -0,002 0,874 

Database * No -0,116 0,051 

Database * Invasion Risk 0,002 0,953 

Database * No RA -0,004 0,937 
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Database * Other -0,002 0,874 

Database * Point Scoring Sys 0,045 0,161 

Database * Population Dynamics -0,004 0,821 

Database * Potential Distribution -0,055 0,449 

Database * Predicted Species Richness 0,013 0,578 

Database * Qualitative 0,059 0,373 

Database * Quantitative -0,093 0,091 

Database * Semiquantitative 0,042 0,461    

Expert Data * Bayesian Approach -0,029 0,671 

Expert Data * Decision Trees -0,041 0,571 

Expert Data * Ensemble Modelling 0,045 0,353 

Expert Data * Machine Learning -0,022 0,568 

Expert Data * Mechanistic Model -0,024 0,714 

Expert Data * Population Dynamics -0,041 0,571 

Expert Data * Profile Techniques 0,019 0,769 

Expert Data * Regression Analysis 0,014 0,786 

Expert Data * Not Spatially Explicit 0,029 0,675 

Expert Data * Spatially Explicit -0,004 0,675 

Expert Data * Dynamic -0,047 0,518 

Expert Data * Static 0,004 0,518 

Expert Data * Both -0,029 0,671 

Expert Data * CC 0,048 0,407 

Expert Data * LULC -0,017 0,765 

Expert Data * No -0,007 0,598 

Expert Data * Invasion Risk -0,060 0,379 

Expert Data * No RA -0,031 0,540 

Expert Data * Other -0,017 0,765 

Expert Data * Point Scoring Sys -0,054 0,452 

Expert Data * Population Dynamics -0,029 0,671 

Expert Data * Potential Distribution 0,044 0,081 

Expert Data * Predicted Species Richness -0,038 0,601 

Expert Data * Qualitative -0,022 0,568 

Expert Data * Quantitative 0,108 0,036 

Expert Data * Semiquantitative -0,035 0,480    

Field Data * Bayesian Approach 0,031 0,338 

Field Data * Decision Trees -0,035 0,394 

Field Data * Ensemble Modelling 0,086 0,235 

Field Data * Machine Learning -0,063 0,383 

Field Data * Mechanistic Model 0,005 0,854 

Field Data * Population Dynamics 0,035 0,394 

Field Data * Profile Techniques -0,134 0,023 

Field Data * Regression Analysis 0,072 0,311 

Field Data * Not Spatially Explicit -0,019 0,741 

Field Data * Spatially Explicit 0,009 0,741 

Field Data * Dynamic 0,049 0,280 

Field Data * Static -0,022 0,280 

Field Data * Both 0,031 0,338 

Field Data * CC -0,152 0,023 

Field Data * LULC -0,021 0,369 

Field Data * No 0,078 0,048 
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Field Data * Invasion Risk -0,052 0,363 

Field Data * No RA 0,044 0,536 

Field Data * Other -0,021 0,369 

Field Data * Point Scoring Sys -0,014 0,777 

Field Data * Population Dynamics -0,005 0,873 

Field Data * Potential Distribution 0,037 0,545 

Field Data * Predicted Species Richness -0,025 0,512 

Field Data * Qualitative -0,063 0,383 

Field Data * Quantitative -0,004 0,955 

Field Data * Semiquantitative 0,047 0,510    

Literature * Bayesian Approach -0,033 0,583 

Literature * Decision Trees 0,054 0,430 

Literature * Ensemble Modelling -0,004 0,949 

Literature * Machine Learning -0,014 0,776 

Literature * Mechanistic Model -0,026 0,635 

Literature * Population Dynamics -0,051 0,464 

Literature * Profile Techniques 0,124 0,085 

Literature * Regression Analysis -0,032 0,597 

Literature * Not Spatially Explicit -0,008 0,917 

Literature * Spatially Explicit 0,001 0,917 

Literature * Dynamic -0,060 0,403 

Literature * Static 0,007 0,403 

Literature * Both -0,033 0,583 

Literature * CC -0,104 0,119 

Literature * LULC -0,019 0,699 

Literature * No 0,032 0,080 

Literature * Invasion Risk 0,067 0,353 

Literature * No RA 0,053 0,380 

Literature * Other 0,117 0,015 

Literature * Point Scoring Sys -0,071 0,331 

Literature * Population Dynamics -0,033 0,583 

Literature * Potential Distribution -0,028 0,384 

Literature * Predicted Species Richness -0,045 0,499 

Literature * Qualitative -0,043 0,373 

Literature * Quantitative 0,057 0,349 

Literature * Semiquantitative -0,078 0,180    

Remote Sensing * Bayesian Approach -0,030 0,651 

Remote Sensing * Decision Trees 0,087 0,228 

Remote Sensing * Ensemble Modelling -0,046 0,359 

Remote Sensing * Machine Learning -0,003 0,945 

Remote Sensing * Mechanistic Model -0,024 0,696 

Remote Sensing * Population Dynamics 0,087 0,228 

Remote Sensing * Profile Techniques 0,090 0,184 

Remote Sensing * Regression Analysis -0,040 0,449 

Remote Sensing * Not Spatially Explicit 0,020 0,770 

Remote Sensing * Spatially Explicit -0,003 0,770 

Remote Sensing * Dynamic 0,183 0,012 

Remote Sensing * Static -0,018 0,012 

Remote Sensing * Both -0,030 0,651 

Remote Sensing * CC 0,039 0,522 
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Remote Sensing * LULC 0,167 0,003 

Remote Sensing * No -0,019 0,219 

Remote Sensing * Invasion Risk 0,105 0,129 

Remote Sensing * No RA -0,084 0,111 

Remote Sensing * Other -0,018 0,751 

Remote Sensing * Point Scoring Sys -0,058 0,423 

Remote Sensing * Population Dynamics 0,128 0,055 

Remote Sensing * Potential Distribution -0,004 0,895 

Remote Sensing * Predicted Species Richness 0,099 0,164 

Remote Sensing * Qualitative 0,056 0,171 

Remote Sensing * Quantitative 0,052 0,335 

Remote Sensing * Semiquantitative -0,044 0,393    

Bayesian Approach * Not Spatially Explicit -0,035 0,539 

Bayesian Approach * Spatially Explicit 0,004 0,539 

Bayesian Approach * Dynamic -0,030 0,651 

Bayesian Approach * Static 0,002 0,651 

Bayesian Approach * Both 0,234 0,001 

Bayesian Approach * CC 0,026 0,562 

Bayesian Approach * LULC -0,014 0,834 

Bayesian Approach * No -0,017 0,092 

Bayesian Approach * Invasion Risk -0,035 0,539 

Bayesian Approach * No RA -0,040 0,295 

Bayesian Approach * Other -0,014 0,834 

Bayesian Approach * Point Scoring Sys -0,033 0,599 

Bayesian Approach * Population Dynamics -0,022 0,766 

Bayesian Approach * Potential Distribution 0,013 0,478 

Bayesian Approach * Predicted Species Richness 0,179 0,012 

Bayesian Approach * Qualitative -0,011 0,689 

Bayesian Approach * Quantitative 0,105 0,007 

Bayesian Approach * Semiquantitative -0,040 0,273    

Decision Trees * Not Spatially Explicit 0,221 0,001 

Decision Trees * Spatially Explicit -0,029 0,001 

Decision Trees * Dynamic -0,043 0,547 

Decision Trees * Static 0,004 0,547 

Decision Trees * Both -0,028 0,692 

Decision Trees * CC -0,063 0,261 

Decision Trees * LULC -0,017 0,780 

Decision Trees * No 0,017 0,207 

Decision Trees * Invasion Risk 0,037 0,573 

Decision Trees * No RA 0,160 0,001 

Decision Trees * Other -0,017 0,780 

Decision Trees * Point Scoring Sys -0,049 0,483 

Decision Trees * Population Dynamics -0,028 0,692 

Decision Trees * Potential Distribution -0,056 0,018 

Decision Trees * Predicted Species Richness -0,056 0,018 

Decision Trees * Qualitative -0,042 0,254 

Decision Trees * Quantitative -0,021 0,672 

Decision Trees * Semiquantitative -0,068 0,143  
    

Ensemble Modelling * Not Spatially Explicit -0,143 0,019 
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Ensemble Modelling * Spatially Explicit 0,056 0,019 

Ensemble Modelling * Dynamic -0,086 0,086 

Ensemble Modelling * Static 0,031 0,086 

Ensemble Modelling * Both -0,040 0,258 

Ensemble Modelling * CC 0,045 0,522 

Ensemble Modelling * LULC -0,021 0,427 

Ensemble Modelling * No 0,002 0,966 

Ensemble Modelling * Invasion Risk 0,045 0,465 

Ensemble Modelling * No RA -0,168 0,021 

Ensemble Modelling * Other 0,066 0,011 

Ensemble Modelling * Point Scoring Sys -0,033 0,548 

Ensemble Modelling * Population Dynamics 0,002 0,955 

Ensemble Modelling * Potential Distribution 0,099 0,081 

Ensemble Modelling * Predicted Species Richness -0,059 0,164 

Ensemble Modelling * Qualitative 0,165 0,019 

Ensemble Modelling * Quantitative -0,100 0,166 

Ensemble Modelling * Semiquantitative 0,052 0,473  
    

Machine Learning * Not Spatially Explicit -0,043 0,408 

Machine Learning * Spatially Explicit 0,025 0,408 

Machine Learning * Dynamic -0,062 0,132 

Machine Learning * Static 0,035 0,132 

Machine Learning * Both -0,011 0,689 

Machine Learning * CC 0,091 0,146 

Machine Learning * LULC 0,040 0,050 

Machine Learning * No -0,076 0,086 

Machine Learning * Invasion Risk -0,043 0,408 

Machine Learning * No RA -0,123 0,075 

Machine Learning * Other -0,021 0,303 

Machine Learning * Point Scoring Sys 0,084 0,071 

Machine Learning * Population Dynamics -0,011 0,689 

Machine Learning * Potential Distribution 0,071 0,276 

Machine Learning * Predicted Species Richness 0,028 0,413 

Machine Learning * Qualitative 0,062 0,394 

Machine Learning * Quantitative -0,037 0,593 

Machine Learning * Semiquantitative 0,082 0,241    

Mechanistic Model * Not Spatially Explicit 0,081 0,119 

Mechanistic Model * Spatially Explicit -0,009 0,119 

Mechanistic Model * Dynamic -0,024 0,696 

Mechanistic Model * Static 0,002 0,696 

Mechanistic Model * Both -0,018 0,797 

Mechanistic Model * CC -0,030 0,467 

Mechanistic Model * LULC -0,013 0,857 

Mechanistic Model * No 0,007 0,414 

Mechanistic Model * Invasion Risk -0,027 0,595 

Mechanistic Model * No RA 0,065 0,052 

Mechanistic Model * Other -0,013 0,857 

Mechanistic Model * Point Scoring Sys -0,026 0,649 

Mechanistic Model * Population Dynamics -0,026 0,649 

Mechanistic Model * Potential Distribution -0,013 0,390 

Mechanistic Model * Predicted Species Richness -0,022 0,752 
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Mechanistic Model * Qualitative -0,001 0,969 

Mechanistic Model * Quantitative -0,030 0,373 

Mechanistic Model * Semiquantitative -0,031 0,343  
    

Population Dynamics * Not Spatially Explicit 0,221 0,001 

Population Dynamics * Spatially Explicit -0,029 0,001 

Population Dynamics * Dynamic 0,870 0,000 

Population Dynamics * Static -0,077 0,000 

Population Dynamics * Both -0,028 0,692 

Population Dynamics * CC -0,002 0,968 

Population Dynamics * LULC -0,017 0,780 

Population Dynamics * No 0,003 0,795 

Population Dynamics * Invasion Risk -0,054 0,412 

Population Dynamics * No RA 0,024 0,625 

Population Dynamics * Other -0,017 0,780 

Population Dynamics * Point Scoring Sys 0,061 0,380 

Population Dynamics * Population Dynamics 0,346 0,000 

Population Dynamics * Potential Distribution -0,056 0,018 

Population Dynamics * Predicted Species Richness 0,124 0,088 

Population Dynamics * Qualitative -0,042 0,254 

Population Dynamics * Quantitative 0,072 0,139 

Population Dynamics * Semiquantitative -0,025 0,586  
    

Profile Techniques * Not Spatially Explicit -0,098 0,175 

Profile Techniques * Spatially Explicit 0,019 0,175 

Profile Techniques * Dynamic -0,068 0,319 

Profile Techniques * Static 0,010 0,319 

Profile Techniques * Both -0,036 0,512 

Profile Techniques * CC 0,066 0,352 

Profile Techniques * LULC -0,019 0,645 

Profile Techniques * No -0,011 0,623 

Profile Techniques * Invasion Risk 0,095 0,189 

Profile Techniques * No RA -0,112 0,088 

Profile Techniques * Other -0,019 0,645 

Profile Techniques * Point Scoring Sys -0,082 0,245 

Profile Techniques * Population Dynamics -0,036 0,512 

Profile Techniques * Potential Distribution 0,068 0,070 

Profile Techniques * Predicted Species Richness -0,050 0,419 

Profile Techniques * Qualitative 0,080 0,143 

Profile Techniques * Quantitative -0,029 0,662 

Profile Techniques * Semiquantitative 0,034 0,593    

Regression Analysis * Not Spatially Explicit 0,066 0,302 

Regression Analysis * Spatially Explicit -0,023 0,302 

Regression Analysis * Dynamic -0,040 0,449 

Regression Analysis * Static 0,013 0,449 

Regression Analysis * Both 0,055 0,154 

Regression Analysis * CC -0,175 0,014 

Regression Analysis * LULC -0,021 0,461 

Regression Analysis * No 0,065 0,052 

Regression Analysis * Invasion Risk -0,016 0,805 

Regression Analysis * No RA 0,271 0,000 
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Regression Analysis * Other -0,021 0,461 

Regression Analysis * Point Scoring Sys -0,023 0,693 

Regression Analysis * Population Dynamics -0,040 0,295 

Regression Analysis * Potential Distribution -0,118 0,029 

Regression Analysis * Predicted Species Richness -0,012 0,784 

Regression Analysis * Qualitative -0,226 0,001 

Regression Analysis * Quantitative 0,088 0,227 

Regression Analysis * Semiquantitative -0,065 0,372    

Not Spatially Explicit * Dynamic 0,276 0,000 

Not Spatially Explicit * Static -0,039 0,000 

Not Spatially Explicit * Both -0,035 0,539 

Not Spatially Explicit * CC -0,121 0,081 

Not Spatially Explicit * LULC -0,019 0,665 

Not Spatially Explicit * No 0,040 0,050 

Not Spatially Explicit * Invasion Risk -0,092 0,204 

Not Spatially Explicit * No RA 0,431 0,000 

Not Spatially Explicit * Other -0,019 0,665 

Not Spatially Explicit * Point Scoring Sys -0,078 0,276 

Not Spatially Explicit * Population Dynamics 0,172 0,003 

Not Spatially Explicit * Potential Distribution -0,173 0,000 

Not Spatially Explicit * Predicted Species Richness -0,048 0,449 

Not Spatially Explicit * Qualitative -0,157 0,002 

Not Spatially Explicit * Quantitative -0,054 0,401 

Not Spatially Explicit * Semiquantitative -0,141 0,023    

Spatially Explicit * Dynamic -0,039 0,000 

Spatially Explicit * Static 0,276 0,000 

Spatially Explicit * Both 0,004 0,539 

Spatially Explicit * CC 0,032 0,081 

Spatially Explicit * LULC 0,002 0,665 

Spatially Explicit * No -0,130 0,050 

Spatially Explicit * Invasion Risk 0,017 0,204 

Spatially Explicit * No RA -0,152 0,000 

Spatially Explicit * Other 0,002 0,002 

Spatially Explicit * Point Scoring Sys 0,012 0,276 

Spatially Explicit * Population Dynamics -0,020 0,003 

Spatially Explicit * Potential Distribution 0,224 0,000 

Spatially Explicit * Predicted Species Richness 0,006 0,449 

Spatially Explicit * Qualitative 0,092 0,002 

Spatially Explicit * Quantitative 0,019 0,401 

Spatially Explicit * Semiquantitative 0,053 0,023    

Dynamic * Both -0,03 0,651 

Dynamic * CC -0,019 0,749 

Dynamic * LULC 0,167 0,003 

Dynamic * No -0,005 0,735 

Dynamic * Invasion Risk -0,065 0,350 

Dynamic * No RA 0,048 0,360 

Dynamic * Other -0,018 0,751 

Dynamic * Point Scoring Sys 0,043 0,548 

Dynamic * Population Dynamics 0,287 0,000 

Dynamic * Potential Distribution -0,059 0,027 
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Dynamic * Predicted Species Richness 0,099 0,164 

Dynamic * Qualitative -0,062 0,132 

Dynamic * Quantitative 0,097 0,071 

Dynamic * Semiquantitative -0,044 0,393    

Static * Both 0,002 0,651 

Static * CC 0,004 0,749 

Static * LULC -0,010 0,003 

Static * No 0,019 0,735 

Static * Invasion Risk 0,009 0,350 

Static * No RA -0,015 0,360 

Static * Other 0,001 0,751 

Static * Point Scoring Sys -0,005 0,548 

Static * Population Dynamics -0,021 0,000 

Static * Potential Distribution 0,078 0,027 

Static * Predicted Species Richness -0,008 0,164 

Static * Qualitative 0,035 0,132 

Static * Quantitative -0,030 0,071 

Static * Semiquantitative 0,015 0,393    

Both * Invasion Risk -0,035 0,539 

Both * No RA 0,007 0,849 

Both * Other -0,014 0,834 

Both * Point Scoring Sys -0,033 0,599 

Both * Population Dynamics -0,022 0,766 

Both * Potential Distribution -0,024 0,181 

Both * Predicted Species Richness 0,384 0,000 

Both * Qualitative -0,042 0,143 

Both * Quantitative 0,057 0,142 

Both * Semiquantitative 0,004 0,914    

CC * Invasion Risk -0,070 0,313 

CC * No RA -0,175 0,014 

CC * Other 0,048 0,159 

CC * Point Scoring Sys 0,012 0,852 

CC * Population Dynamics -0,038 0,399 

CC * Potential Distribution 0,093 0,044 

CC * Predicted Species Richness 0,069 0,194 

CC * Qualitative 0,064 0,307 

CC * Quantitative -0,028 0,694 

CC * Semiquantitative 0,125 0,076    

LULC * Invasion Risk -0,019 0,665 

LULC * No RA -0,021 0,461 

LULC * Other -0,011 0,883 

LULC * Point Scoring Sys -0,018 0,711 

LULC * Population Dynamics -0,014 0,834 

LULC * Potential Distribution 0,016 0,223 

LULC * Predicted Species Richness -0,016 0,797 

LULC * Qualitative -0,021 0,303 

LULC * Quantitative 0,029 0,302 

LULC * Semiquantitative 0,025 0,302    
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No * Invasion Risk 0,026 0,201 

No * No RA 0,080 0,016 

No * Other -0,008 0,236 

No * Point Scoring Sys 0,002 0,902 

No * Population Dynamics 0,009 0,344 

No * Potential Distribution -0,103 0,092 

No * Predicted Species Richness -0,039 0,002 

No * Qualitative -0,005 0,903 

No * Quantitative -0,015 0,645 

No * Semiquantitative -0,067 0,054    

Invasion Risk * Qualitative 0,129 0,013 

Invasion Risk * Quantitative -0,054 0,401 

Invasion Risk * Semiquantitative -0,025 0,69  
  

 

No RA * Qualitative -0,355 0,000 

No RA * Quantitative -0,264 0,000 

No RA * Semiquantitative -0,250 0,001    

Other * Qualitative -0,021 0,303 

Other * Quantitative 0,079 0,005 

Other * Semiquantitative -0,021 0,440    

Point Scoring Sys * Qualitative 0,200 0,000 

Point Scoring Sys * Quantitative -0,064 0,277 

Point Scoring Sys * Semiquantitative -0,110 0,052    

Population Dynamics * Qualitative -0,042 0,143 

Population Dynamics * Quantitative 0,154 0,000 

Population Dynamics * Semiquantitative -0,040 0,273    

Potential Distribution * Qualitative 0,091 0,162 

Potential Distribution * Quantitative 0,107 0,045 

Potential Distribution * Semiquantitative 0,238 0,000    

Predicted Species Richness * Qualitative -0,002 0,956 

Predicted Species Richness * Quantitative 0,036 0,435 

Predicted Species Richness * Semiquantitative 0,027 0,530 

 


