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resumo 
 

 

A simulação dinâmica de edifícios é uma prática cada vez mais comum em 
engenharia e arquitetura. Embora os simuladores atualmente utilizados sejam 
cada vez mais poderosos, a complexidade dos edifícios leva à necessidade de 
simplificações que podem ter um impacto relevante na qualidade dos 
resultados obtidos. Vários estudos realizados recentemente enfatizam 
discrepâncias consideráveis entre o desempenho energético medido e 
simulado do edifício. Como os edifícios geralmente não apresentam o mesmo 
desempenho durante a operação que o previsto na fase de projeto, foi 
instigado um amplo interesse no monitoramento real de edifícios, e a lacuna 
entre os dados de consumo de energia medidos e simulados tornou-se uma 
preocupação elementar na construção de domínio de simulação. Por esse 
motivo, a calibração dos modelos de simulação de construção é de crescente 
interesse. O objetivo deste trabalho é usar os dados das medições de 
Qualidade  do Ambiente Interno (QAI) e as medições reais de uso de energia, 
consumo de eletricidade e aquecimento durante um ano de um apartamento 
residencial em uso recém construído de baixo carbono no oeste de Londres - 
Reino Unido, para a calibração e validação de um modelo de desempenho 
energético. Para conseguir isso, os desempenhos de alguns apartamentos 
típicos foram analisados e um modelo de energia foi criado no DesignBuilder 
usando a documentação da fase de projeto, medições de dados pós-
ocupação, juntamente com dados de QAI de zonas típicas. Uma metodologia 
sistemática, baseada em evidências, foi usada para calibrar um modelo 
representativo de energia de apartamentos com base nos dados mensais de 
consumo de energia. Os resultados da simulação de energia do modelo 
calibrado foram comparados com os dados reais de energia medidos, em 
seguida as causas das discrepâncias entre os dois resultados foram 
elaboradas e a diferença entre esses dois desempenhos foi analisada para 
prever possíveis determinantes. A análise de incerteza e de sensibilidade 
(UA/SA) foi realizada após a conclusão do modelo calibrado, a fim de verificar 
e quantificar o grau de incerteza e as variáveis mais influentes e determinantes 
em um modelo de desempenho energético. O modelo calibrado criado foi 
validado pelos critérios mensais de calibração conforme a Diretriz 14 do 
IPMVP/ASHRAE, de CV (RMSE) <15% e NMBE <± 5%. A lacuna 
remanecente do desempenho energético entre as medições reais e os 
resultados da simulação do modelo calibrado é indicada e explicada. O 
trabalho também reflete sobre aspectos práticos da coleta de dados, como 
deficiências na medição, monitoramento e observações que poderiam ser 
abordadas para uma calibração do modelo mais precisa. Algumas melhorias 
nas limitações encontradas neste trabalho são recomendadas: mais rigidez 
nos padrões de validação de modelos calibrados; e métodos existentes para 
calibração; e a redução da incerteza nos parâmetros de entrada do modelo. 
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abstract 

 
Dynamic simulation of buildings is an increasingly common practice in 
engineering and architecture. Although the simulators currently used are 
increasingly powerful, the complexity of buildings leads to the need for 
simplifications that can have a relevant impact on the quality of the results 
obtained. Several studies performed recently have emphasized considerable 
discrepancies between measured and simulated building energy performance. 
As buildings usually do not present the same performance during their 
operation as the one predicted in the design phase, a broad interest in building 
real-monitoring has been instigated and the gap between measured and 
simulated energy consumption data has thus become an elementary concern in 
the building simulation domain. For this reason, the calibration of building 
simulation models is of growing interest. The objective of this work is to use the 
data from the Indoor Environmental Quality (IEQ) measurements and the actual 
energy use measurements, electricity and heating consumption for one year of 
an in-use low-carbon newly built residential apartment in West London - UK, for 
the calibration and validation of an energy performance model. To achieve this, 
performances of some typical apartments were analyzed, and an energy model 
was created in DesignBuilder using design stage documentation, post-
occupancy measurement and metering along with IEQ data from typical zones. 
A systematic, evidence-based methodology was used for calibrating one 
representative apartment energy model-based to monthly energy consumption 
data. The outcomes from the calibrated model energy simulation were 
compared with the actual measured energy data, then the causes of 
discrepancies between the two results were elaborate and the gap between 
these two performances was analysed to predict possible determinants. 
Uncertanti and Sensitivity Analysis (UA/SA) were conducted after the 
completion of the calibrated model in order to verify and quantify the degree of 
uncertainty for and the most influential and determinants variables in an energy 
performance model. The calibrated model created was validated by monthly 
calibration criteria as per IPMVP/ASHRAE Guideline 14, of CV(RMSE) <15% 
and NMBE<±5%. The energy performance remaining gap between the actual 
measurements and the calibrated model simulation results are than point out 
and explained. The work also reflects on practicalities of data collection such as 
shortcomings in the metering, monitoring and observations that could be 
addressed for model calibration more accurate. Some improvements in the 
limitations found in this work are recommended: more rigidity in the validation 
standards of calibrated models and existing methods for calibration; and the 
reduction of uncertainty in the model's input parameters. 
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1. INTRODUCTION 

 

Dynamic Simulation (DS) of buildings is an increasingly common practice in engineering 

and architecture. Although the simulators currently used are increasingly powerful, 

comprehensive and subject to standardized validation and verification processes, the 

complexity of buildings as a thermal system leads to the need for simplifications and 

adjustments that can have a relevant impact on the quality of the results obtained. 

By constructing simulation models that mimic complex real-world physical processes, 

it is virtually impossible to evaluate all possible variations because of the large number of 

interdependent input variables. The Uncertainty Analysis (UA) and the Sensitivity Analysis (SA) 

of the simulation results seek to evaluate the impact of the variations on the input parameters 

in the outputs, in order to propose simplification models by identifying the most sensitive 

inputs which propagate the uncertainty in the results. Thus, it is possible to obtain simplified 

Dynamic Simulation Models (DSM) that properly represents the analysed building. 

 

1.1. Research Background 

 

In the mid-1970s, a wave of energy conservation activities, especially promoted by 

federal and state agencies, was triggered by the oil shock. This led to the generalized initiation 

of demand-side management projects geared specifically to the small commercial and 

residential buildings stock [1]. In this scenario, Building Simulation (BS) has emerged, used 

initially throughout the design process, from the early stages to detailed construction phases, 

as an endeavour to imitate reality and improve on traditional manual methods in order to 

study and optimize the energy performance of buildings and systems [2]. Subsequently, in 

1980, building professionals started becoming aware of the potential and magnitude of energy 

conservation saving in large buildings [1] and, thereafter, the BS domain has grown and 

continuous improvements are being made to software features and, above all, to the building 

models robustness [2].  

Many initiatives have been developed to build more sustainable buildings since the 

construction sector are responsible for almost 40% of total final energy consumed in the world 

[3]. An example of this effort is that in the European Union all new buildings must reach a 

“nearly zero energy” performance by 31 December 2020 [4]. In response to current high and 

ambitious sustainability goals, as the main focus is to reduce the energy demand of the 

buildings and optimize its energy performance, the building's design has been recently 

subjected to changes and BS is of growing importance as a clear response to this issues [2]. 

Nevertheless, it is much more common to see BS applications in construction or advanced 
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design phases rather than in early phases as in concept design, which shows that its potential 

is not fully exploited, and its uptake is still restricted. 

Several studies performed recently have emphasized considerable discrepancies 

between measured performance and simulated building energy performance [5–7]. As 

buildings usually do not present the same performance during their operation as the one 

predicted in the design phase, a broad interest in building real-monitoring and operation 

diagnostic has been instigated and the gap between measured and simulated energy 

consumption data has thus become an elementary concern in the BS domain. For this reason, 

the calibration of building simulation models is of growing interest [2].  

Despite the recent increasing importance and application of calibration due to the 

interest in studies concerning the disagreement between measured building energy 

consumption and predicted energy consumption by building energy simulation programs, the 

lack of a harmonized and officially recognized procedure for performing calibration of building 

energy models still remains a major issue [2]. 

UA and SA perform an essential part of the modelling process, especially for calibrated 

simulation, as they represent a key function in building model accuracy. The UA intends to 

quantify the output variability, while the SA seeks to identify the impact on the output 

variability according to the variation of input data, in other words, how the uncertainty in the 

model output can be allocated to different sources of uncertainty in the input of the model 

[2]. The SA aims to identify the most influential parameters on energy consumption to simplify 

the statistical model by eliminating non-influential inputs or grouping correlated inputs. 

Understanding what is influencing the levels of the key parameters and their interactions is 

important in order to reduce their uncertainty and provide only relevant information on the 

model [4]. In doing so, UA and SA should be integrated within calibration methodologies for 

tuning the most important parameters. 

 

1.2. General Objective 

 

• This work purpose is to use the data from the Indoor Environmental Quality 

(IEQ) measurements and the actual energy use measurements, electricity and 

heating consumption for one year of an in-use low-carbon newly built 

residential apartment in West London - UK, for the calibration and validation of 

an energy performance model.  
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1.2.1. Specifics Objectives  

 

• Develop existing analytical methodologies which may be applied to calibration 

models to achieve a greater degree of correlation between the real-world and 

simulation model, thereby increasing the reliability of the final calibrated 

model. 

• Perform UA and SA of DS results of energy response and comfort in buildings. 

 

1.3. Thesis Contribution  

 

This research contributes for the selection of methods and tools, according to the 

available measured data, for the calibration process and preparation of a model that can lead 

to optimized retrofit interventions and rationalization of building management and operation. 

In order to determine whether low-carbon buildings actually operate with the lowest expected 

carbon content, to discover problems and address improvements in energy performance, it is 

necessary to assess the energy performance of buildings and to reduce existing gaps in energy 

consumption. 

Since most of the surveys that assessed building performance focused on commercial 

buildings, and among those that assessed residential buildings, most chose homes as case 

studies, the focus on assessing performance in residential apartment blocks is considerably 

reduced. Therefore, this dissertation comes to remedy the obvious lack of comprehensive 

studies on the evaluation of the building performance of apartment buildings. 

 

1.4. Organization of the Work 

 

This document is organized into eight chapters. The first one 1. Introduction, a small 

contextualization it's made, sequentially the work objectives are pointed out, the contribution 

of this work and the scope and limitation of the project. The second chapter 2. Literature 

Review, the recent main researches in this field are presented, as well the main methods 

applied for Calibration Simulation (CS), UA and SA and the additional work required is 

presented. In the third chapter 3. Methodology, the overall methodology is described, the case 

study is presented in detail, as well as the data measurements which were made in order to 

access the building actual performance information. In this same chapter, the modelling and 

the calibration processes are described related to the base model and calibrated model. 

Chapter 4. Base Model describes in detail the input data which were used to generate the base 

energy model simulation, the results obtained from this simulation, a comparison of this 
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results with the actual energy consumption and an analysis of the performance gap founded 

between these values. Sequent, in chapter 5. Calibration Process, all the changes made on the 

base model input during the calibration process are described in detail, based on evidence. 

Chapter 6. Uncertainty and Sensitivity Analysis describes the methodological process and the 

results for the analysis of the uncertainty and the most sensitive variables in the model. On 

chapter 7. Results and Discussion, a comparison made between the results founded with the 

calibrated model simulations and the actual performance is taken, followed by an analysis of 

what are the probable causes of the remaining energy performance gap. In the end, the 

conclusions from this work are presented in Chapter 8. Conclusion, and some considerations 

for future works. The References and Attachments are presented in sequence. 

  



5 

 

2. LITERATURE REVIEW  

 

This chapter aims to deepen the knowledge related to Building Energy Performance 

Simulation (BEPS) and calibration of Building Energy Performance Models (BEPM) by assisting 

UA and SA. A literature review of the main authors on the subject is carried out in order to 

know the available methods, the most used methodology and what research has been 

developed in this field in recent years. The literature review considered the fundamental 

authors on the theme and the researches made in the last ten years, from searches made for 

scientific articles in open access platforms. 

Firstly, this chapter presents a general comprehension about the scope of Energy 

Performance Analysis, including the UK regulations, procedures and methods, the BEPS 

concept, the model calibration and its issues. Subsequently, the CS is approached with its 

methods and classifications. Likewise, the UA and SA methodology and classifications are 

presented. Finally, the additional work required in this field is discussed. 

 

2.1. Energy Performance Analysis  

 

Both the International Energy Agency (IEA) and Intergovernmental Panel on Climate 

Change (IPCC) report of 2015 emphasize that the potential of achieving energy efficiency in 

buildings to reach global energy reduction targets is significant, as buildings are long-term 

assets, and, therefore, should be short-term targets to prevent lock-in of a stock of inefficient 

buildings [3]. This significant potential is further evidenced by the fact that the residential 

sector accounts for about 25% of the world's primary energy consumption and that this 

consumption is steadily growing on a global scale at an average annual rate of over 2% over 

the past four decades [8].  

In the residential sector, BEPM is generally used to evaluate energy-saving policies, 

analyse the impact of future energy consumption conservation measures and predict future 

energy demand of buildings. After 1990, simulation tools were mostly used during later stages 

of the project, and, as in this late phase design decisions with the greatest impact on the 

building's energy performance have already been made, such as form, construction and 

operation of the building, the effectiveness of simulation tools is usually lower [9]. Although in 

recent years several BEPM have been developed, the amount and type of input data required 

creates difficulties in modelling and obtaining accurate results from simulations [8]. Building 

energy simulation in the early design stages has the potential to provide a means of quantifying 

and evaluating the energy efficiency of design alternatives and guiding future decisions [10].  
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Commonly, buildings are delivered without any feedback on measured operational 

performance and actual energy consumption, which is not the case in other industrial sectors 

such as the automotive industry. This situation is clearly unsustainable when real 

improvements in actual performance are intended. For high-quality, low-energy buildings to 

be designed, feedback on the measured operational performance of real buildings is required, 

which is only possible from organized energy monitoring systems and CS of BEPM [11]. 

Unfortunately, BEMS are expensive and many homeowners find the required investment 

prohibitive. 

 

2.1.1. Standard Assessment Procedure – SAP 

 

Standard Assessment Procedure (SAP) is the methodology, developed by the Building 

Research Establishment (BRE) for the former Department of the Environment in 1992, based 

on the BRE Domestic Energy Model (BREDEM) framework for calculating the energy 

consumption of dwellings. This methodology is used by the United Kingdom (UK) Government 

to assess and compare the energy and environmental performance of dwellings in order to 

help deliver its energy efficiency policies. SAP purpose is to provide accurate and reliable 

assessments of dwelling energy performances that are needed to underpin energy and 

environmental policy initiatives.  

This procedure, based on standardized assumptions for occupancy and behaviour, 

assess how much energy a dwelling will consume when delivering a defined level of comfort 

and service provision. These indicators of performance are based on estimates of annual 

energy consumption for the provision of space heating, domestic hot water, lighting and 

ventilation. SAP enables a comparison of dwelling performance quantifying it in terms of 

energy use per unit floor area, and determine related factors, such as a fuel-cost-based energy 

efficiency rating (the SAP Rating) and emissions of carbon dioxide, CO2, (the Environmental 

Impact Rating) from the assessment [12]. 

SAP, as a simplified tool to reflect the theoretical energy performance of a building in 

compliance with UK building regulations, is used in building dynamic modelling since this has 

a significant role in evaluating the in-use building energy performance. 

 

2.1.2. National Calculation Method – NCM 

 

The Ministry for Housing, Communities, and Local Government (MHCLG) in 

consultation with the Devolved Administrations (DAs), defined the National Calculation 

Method (NCM) for the Energy Performance of Buildings Directive (EPBD), which, besides 

indicate the procedure for demonstrating compliance with the Building Regulations for 
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buildings other than dwellings by calculating the annual energy use for a proposed building 

and comparing it with the energy use of a comparable 'national' building, contains standard 

sets of data for different activity areas and call on common databases of construction and 

service elements. These standard sets of data are used as a base model and are default 

schedules templates for dynamic simulation on DesignBuilder Software [13].  

 

2.1.3. Building Energy Performance Simulation (BEPS) 

 

In order to understand the overall energy consumption in buildings, since the buildings 

energy flows can be very complex, energy modelling of buildings becomes necessary. BEPS is 

a detailed analysis of the energy use of a building and/or its energy-using systems, carried 

through the computer-based simulation software. It could be performed a building-wide 

simulation [14–16] as well as detailed component analysis using specialized simulation 

software tools which works by creating a mathematical model that gives a rough 

representation of the building.  

BEPM can generally be classified as: diagnostic models, used to identify the nature or 

cause of some phenomenon and to better understand the laws that govern a given system; or 

prognostic models, used to predict the behaviour of a complex system given a set of well-

defined laws. The BEPM can further be classified into Law-Driven (or forward) models, which 

predict a system behaviour given its properties and conditions by applying a given set of laws; 

or Data-Driven (inverse) approaches, which produce models that are capable of accurately 

predicting system behaviour by using monitored data from the building. The data-driven 

methods can be used to describe a system with a minimal set of adjustable inputs [17]. 

Inverse models, in the context of energy performance estimation, can be used in 

detailed model calibration. In this approach, a fully descriptive law-driven model of a building 

system has its various inputs tuned to match the measured data. The detailed model 

calibration allows assessing the impact of changes in specific physical parameters of 

construction, system and environment, and provides a more detailed prediction of building 

performance as it has high-quality input data available. However, because this approach is 

over-parameterized and under-determined, it requires significant experience, time and effort 

for its development [17]. 

 

2.1.4. Issues with Building Energy Performance Simulation and Model Calibration 

 

Aspiring to maximize the benefit of the simulation and for it to be employed 

successfully at the beginning of the design process, decisions with the biggest effect on 

performance must be made at the initial stage, such as form and materials. In this case, it is 
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necessary to know the details of the construction, which does not correspond to reality in most 

cases [9]. 

BEPS models need to have a certain degree of confidence in order to the existing model 

closely represent the actual behaviour of the building under study. However, significant 

discrepancies between BEPS model-predicted and the actual metered building energy use 

(often up to 100% differences) have been observed recently in numerous studies [17]. Since 

Calibration is known as the reconciliation of model outputs with measured data, achieving 

more accurate and reliable results, it’s the best method to reduce the discrepancies between 

BEPS prediction and measured building performance. 

As synthetized by Coakley, Raftery, & Keane [17], the BEPS modelling and calibration 

face some issues. The problems relate to modelling are:  

• The lack of understanding and consistent use of standardized methods;  

• The time, knowledge, expertise and cost required to develop accurate models 

of building geometry and HVAC systems;  

• The poor integration between various 3D modelling software packages (such as 

Autodesk Revit and ArchiCAD) and BEPS packages (such as EnergyPlus, 

DesignBuilder).  

The BEPS calibration issues are: 

• The lack of explicit standards for calibration criteria; 

• The expense and time needed to obtain the required hourly sub-metered data, 

which is usually not available;  

• The few measurable outputs to thousands of model inputs;  

• The lack of high-quality input data required for detailed models;  

• The few studies which account for uncertainty in model inputs and predictions, 

what leads to a lack of confidence in BEPS outputs;  

• The difficulty in identifying the underlying causes of discrepancies between  

model predictions and measured data; and  

• The lack of integrated tools and automated methods that could assist 

calibration. 

 

2.2. Calibration Simulation 

 

Usually, only very scarce and limited information about the building and its 

performance, such as as-built files and energy billing data, are available. It contrasts with the 

simulation packages with a high number of details and parameters to adjust and aspects that 

cannot be investigated in practice, as they have been developed to support the design of new 
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buildings. [14]. This situation indicates how the calibration of a simulation model to an existing 

situation usually is highly underdetermined problem. 

In literature [1,17] it’s possible to find four main proposed BEPS model calibration 

methodologies: manual calibration methods based on an iterative and pragmatic approach; 

graphical-based calibration methods, suite of informative graphical comparative displays; 

calibration based on analysis procedures and special test; and automated techniques for 

calibration, based on analytical and mathematical interventions.  

Several studies based on CS have been carried out in the past decades but till the 

moment no formal and recognized methodology has been presented. The lack of a universal 

consensus guideline makes CS a process highly dependent on the user’s judgments and skills, 

highly timing consuming and far more complicated, requiring higher expenses than 

“uncalibrated” models. 

User’s knowledge and skills constitute an imperative and elementary factor for 

performing calibration. As issues concerning the reason of divergencies between simulated 

consumption and measured consumption are often encountered during CS, users should be 

able to identify the underlying causes of the mismatch due to their building simulation 

knowledge and skills. Regardless of the calibration method used and the accuracy of the 

building models accomplished, the user's skills also impact directly on the calibration running 

time [2]. 

Nevertheless, there are standard criteria that characterizing the calibration process for 

validating a calibrated model: the calibration methodology adopted; the calibration level 

pursued; the model complexity; the simulation tool used; and the integration of SA/UA in the 

calibration process [2]. The same calibration process can adopt different methods from the 

four main categories in order to improve the calibration. 

 

2.2.1. Calibration Methods 

 

The BEPS model calibration is notoriously known as a complex and highly 

undetermined problem for feature an important number of parameters to calibrate in 

comparison with the very limited amount of data available, even if special attention be paid to 

select parameters with a physical meaning easily identifiable. 

Considering the complexity of the problem, when performing a model calibration, is 

crucial ensuring the method is systematic and may be applied to numerous cases, keeping the 

reproducibility and robustness of the approach. In the same way, is important consider issues 

regard to sensitivity, distinguishing influential and non-influential parameters; uncertainty, 

quantifying the final uncertainty on the model’s outputs; and accuracy, defining the calibration 

criterion that will be used to estimate the quality of the calibrated model [14]. 
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As BEPS is still a relatively rare practice, it’s also unlikely to find an initial model 

available, hence often one has to be created according to design documentation and, in the 

absence of these, program defaults [15]. 

The calibration process begins by configuring the initial as-built input file based on the 

available information, such as architecture plans, built files and technical sheets. The next 

steps of the calibration methodology involve selecting the sources of information explored to 

identify the model input parameters. From the as-built files, there is a hierarchy between the 

sources of information, subsequently: inspection through visits to the building and installation, 

a survey of installed equipment and analysis of the Building Energy Management System 

(BEMS); monitoring using a power measurement and analyse equipment with short or long 

term measurements; questionnaire-based occupancy survey. Along this process, priority is 

always given to physical observations and measurements rather to architecture/engineering 

plans or specification sheets.  

The adjustment of a parameter is done when it represents an improvement in the 

reliability of the model, only if the updated value came from a more reliable source of 

information and has a physical meaning, such as direct measurement at the expense of on-site 

observation. In order to help define a hierarchy between influential and non-influential 

parameters, sensitivity analysis can be used. The non-influential parameters are set to their 

best-guess value and the influential parameters are ranked in order of importance [14,15]. 

At each stage of the calibration process, an analysis of the calibrated model accuracy is 

done using statistical criteria and visual verifications, in order to point out possible problems 

to be investigated for the model continuous improvement. Depending on the size and 

complexity of the modelled construction and systems, the amount of information available at 

each stage of the calibration process and the number of iterative process steps, a greater or 

lesser number of revisions and analysis of the calibrated model will be necessary. 

 

2.2.2. Manual Calibration 

 

Manual Calibration category is the most used in simulation applications, includes all CS 

applications without a systematic or an automated procedure through 

mathematical/statistical methods or otherwise. The input data are altered based on users’ 

knowledge about the building, experience and judgment, relying on iterative pragmatic 

intervention by the modeller. A manual calibration method may avoid the use of highly 

complex models once they are hard to handle [2,17]. 
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2.2.3. Graphical Techniques 

 

Graphical Techniques are based on graphical representations and comparative displays 

of the results. The graphical methods may also avoid the use of highly complex models. 

 

3D Comparative Plot 

 

This method is applied for calibrating time-dependent parameters, has been 

established to analyse hourly differences, during the entire simulation period, between 

simulated and measured data, for instance, schedule loads. Hourly values are computed and 

compared in the plot. 

 

Calibration Signature 

 

Calibration Signature corresponds to a graphical representation of the differences 

between the predicted and simulated energy consumption, as a function of the outdoor air 

temperature. 

 

2.2.4. Analytical Procedures 

 

This method is based only on analytical test and procedures, such as short or long-term 

monitoring periods, it does not utilize mathematical or statistical procedure in the calibration 

process. 

 

2.2.5. Automated Techniques 

 

Automated techniques can be described as having some form of automated process to 

assist or complete model calibration, these approaches are based either on mathematical 

procedures, as Bayesian calibration, or in analytical approaches. Include all procedures that 

are built on sort of automated procedures which cannot be considered as user-driven. 

Automated methods may bring a reduction on the computational time of the 

calibration process, once they tend to use simplified models, rather than more detailed ones. 

As complex models are hard to handle and tune, they can provide guidance that could 

represent too complex procedures, bringing users to a confusing and unorganized process. 

Even though the current trend is the search for and use of automated methods, based on the 

implementation of sensitivity and uncertainty analysis, to fine-tune the models and improve 

thus their accuracy [2,17]. 
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Bayesian 

 

Bayesian analysis is a statistical method which computes a distribution for unknown 

parameters (θ) given the observed data (y), from preceding probability theory. It is employed 

for calibration purposes for incorporating uncertainties directly in the process. 

 

Meta-model 

 

A meta-model is a mathematical function in which a limited number of input and 

output combinations serve as the basis for determining the coefficients. 

 

Optimization-based 

 

Optimization-based methods are settled on the combination of a building simulation 

software, such as DesignBuilder, EnergyPlus, etc., and as optimization program which employs 

optimization algorithms, such as GenOpt. 

 

 
Figure 1: Calibration Methods 

 

The Figure 1 above briefly presents the main methods for carrying out the calibration 

process, which are detailed in this chapter. 

 

2.2.6. Obtaining input data and assessing calibration performance 

 

Calibration methodologies and results are often not discussed in detail in many case 

studies, which leads to a lack of explicit standards for calibration criteria. Current guidelines 
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do not account for input uncertainty, sub-metering calibration, or zone-level environmental 

discrepancies, there are currently few studies which account for uncertainty in model inputs 

and predictions, thus leading to a lack of confidence in BEPS outputs.  

The most common approach is which the analyst tunes some of the countless input 

parameters until the model meets the acceptance criteria is commonly used. Manual 

approaches to model calibration generally rely on manual pragmatic user intervention to ‘fine-

tune’ individual parameters to achieve a calibrated solution. However, these changes are often 

not tracked or recorded and are rarely reported. This results in a situation whereby the 

calibration process relies heavily on user knowledge, experience, statistical expertise, 

engineering judgement, and an abundance of trial and error.  

In order to improve the reliability and reproducibility of the calibration process, it is 

necessary to bring the scientific method of evidence-based decision-making to the process. All 

changes to the input parameters must be made according to a clearly defined hierarchy of 

priorities, so that simulation becomes more of a science than an art. Changes in the model 

must be documented, keeping an up-to-date history of the decisions made along with the 

evidence on which these decisions were based [11,17]. 

Although several authors have worked on defining a criterion to assess the quality of 

the calibration, defining a general criterion, ensuring the proper calibration of a given 

simulation model for a given existing situation, is a difficult if not impossible task. The current 

guidelines specify only acceptable error intervals for the annual or monthly simulation of the 

entire building, through the calculation of statistical indices such as Mean Bias Error (MBE) and 

Coefficient of Variation of the Root Mean Square Error (CVRMSE) (ASHRAE, 2002). However, 

these calibration criteria are usually considered too cold or not very representative of the 

quality of the calibrated model [14]. 

Building energy simulation models are generally considered ‘calibrated’ if they meet 

the criteria set out by ASHRAE Guideline 14 / IPMVP protocol [18], [19], [20]. Mean Bias Error 

(MBE) (%), Root Mean Square Error (RMSE) (%) and Coefficient of Variation of Root Mean 

Square Error CV(RMSE) (%) are the most common calculations to check the model calibration.  

 

2.3. Uncertainty Analysis 

 

Uncertainty analysis has received increasing attention and becomes an active research 

field in buildings energy assessments because a number of variables influencing energy use 

and thermal performance in buildings are inherently uncertain [21].  

The UA effort involves the designation of a mathematical description to the uncertainty 

in the parameters of the model previously identified as sources of uncertainties, in other 
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words, it assesses the consequences of a lack of knowledge about the input parameters on 

model outputs.  

The variety of approaches that have been used for uncertainty characterization and the 

complexities associated with them is showed with the analysis of each uncertain parameter, 

the most commonly utilized approaches are the simple ones, using PDFs, while more advanced 

models have been considered only for some parameters [22]. 

No standard framework for uncertainty quantification in building energy models is 

curently available, uncertainty modeling it is often based on literature and expert judgment 

and the attention on the use of measured data is limited [10]. However, as enough applications 

of statistical methods of uncertainty analysis in buildings energy assessment and thermal 

performance are available and mature, these methods have been ready to become the 

mainstream approach. In order to provide more flexible analysis for achieving sustainable high-

performance buildings, it's necessary to create more connection between the characteristics 

of building energy analysis and the fundamentals of uncertainty quantification [21]. 

Many studies demonstrate the relevance of uncertainty analysis in building 

performance assessment in four out of several discussed applications [23,24], such as:  

• Building stock analysis; 

• HVAC system sizing;  

• Variations of sensitivity indicators;  

• Optimization under uncertainty. 

 

2.3.1. Uncertainty Analysis Methods 

 

There are two principal types of uncertainty analysis methods [4]: local 

approximations, such as Taylor decomposition, and sampling methods, as Monte Carlo and 

Latin Hypercube Sampling. The uncertainty analysis can also be categorized by the way they 

propagate in numerical models, which could be forward and Inverse.  

Forward uncertainty analysis, to obtain variations of energy use, propagates input 

uncertainty through building energy models. Heo et al. [21] discuss three types of approaches 

for forwarding analysis (Monte Carlo, non-sampling, and non-probabilistic) in order to provide 

sufficient choices of uncertainty methods depending on the purpose and specific application 

of a building project. Because it is an intuitive method and only requires running energy models 

a few times, the sampling-based Monte Carlo method proved to be the most widely used 

forward uncertainty method in the field of building energy assessment among the 

quantification methods studied.  



15 

 

Inverse uncertainty analysis can deduce unknown input factors through building energy 

models based on previous information and energy data. Recent researches of inverse analysis 

have concentrated more on Bayesian computation once this method can make full use of prior 

information on unknown variables, from previous studies, site surveys, and industry standards, 

incorporating this information on building energy models data [21]. 

Some distributions are suggested [9] to uncertainty modelling in the construction of 

energy systems according to the objective of the work: 

• Discrete distribution, parametric or non-parametric, is limited to a finite 

number of options; 

• Uniform distribution is a limited continuous distribution, whose probability of 

the variable assuming a value between the limits is equal; 

• Normal distribution is most appropriate for measured physical data, such as 

measured lengths or temperatures in the case of simulation of healthy 

buildings; 

• Log-normal distribution is when two or more variables normally distributed are 

combined as a product, not being able to produce negative quantities and being 

unlimited to the positive infinity, as in the case of the area, the result of the 

product of two length measurements will be normally distributed; 

• Triangular distribution is a limited continuous distribution, suitable as an 

intermediate step between uniform and normal distributions, is often used in 

fuzzy logic applications. 

 

2.3.2. Sources of Uncertainty 

 

Uncertainty analysis is an important technique and can be used in simulation to address 

problems such as: the model's degree of realism, how well the model represents reality and 

with what resolution; choice of input parameters, which values should be used in the absence 

of measured data; stochastic processes, how much the forecasts are affected by the 

assumptions made in relation to future climatic, occupation and operational factors; features 

of the simulation program and the uncertainties associated with the specific choice of 

algorithms for the various heat and mass transfer processes; and design variations and the 

effect of changing an aspect of the design [9]. Uncertainties are inherent to modeling 

techniques, however analysis methods must be available to assess their effects. 

The main sources of uncertainty in the buildings energy models are related to physical 

domain of the buildings and generally arise from four main sources [2,17]:  
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• Scenario uncertainty, external conditions imposed on the building, including 

outdoor weather conditions, building usage and occupancy schedule;  

• Building physical and operational specification uncertainty, due to incomplete 

or inaccurate specification of the building or modeled systems, which includes 

any model parameters exposed, such as geometry, building envelope 

properties, internal gains, HVAC systems specifications, operation and control 

settings;  

• Model inadequacy and modeling uncertainty, due to inadequate simplifications 

and assumptions of complex physical processes, these assumptions can be 

explicit for the modeler, such as modelling assumptions, zoning and 

programming of stochastic processes, or hidden by the tool, as ignored 

phenomena in the calculation algorithm; 

• Numerical uncertainty, errors introduced in the discretization and simulation of 

the model due to the lack of robust and precise numerical algorithms, such as 

observation error and metered data accuracy. 

 

2.3.3. Assessing Uncertainty Analysis 

 

Due to the lack of knowledge about the input parameters, as detailed information on 

building materials, components and systems specification needed for energy simulation, in 

many cases the characterization of the uncertain parameters couldn't be backed up by actual 

data, which requires assumptions based on the modeller’s experience and their best guesses, 

default values or on empirical information. Relying on assumptions made by the modeller, 

even if's more valuable compared to neglecting uncertainty completely, it's not the optimal 

solution for the input data, thus adequate effort should be placed towards obtaining data to 

support these assumptions, in order to increase the transparency of uncertainty investigations 

[9,10,22].  

The complexity of building systems often lead to simplifications into the simulation. 

Furthermore, most researches have considered all uncertain model parameters as 

independent instead of looking upon parameter correlations which might, in some cases, lead 

to erroneous conclusions. The assumption of parameters independence and the 

simplifications made due to the complexity of building systems, add to the uncertainties in the 

simulation outcome [10,22]. 

Another complex factor that has a significant impact on uncertainty analysis in building 

energy performance is occupants behaviour. Probably, soon, implicit models will remain 

dominant in simulating the variations of occupant behaviour. Specialized tools have been 
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developed to generate samples from specified uncertainty distributions, such as Matlab, R, 

and jEPlus. Those tools also create and run a large number of building energy models for 

uncertainty analysis [21]. 

The decision in selecting an appropriate UA method for the uncertain model 

parameters it’s a difficult part of the modeller's work. This difficulty can contribute to a 

modeller’s decision to pursue deterministic modelling. Furthermore, in many cases, a 

considerable obstacle is established by the structure and the complexity of the modelling tools 

used for different functions. Due to this complexity, a modeller could be discouraged to 

consider uncertainty in the process of energy performance evaluation, which emphasize the 

need of facilitated data exchange between the different tools [22]. 

Aiming to more truthful uncertainty investigations, every uncertain parameter should 

be considered, although, it also leads to more complex and more computationally intensive 

model formulations. As the design progresses, the uncertainty will generally decrease, since 

the design decisions are made concerning the uncertain data.  

In order to allow the appropriate concentration of design effort, its necessary identify 

those parameters that most strongly impact on performance, this could be done by assessing 

the uncertainty in simulation outputs [9]. One approach to minimize the number of uncertain 

parameters is the "manual" elimination based on the modeller's experience, and an alternative 

to avoid this approach is the use of screening Sensitivity Analysis techniques like the Morris 

method [22]. Screening techniques require only a small number of Monte Carlo model 

evaluations because it's able to identify the uncertain parameters whose uncertainty can be 

safely ignored. 

 

2.4. Sensitivity Analysis 

 

As described before, sensitivity analysis is a useful device for energy simulation models 

and, in order to seek the characteristics of building thermal performance, has been extensively 

adopted in different types of applications, such as, calibration of energy models, building 

design, building retrofit, building stock and the impact of climate change on buildings [25]. 

Aiming to provide more robust results for sensitivity analysis, the variations of 

sensitivity index need to be computed. This uncertainty and probability distributions of input 

factors for different research proposes is often not emphasized enough or even overlooked in 

the building analysis field [25]. 
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2.4.1. Sensitivity Analysis Methodology 

 

In order to get sensitivity analysis implemented in building energy performance 

analysis, the methodology that should be used is basically the same in different types of 

application, the variations of input factors, in other words, uncertainty or probabilistic 

distribution, is the main difference for diverse research purposes. This methodology follows 

those typical steps: determine input variations; create building energy models; run energy 

models; collect simulation results; run sensitivity analysis; and presentation of sensitivity 

analysis results [25]. 

The building performance analysis methods could be firstly divided into internal and 

external methods. This work focusses on describing and analysing the external ones. The 

external methods could be categorized into local and global sensitivity analysis, both methods 

provide a quantitative result on determining the influence of each input variable on the 

outputs. The global methods could be further divided into four approaches: regression, 

screening-based, variance-based, and meta-model sensitivity analysis. 

According to other studies, [25] the choice of which method should be used in 

sensitivity analysis depends on many factors, such:  

• The research purposes, 

• The number of input variables, 

• The computational cost of energy models, 

• The analyst’s time for a project, 

• The familiarity of sensitivity methods, etc. 

 

2.4.2. Local Analysis 

 

The simplest method but still very useful in building performance analysis is local 

sensitivity analysis. This method focuses on the impact of the inputs on a specific area of the 

input space. The restraint of local analysis is that it only explores a small portion of the possible 

space of input value, but even with its shortcomings, the method is low computational cost, 

simple implementation, and easy interpretation [25]. 

 

Differential Sensitivity Analysis 

 

Differential Sensitivity Analysis (DSA) is the best known of the local methods, described 

as the backbone of all sensitivity analysis methods. The DSA is a robust method and capable of 
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accurately quantifying the uncertainty in the model output, in each parameter independently, 

thus being suitable for use in the construction simulation. 

It is based on calculating the effect of changing each uncertain parameter in isolation. 

An initial simulation is performed and, for each uncertain parameter, two simulations are 

performed by changing a model parameter from its initial value to its extreme, upper and 

lower values, while all other parameters remain at their initial values. From the comparison of 

the results of these simulations with those of the initial simulation, the effect of uncertainty is 

calculated [9]. 

Despite its ease of application and interpretation of results, since the differences are 

entirely due to the only parameter that was disturbed, the effects of uncertainties are assumed 

to be independent of all other parameters.  

Some methods, such as the Factorial (which includes interactions between 

parameters), the Cotter and the Morris, were other local methods derived from the differential 

sensitivity analysis. However, as these methods are more appropriate for identifying critical 

parameters than for quantifying the effect on output, care must be taken when selecting and 

applying the correct one, a general difficulty encountered in the selection of statistical 

methods [9]. 

 

2.4.3. Global Analysis 

 

Aiming to identify the key variables affecting building thermal performance, global 

sensitivity analysis methods have been increasingly adopted in building energy analysis, being 

the focus of recent researches. 

It is due to their capability to explore the whole input space; they give more accurate 

results and many methods allow the self-verification. These methods drawback is that they 

require a larger number of simulations, so it’s hard to implement those methods on building 

simulation programs with only graphical user interface when it is necessary to automate the 

process of creating energy models and collecting the results from simulation in order to more 

simulation runs for global sensitivity analysis [25].  

 

Regression Method 

 

Regression analysis is a statistical method which "aims to estimate the relationships 

between different variables in a model, investigating how a dependent variable change based 

on the variation of an independent variable" [25]. It provides sensitivity and input correlation 

information and requires moderate computational cost, which put him in one of the first-

choice methods.  
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This method could be applied in the early design phase, considering different design 

scenarios and their impact on the building energy consumption, or also in post-construction 

phase, for assisting the calibration of building models [2]. 

 

Screening-based Method 

 

It's important to identify the parameters that influence the most in building model and 

define their level of uncertainty, as not all input data affect the investigated energy 

consumption in the same ways. Throughout a screening analysis, it's possible to identify the 

most important or influent parameters to be considered in further global SA [2]. 

Screening methods are local sensitivity analyses which provide qualitative results of the 

inputs influencing on output, highlighting parameters with important or negligible effects 

relative to each other, without knowing their global impact. They are often used before 

uncertainty or sensitivity analysis to exclude negligible inputs [4]. 

The most common Screening techniques are Elementary Effects, also known as the 

Morris method, subsequently, we also have Sensitivity Index and Differential Sensitivity 

Analysis.  

Morris method is recommended in the case of an inherent non-smoothness in the 

model and for high computational energy models, when there are a large number of input 

variables and the analyst only needs qualitative analysis [4,25]. 

 

Variance-based Method 

 

Variance-based methods aim to decompose the uncertainty of the outputs over the 

input variables, giving more reliable results at the cost of increased computational time [25]. 

There are two main sensitivity measures that are assessed within this type of technique: first-

order index and total order index. They represent correspondently: the effect of the input 

parameter Xi on output variation y; and the measurement of the effect of the parameter alone 

and the sensitivity of the interaction of the parameter with all other parameters [2].  

The most common Variance-based techniques are ANOVA and FAST methods. The FAST 

allows apportioning the output variance to the variance in the input parameters, computing 

the individual contribution of each input factor, referred as “main effect” in Statistics, to the 

output variance, which is why it is considered superior to other local SA methods [2]. 
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Meta-Model Sensitivity Analysis 

 

The meta-model sensitivity analysis can be used to determine the most influential 

factors in the analysis of the results from regression method indicating there is a large 

proportion of the output variance unexplained by regression models, without running extra 

energy simulation [25]. It could be a good choice to quantify the variance of output for every 

input, and also it is possible with this method to replace the physical model by running a swift 

code that performs a building simulation in less than one second [4]. 

 

Monte Carlo 

 

The Monte Carlo method (MC), which is one of the most commonly used techniques 

for carrying out global sensitivity and uncertainty analysis, is broadly used in the building field 

to achieve the propagation of uncertainty by analysing distribution or dispersion [4]. 

This analysis is based on a repeated number of simulations with a random sampling of 

the model's input, each uncertain model input is defined through a probability distribution, all 

input parameters are then varied simultaneously. MC assesses an estimate of the overall 

uncertainty in the model predictions based on the uncertainties in the input parameters [2].  

The random samples of the model inputs could be replaced for low discrepancy 

sequences, built deterministically to present a low dispersion, such as stratified sampling and 

Latin Hypercube Sampling. This is the principle of the quasi-Monte Carlo method [4]. 

 

Sampling 

 

Sampling methods, which consist in carrying out a large number of simulations using 

different ways to create the input samples, are the better option when a model has more than 

4 discrete parameters or outputs since their disadvantage of high computational time is no 

longer comparable to the other methods [4]. 

 

Latin Hypercube 

 

Latin Hypercube enables to cover the input space and the convergence is fast, providing 

the probability density of the outputs. This is the reason that if the total distribution is desired 

to set the threshold, LHS is preferred against the standard Monte Carlo method. 

LHS method is very similar to Stratification method, except that "the points for LHS 

method are not selected in each stratum but in a subset, such that no pair of subassemblies 

should have the same value for the same parameter" [4]. 
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There are other methods to access meta-model sensitivity analysis, they are: Quadratic 

Combination method, FORM/SORM, Sparse Polynomial Chaos, MARS, ACOSSO, SVT OU SVM 

and Gaussian method. 

 

 
Figure 2: Sensitivity Analysis Methods 

 

The Figure 2 above briefly presents the main methods for carrying out the sensitivity 

analysis detailed in this chapter. 

 

2.5. Additional Work Required 

 

Regarding to Uncertainty Analysis, Mavromatidis, Orehounig, and Carmeliet [22] 

pointed as an additional work required two approaches which could facilitate the workflows 

between DES design models, UC approaches and modelling techniques. “The first approach 

involves the integration of many different modules into a single framework, implemented in a 

common environment. An alternative approach is to host individual models, each 

implemented in a different environment, in a multi-model ecology". 

More effort still needs to be placed on the most difficult task in ensuring the quality of 

uncertainty analysis results, which is the rigorous quantification of the input parameters 

uncertainty. It's necessary to construct the databases for quantifying uncertainty input 

parameters in terms of diverse indicators, such as building types, climate characteristics, and 

new or existing buildings [21].  
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Related to the occupant behaviour, many issues still need to be addressed to better 

simulate stochastic occupant behaviour and their interactions with other systems in buildings 

by using both implicit and explicit occupant models. 

Further research on the sampling-based methods is required to present clear guidance 

on the sampling size in order to produce converged probabilistic outcomes for building energy 

analysis.   

For the 2D Monte Carlo method, further studies are required once this approach can 

be used to represent both epistemic and aleatory uncertainty in building energy assessment. 

It's necessary to explore new visualization methods to show uncertainty results.  

Regarding Bayesian inverse computation, more attention should be paid in applying 

this method, since it's important to clearly understand how the posterior distributions of input 

variables, defined from Bayesian computation, is affected by the availability of energy use data 

in combination with prior beliefs specified as precedent distributions. 

Many new methods haven't been sufficiently explored to test the relevance in 

calibrating building energy models, such as Hamiltonian Monte Carlo. Further research is 

required on optimization under uncertainty (robust design) for low-energy buildings, 

considering a number of uncertain factors at the design stage [21].  
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3. METHODOLOGY 

 

This chapter describes the methodology which will be followed in the case study 

developed in this work. The findings obtained and described in the previous chapters were 

used to instruct the procedures of modelling and calibrating in this chapter, in order to develop 

an accurate model which reflect the actual performance gap. 

The overall methodology which will be followed in this work is described first. In the 

following, the building case study and the reference apartment were described in detail. Next, 

the information on which data were measured and in which way is summarized. And finally, 

the way that models were created, and the steps of calibration are described. 

 

3.1. Overall Methodology 

 

This work focus is on building performance calibrated modelling through dynamic 

simulations in order to estimate its predicted energy performance at in-use status. A 

systematic, evidence-based methodology was used for calibrating one representative 

apartment energy model-based to monthly energy consumption data, through measured 

actual energy performance.  

The energy supplied to the apartment, both the electric gas and the natural gas for 

heating, as well as IEQ measurements, like internal temperature, CO2 concentrations and 

relative humidity, were measured for a study conducted by researchers from a joint research 

project between UCL and Tsinghua University, entitled 'The Total Performance of Low Carbon 

Buildings in China and the UK'. The energy supply has been measured since (02/08/2016) to 

obtain the current energy performance, and the IEQ began to be monitored (27/09/2016). 

The model was created in DesignBuilder Software version 6 in two phases, a base 

model and a calibrated model. Initially, to generate the parameters, profiles and schedules in 

the base model, NCM database and SAP worksheets were used. The calibrated model was 

obtained by modifying the base model according to findings obtained from residents’ 

feedbacks, actual IEQ and energy measured conditions.  

 As noted in the previous chapter, it is extremely important to monitor and control all 

steps of the calibration process for later analysis and reproduction. As a result, during the 

modelling process, the calibration settings for each phase were listed and the impacts of these 

adjustments were analysed. 

The outcomes from the base model energy simulation were compared with the actual 

measurement energy data and elaborate on the causes of discrepancies between the two 

results. The calibrated model results, in the same way, were compared with actual energy 
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consumption, and then the gap between these two performances was analysed to predict 

possible determinants. 

UA and SA were conducted after the completion of the calibrated model in order to 

verify and quantify the degree of uncertainty for and the most influential and determinants 

variables in an energy performance model. Finally, some hypothesis were created to explain 

the energy performance remaining gap between the actual measurements and the calibrated 

model simulation results.  

 

 
Figure 3: Calibration Process Methodology 
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The Figure 3 above briefly presents the general methodology of the calibration process 

used in this research. 

 

3.2. Case Study: Apartment Blocks in East London, United Kingdom 

 

The chosen case study building  consist of two low-energy apartment blocks located in 

East London, England. The buildings were completed in 2015, they attain high sustainability 

standards (Code for Sustainable Homes Level 4) and are mixed-use buildings since the ground 

and first floors accommodate offices. 

These two buildings provide in total 98 highly efficient residential homes, as well as 

community infrastructures like offices and a community centre on the ground and first floors. 

Block A is a fourteen-storey high-rise building including 48 apartments, and Block B is a ten-

storey low-rise building with 34 apartments and 16 maisonettes.  

The building is plugged into a district heating system, have the electricity consumed by 

appliances, equipment and lighting supplied from the Grid, and heating and domestic hot 

water are supplied by the centralized boiler system. The heating energy and electricity data of 

all the apartments in this condominium are metered by E.ON1, one of the UK’s leading power 

and gas companies. 

All the apartments have radiators installed in most of the rooms for space heating, no 

mechanical cooling system is used. Mixed-mode ventilation strategy, which uses both natural 

and mechanical ventilation with heat recovery, is present in all the flats, each one with its own 

MVHR unit with stale air extracted vents and fresh air incoming vents in the flat. In order to 

maintain the user’s health and well-being, the MVHR system operates continuously, providing 

enough fresh air inside as recommended by the WHO [26]. 

Only the residents of five apartments among the total 98 flats allowed the monitoring 

of Internal Air Quality (IAQ) and thermal comfort conditions in their homes. Because of that, 

the present work chose one of those flats as a typical one by a probabilistic sampling in order 

to evaluate its performance. The Figure 4 below shows the spread of energy use in all the flats, 

with the average being of 2437 kWh and standard deviation of 1575 kWh. The representative 

flat selected for calibration and detailed analysis has energy use of 2581 kWh, near the average 

value across the apartment block. The red line in the figure highlights the energy use of the 

representative apartament that was selected for detailed assessment. 

 

 
1 https://www.eon.com/en.html 
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The apartment analysed is inhabited by five people, three adults and two children, it’s 

located on the eighth floor of Block A, facing southwest and southeast orientations, whith total 

floor area of 98.3 m² and storey height of three meters. It has eight zones, which include three 

bedrooms, living room, kitchen, bathroom, toilet and circulation, represented in Figure 5.  

 
Figure 5: Apartment's DesignBuilder 3D 
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3.3. Data Collection for Actual Performance 

 

The three monitored environmental parameters, indoor air temperature, Relative 

Humidity (RH) and CO2 concentration, were collected from the on-site measurement in the 

flat. The measurement, started in September 2016 and still going on, have a time gap for data 

logging of 5 minutes, uses Eltek data loggers2 installed on the walls of one bedroom, the living 

room and the kitchen in the flat for monitoring of environmental parameters.  

The the equipment's sensor measures: for temperature, range of -30 to 65°C, 

resolution of 0.1°C and accuracy of ± 0.4°C (+5 to + 40°C), ± 1.0°C (-20 to +65°C) and ± 1.5°C (-

30 to -20°C); for relative humidity, range of 0-100%, resolution of 0.1% and accuracy of ± 2% 

(10 to 90% RH) and ± 4% (0 to 100% RH); and for CO2 concentration range of 0-5000ppm, 

resolution of 3% and accuracy of ± 50ppm. The heating energy and electricity supplied are 

measured by its own energy meter installed by E.ON and the usage data of the case study flat 

could be directly read from meters. Actual Performance. 

The year selected from the current measurements to serve as the database for the 

simulations was 2017, as it has the most complete electricity data, providing the highest 

accuracy / resolution power consumption data. Electricity consumption data were obtained 

from the electricity meter of the apartment located in the building during site visits, which 

contributed to the non-regularity of the electricity consumption information as those visits 

took place according to the availability of the team that monitors this building. The available 

data is for the months of Jan, February, April, May, September, November and December, with 

intervals between measurements ranging from 30 to 90 days.  

Measurements of natural gas for heating, used for DHW heating and space heaters in 

the room, were taken from the meter of the selected apartment and have uninterrupted daily 

accuracy throughout the year. The data obtained from the IEQ measurements inside the 

apartment to be modelled has a big gap between the months of April to July (12/04 - 01/07), 

and this interval between measurements occurs again in September (28/08 – 28/02). Table 1 

shows the treated measured data for monthly consumption of heating (gas) and electricity for 

the year 2017. 

 

 

 

 

 

 
2 http://eltekdataloggers.co.uk/index.html  
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Table 1: Building Measured Data - Heating (Gas) and Electricity Actual Consumption 

Building Measured Data 

Months 
Heating (Gas) Electricity 

kWh kWh/m² kWh kWh/m² 

Jan/17 822 8.36 330.88 3.36 

Feb/17 659 6.70 269.28 2.73 

Mar/17 488 4.96 259.16 2.63 

Apr/17 220 2.23 311.62 3.17 

May/17 254 2.58 303.15 3.08 

Jun/17 372 3.78 289.66 2.94 

Jul/17 396 4.02 299.32 3.04 

Aug/17 317 3.22 265.81 2.70 

Sep/17 277 2.81 255.75 2.60 

Oct/17 377 3.83 271.25 2.75 

Nov/17 509 5.17 323.10 3.28 

Dec/17 882 8.97 338.34 3.44 

Total 56.69 56.69 3517.35 35.78 

 

 

3.4. Modelling and Calibration Process 

 

Hereafter, the methodology in each step of the modelling and calibration process is 

described. The steps include the base model, the calibrated model with available information, 

uncertainty analysis, sensitivity analysis and hypothesis conception for the energy 

performance gap of the studied apartment, with the development of a calibrated final model. 

As outlined in the previous chapter, tracking and recording of input data as well as 

changes in each phase, especially in the model calibration phase, is crucial to the 

reproducibility of the survey and the results obtained. 

 

3.4.1. Base Model 

 

The base model was created using DesignBuilder software from design project 

information and drawings and from design parameters in SAP and NCM dwelling templates 

already embodied in DesignBuilder software. The SAP worksheet provides design parameters 

of systems and construction such as infiltration rate, air change rate and efficiency. NCM 

templates included relevant defaults on power consumptions and operation profiles of lighting 

and equipment, operation and set-point profiles of heating system, consumptions and use 
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patterns of Domestic Hot Water (DHW) and occupancy patterns. Other information was taken 

from the drawings and specifications of the design project as the U-value. 

The weather file used for the dynamic simulation is provided by DesignBuilder software 

and corresponds to actual weather measurements for the simulated year, 2017, for the 

studied building location. 

 

3.4.2. Calibration Process 

 

The calibrated model was generated from the base model by adjusting the input values 

to match the information found from the actual data analysis. In order to assist in the 

calibration process of the model’s operational profiles, IEQ was used to establish occupancy 

profiles from ambient CO2 concentration data and space heating setpoints temperature from 

indoor temperature measurements. 

 

3.4.3. Uncertainty and Sensitivity Analysis 

 

The UA was conducted by assigning a degree of uncertainty for those variables who 

present the major probability of uncertainty according to the literature. A DSA was the 

methodology used to access the most influence and determinants variables in an energy 

performance model. 

 

3.4.4. Performance Gap Hypothesis  

 

After knowing the most relevant variables in the calibrated model, some hypothesis for 

the remaining gap between the actual and the simulated energy consumption were 

developed, and a final calibrated model was created. 
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4. BASE MODEL 

 

In this chapter, the construction of the base model of the building under study will be 

described step by step. First, the parameters and variables considered in the model as well as 

the respective  sources will be listed. Next, the model and the initial simulation results will be 

presented, along with the verification criteria used to check the input information to validate 

the base model. Finally, the comparison between the results of electricity consumption and 

natural gas for heating obtained with the simulation of the base model will be compared with 

the actual consumption of the apartment in the same period of time and the gap between the 

current and simulated consumption will be shown. 

 

4.1. Input Data 

 

The base model was directly built on DesignBuilder software based on the drawings 

and design projects of the selected apartment and the building. Data on the dimensions, size 

and quantity of the openings and U-value of the exterior walls, floors and openings were 

obtained from drawings. Infiltration rate, air exchange rate, the efficiency of system and 

construction were extracted from the SAP calculation table [27] as shown in Table 2. 

Other data, such as occupancy by day of week and space usage, DHW consumption, 

room heating setpoints temperatures, etc., were obtained from the NCM database [28], 

already incorporated into DesignBuilder software as in Table 3. 

The tables below contain the input data, their values and their sources, used as input 

to build the base model. The Figure 6 and Figure 7 beneath show the model design in the 

software as per drawings and design projects of the selected apartment. The attachment 

shows an exemple of the input data in the DseignBuilder Software. 

 

Table 2: SAP Model Information 

SAP MODEL INFORMATION 

BASE 

MODEL 

External Wall 

 U-value 

Windows 

U-value 
Airtightness 

Lighting 

Power 

Density 

Auxiliary 

Energy 
MVHR 

Units W/m²·K W/m²·K ac/h W/m² W/m² - 

Values 0.18 0.92 0.1 7.5 1.5 0.74 

Table 3: NCM Model Information 
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NCM MODEL INFORMATION 

BASE 

MODEL 

Metabolic 

Rate 

Outdoor 

Air Per 

Person 

Illumi-

nance 

Equip-

ment 

Occupancy 

Density 

Set back 

Tempe-

rature 

Heating  

Set-

point 

Min 

Natural 

Ventila-

tion3 

Units W/person 
l/s - 

person 
lux W/m² people/m² °C °C °C 

Lounge 110 10 150 3.90 0.01 12 21 21 

Kitchen 160 12 300 30.28 0.02 12 18 18 

Bathroom 120 12 150 1.67 0.01 12 18 18 

Toilet 140 12 100 1.61 0.02 12 18 18 

Circulation 180 10 150 1.57 0.01 12 18 18 

Bedrooms 90 10 100 3.58 0.02 12 18 18 

 

 
Figure 6: Building 3D Model 

 

 
3 Minimum temperature at which natural ventilation is used as a cooling method. 
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Figure 7: Apartment 3D Model 

 

4.2. Energy Model Simulation Output Data 

 

After simulating the base model, the results obtained were validated by checking 

hourly indoor temperatures for each ambient, heat gains, mechanical and natural ventilation 

operation and energy consumption for heating demand and electricity. The next simulations 

in the model calibration phase will also aim to adjust the input data to avoid overheating, low 

temperatures, simultaneous natural ventilation and space heating, etc. 

 

4.3. Performance Gap 

 

The final calculated values for heating and electricity consumption were compared with 

the actual measured values in order to access the energy performance gap between the 

calculated energy consumption at project's phase, meeting local requirements and standards, 

and the actual energy consumption at an in-use building. The gap found with this comparison 

is evident in Figure 8 and Figure 9. 

The CV(RMSE) and NMBE values are calculated for the base model as per ASHRAE 

Guideline 14 / IPMVP protocol, in order to quantify the performance gap already known by the 

graph comparison. To validate a monthly calibration, the criteria of CV(RMSE) and NMBE is to 

be <15% and <±5% respectively. For these values, the base model reached CV(RMSE) of 9.97% 
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and NMBE 3.42% for electricity consumption results and CV(RMSE) of 56.21% and NMBE 

45.31% for heating consumption results. 

 

 
Figure 8: Actual x Simulated Energy Consumption - Heating Demand (Gas) 

 

 
Figure 9: Actual x Simulated Energy Consumption - Electricity Use 

 

4.4. Calibration Objectives 

 

After analysing the base model simulation results and comparing it with the data of the 

current IEQ measurements and electricity and heating consumption, some variables to be 

changed in the calibration process were identified. These variables essentially include changing 
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the space heating setback and setpoint temperatures and the space occupancy patterns and 

use. The aim of these changes is, in addition to getting closer to the actual user profile of the 

apartment, to avoid phenomena diagnosed in the analysis of the base model simulation 

results, described in this chapter: keep internal simulated temperatures close to the internal 

measured temperatures, avoid the overheating and overcooling and avoid simultaneous space 

heating and natural ventilation. These and other questions regarding the calibration process 

will be addressed in detail in the following chapter. 
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5. CALIBRATION PROCESS 

 

This chapter describes the framework of the model calibration process. All changes 

made to the base model for fine-tuning the variables are introduced separately, along with 

figures and tables that justify each change and present the results in the simulation for each 

of them. The framework of the model calibration process attends the following steps: 

1. The evidence found in the analysis of the IEQ data is presented; 

2. It’s presented what alteration this evidence entails, showing the initial First 

value of the base model and the value to be altered; 

3. After the simulation is performed, the impact of the change is evaluated and 

the impacted results are presented compared to the previous ones. 

 

5.1. Heating Set Back Temperature 

 

5.1.1. Evidence 

 

By analysing indoor temperature data in the apartment rooms, whose IEQ data were 

being measured, it was possible to conclude that no temperature, at any time, in any room, 

during the entire year, fell below 18°C. The Figure 10 below shows the internal temperature 

measurements results for each of the three rooms, living room, kitchen and bedroom, for one 

representative month, January, as the coldest month in the year for the site location 

respectively. 
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Figure 10: Base Model Internal Temperatures in January for Each Ambient 

 

5.1.2. Change 

 

Based on the evidence shown above, the initial value on the base model for heating 

setback temperature, which was 12°C, was changed for the minimal temperature that was 

measured inside the rooms, 18°C. After this alteration have been made, the model was again 

simulated on DesignBuilder software. 

 

5.1.3. Impact 

 

The Figure 11 below compares the base model simulated internal temperature, per 

room and per representative month, with the first version of the calibrated model simulated 

internal temperature, the same way per room and per month. Is possible to perceive that in 

the base model simulation there were some temperatures previously below 18°C, and after 

the change made, all the internal temperatures are above 18°C. 
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Figure 11: Simulated Internal Temperatures in January for Each Ambient 

 

5.2. Occupancy 

 

5.2.1. Evidence 

 

Based on feedback from residents’ interviews, the actual number of inhabitants 

became known. In the apartment live five people, 3 adults and 2 children. 

 

5.2.2. Change 

 

The value for residents’ number on the apartment in the base model was four people, 

two adults and two children. This value, based on the NCM database, was changed for the 

actual number of inhabitants, evidence out of the residents’ feedback, five people, three adults 

and two children. 

The number of residents was then fine-tuned directly into the software, having as a 

base the first version of the calibrated model. The total value was then divided by each room 

so that the sum of the maximum number of people in each room does not exceed the total 

number of the apartment's inhabitants. The number of maximum occupation in the living room 

is the same as the number of residents, the kitchen occupancy is the same number as the 

adults living in the apartment and the bathroom, the toilet and the circulation were kept with 
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only one occupant as the maximum occupancy. The maximum number of occupants for each 

ambient of the apartment is described below in Table 4. 

 

Table 4: Occupants Number for Each Ambient 

Living Room Kitchen Bathroom Toilet Circulation Bedroom 1 Bedroom 2 Bedroom 3 

5 3 1 1 1 2 2 1 

 

5.2.3. Impact 

 

The alteration of the number of residents in the apartment had a significant impact on 

the simulation results. Analysing all the heat flux  that the increase in the number of occupants 

in each room generated, was possible to confirm that the occupancy gains increase, as well as 

the gains by mechanical ventilation, once this parameter is dependent of the occupancy, while 

the total heating consumption decrease lightly. The figures below, Figure 12, Figure 13, Figure 

14, Figure 15, Figure 16, Figure 17 and Figure 18, illustrate the occupancy heat gains for two 

representative months, January and July, for each of the ambientes analysed. 

 

 
Figure 12: Occupancy Heat Gains in January for Bedroom 
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Figure 13: Occupancy Heat Gains in January for Kitchen 

 

 

Figure 14: Occupancy Heat Gains in January for Lounge 

 

0

0,1

0,2

0,3

0,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

O
cc

u
p

a
n

cy
 H

e
a

t 
G

a
in

s 
(W

)

January

Kitchen Change Kitchen Previous

0

0,1

0,2

0,3

0,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

O
cc

u
p

a
n

cy
 H

e
a

t 
G

a
in

s 
(W

)

January

Lounge Change Lounge Previous



41 

 

 
Figure 15: Occupancy Heat Gains in July for Bedroom 

 

 
Figure 16: Occupancy Heat Gains in July for Kitchen 
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Figure 17: Occupancy Heat Gains in July for Lounge 

 

 
Figure 18: Total Occupancy Heat Gains – Annual 
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5.3. Schedules - Occupancy 

 

5.3.1. Evidence 

 

By analysing CO2 concentration measurements data in the apartment rooms whose IEQ 

data were being measured, it was possible to establish occupation patterns for the living room, 

the kitchen and the bedrooms.  

The Figure 19, shows the CO2 concentration for the bedroom for the month of January, 

while Figure 20 and Figure 21 show the CO2 concentration for the bedroom for a 

representative week in the year, the second week of January. Initially, it is possible to 

distinguish two patterns of occupation, one on weekdays and another on weekends. On the 

weekdays the residents use to stay longer in the bedroom in the mornings and come back 

earlier during the afternoon and the evenings on the weekdays, compared with the NCM 

database in base model. On the weekends the residents remain in the bedroom till late in the 

morning, and the occupancy during the afternoon and evening remain the same as during the 

weekdays. 

 

 
Figure 19: CO2 Concentration in January for Bedroom 
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Figure 20: CO2 Concentration in Weekdays in January for Bedroom 

 

 
Figure 21: CO2 Concentration in Weekends in January for Bedroom 

 

In the same way, the CO2 concentration for the living room and the kitchen were 

analysed, and Figure 22 shows the CO2 concentration for these spaces in January, and Figure 

23 to Figure 26 show these values for the same representative week in the year, the second 

week of January, in order to determine the occupancy patterns. The same way as the data for 

the bedroom, the data for the common areas of the apartment evince that it is possible to 

distinguish weekdays and weekends occupation patterns, and both have thereabout similar 

occupancy.  

On weekdays, these common spaces are occupied for a few hours in the early morning 

and from mid-afternoon, with a peak of occupancy in the evenings. On weekends, the 

occupancy take place in the late morning and again from the mid-afternoon, also with the peak 

of occupancy in the evenings. Those pieces of evidence could be perceived in the figures below. 
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Figure 22: CO2 Concentration in January for Kitchen and Lounge 

 

 
Figure 23: CO2 Concentration in Weekdays in January for Kitchen 
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Figure 24: CO2 Concentration in Weekends in January for Kitchen 

 

 
Figure 25: CO2 Concentration in Weekdays in January for Lounge 

 

 
Figure 26: CO2 Concentration in Weekends in January for Lounge 
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5.3.2. Change 

 

From the evidence mentioned above, the occupancy schedules assigned to each 

apartment space per day of the week have been changed as needed. The Figure 27 and Figure 

28 hereafter shows the previous occupancy values, used in the base model, and the Figure 29 

and Figure 30 the new designated values according to the findings by analysing the CO2 

concentration measurements, to each of the rooms.  

It is important to note that the change made in the occupancy profiles for all apartment 

spaces leads to changes in the energy consumption of all parameters whose thermal load is 

affected by the occupancy of the spaces. In this sense, the schedules related to space heating, 

lighting, use of equipment and others, will be changed. 

 

 
Figure 27: Previous Occupancy Patterns in Weekdays 

 

 
Figure 28: Previous Occupancy Patterns in Weekends 
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Figure 29: Changed Occupancy Patterns in Weekdays 

 

 
Figure 30: Changed Occupancy Patterns in Weekends 
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energy consumption is due to the significant increase in the occupancy heat gains. 
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5.4. Holidays 

 

5.4.1. Evidence 

 

By analysing the CO2 concentrations for the living room, between fourth and twelfth 

day of April, the only available measured data for this month, it was noted that the CO2 

concentration levels between seventh and twelfth day of April for the living room were closer 

to the external average concentration level of CO2 in that region, 406.5 ± 0.1 ppm (parts per 

million in dry air) according with Mauna Loa CO2 concentration records. Combined with this 

finding, the variation of these levels inside the room during the day was almost null. 

That evidence, illustrated in Figure 31 below, associated with the fact that the heating 

daily use for those days also presents a significant drop, made believe that the family didn’t 

use the living room at those, at least, five days. As the living room is a central room in the 

house and, based on previous analysis, with a significant use by the residents either during the 

weekdays or during the weekends, most probable the family wasn’t at home during these days. 

To validate this hypothesis, those days, seventh to twelfth day of April, coinciding with 

the School Easter Holidays according with the school term dates by local Council which are 

from April 7th to 24th, with Easter being the April 16th. It's not possible to determine if the 

family was at the apartment after twelfth of April, once there is not enough data to assert itself 

for sure. 

 

 
Figure 31: CO2 Concentration in April for Lounge 
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5.4.2. Change 

 

Family vacations were determined during the 7th and 12th of April, based on the 

evidence mentioned above.. The occupancy schedules for these days, assigned to each space 

of the apartment, per day of the week, have been changed to no occupancy. As was done in 

the previous change in the calibrated model, change in the occupancy schedules, the schedules 

for equipment use, lighting, space heating among others, need to be changed for no occupancy 

during those days in April. 

 

5.4.3. Impact 

 

Figure 32 shows the impact of the holiday alteration in the fourth version of the 

calibrated model, April seventh to twelfth, made in the living room heat flux compared with 

the previous model heat flux. The total heating consumption for April had a considerable 

reduction (from 25.6 kWh to 20.7 kWh). These drop-in heating consumption come across the 

actual heating demand measurements, which, once more, reinforce and validate the found 

evidence. 

 

 
Figure 32: Previous versus Changed Simulated Heating Consumption in April 
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5.5. Heating Setpoint Temperature 

 

5.5.1. Evidence 

 

By analysing indoor temperature data for each month in the apartment rooms whose 

IEQ data were being measured, was possible to identify the average temperature per room. In 

order to access more accurate results, the hourly indoor temperature average values were 

compared with the occupation hours of the rooms. This way the average hourly data of the 

rooms’ internal temperatures during their occupation periods were gotten. 

The Figure 33, Figure 34 and Figure 35 presented here, demonstrate the comparison of 

the internal temperature measurements results during a representative week for each month 

and for each of the rooms, against the occupancy pattern in the correspondent space and 

month, as well as the value of the average temperatures in the occupation periods.  

 

 
Figure 33: Internal Temperatures by Occupancy Pattern in January for Bedroom 
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Figure 34: Internal Temperatures by Occupancy Pattern in January for Kitchen 

 

 
Figure 35: Internal Temperatures by Occupancy Pattern in January for Lounge 
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5.5.2. Change 

 

The heating setpoint temperatures were changed to correspond the average indoor 

temperature values measured for each space of the apartment following the evidence shown 

above, from 18°C in each room, except in the living room, which was 21°C, to the temperatures 

described below. As there was not enough measured data for the months of March, April and 

September, and absolutely no collected data for the months of May and June, those months, 

described below underlined, were simulated with estimated values to follow a pattern 

between the temperatures.  

• January 21°C 

• February 22°C 

• March   22°C 

• April  22°C 

• May  23°C 

• June  24°C 

• July   24°C 

• August  24°C 

• September 23°C 

• October 23°C 

• November 21°C 

• December 21°C 

To accomplish this, in a faster and more efficient way, in dynamic simulation, an Energy 

Management System (EMS) was created, providing thus custom simulation runtime control to 

override selected aspects of standard software behaviour, like the heating setpoint 

temperature different for each month.  

Once the heating setpoint temperatures were changed, and one of the objectives of 

the calibrated model dynamic simulation avoids the simultaneous heating and cooling by 

natural ventilation, the minimum external temperature, used as a setpoint for opening 

windows, allowing natural ventilation cooling is also changed in this model version. The rule 

followed here was fixed the minimal external temperature setpoint at four degrees below the 

heating setpoint temperature, and the values are specified below:  

• January 17°C 

• February 18°C 

• March   18°C 

• April  18°C 

• May  19°C 

• June  20°C 

• July   20°C 

• August  20°C 

• September 19°C 

• October 19°C 

• November 17°C 

• December 17°C 

In this way it is possible to prevent the entry of external air much colder than the 

internal temperature being maintained in the room, avoiding a sudden cooling of the internal 

temperature in the spaces and consequently the unnecessary use of heating energy to raise 

the internal temperature again. An EMS script was created so that the necessary changes were 

made in the most efficient way. 
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5.5.3. Impact 

 

Figure 36 below shows the impact that the change made in version five of the 

calibrated model reverberated in the indoor temperatures. In the results it is possible to realize 

that the internal temperatures of the rooms, after the changes, increase regarding the 

previous values, getting closer to the measured real temperatures. This conclusion is evident 

in the figure below, which compares the measured internal temperature in the bedroom in 

one representative month of the coldest period of the year, January, with the fifth (changed) 

and forth (previous) version of the calibrated model simulated internal temperature, for the 

same room and period of the year. 

 

 
Figure 36: Actual x Simulated Internal Temperature in January for Bedroom 
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Figure 37: Actual x Simulated Heating Demand - Calibrated Model 

 

 
Figure 38: Actual x Simulated Electricity Use - Calibrated Model 
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6. Uncertainty and Sensitivity Analysis 

 

Since all empirical data has been exhausted, and no other statement can be made with 

certainty based on the available data, other methods, such as uncertainty and sensitivity 

analysis, can help and facilitate obtaining a calibrated energy performance model.  

 

6.1. Uncertainty Analysis 

 

The methodology applied to perform the UA is based on literature and previous case 

studies [29,30]. For the UA accomplishment, were selected the input parameters whose values 

interfere on the results of the electricity and heating energy consumption and which are 

passive of uncertainty, such as external U-values, infiltration, natural ventilation, heating 

setpoint, occupancy, equipment and lighting power density and DHW consumption. For each 

of those variables, were associated with uncertainty values, lower and upper values, according 

to the designated distribution based on literature and case studies researches. The actual 

values for each parameter and their associated uncertainty are described in the Table 5. 

The uncertainty values designated for each parameter were based on literature [4,31]. 

The study developed by Rivalin et al. [4], performs thermal simulation couple to various 

uncertainty and sensitivity methods, then these methods are tested and compared on a case 

study and the resulting recommendations can be applied to any building, depending on the 

model regularity, the number of uncertain parameters and the objective of the study. 

 

Table 5: Designated Uncertainty for Each Parameter - Best versus Worst Scenario 

BEST x WORST CENARIUM 

Parameter / Variable Unit Actual Lower Upper 

External Wall U-value W/m²·K 0.18 0.16 0.55 

Infiltration (DB Template Slider) - Good Good Medium 

Natural Ventilation    

Jan/Nov/Dec °C 17 20 17 

Feb/Mar/Apr °C 18 20 17 

May/Sep/Oct 

Jun/Jul/Aug 

°C 

°C 

19 

20 

20 

20 

17 

17 

Heating Setpoint    

Jan/Nov/Dec °C 21 21 24 

Feb/Mar/Apr °C 22 21 24 

May/Sep/Oct 

Jun/Jul/Aug 

°C 

°C 

23 

24 

21 

21 

24 

24 
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Occupancy (Schedule) 

Living Room Num.  5 4 6 

Kitchen Num.  3 2.4 3.6 

Bathroom Num.  1 0.8 1.2 

Toilet Num.  1 0.8 1.2 

Circulation Num.  1 0.8 1.2 

Bedrooms Num.  5 4 6 

Equipment Power Density  
  

Living Room W/m² 3.9 3.51 4.29 

Kitchen W/m² 30.28 27.25 33.30 

Bathroom W/m² 1.67 1.50 1.83 

Toilet W/m² 1.61 1.44 1.77 

Circulation W/m² 1.57 1.41 1.72 

Bedrooms W/m² 3.58 3.22 3.93 

Lighting Power Density W/m² 7.5 6.75 8.25 

DHW Consumption    

Living Room l/m² day 0.72 0.57 0.86 

Kitchen l/m² day 1.05 0.84 1.26 

Bathroom l/m² day 1.05 0.84 1.26 

Toilet l/m² day 4.85 3.88 5.82 

Circulation l/m² day 2.62 2.09 3.14 

Bedrooms l/m² day 0.53 0.42 0.63 

 

6.2. Sensitivity Analysis 

 

As all the measured data were exhausted or its not available, literature and past case 

studies on uncertainty quantification would be used to assign the subjective variables of an 

appropriate probability distribution [10]. The methodology followed is according to case study 

present in literature [29,30]. 

To access the SA, two simulations were performed using DesignBuilder software and 

the uncertainty values assigned to the parameters listed above:  one of the simulations was 

performed to evaluate the scenario that would present the lowest possible energy 

consumption for the studied apartment, the best scenario, using the best and lowest 

uncertainty values for each parameter; the other simulation was performed with the 

uncertainty values per parameter that would result in the scenario of the highest possible 

energy consumption for this apartment, the worst scenario, concerning both electricity and 

space heating consumption. The result of these two simulations is presented in Figure 39 and 

Figure 40 below. 
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Figure 39: Sensitivity Analysis Heating Demand versus Actual Consumption 

 

 
Figure 40: Sensitivity Analysis Electricity Use versus Actual Consumption 
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the mildest temperatures, Apr, May, Aug and Sep, current consumption for heating and 

electricity has come closer to the minimum values of energy demand, the best scenario. 

Regarding electricity consumption, the months of Mar and Apr are the only ones that 

still present lower and higher current consumption values than the minimum and maximum 

values of each month respectively. In a similar way, results found in SA for electricity 

consumption reveal that the months with the most intense temperatures of cold (Jan, Nov and 

Dez) and of heat (Mai, Jun and Jul) kept the actual consumptions data close to the maximum 

estimated values and average consumption values respectively. While the months of milder 

temperatures, Feb, Mar, Aug, Set and Out, the actual consumption are very close to the 

simulated minimum consumption. 

When analyzing the Table 6 and Table 7 below, it is possible to notice that the energy 

performance gaps may be closer or larger than the final gaps shown in the calibrated model. 

This is due to the fact that the energy results have significant uncertainties, as evidenced in 

the Table 5 above, due to uncertainties in the specifications, especially those related to 

construction and envelope. 

 

Table 6: Annual Heating Consumption Discrepancies compared to SA Values 

Annual Heating Consumptions 

2017 

Consumption Values Lower Upper 

Actual 

Data 

Lower 

Value 

Upper 

Value 

Absolute 

Error 

Relative 

Error 

Absolute 

Error 

Relative 

Error 

Unity kWh/m² kWh/m² kWh/m² kWh/m² % kWh/m² % 

jan 8.36 4.14 8.73 -4.22 -50.49 0.37 4.46 

feb 6.70 3.48 7.49 -3.21 -47.96 0.78 11.73 

mar 4.96 2.19 7.64 -2.77 -55.87 2.67 53.91 

apr 2.23 1.31 4.51 -0.92 -41.37 2.27 101.64 

may 2.58 2.12 4.63 -0.45 -17.67 2.04 79.27 

jun 3.78 2.86 4.09 -0.91 -24.25 0.30 8.08 

jul 4.02 2.74 4.26 -1.28 -31.84 0.24 5.96 

aug 3.22 2.43 4.36 -0.78 -24.46 1.13 35.28 

sep 2.81 2.51 3.73 -0.30 -10.78 0.92 32.67 

oct 3.83 2.18 4.45 -1.65 -43.13 0.61 16.07 

nov 5.17 2.46 5.95 -2.71 -52.48 0.77 14.96 

dec 8.97 4.37 9.13 -4.60 -51.27 0.16 1.78 
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Table 7: Annual Electricity Consumption Discrepancies compared to SA Value 

Annual Electricity Consumptions 

2017 

Consumption Values Lower Upper 

Actual  Lower  Upper  
Absolute 

Error 

Relative 

Error 

Absolute 

Error 

Relative 

Error 

Unity kWh/m² kWh/m² kWh/m² kWh/m² % kWh/m² % 

jan 3.36 2.70 3.44 -0.66 -19.79 0.07 2.29 

feb 2.73 2.47 3.15 -0.26 -9.74 0.41 15.11 

mar 2.63 2.78 3.55 0.15 5.74 0.91 34.85 

apr 3.17 2.24 2.86 -0.92 -29.18 -0.30 -9.68 

may 3.08 2.70 3.44 -0.38 -12.45 0.35 11.65 

jun 2.94 2.71 3.45 -0.23 -7.97 0.51 17.37 

jul 3.04 2.70 3.44 -0.34 -11.33 0.39 13.08 

aug 2.70 2.74 3.49 0.04 1.47 0.79 29.40 

sep 2.60 2.66 3.40 0.06 2.55 0.80 30.78 

oct 2.75 2.70 3.44 -0.05 -2.16 0.68 24.78 

nov 3.28 2.66 3.40 -0.61 -18.83 0.11 3.52 

dec 3.44 2.74 3.49 -0.69 -20.28 0.05 1.66 
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7. DISCUSSION 

 

This chapter presents and discusses the results of the efforts exerted this project. First, 

it summarizes the general results of the calibration process, then makes a critical discussion 

about the limitations at different stages of this project and explain the concept of 'A' Calibrated 

Model. Finally presents the potential determinants of energy performance discrepancies and 

final performance gaps in this case study. 

 

7.1. Overall Results  

 

After obtaining the final calibrated model, the energy performance results of heating 

and electricity consumption for different stages of the calibration process are established in 

Figure 41 and Figure 42. As described in the previous chapters and evidenced by the figures 

below, the energy consumption values simulated in the calibrated model do not accurately 

represent the actual consumption data. There is a common variation pattern followed 

between the results of actual consumption and base model and the results of the base model 

and calibrated model, for heating consumption and for most months of electricity 

consumption. The base model energy demand presents a lower value regarding both the real 

consumption and the calibrated model. The simulated values for energy consumption in the 

calibrated model are still lower than the actual values, especially for heating consumption. 

 

 
Figure 41: Annual Heating Consumption Summarized 
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Figure 42: Annual Electricity Consumption Summarized 
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it was 18% and 20% in the months of Mar and Apr. In both cases electricity consumption gaps 

are admissible values regarding the validation of the calibrated model. 

The gaps and discrepancies between simulated energy predictions in two stages, base 

model and calibrated model, and actual energy performance are worked out in Table 8 and 

Table 9, as well as the CV(RMSE) and NMBE values for model validation. 

 

Table 8: Annual Heating Consumption Discrepancies 

Annual Heating Consumptions 

Against Actual 

Data  

Base 

Model 
Change 1 Change 2 Change 3 Change 4 

Calibrate

d Model 

Consumption 

(kWh/m²) 
31.00 30.97 29.39 30.68 30.35 35.66 

Absolute Error 

(kWh/m²) 
25.68 25.71 27.29 26.01 26.33 21.02 

Relative Error 

(%) 
45.31 45.36 48.15 45.88 46.45 37.09 

CV(RMSE) 56.20 54.85 59.29 56.42 56.49 46.92 

NMBE 45.31 45.35 48.15 45.87 46.45 37.09 

 

Table 9: Annual Electricity Consumption Discrepancies 

Annual Electricity Consumption 

Against Actual 

Data  

Base 

Model 
Change 1  Change 2 Change 3 Change 4 

Calibrate

d Model 

Consumption 

(kWh/m²) 
34.55 34.55 34.55 36.04 35.61 35.61 

Absolute Error 

(kWh/m²) 
1.22 1.22 1.22 -0.25 0.16 0.16 

Relative Error 

(%) 
3.42 3.42 3.42 -0.72 0.46 0.46 

CV(RMSE) 11.35 9.97 9.97 9.67 11.35 11.35 

NMBE 3.42 3.42 3.42 -0.72 0.46 0.46 

 

Analysing the discrepancies in the different steps of the calibration process, the result 

is not ideal. The simulated values of annual heating consumption, Table 8, shows different 

degrees of variation throughout the calibration process. Initially, the base model, built with 

NCM data, comprised in the DesignBuilder software, information from SAP table and project 
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drawings, had a consumption of 31 kWh/m², 45.3% less than the actual heating consumption 

of 56.69 kWh/m², which resulted in a CV(RMSE) of 56.2%. Increasing the setback temperature, 

the space occupation data and DHW consumption, the simulated heating consumption 

decreased by 5.2%. Subsequently, with the changes in the schedules and natural ventilation 

and setpoint temperatures, the heating demand reached 35.66 kWh/m², 37% less than the 

current consumption, which resulted in a CV(RMSE) of almost 47%, well above the maximum 

value of 15% according to ASHRAE Guideline 14 / IPMVP protocol. 

Evaluating the discrepancies in the simulated electricity consumption of each stage 

with the actual annual consumption, of 35.78 kWh/m², it was noted that the consumption 

increased by 4.3% when the occupancy schedules of the spaces were changed, and, after the 

insertion of the Easter holiday, consumption decreased slightly, reaching acceptable values of 

CV (RMSE) and NMBE, of 11.35% and 0.46% respectively. 

The uncertainties in the construction specifications have significant impacts on the 

modelled energy results, as shown in the analysis process, so the energy performance gaps 

can be smaller or larger than the final gaps of the calibrated model. 

As already shown, the SAP table forecasts are not representative of the actual 

operating conditions since there are huge discrepancies in the heating energy predictions of 

the base model and a lack of estimates on electricity consumption. Bearing in mind that the 

real operating conditions of a building are dynamic, forecasts based on standardized 

conditions in the SAP tables, which use a quasi-steady state calculation method, are not 

suitable to be treated as expected energy performance. 

Likewise, the NCM database used in the construction of the base model presents 

irrational parameters that do not fully represent the real values. In this sense, the differences 

between the actual consumption data and the predictions of the base model, do not accurately 

reflect the real performance gaps. Considering that the base model is the foundation for the 

calibration process, the parameters in the base model that would not be calibrated or modified 

in later stages should reflect the actual in-use conditions. 

As NCM modelling guide, the source of inputs parameters in the model was initially a 

procedure for demonstrating compliance with the Building Regulations for buildings other 

than dwellings, the analysis of residential buildings using NCM database might not be as 

comprehensive, sufficient and representative as on non-domestic buildings. 

An example of NCM defaults in the case study which not accurately represent the 

actual case was the people density template. They were evidenced to be unreasonable and 

unprocurable, as the number of occupants in all the rooms of five flats are below one after 

calculation. 

For those building parameters and operational profiles which lack actual metered or 

better references, such as consumptions and profiles of DHW and equipment, their values are 
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maintained using dwelling templates in NCM, what generates considerable uncertainties and 

impairs the determination on the accuracy of the final model. Those are a non-negligible factor 

of the final energy performance gap. 

 

7.2. Creating ‘A’ Calibrated Model 

 

Building model calibration is essentially an undetermined problem due to a large 

number of building inputs in a BEPM. Therefore, the quality of a manual calibration is highly 

dependent on the experience and expertise of the analysts performing the calibration. With 

this method, one can get any calibration result desired but the solution that results may not 

be the true solution. 

With currently available tools and the lack of access to more accurate measurements 

and data regarding building information, it is difficult to calibrate a BEPS model in a cost-

effective manner. Many discrepancies in the model could be due to the assumptions and 

simplifications made by the simulation engine as well as poor estimates for some parameter 

values. 

In this case study, despite the level of calibration effort, the results still show a 

significant amount of discrepancy between measured and simulated heating consumption 

values. Although even if the model meets the most stringent monthly acceptance criteria, it 

could not accurately represent the building, as already evidenced by some studies [15]. 

Monthly acceptance criteria do not adequately capture how well the model matches the 

measured data. 

Considering all the above, the calibration process of energy performance models does 

not reveal absolute truth, but one of many alternatives whose simulated output values are 

close to the actual energy consumption values of the analysed building. The final objective of 

the calibration simulation is to create 'A' calibrated model, which is within the limits of 

validation of existing models, knowing that one cannot pretend to create 'THE' calibrated 

model. 
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8. CONCLUSION 

 

The focus of this dissertation is placed on the analyses of the energy performance gap 

and the corresponding determinants as well as potential improvements, using evidence-based 

calibration process, fine-tuning the dynamic model with data from the IEQ measurements and 

the actual energy use measurements, electricity and heating consumption for one year in an 

in-use low-carbon newly built residential apartment in West London, UK.  

To estimate the theoretical energy performance of a low-carbon residential building by 

a case study is an essential approach to, in order to narrow the gaps in buildings energy 

performance, assess whether buildings operate as they are anticipated to, and discover the 

problems and address the improvements on energy performance. 

This approach happens by comparisons between energy results from calibrated BEPM 

and actual energy performance. An UA and SA assists the assessment of total variations of 

energy and the estimation of the maximum and minimum possible consumption for each 

month due to the input parameters uncertainties. 

In the fine-tuning process, several building specifications, occupancy number and 

patterns, DHW consumptions, heating system set-point and setback, lighting density and 

profiles are adjusted and calibrated in the dynamic model from subjective feedbacks and 

objective measurements. 

The results of the energy performance evaluation are far below expected due to some 

limitations. The biggest limitation was related to obtaining continuous and discriminated data 

on electricity consumption and heating. Another major drawback, limiting the work to be 

done, were discontinuities present in the IEQ measurements within the apartments. 

Even with this limitations, the evaluation process applied in this case study is 

reasonable and necessary to modify the incorrect initial forecasts and reflect on the flexible 

and diverse real conditions of use in this apartment. This calibration methodology can be used 

in other projects for assessing the energy performance of residential buildings, however, it is 

recommended some improvements in the limitations found by this work. 

The analysis evidence that the range of energy performance gaps could be either closer 

or wider due to uncertain inputs specifications causing uncertain energy outputs. In order to 

improve the energy performance analysis process of residential buildings by dynamic 

simulation, there are two approaches that can be proposed: more rigidity in the validation 

standards of calibrated models and existing methods for calibration; and the reduction of 

uncertainty in the model's input parameters, based on the facilitation of access to 

consumption, usage and performance data in buildings, and improvement in the data 

availability and granularity obtained by measurements. 
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The first proposed approach require improvements on the guidelines and protocols 

used for determining when a simulation is calibrated. As the overestimated end-use 

consumption in one area can offset underestimates in other areas, to yield a reasonable 

correlation at the utility level, explicitly measurement of the energy consumption by the end-

user is recommended. A reduction in the acceptable MBE and CV(RMSE) values is suggested 

given the number of solutions yielded by the current acceptance criteria and hourly measured 

data over the calibration period is endorsed since some issues were encountered when using 

only monthly data for comparison. 

Regarding the second approach, the level of measures need to improve are:  

• Infiltration rate of the building fabric should be technically monitored;  

• Scarcity of IEQ data such as data losses need to be overcome; 

• More detailed sub-meters on DHW and small power appliances is necessary;  

• The indirect calibration on lighting profiles based on occupancy patterns need 

to be avoid as it cause lack accuracy;  

• The impact of occupants-related activities has to be paid more attention, such 

as, heating system controls, supplementary heating system usage and weather 

activities like opening and closing windows; etc.  

Directly objective measurements are always a better option to estimate the actual uses 

and operations when calibrating. 

More research and case studies are necessary in the quantification of these 

uncertainties in order to test the robustness of the proposed method and to increase the 

adoption of the presented framework in building energy performance simulation. 
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ATTACHMENTS 

 

Example of Base Model Input Data in DesignBuilder Software 

 


