
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2019

Ricardo Jorge
Bastos Cordeiro de
Jesus

Observações em redes neuronais

Insights on neural networks

“Artificial intelligence is the new electricity”

— Andrew Ng

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2019

Ricardo Jorge
Bastos Cordeiro de
Jesus

Observações em redes neuronais

Insights on neural networks

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2019

Ricardo Jorge
Bastos Cordeiro de
Jesus

Observações em redes neuronais

Insights on neural networks

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à obtenção do grau de Mestre em Engenharia de Computadores e
Telemática, realizada sob a orientação científica do Doutor Rui L. Aguiar, Profes-
sor catedrático do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro, e do Doutor Sergey N. Dorogovtsev, Investigador coor-
denador do Departamento de Física da Universidade de Aveiro.

o júri / the jury
presidente / president Prof. Doutor Joaquim João Estrela Ribeiro Silvestre Madeira

Professor Auxiliar, Departamento de Eletrónica, Telecomunicações e Informática da Universidade
de Aveiro

vogais / examiners committee Prof. Doutor João Manuel Portela de Gama
Professor Associado, Faculdade de Economia da Universidade do Porto

Prof. Doutor Rui Luís Andrade Aguiar
Professor Catedrático, Departamento de Eletrónica, Telecomunicações e Informática da Univer-
sidade de Aveiro (orientador)

agradecimentos /
acknowledgements

First and foremost, a huge thanks to my supervisors, Prof. Rui Aguiar (DETI),
Dr. Sergey Dorogovtsev (DFIS), Dr. Mário Antunes (IT), Dr. Rui Costa (DFIS),
and Prof. José Mendes (DFIS), for all their support and guidance. Without them
this thesis would only be a shadow of what it is.
Second, to the research group I have been associated with the past few years,
Aveiro Telecommunications and Networking Group (ATNoG), Instituto de Teleco-
municações (IT), where I could discuss and develop many ideas. IT supported this
work in the scope of Project UID/EEA/50008/2019.
Last but not least, I wish to thank all my family and friends. They have made
writing this thesis so much more enjoyable. They are for sure a huge part of it.

Palavras-chave redes neuronais artificiais, aprendizagem profunda, aprendizagem automática, in-
teligência artificial, efeitos da inicialização.

Resumo É impossível ignorar os muitos avanços que aprendizagem automática, e em parti-
cular o seu método de eleição, aprendizagem profunda, têm proporcionado à nossa
sociedade. No entanto, existe um sentimento crescente de que ao longo dos anos
a área se tem vindo a tornar confusa e pouco clara, com alguns investigadores in-
clusive afirmando que aprendizagem automática se tornou na alquimia dos nossos
tempos. Existe uma necessidade crescente de (voltar a) compreender em profundi-
dade as ferramentas usadas, já que de outra forma o progresso acontece às escuras
e, frequentemente, por tentativa e erro. Nesta dissertação conduzimos testes com
redes neuronais artificiais dirigidas, com o objetivo de compreender os fenómenos
subjacentes e encontrar as suas causas. Começamos por testar com um conjunto
de dados sintético. Usando um problema amostra, descobrimos que a configuração
dos pesos de redes treinadas evolui de forma a mostrar correlações que podem
ser compreendidas atendendo à estrutura das amostras do próprio conjunto de da-
dos. Esta observação poderá revelar-se útil em áreas como Inteligência Artificial
Explicável, de forma a clarificar porque é que um dado modelo funciona de certa
forma. Descobrimos também que a mera alteração da função de ativação de uma
camada pode causar alterações organizacionais numa rede, a nível do papel que
os nós nela desempenham. Este conhecimento poderá ser usado em áreas como
Aprendizagem por Transferência, de forma a desenvolver critérios precisos sobre
os limites/condições de aplicabilidade destas técnicas. Enquanto experimentáva-
mos com este problema, descobrimos também que a configuração inicial dos pesos
de uma rede pode condicionar totalmente a qualidade do mínimo para que ela
converge, mais do que poderia ser esperado. Esta observação motiva os nossos
restantes resultados. Continuamos testes com conjuntos de dados do mundo real,
em particular com o MNIST e HASYv2. Desenvolvemos uma estratégia de iniciali-
zação, à qual chamamos de inicialização densa por fatias, que funciona combinado
os méritos de uma inicialização esparsa com os de uma inicialização típica (densa).
Descobrimos também que a configuração inicial dos pesos de uma rede persiste
ao longo do seu treino, sugerindo que o processo de treino não causa atualizações
bruscas dos pesos. Ao invés, é maioritariamente um processo de afinação. Visu-
alizamos este efeito ao marcar as camadas de uma rede com letras do abecedário
e observar que as marcas se mantêm por centenas de épocas de treino. Mais do
que isso, a escala reduzida das atualizações dos pesos aparenta ser uma impres-
são digital (isto é, uma condição necessária) de treino com sucesso — enquanto
o treino é bem sucedido, as marcas permanecem. Baseados neste conhecimento
propusemos uma estratégia de inicialização inspirada em filtros. A estratégia mos-
trou bons resultados durante o treino das redes testadas, mas simultaneamente
piorou a sua generalização. Perceber as razões por detrás deste fenómeno pode
permitir desenvolver novas estratégias de inicialização que generalizem melhor que
as atuais.

Keywords artificial neural networks, deep learning, machine learning, artificial intelligence,
initialization effects.

Abstract The many advances that machine learning, and especially its workhorse, deep learn-
ing, has provided to our society are undeniable. However, there is an increasing
feeling that the field has become little understood, with researchers going as far
as to make the analogy that it has developed into a form of alchemy. There is
the need for a deeper understanding of the tools being used since, otherwise, one
is only making progress in the dark, frequently relying on trial and error. In this
thesis, we experiment with feedforward neural networks, trying to deconstruct the
phenomenons we observe, and finding their root cause. We start by experiment-
ing with a synthetic dataset. Using this toy problem, we find that the weights of
trained networks show correlations that can be well-understood by the structure
of the data samples themselves. This insight may be useful in areas such as Ex-
plainable Artificial Intelligence, to explain why a model behaves the way it does.
We also find that the mere change of the activation function used in a layer may
cause the nodes of the network to assume fundamentally different roles. This un-
derstanding may help to draw firm conclusions regarding the conditions in which
Transfer Learning may be applied successfully. While testing with this problem,
we also found that the initial configuration of weights of a network may, in some
situations, ultimately determine the quality of the minimum (i.e., loss/accuracy)
to which the networks converge, more so than what could be initially suspected.
This observation motivated the remainder of our experiments. We continued our
tests with the real-world datasets MNIST and HASYv2. We devised an initializa-
tion strategy, which we call the Dense sliced initialization, that works by combining
the merits of a sparse initialization with those of a typical random initialization.
Afterward, we found that the initial configuration of weights of a network “sticks”
throughout training, suggesting that training does not imply substantial updates
— instead, it is, to some extent, a fine-tuning process. We saw this by train-
ing networks marked with letters, and observing that those marks last throughout
hundreds of epochs. Moreover, our results suggest that the small scale of the de-
viations caused by the training process is a fingerprint (i.e., a necessary condition)
of training — as long as the training is successful, the marks remain visible. Based
on these observations and our intuition for the reasons behind them, we developed
what we call the Filter initialization strategy. It showed improvements in the train-
ing of the networks tested, but at the same time, it worsened their generalization.
Understanding the root cause for these observations may prove to be valuable to
devise new initialization methods that generalize better.

Contents

Contents i

List of Figures v

List of Tables ix

Acronyms xi

1 Introduction 1
1.1 Motivation . 4

1.2 Problem scope/Objectives . 5

1.3 Thesis organization . 5

2 Background on artificial neural networks 7
2.1 Neural networks: The genesis . 7

2.1.1 The McCulloch-Pitts neuron . 8

2.1.2 Hebb’s learning rule . 9

2.1.3 The Perceptron . 10

2.1.4 The first winter . 11

2.2 Neural networks: The second age . 12

2.2.1 Backpropagation . 12

2.2.2 The second winter . 13

2.2.3 The new era . 14

2.3 Contemporary neural networks . 16

2.3.1 The neurons . 17

2.3.2 The activation functions . 18

i

ii Contents

2.3.3 The multilayer perceptron . 20

2.3.4 Convolutional neural networks . 21

2.4 Optimization algorithms . 23

2.4.1 Gradient descent . 24

2.4.2 Momentum . 26

2.4.3 AdaGrad . 27

2.4.4 RMSProp . 29

2.4.5 Adam . 29

2.5 Initialization strategies . 30

2.5.1 Glorot’s initialization . 31

2.5.2 He’s initialization . 32

2.5.3 LeCun’s initialization . 33

2.5.4 Sparse and lightning initializations 33

3 Data, processing and tools 35
3.1 Synthetic dataset . 35

3.1.1 Generation rules . 36

3.1.2 Input/output correlations . 38

3.1.3 Instantiation for training . 40

3.2 Real-world datasets . 41

3.2.1 MNIST . 41

3.2.2 HASYv2 . 43

3.3 Data pipeline . 45

3.3.1 Architecture . 45

3.3.2 The frameworks used and the choice of Python 51

3.3.3 TensorFlow vs PyTorch . 52

3.3.4 Computing nodes . 56

4 Probing the learning process 59
4.1 Base settings of the training experiments . 60

4.1.1 The network . 60

4.1.2 Dataset and training parameters . 61

4.2 Training results obtained with the reference parameters 61

4.3 Varying the output activation function . 64

Contents iii

4.4 Inspecting a network’s configuration of weights 67

4.4.1 Input/output strengths . 68

4.4.2 Layer-wise correlations of weights . 69

4.5 Trajectories followed during training . 72

4.5.1 Varying the batch size . 74

4.5.2 Varying the learning rate . 75

4.5.3 Varying the initialization point . 76

4.6 Similarity between learning trajectories . 77

4.6.1 Distance between uncorrelated trajectories 78

4.6.2 Distance between correlated trajectories 79

5 Effect of the initial configuration of weights on artificial neural
networks 81
5.1 Reference settings . 82

5.2 Preliminary tests with initialization strategies 83

5.2.1 Lightning-based initialization . 83

5.2.2 The Dense Sliced Initialization . 86

5.3 Inspecting a network’s initial configuration of weights 90

5.3.1 The lottery ticket hypothesis . 91

5.3.2 Similarity between the initial and final configurations of weights of a

network (first impressions) . 92

5.4 Tuning of weights during training . 95

5.4.1 Marking the initial configuration of weights 96

5.4.2 Untrainability and loss of initialization mark 100

5.5 The filter initialization . 103

6 Discussion and Conclusions 111
6.1 Future work . 112

6.2 Final considerations . 113

References 115

List of Figures

1.1 The rise of interest in Deep learning. 3

2.1 Example of a McCulloch-Pitts neuron. 8

2.2 Logical functions implemented with McCulloch-Pitts neurons. 9

2.3 Perceptrons. 10

2.4 Top-1 accuracy on ImageNet and number of parameters of well-known deep

networks vs. operations. 16

2.5 A simple neural network with three layers. 17

2.6 An artificial neuron with bias input. 18

2.7 Typical activation functions used in neural networks. 19

2.8 Network representation of Kolmogorov’s theorem. 21

2.9 Weight sharing in convolutional layers. 22

2.10 Inside a convolutional network. 23

2.11 Iterates of gradient descent with and without momentum. 27

3.1 A perfect neural network implementation for the synthetic dataset. 37

3.2 Covariance between input and output bits of the synthetic dataset. 38

3.3 Sample images from MNIST train dataset. 42

3.4 Sample images from HASYv2 train dataset (reverse color). 44

3.5 Distribution of the HASYv2 samples among classes. 44

3.6 Data pipeline architecture. 46

3.7 Schema of the database used for the experiments with the synthetic dataset. . . 48

3.8 Schema of the database used for the experiments with the real-world datasets. . 48

3.9 Organization of workers . 49

v

vi List of Figures

3.10 Deep learning frameworks ranking. 52

4.1 Architecture of the networks trained. 60

4.2 Test loss resulting from different test runs using the reference parameters presented

in Sec. 4.1. 62

4.3 Distribution of the networks of Fig. 4.2 that have reached a certain test loss value

ε by a given iteration. 63

4.4 Distribution of the networks of Fig. 4.2 that have reached a certain test loss value

ε by a given iteration, after their output is binarized to 0 and 1. 63

4.5 Training of different networks employing sigmoid activation in the output layer. 65

4.6 Result of binarizing the outputs of the networks of Fig. 4.5. 66

4.7 Distribution of the networks of Fig. 4.5 with sigmoid output layer, after their

output is binarized to 0 and 1. 66

4.8 Propagation of activity for networks with linear and sigmoid output activations. 69

4.9 Paths of length two through layers. 70

4.10 Correlation of nodes at a certain distance . 71

4.11 Training of different networks sharing the same initialization. 73

4.12 Trajectories varying with batch size. 74

4.13 Trajectories varying with learning rate. 75

4.14 Trajectories varying with the initialization point. 77

4.15 〈w〉 along training for varying batch size. 78

4.16 Distance between unrelated networks trajectories. 79

4.17 Distance between correlated trajectories. 79

5.1 Architecture of the networks trained. 83

5.2 Error obtained with the lightning-based initialization. 86

5.3 The dense sliced initialization. 87

5.4 Error obtained with the dense sliced initialization when input nodes are sampled

with probability proportional to their correlation with the output. 89

5.5 Error obtained with the dense sliced initialization when input nodes are sampled

uniformly. 90

5.6 Loss and accuracy of networks on MNIST. 92

5.7 Distribution of the product of weights of the initial and final configurations of a

network. 93

List of Figures vii

5.8 Spread of initialization seeds to nearby weights. 94

5.9 Mosaic of letters before and after training. 97

5.10 Training of neural networks marked with letters. 98

5.11 Evolution of a layer of weights marked with the letter A. 98

5.12 Distribution of the accumulated gradient of a layer of weights marked with the

letter A. 99

5.13 Final values of the weights of a network’s layer as a function of the respective

initial values. 100

5.14 Untrainability of small neural networks marked with letters. 101

5.15 Deviation of converging and diverging networks. 103

5.16 Examples of initialization filters created by the Filter initialization. 106

5.17 Results of training networks initialized with the Filter initialization. 107

5.18 Results of training networks initialized with the Filter initialization, using a

separate dataset for initialization purposes. 108

5.19 Loss of networks initialized with the Filter initialization along training. 109

List of Tables

3.1 Physical specifications of the computing nodes in use. 56

3.2 Versions of the main software used in the computing nodes. 57

4.1 Bit error rate for a small number of errors. 67

ix

Acronyms

ANN Artificial neural network

API Application programming interface

BER Bit error rate

CNN Convolutional neural network

CPU Central processing unit

DBMS Database management system

DL Deep learning

EMA Exponential moving average

EWMA Exponentially weighted moving
average

GD Gradient descent

GPU Graphics processing unit

IO Input/Output

MLP Multilayer perceptron

MSE Mean squared error

NIST National Institute of Standards and
Technology

PCC Pearson correlation coefficient

RAM Random-access memory

ReLU Rectified linear unit

SGD Stochastic gradient descent

SSH Secure Shell

VPN Virtual private network

XAI Explainable AI

xi

1 Introduction

We can only see a short distance ahead, but we can see plenty there that
needs to be done.

— Alan Turing, Computing Machinery and Intelligence

A couple of years ago, few people would have expected machines to accomplish what
they have accomplished, or to succeed in tasks the way they have proved successful.
This feeling is particularly true when considering pattern recognition and many other
information processing tasks. Humans have long been considered the undisputed
champions in these chores. However, advances in areas such as machine learning
have allowed computers to find their place at the heart of a large number of these
applications (LeCun, Bengio, & Hinton, 2015), such as image classification (He, Zhang,
Ren, & Sun, 2016; Krizhevsky, Sutskever, & Hinton, 2012; Szegedy et al., 2015), video
recommendation (Koren, 2009; Salakhutdinov, Mnih, & Hinton, 2007), natural language
processing (Collobert et al., 2011; Jean, Cho, Memisevic, & Bengio, 2015; Sutskever,
Vinyals, & Le, 2014), and many others. It seems we are experiencing a period where
humans and machines augment each other and achieve more together than either could
do alone. This cooperation had been suggested for long, for instance, by computer
scientist Licklider (1960). He stated this symbiosis would manifest as a very tight
coupling between the human and the electronic members of the partnership, and that
computing machines would evolve to do the routinizable work that must be done to
prepare the way for insights and decisions in technical and scientific thinking.

Perhaps the first well-known personality to realize and recognize the potential of
the human-machine cooperation was the chess grandmaster Garry Kasparov. As he
discusses in (Kasparov, 2010), after losing to IBM’s Deep Blue, he had the idea to
conceive a match where, instead of humans playing against machines, human and
machine would play as partners. As Kasparov himself puts it, “the idea was to create
the highest level of chess ever played, a synthesis of the best of man and machine”. His

1

2 Introduction

findings were quite insightful. A month earlier, he had defeated 4–0 his opponent (the
chest grandmaster Veselin Topalov, until recently the world’s number one ranked player)
in rapid chess. However, in the match with the aid of the computer, they scored a 3–3
draw. Kasparov recognized his advantage in calculating tactics had been nullified by
the machine. These conclusions were further supported by a second tournament where
contestants could compete in any way they wanted — in teams with other players or
computers. It revealed that teams of human plus machine dominated the strongest
computers — even chess-specific supercomputers were no match for a strong human
player using a relatively weak laptop. Moreover, and possibly more surprisingly, the
winner turned out not to be a grandmaster with a state-of-the-art computer, but a pair
of amateur chess players using three computers at the same time. Kasparov concluded
that the combination of “weak” human plus machine and better process was superior
to a strong computer alone and, more remarkably, superior to a strong human plus
machine and inferior process.

The reason behind the success of this symbiosis may be understood by Moravec’s
Paradox (Moravec, 1988; Rasskin-Gutman, 2009). Things that are very easy for us
humans, like walking without stumbling while avoiding objects in our way, seem to
be considerably difficult for machines. Meanwhile, multiplying two one hundred-digit
numbers is trivial for a computer, whereas most of us would struggle to carry such a
calculation. It seems that we humans are more proficient in understanding and improving
simple processes that we perform the worse than complex innate ones at which we
excel (M. Minsky, 1988). While this may be contradictory and even paradoxical, at
least it appears to be useful. It allows us to battle our own weaknesses effectively.

Nevertheless, perhaps we should take care where we lead computers to, since Licklider
(1960), in his discussion about the human-machine symbiosis, highlights that it seems
entirely possible for machines, in due course, to outdo the capabilities of the human
brain. Curiously, Kurzweil (1990) predicted that between 2020 and 2070 machines will
pass the Turing test, and few years later, Moravec (1998) predicted that the hardware
required to match the general intellectual performance of the human brain would be
available in cheap machines in the 2020s. It seems we will not have to wait for long
until we find out whether these predictions are correct.

In the past few years, Deep learning (DL), a family of machine learning methods
based on Artificial neural networks (ANNs), has proved fundamental in enabling humans
to do more with the help of their computers. As a very recent example, in a joint effort
between DeepMind1 and the University of Oxford, Assael, Sommerschield, and Prag
(2019) created Pythia, the first ancient text restoration model that uses deep neural

1https://deepmind.com/

https://deepmind.com/

3

networks to recover missing characters from damaged text input. It sets the state-of-
the-art in ancient text restoration, achieving 30.1% character error rate compared to
57.3% of human epigraphists. Pythia’s authors highlight its importance to assist, guide,
and advance the ancient historian’s task.

The development of new deep learning models that improve or enable some task has
been a constant ever since deep learning started gaining popularity. One may say that
the work of Krizhevsky et al. (2012) was one of the first ones to significantly raise the
interest of the research community in deep learning (particularly in deep convolutional
networks). The interest has been renewed and increased continuously throughout the
years. Another landmark work (of the many that appeared in-between), AlphaGo
Zero (Silver et al., 2017), was a remarkable deep learning model that learned tabula
rasa (i.e., starting without any prior knowledge) how to beat Go world champions by
playing against itself. The rise in interest of deep learning is evidenced by the sheer
number of Google searches for this term, shown in Fig. 1.1 (the increase is even more
evident when compared with other well-known machine learning methods).

Time (month)

Po
pu

la
rit

y
(n

or
m

al
iz

ed
 to

 0
-1

00
 ra

ng
e)

0

25

50

75

100

2005-01

2006-01

2007-01

2008-01

2009-01

2010-01

2011-01

2012-01

2013-01

2014-01

2015-01

2016-01

2017-01

2018-01

2019-01

Deep learning: (Worldwide) Support vector machine: (Worldwide) Decision tree: (Worldwide)

Figure 1.1: The rise of interest in Deep learning based on the number of Google searches for
it. Source: Google Trends (https://www.google.com/trends).

Notwithstanding the many advances that deep learning has supported, one cannot
ignore the problems that it has created along the way. It seems that, despite the many
doors it opened, the improvements in the area have not, in general, been backed by
rigorous, theoretical knowledge. The lack of our understanding of the methods we are
continuously applying (and even evolving/improving) was recently put out bluntly by

https://www.google.com/trends

4 Introduction

Google’s AI researcher Ali Rahimi in his presentation for the NIPS 2017 Test-of-Time
Award2 and on a follow-up paper (Sculley, Snoek, Wiltschko, & Rahimi, 2018). He
states that machine learning (and, especially, deep learning) has become the alchemy of
our age. It is this very same realization that motivates this thesis.

1.1 Motivation
It seems that machine learning has become a field that values new methods that

beat previous ones on a given task or benchmark more than it values deep and precise
understanding of those methods (Sculley et al., 2018). During his presentation at
NIPS’17, Rahimi played an exercise where he asked two simple questions. First, he
asked his audience how many projects they had been involved with the past year, in
which they were trying out different techniques so that they could achieve state of the
art results in some problem. Afterward, Rahimi asked how many experiments they run
during the same time where they were chasing down an explanation — the root cause —
for a strange phenomenon they observed. He highlights that there is much research of
the former kind, but very few of the latter, and concludes by recalling that the goal of
science is not to win, but to improve our knowledge.

Note that the issue Rahimi was referring to is different from AI’s reproducibility
problem (Hutson, 2018a), which relates to researchers not being capable of replicating
each other’s works due to inconsistent experimental and publication practices. As an
example, Gundersen and Kjensmo (2018) found that only 6% of the 400 papers on
AI they surveyed shared the code of the algorithms proposed in them. The issue also
differs from the black box/interpretability problem, which relates to the difficulty of
explaining how a particular AI model came to its conclusions (Voosen, 2017). The latter
issue relates with Explainable AI (XAI), a recent and also important topic that seeks
to increase the transparency of AI models, allowing, for instance, the implementation
of the right to an explanation3. Rahimi’s main issue is not a machine learning system
that is a black box, but an entire field that has become a black box.

We do not believe the world is as dark as Rahimi painted it, nor do we believe it is
as bright as Facebook’s chief AI scientist, Yann LeCun, commented when replying to
Rahimi’s talk4 — that AI is not alchemy, it is engineering, and engineering artifacts
have almost always preceded the theoretical understanding. Benjamin Recht, co-author
of Rahimi’s alchemy keynote talk, seems to believe in a compromise with which we

2E.g., https://www.youtube.com/watch?v=Qi1Yry33TQE. Accessed 2019-10-20.
3These topics are ever more important in the European Union (EU), which is pressuring AI solutions

affecting EU citizens to be lawful, ethical and robust. It recently published its Ethics guidelines for
trustworthy AI (High-Level Expert Group on AI, 2019).

4https://www.facebook.com/yann.lecun/posts/10154938130592143. Accessed 2019-10-20.

https://www.youtube.com/watch?v=Qi1Yry33TQE
https://www.facebook.com/yann.lecun/posts/10154938130592143

1.2 Problem scope/Objectives 5

agree, suggesting that both types of research are needed, one to determine where failure
points come from, so that reliable systems may be built, and another to create ever
more impressive systems (Hutson, 2018b).

In this work, we try to dismantle (part of) the machinery living inside neural
networks, and understand some of the processes there happening. Our main objective
is to try to develop insights about these processes, which may be used in future works
to uncover more profound knowledge about artificial neural networks and deep learning.
To achieve this, we follow the idea laid down by Rahimi in his talk — we take simple
systems and try to understand them in-depth, in the hope that our findings may serve
as stepping stones to understand more complex settings in the future.

1.2 Problem scope/Objectives
The first objective of this thesis is to study how artificial neural networks trained on

a synthetic dataset (that can be precisely characterized, Sec. 3.1) evolve with training
with respect to a broad set of factors, such as architecture, learning rate, and batch
size. We take an in-depth view on the configurations of weights acquired by the trained
networks, and discuss them at the light of the structure of the dataset itself.

The second objective, somewhat a corollary of the first, is to study the impact that
the initial configuration of weights of a network has on its training and function. This
study is performed resorting to “real life” datasets, and analysing the drift between the
initial and final configurations of weights.

1.3 Thesis organization
This thesis is organized as follows. Chapter 2 introduces background topics on

artificial neural networks along with some recent advances in the area. Chapter 3
presents aspects related with the experiments carried, namely, the datasets used, the
programs developed to carry the experiments and process their results, and the way
they interact. Chapters 4 and 5 constitute the body of work of the thesis. The former,
Chap. 4, describes an exploratory stage where simple experiments were carried on a
synthetic dataset, with the aim of gaining a general understanding of what is happening
during the training of a neural network. The latter, Chap. 5, builds upon the knowledge
acquired in the previous chapter and carries a more directed study on the effect of
the initialization of a neural network in its training and function. Finally, Chap. 6
concludes the thesis, pointing out (hopefully) interesting venues for future research.

2 Background on artificial neural networks

You have to know the past to understand the present.
— Carl Sagan

Artificial neural networks (or neural networks for short) came to existence motivated
by our interest to study the human brain (a field called Connectionism). They were
first developed to model our biological neural networks, but it soon became clear that
they could be used for a lot more. Throughout the years, there have been periods of
significant interest and progress in the area, followed by years where progress dwindles.
In this chapter, we start by taking an overview of the history of neural networks. We
believe it is fundamental to know how something started so that we can build upon this
knowledge and make steady progress. Then, we discuss topics involved with the design
and training of contemporary neural networks, like common architectures, optimizers,
and initialization strategies.

The chapter is organized as follows. In Secs. 2.1 and 2.2 we look into the history of
neural networks, from its primordials in Sec. 2.1, to our current times in Sec. 2.2. Then,
in Sec. 2.3, we overview the major components that are used for constructing the neural
networks of our days, as well as to perhaps the most important architectures currently
used, the multilayer perceptron and convolutional neural networks. In Sec. 2.4, we
examine the optimization algorithms that are used to train them. Finally, in Sec. 2.5, we
consider the initialization of neural networks and some of the most common strategies
to do so.

2.1 Neural networks: The genesis
Nowadays, we use artificial neural networks as the chief tools of machine learning,

applying them to lots of different problems and typically obtaining surprisingly good

7

8 Background on artificial neural networks

results. Consider, for instance, the recent work of Breen, Foley, Boekholt, and Zwart
(2019), where a deep fully-connected neural network model1 obtains accurate solutions
to Newton’s problem of solving the equations of motion for three bodies under their
own gravitational force, at fixed computational cost (being millions of times faster than
the state-of-the-art solver). However, it happens that neural networks were initially
conceived not as tools for machine learning, but as devices to help understanding how
our human brain works. In this section, we overview the main contributions at the
origin of neural networks, until the field’s so-called “first winter” (which happened
around 1970).

2.1.1 The McCulloch-Pitts neuron

In their seminal work on the logical analysis of nervous activity, Warren McCulloch,
a neurophysiologist, and Walter Pitts, a logician, ended up formulating the first artificial
neuron (McCulloch & Pitts, 1943). The so-called McCulloch-Pitts neuron (M-P neuron)
was based on the following assumptions (among others) (McCulloch & Pitts, 1943,
Part II).

• The activity of a neuron is an “all-or-none” process (i.e., it is binary, the neuron
either fires or it does not, there is no state in between).

• A neuron fires if the sum of its excitatory inputs reaches a specific threshold and
it receives no inhibitory input. Otherwise, it does not fire.

• The structure of a network of neurons is static, meaning that it does not change
with time.

Figure 2.1 illustrates one such neuron.

x1

x2

x3

θ = 2 y

Figure 2.1: Example of a McCulloch-Pitts neuron.

The M-P neuron works as follows. The inputs xi and output y take the logical
values 0 and 1. Two kinds of inputs exist: excitatory and inhibitory. In the figure, the
inputs x1 and x2 are excitatory inputs, whereas the input x3 is an inhibitory one. If any
inhibitory input is active, the neuron outputs 0. Otherwise, if the sum of the excitatory
inputs reaches the value of θ, called the threshold, the neuron fires, outputting 1. Else,

1More specifically, their network consists of 10 densely connected layers each with 128 nodes using
the Rectified linear unit (ReLU) activation function, except for the output layer, which uses the linear
activation function.

2.1 Neural networks: The genesis 9

the neuron outputs 0. As a result, the neuron in the figure can be seen as implementing
the logical expression x1 ∧ x2 ∧¬x3, since both x1 and x2 must be active for the neuron
to receive an input which reaches its firing threshold, and, moreover, the inhibitory input
x3 must be inactive. If the threshold was lowered from two to one, the logical expression
implemented would be (x1 ∨ x2) ∧ ¬x3. Figure 2.2 shows how some boolean functions
may be implemented using M-P neurons. Notice that one is capable of implementing
any logical function by combining these simple neurons, since the boolean operators AND
and NOT (for example) can be implemented, as shown in the figure, and they constitute
a functionally complete set of boolean operators.

x

θ = 0 y (NOT)

(a) NOT: y = ¬x

x1

...
xn

θ = n y (AND)

(b) AND: y = x1 ∧ x2 ∧ · · · ∧ xn

x1

...
xn

θ = 1 y (OR)

(c) OR: y = x1 ∨ x2 ∨ · · · ∨ xn

x1

x2

θ = 1

θ = 2

θ = 1 y (XOR)

(d) XOR: y = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

Figure 2.2: Logical functions implemented with McCulloch-Pitts neurons.

2.1.2 Hebb’s learning rule

In the late 1940s, Donald Hebb observed that neural paths are strengthened each
time that they are used (Hebb, 1949). He argued that the connection between two
neurons is increased if they fire at the same time. This theory came to be known as
Hebb’s rule, and it originated a method of updating the weights of an artificial neural
network, and inspired many others. The general idea is to update the weights of a
network as each input/set of inputs is presented to it, according to whether the weights
activate simultaneously or separately (the connection is increased in the former case
and reduced in the latter). Hebb’s observation also motivated the work of Rosenblatt,
which would originate the perceptron, a significant development in the history of neural
networks.

10 Background on artificial neural networks

2.1.3 The Perceptron

In 1957, intrigued with the operation of the eye, Frank Rosenblatt, a psychologist
at Cornell Aeronautical Laboratory, New York, began working on single-layer neural
networks called the perceptrons2 (Rosenblatt, 1957, 1958), the oldest neural network
still in use today. He was motivated by the earlier works of McCulloch and Pitts and
Hebb. However, he considered McCulloch and Pitts’ symbolic logic and boolean algebra
unsuited for the mathematical analysis of “systems where only the gross organization can
be characterized, and the precise structure is unknown” (Rosenblatt, 1958). Moreover,
he considered the M-P neuron to some extent “nonbiological”, for instance, requiring
excessive specificity of connections and synchronization, not accounting for the random-
ness of real biological neural networks. As a result, Rosenblatt, in some sense, simplified
the M-P neurons, removing unnecessary restrictions. One of his major breakthroughs
was providing the neurons’ input links with weights, which denote the strength of the
connection. In doing this, he also eliminated the “all or nothing” inhibitory inputs —
they would be addressed by using negative weights. Note that, while the inputs and
outputs of the perceptron are still the integers 0 and 1, the network itself works with
real numbers. The neurons of the perceptron compute the weighted sum of their inputs,
and fire iff the sum reaches a specific threshold. Figure 2.3 illustrates the model.

x1

...
xn

θ y

w1

wn

(a) Fixed θ.

1

x1

...
xn

y

−θ
w1

wn

(b) Learnable θ.

Figure 2.3: Perceptrons. In one (left) the threshold is fixed, whereas in the other (right) it is
learnable.

Another important distinction to the McCulloch-Pitts neuron is that the thresholds
of the neurons can be made learnable by providing each neuron with an extra input,
which always receives the value of 1 (denoted the neuron’s bias). This way, the
weight of the connection functions as the neuron’s threshold, while allowing it to be
changed/adjusted as any other weight. One of the training procedures developed for
Rosenblatt’s perceptrons was the “error-correction procedure”. It worked by adjusting
the weights of neurons that incorrectly classified an input so that they would adequately
recognize it (Nilsson, 2009, Sec. 4.2.1).

2The term perceptron comes from photoperceptron (a unit responding to optical patterns as
stimuli). The term itself is frequently used to refer to either a single unit or a network of such units.

2.1 Neural networks: The genesis 11

As will be seen later, this kind of unit is very similar to the ones used in building the
neural networks of our days. The neurons of the perceptron are nothing more than a
specific instance of our current model of a neuron, where one uses as activation function
(a function applied to the weighted sum of the inputs of a neuron) the Heaviside step
function (U),

U(x) =

1 if x ≥ 0

0 otherwise
.

2.1.4 The first winter

Rosenblatt’s perceptron and its learning schedule draw significant interest in the
research community (and even the general public3). Some viewed the perceptrons as
having remarkable powers of self-organization, and as being the first concrete step
into the development of true artificial intelligence (Newell, 1969). However, as time
revealed, perhaps the Rosenblatt’s perceptrons draw too much attention, causing too
many people to have inflated expectations from them. When the limitations of the
perceptrons started to surface — such as they being incapable of learning the simple
boolean exclusive-or (XOR) problem — the community started to have doubts about
their potential. The desolation burst open with the book of Marvin Minsky, co-founder
of MIT’s AI Lab, and Seymour Papert, co-director of the same laboratory (M. Minsky
& Papert, 1969).

The book carried an extensive and thorough study of perceptrons4 and revealed
many of their limitations. The fundamental problem raised by it was related to the
perceptrons’ incapability of working with non-linearly separable problems (such as
the XOR problem), combined with the difficulties of deploying (and training) multi-
layer networks of perceptron neurons. The latter problem relates, first, with the
computational cost of evaluating multi-layer networks (one should recall that at the time
the computers were in their infancy), and second, with the lack of more evolved learning
procedures (particularly, gradient-based techniques, which were being overlooked since
the perceptrons were binary).

Their book is frequently regarded as being at the origin of the so-called “AI winter”,
a period that lasted till the early 1980s, where research in artificial intelligence saw
a marked demise, and funding was extensively cut. Minsky and Papert themselves
acknowledge this effect in the expanded version of their book (M. L. Minsky & Papert,
1988, p. xiii). However, they highlight that the shift of research that their book motivated

3https://www.nytimes.com/1958/07/13/archives/electronic-brain-teaches-itself.html
4In their book, Minsky and Papert consider more general perceptrons than those of Rosenblatt,

though they use the same name in a tribute to the latter’s pioneering work.

https://www.nytimes.com/1958/07/13/archives/electronic-brain-teaches-itself.html

12 Background on artificial neural networks

was, all in all, a necessity — in their own words, “a prerequisite for understanding
more complex types of network machines”. Moreover, they note that despite the
severe limitations of the perceptron (and even because of them), it proved itself to
be a very rich subject to study (M. L. Minsky & Papert, 1988, Sec. 13.2). All things
considered, it seems that only after realizing the limitations their methods had, the
research community could develop improved and even novel methods to overcome the
shortcomings of the methods they had.

2.2 Neural networks: The second age
After the end of the first winter, the field of neural networks saw significant develop-

ments, like the famous backpropagation algorithm. However, the lack of maturity of the
hardware and software of the time, as well as the limited availability of the data required
to train neural network models, caused the field to see a second (smaller) winter by the
mid-1990s. Nevertheless, as technology picked up, so did the developments in neural
networks, and with them came the many breakthroughs that we have seen in the recent
years. In this section, we describe briefly this period of the history of neural networks:
the end of the first winter, backpropagation, and the reasons that lead to the second
winter. Finally, we discuss some of the recent advances in the area.

2.2.1 Backpropagation

In the 1980s, the second wave of research in neural networks sprouted, initiated in
1982 by Hopfield networks (Hopfield, 1982), which are fully-connected recurrent binary
networks. They were followed in 1985 by Boltzmann machines (Ackley, Hinton, &
Sejnowski, 1985), which are binary stochastic recurrent networks with hidden units. The
latter were found to be capable of discovering features representing complex regularities
in the training data5. Perhaps of even more importance, 1986 saw the development of
backpropagation (Rumelhart & Hintonf, 1986), motivated by the change from using the
step function as the typical activation function of neurons to using sigmoidal activations
(which only become computationally feasible due to the advances in computer hardware
that had occurred).

Backpropagation is an algorithm used by optimizers (algorithms used for updating
the weights of neural networks). It computes the gradient of the loss function of a
network with respect to its weights, enabling the application of gradient-based methods
to minimize the loss function of a network by adjusting its weights. It works by

5They were brought to spotlight somewhat recently in the context of the Netflix Prize (Koren,
2009; Salakhutdinov et al., 2007).

2.2 Neural networks: The second age 13

successively applying the chain rule of calculus backward through a network. Without
backpropagation, evaluating the gradient of the loss function would become prohibitively
expensive, even for reasonably small networks. Note, however, that backpropagation
itself only describes how to compute the gradient of the loss function of a network with
respect to its weights — how the gradient is used to update the weights is a different
matter, that the optimization algorithms are responsible for addressing (we present a
few such algorithms in Sec. 2.4).

Applying the backpropagation algorithm to very large neural network models, like
the ones used today, implied developing structures such as computational graphs and
techniques like autodiff methods. These approaches, when combined, allow one to
compute the derivatives of a function that results from the composition of elementary
function as the function itself is evaluated, allowing the efficient implementation of
backpropagation. These topics are further addressed in Sec. 3.3.3.1.

2.2.2 The second winter

Although not as evident as the first winter, a second winter affected neural network
research between 1996–2006 (LeCun, 2019). The reasons behind it were different from
those of the first winter. It was caused by the lack of technology and data to properly
train the neural networks that were being developed. First, the hardware was still
too slow to execute a large number of floating-point operations sufficiently fast, which
caused even somewhat primitive networks (especially if compared to those of today)
to take weeks to train. Second, data were not as widely available as it is today, which
limited the applicability of neural networks mainly to simple character and speech
recognition problems (to which few, but some, datasets existed). Finally, there were
very few software libraries developed (and even fewer open-source) to experiment with
neural networks, which hindered their widespread.

Only when the hardware caught up, large datasets were built, and open source-
minded frameworks were developed, did the research in neural networks (and particularly
deep learning) boomed, causing their widespread and successful application in many
different scenarios6.

6Ironically, it seems unfortunate that Moore’s Law — which was starting to make computers
powerful enough to enable the usage of deep learning models in interesting real-world problems — is
coming to an end (Waldrop, 2016). It now seems that CPU performance is expected to double only
every 20 years (Hennessy & Patterson, 2017), instead of every two years. Sadly, many of the solutions
that have been developed over the years to circumvent the problem for general-purpose programs
(e.g., branch prediction, speculative execution, or hierarchical caching) are not particularly useful for
deep learning computations. Due to this, application-specific devices for deep learning, like Google’s
Edge TPU (Tensor Processing Unit, https://cloud.google.com/edge-tpu/), are emerging in the market,
as well as new custom-designed floating-point representations like bfloat16 (Wang & Kanwar, 2019),
better adapted towards the needs of deep learning models. It seems that hardware is once again posing

https://cloud.google.com/edge-tpu/

14 Background on artificial neural networks

2.2.3 The new era

Today, after the many highs and lows that the field has seen, deep learning is
a key enabler of the many technological improvements we are experiencing. Deep
learning is being successfully employed in problems such as self-driving cars, visual
perception, medical image analysis, bioinformatics, physics, speech recognition, object
recognition, drug discovery, genomics, among many others (LeCun, 2019; LeCun et al.,
2015; Shrestha & Mahmood, 2019).

G. E. Hinton, Osindero, and Teh (2006) carried one of the earliest works that breathe
new life into deep learning, after neural networks’ second winter. It presented a novel and
efficient strategy for training deep belief networks. The method was based on greedily
pre-training each hidden-layer (one at a time) in an unsupervised manner, followed by
a complete fine-tuning stage where all the layers would be trained simultaneously. It
pioneered layer-wise pretraining. Shortly after its publication, it was scrutinized and
generalized by Bengio, Lamblin, Popovici, and Larochelle (2007). The authors of the
latter work found supporting evidence that the method helps upper layers (i.e., those
closer to the output) find better representations of high-level abstractions of the input,
which helps training and generalization significantly. The unsupervised nature of the
method turned out to work remarkably well in a variety of tasks, especially when the
amount of labeled data was limited (which at the time was a significant problem, and
one that is still not completely solved nowadays).

Soon after, in 2009, Raina, Madhavan, and Ng (2009) accomplished the first large-
scale deployment of a (deep belief) neural network. It was made possible by the
opportunities opened by unsupervised learning methods (and their potential to use vast
amounts of unlabeled data), along with the advent of fast and easy to program graphics
processing units (GPUs), which the authors used in their work. The increase in the
number of free parameters in their model to other contemporary models is striking.
The largest models at the time had around 4 million free parameters (G. E. Hinton &
Salakhutdinov, 2006), whereas their model had 100 million. Moreover, by using GPUs,
they could reduce the training time of their model from several weeks to a single day.

Around the same time, interest grew in a particular type of deep feedforward network
that had been achieving increasingly more practical success — the convolutional neural
networks. They were introduced in (LeCun et al., 1989; LeCun, Boser, et al., 1990). We
discuss the structure of convolutional networks briefly in Sec. 2.3.4. Meanwhile, in the
remaining of this section, we report important practical advances achieved with them.

This type of network had been mostly neglected by mainstream computer vision
difficulties for deep learning, but this time there is great interest from the research community, and
industry alike, to overcome them (Dean, 2019).

2.2 Neural networks: The second age 15

and machine learning communities until 2012, when AlexNet (Krizhevsky et al., 2012)
won the ImageNet competition with a convolutional neural network, nearly halving the
error rates achieved by the competing approaches. Its success revolutionized computer
vision, establishing convolutional neural networks as the dominant approach to nearly
all recognition and detection tasks (LeCun et al., 2015).

Nowadays, it is typical to deploy convolutional neural networks with 1 to 10 billion
connections, 10 million to 1 billion parameters, and 8 to 20 layers (and beyond). Famous
architectures include AlexNet (Krizhevsky et al., 2012) with 8 layers and winner of
ILSVRC’127; VGG-16 and -19 (Simonyan & Zisserman, 2014) with 16 and 19 layers,
respectively (the latter was first runner-up in ILSVRC’148); GoogLeNet, also known
as Inception v1, (Szegedy et al., 2015), with 22 layers and winner of ILSVRC’14; and
ResNet (He et al., 2016), with a whopping 152 layers and winner of ILSVRC’15. For
perspective, a study by Karpathy (2014) found out that a human who trains on ILSVRC
for approximately 20 hours achieves a top-5 error rate9 of 5.1%. The RestNet network,
winner of ILSVRC’15, achieves a top-5 error rate of 3.6%, achieving superhuman
performance. Other recent networks showing promising results, suppressing those of
ResNets, are DenseNets (Huang, Liu, Van Der Maaten, & Weinberger, 2017).

Figure 2.4 shows the top-1 accuracy of some of the well-known networks mentioned
above on the ImageNet dataset, along with their sizes (number of parameters) and the
operations (additions and multiplications) they require in each forward pass. For a
comprehensive analysis of conventional deep learning models concerning metrics such
as the accuracy they achieve, memory footprint, power consumption, among others,
refer to (Canziani, Paszke, & Culurciello, 2016).

The success of the previously mentioned deep convolutional networks is so immense
that it has caused the research community to seek new problems to solve. The focus has
been shifting from image classification (i.e., having a classifier identifying whether an
image contains a dog or a cat) to image segmentation (dividing/partitioning an image
into various parts/segments) and object detection (identifying where dogs, or cats, or
both are present in an image). Few examples follow. Mask R-CNN (He, Gkioxari,
Dollár, & Girshick, 2017) pioneered the efforts in object detection with good results, but
it has since been suppressed by Detectron2 (Wu, Kirillov, Massa, Lo, & Girshick, 2019).
Meanwhile, DensePose (Güler, Neverova, & Kokkinos, 2018) reports achieving real-time

7ImageNet Large Scale Visual Recognition Challenge (ILSVRC, http://www.image-net.org/
challenges/LSVRC/) is a well-known competition for evaluating algorithms in object detection and
image classification.

8We skipped the winner of ILSVRC’13, ZFNet (Zeiler & Fergus, 2014), since it uses a network
with 8 layers highly based on AlexNet.

9Top-5 error rate means computing the percentage of times that a target label is not present in
the set of 5 top-scoring classes output by a classifier.

http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/

16 Background on artificial neural networks

0 5 10 15 20 25 30 35 40
Operations [G-Ops]

50

55

60

65

70

75

80

T
o
p
-1

 a
cc

u
ra

cy
 [

%
]

BN-NIN

Inception-v3

Inception-v4

BN-AlexNet

AlexNet

VGG-16 VGG-19

ResNet-18

ResNet-34

ResNet-50
ResNet-101

ResNet-152

GoogLeNet
ENet

5M 35M 65M 95M 125M 155M

Figure 2.4: Top-1 accuracy on ImageNet versus amount of operations required for a single
forward pass. The size of the blobs is proportional to the number of a network’s parameters; a
legend is reported in the bottom right corner, ranging from 5× 106 to 155× 106 parameters.
Source: Canziani, Paszke, and Culurciello (2016).

body-pose estimation (i.e., mapping pixels of a human in an image to a surface-based
representation of the human body). Finally, Deniz et al. (2018) use 3D convolutions to
carry segmentation on magnetic resonance images.

Despite the undisputed success of deep learning models, there is still a large gap in
our understanding of how or why they work. To some extent, it seems that deep learning
is often seen as being more of an art than of a science. As a result, while it is essential
to continue to push the limits of what we can currently do with deep networks further,
it also becomes crucial to gain a deeper knowledge about their internals. Otherwise,
our progress may eventually be blocked by the lack of our understanding.

2.3 Contemporary neural networks
As we have seen, a neural network is a biologically-inspired graph-based structure. It

consists of a usually large number of neurons (or units or even nodes) joined together in
a pattern of connections. These neurons are typically organized into three main groups:
(i) the input units, which receive the information to be processed; (ii) the output units,
which hold the results of the processing; and (iii) the hidden units, which are all the
nodes in between the first two, receiving inputs from preceding units and providing
outputs to succeeding ones. This organization is one of the main reasons why neural

2.3 Contemporary neural networks 17

networks are regarded as black-box models. The only interfaces of a neural network
are its input and output nodes — all the logic in between is hidden. Note how this
structure resembles that of our own nervous system, where our sensory neurons (input
units) trigger a response in the motor neurons (output units) through all the other
intermediate neurons (hidden units) in our brain (Buckner & Garson, 2019). Figure 2.5
illustrates an elementary neural network.

Input 1

Input 2

Input 3

Input 4

+1
+1

Output

Hidden
layer
(L1)

Input
layer
(L0)

Output
layer
(L2)

Figure 2.5: A simple neural network with three layers.

Neurons are very simple structures that mostly carry some computation on their
inputs and propagate their results. Famous neurons in the history of artificial neural
networks are the McCulloch-Pitts neuron and the perceptron, which we have seen in
previous sections (Sec. 2.1.1 and Sec. 2.1.3, respectively). The neurons used nowadays
are mostly adaptations/generalizations of the perceptron. In this section we start
by discussing the elementary components of neural networks, particularly, neurons
(Sec. 2.3.1) and activation functions (Sec. 2.3.2). Then, we present two important
network architectures, the multilayer perceptron (in Sec. 2.3.3), and convolutional
neural networks (in Sec. 2.3.4), alongside relevant results related to them (for instance,
concerning their expressiveness).

2.3.1 The neurons

The typical neuron model used nowadays is very similar to Rosenblatt’s perceptron.
One such neuron is illustrated in Fig. 2.6. In general, a neuron receives a set of signals
xi as input and computes its output y by evaluating an activation function f on the

18 Background on artificial neural networks

x1

...
xn

1

f (Σ) y

w1

wn

b

Figure 2.6: An artificial neuron with bias input.

weighted sum of its inputs, i.e.,

y = f

(∑
i

xiwi + b

)
.

The inputs of a node are either provided directly to the model (as actual input
values) or are the output of previous nodes that are connected to it. Likewise, the
output is either an actual output value or an input to another node (or even both).
By successively connecting nodes, one constructs an artificial neural network. In short,
a neural network essentially receives a set of inputs through its input units, and the
signal is continuously propagated through its hidden units until it reaches the output
units, which will output the overall activation values of the network.

Connecting the units are weights, which represent the strength of the connection
between them. They may either be positive or negative, denoting the “excitation” or
the “inhibition”, respectively, of the receiving unit to the activity of the sending unit.
It is the weights that in some sense set the activation pattern of a network, and it is
by adjusting them that a network can approximate some desired function (i.e., it is by
adjusting the weights of a network that it “learns”/trains how to perform some task).
A few such training algorithms are discussed in Sec. 2.4.

2.3.2 The activation functions

As we saw above, the output y of a neuron results from the evaluation of some
(typically nonlinear) function f , called the activation function, on the weighted sum of

the neurons’ inputs, i.e., y = f

(∑
i

xiwi + b

)
. The activation function f is usually a

function that tries to mimic the “firing” of a brain neuron. Figure 2.7 portrays common
activation functions10.

Currently, the most successful and frequently used activation function seems to be
the Rectified Linear Unit (ReLU) (Goodfellow, Bengio, & Courville, 2016, Chap. 6).

10The identity activation function (f(x) = x, Fig. 2.7a) is typically only used in the input and, in
certain cases, the output layers of a neural network, as successive linear layers can be reduced to a
single one (thus rendering them dull).

2.3 Contemporary neural networks 19

−10 −5 0 5 10

−10

−5

0

5

10
f(x) = x

(a) Identity
−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1
f(x) = 1

1 + e−x

(b) Logistic sigmoid
−10 −5 0 5 10

0

2

4

6

8

10
f(x) = max(0, x)

(c) ReLU

−10 −5 0 5 10

−1

−0.5

0

0.5

1
f(x) = tanh(x)

(d) Hyperbolic tangent
−10 −5 0 5 10

0

0.5

1

1.5

2

f(x) =
1 for x ≥ 0

0 for x < 0

(e) Step/Heaviside
−10 −5 0 5 10

0

2

4

6

8

10
f(x) = x · σ(βx) , β = 1

(f) Swish (Ramachandran, Zoph,
& Le, 2018)

Figure 2.7: Typical activation functions used in neural networks.

The rationale behind its success lies with it being “almost linear”, in that it is a piecewise
function with two linear pieces, which allows it to retain many of the properties that
make linear models easy to optimize with gradient-based methods (Goodfellow et al.,
2016). Moreover, the fact that it truncates negative values originates sparse activations,
where a significant amount of nodes output 0, which seems to agree with the observation
that the neurons in our brains also activate sparingly (Glorot, Bordes, & Bengio, 2011).

Notwithstanding the widespread usage of ReLU, the study and development of new
activation functions is still an interesting research topic. For instance, recently Ra-
machandran, Zoph, and Le (2018) have proposed a new activation function called Swish,
defined as

f(x) = x · σ(βx) ,

where σ(x) is the logistic function (Fig. 2.7b) and β is either a constant or a trainable
parameter. Figure 2.7f plots Swish for β = 1.

Swish was found by automatic search. Its authors carried an experiment based on
reinforcement learning where they evaluated combinations of different unary and binary
functions, and the combination later called Swish came on top. Note the similarities
between Swish and ReLU. As β →∞, Swish approaches ReLU, since σ(βx) approaches
0 or 1, depending on the sign of x. By replacing ReLU with Swish, its authors obtained
improvements of 0.5–1% on several models trained on ImageNet, without fine-tuning the
remaining training hyperparameters, which suggests it may be an activation function

20 Background on artificial neural networks

worth considering in the future.

2.3.3 The multilayer perceptron

Multilayer perceptrons (MLPs) are networks constructed by composing layers of
neurons (of the type presented in Sec. 2.3.1) together. They are multilayer fully-
connected feedforward networks, i.e., networks where the nodes of one layer have
weights connecting them to all the other nodes of adjacent layers, and where the
input signal propagates through the network from the input to the output layer, on a
layer-by-layer basis. Figure 2.5 illustrates a MLP.

These networks have been applied successfully to a variety of problems in fields
such as speech or image recognition, although nowadays other architectures (such as
Convolutional neural networks (CNNs)) are more commonly used. Despite the decrease
in their usage, they should still not be overlooked, since they possess interesting
properties regarding their expressiveness. Furthermore, they are still typically used as
the last layers of more complex architectures (such as convolutional-based networks).

These networks can be seen as a mathematical function mapping input to output
values. The function itself is formed by composing many simpler functions. Interestingly,
it was proven that any continuous function on a compact domain can be approximated
with any given precision by an MLP with a single hidden layer and using any continuous
sigmoidal activation function (Cybenko, 1989). Before his major result, however, there
was another very important work by Andrey Kolmogorov.

In 1957, Andrey Kolmogorov proved a universal representation theorem for contin-
uous functions, which states that any multivariate continuous function on a compact
domain can be expressed as a finite sum of continuous functions of a single variable (Kol-
mogorov, 1957). More formally, Kolmogorov’s theorem established that any continuous
multivariate function f : [0, 1]n → R can be represented in the form

f(x1, . . . , xn) =
2n+1∑
q=1

Φq

 n∑
p=1

φq,p(xp)

where Φq are properly chosen continuous real functions and φq,p are continuous real
function on [0, 1]. The inner functions φq,p can be chosen independently of the function
f . The idea behind Kolmogorov’s theorem is illustrated in Fig. 2.8, where a generic
transformation M maps Rn inputs into several unidimensional transformations, that
are afterward summed together.

While this interpretation is not directly applicable to building neural networks (since,
for instance, the functions Φq would have to be parameterized, which the theorem does

2.3 Contemporary neural networks 21

x1

x2

xn

Φ1

Φ2

Φ2n+1

Σ f...

...

M

Figure 2.8: Network representation of Kolmogorov’s theorem. Based on http://neuron.eng.
wayne.edu/tarek/MITbook/chap2/2_3.html.

not capture), it alludes to the usage of parallel and layered structures for multivariate
function approximation.

Meanwhile, the landmark proof of Cybenko (1989) (independently proven by Hornik,
Stinchcombe, and White (1989) and Funahashi (1989)) is directly applicable to neural
networks. It states that “any continuous function of n real variables on a compact domain
can be approximated arbitrarily well by finite linear combinations of compositions of a
fixed univariate sigmoidal function and a set of affine functionals”. In other words, a
MLP with a single hidden layer, using a sigmoidal activation function in that layer and
linear activation function on the output layer is capable of approximating any given
function to any degree of accuracy.

An important detail of this result is that it makes no considerations about the
number of nodes required in the hidden layer for the desired accuracy, apart from it
being finite. Of course, in practice, finite may not always be feasible. Nonetheless,
the theorem still implies that if one of these networks fails to approximate a given
function to the desired accuracy, it must be due to an inadequate choice of parameters
or an insufficient number of hidden nodes, and not due to an inborn incapability of the
network to the particular problem.

More recently, Hanin and Sellke (2017) has proved that MLPs employing the ReLU
activation function in their hidden units, with an arbitrary number of layers, and each
layer having n+ 1 nodes, can approximate arbitrarily well any continuous, real-valued
function of n variables on a compact domain.

2.3.4 Convolutional neural networks

Convolutional neural networks (CNNs) (LeCun, Boser, et al. (1990) and LeCun
et al. (1989, Secs. 3.5–3.7)) are neural networks specifically designed for processing
data that show some form of locality, i.e., whose contents are arranged in such a way
that nearby inputs are meaningful together (form features). Examples of such types

http://neuron.eng.wayne.edu/tarek/MITbook/chap2/2_3.html
http://neuron.eng.wayne.edu/tarek/MITbook/chap2/2_3.html

22 Background on artificial neural networks

of data include time series or images. They have proven to be hugely successful at
such tasks, constantly occurring in state of the art architectures developed for datasets
such as ImageNet and many other real-life problems. We have seen some of the many
achievements of convolutional networks in Sec. 2.2.3.

The components that distinguish CNNs from fully-connected networks are mainly
three, described in LeCun’s seminal paper (LeCun et al., 1989). The first is to connect
each unit in a hidden layer to only a small number of neighboring units in the preceding
layer. The position of the hidden unit in its layer should reflect the position of the units
it connects to in the layer before it, so that the locality of the units is retained. The
groups of weights that connect a unit to the ones before it are typically called kernels.
To some extent, restricting the number of connections between units pushes the hidden
units into constructing local features by forcing them to combine (only) local sources of
information.

The second aspect of CNNs is to consider that distinctive features of the data may
appear anywhere, which is particularly true for images. For instance, consider that a
particular object we want to identify may appear anywhere in a picture. Convolutional
networks address this by weight sharing, i.e., by applying the same kernel to different
positions of the input, creating “planes” that result from the evaluation of a kernel at
the different positions of the input. Figure 2.9 illustrates the structure obtained by
connecting layers with weight sharing.

input image
or input feature map

output feature maps

Figure 2.9: Basic structure obtained by employing weight sharing. Each plane (appearing in
the right) is the result of convolving the same set of weights through the input image (at the
left). Different weights are used for different planes.

Finally, the third aspect is one that results from the two above. By applying many
convolutional layers one after the other, one can achieve what is called hierarchical
feature extraction, where layer after layer the “abstraction” of the features that the
layers learn keeps on increasing.

There are other components usually employed in convolutional networks besides the
actual convolutional layers, such as max-pooling layers. The units of these layers are

2.4 Optimization algorithms 23

assigned with the maximum value of a small number of nearby units in the preceding
layer. Their goal is to reduce the dimension of the representation and create invariance
to small shifts and distortions (LeCun et al., 2015). The typical architecture of a simple
convolutional network includes two or three stages, each composed of a convolutional
layer, non-linear activation (typically ReLU), and pooling layer. These stages are
usually followed by two or three fully-connected layers. Figure 2.10 illustrates the
typical organization of a convolutional network.

Red Green Blue

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)

Convolutions and ReLU

Max pooling

Max pooling

Convolutions and ReLU

Convolutions and ReLU

Figure 2.10: Inside a convolutional network. The outputs of each layer (horizontally) of a
typical convolutional network architecture applied to the image of a Samoyed dog (bottom
left; and the RGB (red, green, blue) inputs, bottom right). Each rectangular image is a
feature map corresponding to the output for one of the learned features, detected at each of
the image positions. Information flows bottom up, with lower-level features acting as oriented
edge detectors, and a score is computed for each image class in the output. Source: LeCun,
Bengio, and Hinton (2015).

Recent works, like those of Yarotsky (2018) and Zhou (2019), provide universal
approximation theorems for special cases of convolutional neural networks. However,
the general universal approximation problem for CNNs is not yet solved.

2.4 Optimization algorithms
Optimization is the process of tuning the parameters of a network, typically its

weights, to improve its accuracy (or some other metric of correctness). Of course,
optimally we would like to find the best possible parameters for the network, which
means finding the global minimum of its cost (or loss) function. Sadly, we lack
the tools to efficiently and effectively chart the cost function’s landscape thoroughly
for the global minimum — we can only aim (with certainty) for a local minimum.
Nevertheless, this may not be as bad as it seems, as it was recently shown that, under

24 Background on artificial neural networks

few assumptions and conditions (such as overparameterization), the quality (i.e., depth)
of local minima tends to improve toward the global minimum as a network’s depth and
width increases (Kawaguchi, Huang, & Kaelbling, 2019).

Many optimization techniques are used in neural networks, the most basic one
being Gradient descent (GD). However, as will be seen later, GD is not appropriate
for large-scale scenarios, where neural networks are now typically employed. A more
suitable while still straightforward variation is Stochastic gradient descent (SGD), which
is also the starting point of many of the more evolved approaches. Examples of the
more advanced variations are stochastic gradient descent with momentum (Polyak,
1964; Rutishauser, 1959), RMSprop (G. Hinton, Srivastava, & Swersky, 2012) and
Adam (Kingma & Ba, 2015). Below we will present GD, SGD, and few other variants.
Goodfellow et al. (2016, Chap. 8) provides a more complete review of optimizers for
neural networks.

2.4.1 Gradient descent

Gradient descent (or steepest descent) is a first-order iterative optimization algorithm
used for finding the minimum of a function. The idea is to, at each iteration, update
the parameters of a function in the direction in which it decreases most rapidly. Letting
f denote the function to be minimized, and w its vector of weights (i.e., parameters),
the gradient descent strategy can be written

wt+1 = wt−α∇f(wt)︸ ︷︷ ︸
∆wt

,

where ∆wt is the step in the weight space to take at time (i.e., iteration) t, α is a
parameter usually called the learning rate (or step size) that controls the magnitude of
the update, and the gradient ∇f(wt) is the vector of first partial derivatives,

∇f(wt) =
(
δf(wt)
δwt, 1

, . . . ,
δf(wt)
δwt, n

)
,

where n is the number of weights.
In most, if not all, modern applications of machine learning, ∇f(w) is not the true

gradient of f(w) but only an approximation. Computing the true gradient requires
a pass over all the training data, the cost of which is usually prohibitively expensive.
Instead, randomized alternatives are usually employed, namely SGD and mini-batch
gradient descent. In the former case, the gradient is estimated from a single training
sample, wheres in the latter it is estimated on a mini-batch, i.e., a number of randomly
selected training samples. However, note that the term “SGD” is commonly used to

2.4 Optimization algorithms 25

refer to either pure SGD or mini-batch SGD in most frameworks and academic works,
and the batch size is indicated as needed.

In the lack of the true gradient, the (stochastic) gradient descent update rule
becomes (Darken & Moody, 1992)

∆wt = −α (∇f(wt) + ξ(wt)) ,

where ∇f(wt) represents the true, inaccessible gradient, and ξ(wt) an approximation of
its error, typically assumed to have zero mean (which is true for an unbiased estimator).

Notice that the error ξ(wt) introduced by SGD may in some cases be beneficial.
First, as was previously said, in contemporary machine learning problems, it is usually
just not possible to compute the true gradient. Thus SGD (or one of its variations) is
not merely a choice — it is the only option available. Second, the noise in the gradient
may in fact help the system evade shallow local minima (by the minima not being deep
enough to resist the erratic behavior introduced by the noise).

As highlighted by Sutton (1986), the way (S)GD works has two shortcomings that
may affect its effectiveness in learning. One of its problems is that gradient descent
prioritizes changing weights which, during training, have shown to be important, instead
of using perceived useless ones. This gives rise to feature interference when learning
different patterns. Another problem is that GD is a particularly poor procedure for
traversing ravines (places which curve more sharply in certain directions than in others),
which are common landscapes in neural networks, since it is constantly changing
directions instead of sticking to a stable one. Moreover, gradient descent procedures
make their largest changes to the weights whose first partial derivatives are greatest
(in absolute value). While this may seem reasonable, there are at least two reasons for
doing the exact opposite (Sutton, 1986). First, a small derivative frequently indicates a
shallow, mildly-curving part of the surface, in which large steps should be made to leave
it quickly. In contrast, a large derivative may indicate a very steep and sharply curving
region, where one should be more prudent with the step size used to avoid instability.
Second, weights with large derivatives will most likely be those that already play an
important role in the behavior of the network, as those are the ones affecting it the most.
However, when the network has to adapt to new data (creating new features in the
process), it should do so minimizing the interference with the already existing features,
which suggests that these weights that have larger derivatives should be changed least.
This is not what happens. Later we will see how some of these shortcomings may be
circumvented by using more complex strategies.

26 Background on artificial neural networks

2.4.2 Momentum

As we saw in the discussion above concerning the shortcoming of gradient descent
when traversing narrows valleys, rather than proceeding in the single direction of the
gradient at each step, we should follow a direction that is somehow constructed to
be conjugate to, as far as possible, the previous directions traversed. One of the
simplest methods trying to achieve this is called Momentum (Polyak, 1964; Rutishauser,
1959), which combines previous gradients with the current one in a Exponential moving
average (EMA) fashion11.

Essentially, recall that in “vanilla” gradient descent we have the update

wt+1 = wt − α∇f(wt).

The idea of momentum is to provide GD with “short-term memory”, resulting in

v0 = 0

vt+1 = βvt + α∇f(wt)

wt+1 = wt − vt+1,

where α and β control the weight given to the current gradient and to the past
accumulation of gradients, respectively. Typically, β is used with a value of 0.9, whereas
α is treated as the “learning rate” of the system and is usually optimized manually.

While the change may seem tiny, it affects the behavior of GD significantly, mainly
by dampening the oscillations that it faces near shallow valleys or ravines. It works by,
in some sense, adding inertia to GD’s trajectory, which smooths and accelerates it. The
effect is illustrated in Fig. 2.11.

Momentum turned out to be a core method used in conjunction with SGD, allowing
works such as (Ilya Sutskever, Martens, Dahl, & Hinton, 2013) to achieve results
previously obtained only with Hessian-free optimization12. Goh (2017) provides a
straightforward discussion about momentum and why and how it works.

11It is not really a EMA as the weights of the values being averaged do not necessarily sum to one,
but the principle remains.

12The authors actually combined momentum with a well-designed random initialization and a slowly
increasing schedule for the momentum parameter. They concluded that both the initialization and the
momentum were crucial towards obtaining their results.

2.4 Optimization algorithms 27

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 2.11: Iterates of gradient descent (left panel) and gradient descent with momentum
(right panel), starting at (−1, −1). Source: Sun (2015).

2.4.3 AdaGrad

The high-dimensional non-convex nature of the optimization problems at play in
neural networks may lead to different sensitivities on each dimension. A given learning
rate may be just too small to be efficient in some dimension but too large in another.
This realization has led to the development of optimization algorithms that employ
per-parameter learning rates.

Notably, one of the earliest such algorithms used for this purpose is AdaGrad
(Adaptive Gradient) (Duchi, Hazan, & Singer, 2011), which individually adjusts the
learning rate of each parameter by scaling it inversely proportionally to the square root
of the sum of all previous squared values of the gradient.

Letting gt ≡ ∇f(wt), the update rule of this algorithm is

wt+1 = wt − η G
− 1

2
t gt,

with η being the global learning rate, and Gt =
t∑

i=1
gig

ᵀ
i .

Due to the computational complexity of computing G−
1
2

t , the update rule actually
used in practice is

wt+1 = wt − η diag (Gt)−
1
2 gt.

To better understand what this means we will now unfold the operations. First,

28 Background on artificial neural networks

letting m denote the number of parameters of the neural network, we have

diag (Gt) = diag
t∑

i=1
gig

ᵀ
i

= diag
t∑

i=1

g

(1)
i

g
(2)
i
...

g
(m)
i

[
g

(1)
i g

(2)
i · · · g

(m)
i

]

=
t∑

i=1

(
g

(1)
i

)2
0 · · · 0

0
(
g

(2)
i

)2
· · · 0

...
0 0 · · ·

(
g

(m)
i

)2

 .

Finally, letting G(i)
t =

t∑
j=1

(
g

(i)
j

)2
and rewriting the update rule in this unfolded

manner, we obtain

wt+1 = wt − η diag (Gt)−
1
2 gt

= wt − η

1√
G

(1)
t

0 · · · 0

0 1√
G

(2)
t

· · · 0

...

0 0 · · · 1√
G

(m)
t

g

(1)
t

g
(2)
t

...
g

(m)
t

= wt − η

g
(1)
t√
G

(1)
t

g
(2)
t√
G

(2)
t
...

g
(m)
t√
G

(m)
t

As the expression shows, by using just diag(Gt) instead of the complete Gt, we
avoid the expensive computation of its root and inverse, which would be impractical
in high-dimensional scenarios. With this simplification, the added complexity is just
linear in the number of parameters.

2.4 Optimization algorithms 29

2.4.4 RMSProp

One problem with AdaGrad is that it typically induces a premature and excessive
decrease in the effective learning rate, caused by accumulating all past gradients.
Furthermore, while AdaGrad enjoys some desirable theoretical properties in the context
of convex optimization (Goodfellow et al., 2016), in practice, it reveals subpar for the
training on neural networks.

One alternative algorithm designed to perform better in the nonconvex setting is
RMSProp (G. Hinton et al., 2012), which modifies AdaGrad by changing the gradient
accumulation into an exponentially weighted moving average of the squared gradients.
Letting Rt denote the accumulation variable (initially set to 0), the update rule results
in

Rt = ρRt−1 + (1− ρ)

(
g

(1)
t

)2(
g

(2)
t

)2

...(
g

(m)
t

)2

wt+1 = wt − η

g
(1)
t√
R

(1)
t

g
(2)
t√
R

(2)
t
...

g
(m)
t√
R

(m)
t

,

where ρ denotes the weight given to the current iteration’s gradient in relation to the
past history. A value of 0.9 is typical.

In practice, RMSProp has become one of the most commonly used optimization
methods for deep learning, since its gradient scaling strategy makes it desirable for
traversing both the nonconvex regions of the weight landscape and the convex structures,
and, besides, it is efficient to compute.

2.4.5 Adam

Another very widely used adaptive optimization algorithm is Adam (Kingma & Ba,
2015), getting its name from “adaptive moments”. Adam tries to combine RMSprop
with momentum. First, momentum is applied to acquire an estimate of the first-order
moment of the gradient (prior to any rescaling), by computing a Exponentially weighted
moving average (EWMA) of it. Second, Adam computes the (uncentered) second-

30 Background on artificial neural networks

moment of the gradient, intending to scale the gradient with it (akin to what RMSProp
also does).

One subtle difference introduced by Adam is that it includes bias corrections to the
estimates of both moments to try to account for their initialization at the origin (notice
that RMSprop does not carry this kind of correction).

Letting St and Rt denote the running estimates of the first- and the (uncentered)
second-order moments of the gradient (respectively), both initially set to 0, the resulting
update rule can be written as (with operations such as power, square root, and so on,
carried element-wise)

St = ρ1St−1 + (1− ρ1)gt, Ŝt = St

1− ρt
1

Rt = ρ2Rt−1 + (1− ρ2)g2
t , R̂t = Rt

1− ρt
2

wt+1 = wt −
η√
R̂t

Ŝt,

where ρ1,2 have the same meaning as ρ in RMSprop (ρt
1,2 are used to, in some sense,

correct the initializations of Rt and St). Values close to one, such as 0.9 for ρ1 and
0.999 for ρ2, are typically used.

Currently, SGD with and without momentum, RMSProp, and Adam are the most
popular optimization algorithms commonly used (Goodfellow et al., 2016). However,
typically, the choice of the algorithm used is not based on some rational judgment, but
instead by the familiarity of the user with it, which helps at tuning its parameters.

2.5 Initialization strategies
A point sometimes overlooked when training artificial neural networks — but one

that may have profound implications in the results obtained — is the initial configuration
of weights assigned to a network, also called its initialization. It is known that the
initialization of a network plays a pivotal role in the training of neural networks (Glorot
& Bengio, 2010; He, Zhang, Ren, & Sun, 2015; LeCun, Bottou, Orr, & Müller, 1998;
Yam & Chow, 2000). For example, Chapelle and Erhan (2011) showed that, by using
the initialization strategy proposed by Glorot and Bengio (2010) alongside stochastic
gradient descent, one could train the autoencoder of G. E. Hinton and Salakhutdinov
(2006) to better results than its original authors did. Moreover, by combining momentum
with a well-chosen random initialization scheme, Ilya Sutskever et al. (2013) achieved
comparable performance to that of Hessian-free methods in their tests.

The initialization strategies in use nowadays are mostly heuristic, seeking to achieve
some desired properties at least during the first few iterations of training. However,

2.5 Initialization strategies 31

it is usually not clear which properties are kept during training nor how they vanish.
Moreover, it is also not clear why some initializations are better from the point of view
of optimization, whereas from the point of view of generalization they prove to be worse.
The current understanding between the effect of the initial configuration of weights and
its effect on generalization is notably lacking (Goodfellow et al., 2016, Sec. 8.4).

Usually, the initial configuration of weights of a network is drawn from uniform
or Gaussian distributions, centered at zero, whereas biases are initialized with zero
or with some small constant. It is important that the initialization of the weights
breaks the symmetry between different units (i.e., avoid situations where two hidden
units with the same activation function and connected to the same nodes start with
the same initial parameters). Meanwhile, while the choice of uniform or Gaussian
distributions does not seem to be particularly important (Goodfellow et al., 2016), the
scale of the distribution (from which the initial weights are drawn) does. The most
common initialization strategies — those of Glorot and Bengio (2010), He et al. (2015),
and LeCun, Bottou, et al. (1998) — all define rules for choosing the variance that the
distribution from which the initial weights are draw should have. Below we will briefly
present and discuss a few common (or recent) initialization strategies. We will also
discuss an interesting recent topic, the lottery ticket hypothesis, although details of this
discussion are postponed to Sec. 5.3.1.

2.5.1 Glorot’s initialization

The most commonly used initialization scheme is perhaps Glorot uniform13 (Glorot
& Bengio, 2010). It is the default strategy in both Keras14 and Tensorflow15. Glorot’s
initialization assigns the initial weights w of a layer with m inputs and n outputs by
sampling them from a distribution with variance

Var [w] = 2
m+ n

.

If the distribution used is uniform (the case of Glorot’s uniform initialization), this
results in

w ∼ U

(
−
√

6√
m+ n

,

√
6√

m+ n

)
.

13Also known as Xavier uniform initialization — Xavier Glorot is the first author of the paper
where the method was presented. Some libraries use the author’s first name to refer to the method,
whereas others use his last name. In the paper itself, the authors call it the normalized initialization.

14Check, e.g., https://keras.io/layers/core/ and https://keras.io/layers/convolutional/. Accessed
2019-11-05.

15https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/get_variable. Accessed 2019-11-
05.

https://keras.io/layers/core/
https://keras.io/layers/convolutional/
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/get_variable

32 Background on artificial neural networks

Glorot’s initialization is the result of a compromise between two observations made
by its authors. On the one hand, one wants to have the same activation variance across
all the layers of a network, i.e., to have the variance of the signal that passes through
each layer of a network, during a forward pass, approximately the same. On the other
hand, one also wants to have the same gradient variance across all layers, i.e., to have
the variance of the gradient at each layer, during a backward pass, approximately the
same. The reason behind this is to avoid exploding or vanishing gradients. These two
constraints would push the variance of the weights w of a layer with m inputs and n
outputs to have

Var [w] = 1
m

and Var [w] = 1
n
,

respectively. Since the two constraints may not be met simultaneously, the authors
proposed using the previously mentioned expression,

Var [w] = 2
m+ n

,

which is exact if m = n (i.e., the number of input and output nodes of the layer is the
same).

Finally, note that the analysis behind Glorot’s initialization assumes that the network
is in a linear regime during the initial steps of training. Despite the assumption being
possibly violated, it seems that many strategies designed with similar assumptions in
mind happen to perform reasonably well even on nonlinear cases (Goodfellow et al.,
2016).

2.5.2 He’s initialization

He’s initialization (He et al., 2015, Sec. 2.2) is, to some extent, based on Glorot’s.
However, the authors of the He initialization argue that the assumption that a network
starts in a linear regime does not hold for networks employing the ReLU activation. As
a result, they derive a theoretically more sound initialization for ReLU networks.

In their paper, the authors follow approximately the same analysis of Glorot and
Bengio (2010), and conclude that for the weights w of a layer with m inputs, the
variance of the weights should be16

Var [w] = 2
m
.

For a uniform distribution, this means that the weights should be drawn from

w ∼ U

(
−
√

6√
m
,

√
6√
m

)
.

16More precisely, the expression presented here scales the forward signal of the network, which is the
most common approach. In their paper, the authors point out that if the initialization appropriately
scales the forward signal, then it also scales the backward signal, and vice-versa.

2.5 Initialization strategies 33

2.5.3 LeCun’s initialization

LeCun’s initialization (LeCun, Bottou, et al., 1998, Sec. 4.6) is designed for sigmoid-
based networks. The idea is to initialize the network so that the sigmoids are activated
mostly on their linear regime (i.e., around zero), since elsewhere, in the saturation
regions, the derivatives become too small, which prevents proper training. This goal is
achieved by coordinating the normalization of the training set, the choice of the sigmoid,
and the choice of weight initialization. To achieve the latter goal (the part that we
are interested in in this section), the weights w of a layer with m inputs should have a
variance of

Var [w] = 1
m
.

As a result, if the values of the initial weights are to be drawn from a uniform distribution,
this results in

w ∼ U

(
−
√

3√
m
,

√
3√
m

)
.

2.5.4 Sparse and lightning initializations

The sparse initialization (Martens, 2010, Sec. 5) is based on setting a fixed number
of incoming weights connecting to each node with nonzero values, and the remaining
weights to zero. The rationale for doing this is to avoid situations where the scale of the
weights becomes too small, which may occur with strategies such as He’s or Glorot’s
initializations that scale the weights based on the number of nodes of their layer.

Another initialization strategy that initializes weights sparingly is the lightning
initialization (Pircher, Haspel, & Schlücker, 2018). It consists of choosing a fixed number
of end-to-end paths along the network (connecting input to output nodes, through
intermediate hidden nodes), setting the weights along these paths with nonzero values,
and the remaining ones with zero. The motivation is that random initializations create
suboptimal information flows between input and output nodes. By limiting the initial
number of input-output paths and ensuring they are complete (not interrupted by
weights too close to zero), the backpropagated information should be better transferred
to the layers near the input. In this thesis, we carried a few tests with a novel method
inspired by the lightning initialization. They are presented in Sec. 5.2.1.

3 Data, processing and tools

It takes a lot of hard work to make something simple.

— Steve Jobs

This chapter presents the datasets used for the training experiments carried in
Chapters 4 and 5. Moreover, it also presents the machines where the tests were carried,
the programs developed, and the frameworks used, along with other relevant information.
The chapter is organized as follows. In Sec. 3.1, we present and discuss a synthetic
dataset of our making, which we use mainly in Chap. 4. Afterward, in Sec. 3.2, we
present the “well-known” datasets used mainly in Chap. 5. Finally, in Sec. 3.3, we
present the programs we used for carrying the experiments, their interactions, the
frameworks/software libraries they use, and other worthwhile considerations about, for
instance, the problems experienced while developing them.

3.1 Synthetic dataset
To better understand the processes going on during the training of artificial neural

networks, we felt the need to start experimenting with a toy problem. With this in
mind, this section focuses mainly on presenting a simple, synthetic dataset constructed
by us and used in Chap. 4. The rationale behind using this dataset is twofold. On
the one hand, it allows easier comparison between statistics of the dataset itself and
those found in a network during and after its training, so that any overlapping between
the two can be easily identified. Using more complex datasets would make this task
much more difficult, since the datasets would hide/mask such relations, making them
easily missed. On the other hand, the particular rules defining the dataset allow it to
be implemented perfectly by a known neural network architecture and configuration of
weights, which we can use as a reference configuration. This knowledge allows one to

35

36 Data, processing and tools

confront the organization acquired by a trained network with the reference architecture
and reason about how similar they are, and why.

3.1.1 Generation rules

The dataset can be viewed as containing samples of a filter identifying the pattern
0110. More specifically, an input sample x is a random binary string of length n, i.e.,
x ∈ {0, 1}n, whereas the respective output y (another binary string of length n) is
computed such that its i-th bit is 1 if and only if

xi = 0

xi+1 mod n = 1

xi+2 mod n = 1

xi+3 mod n = 0.

An example of such an input/output pair of samples of length n = 10 is

in (x) : 0100110011
out (y) : 0001000100

Notice the rightmost 1 in the output above. That bit is 1 since the indices are taken
modulo the length of the samples, as if the input sample is padded with its three first
bits, i.e.,

in (x) : 0100110011(010)
out (y) : 0001000100

This is done to make both input and output samples of the same length, so that all
elements of the samples have the same properties, irrespectively of the index they
occupy.

As said previously, as this mapping stands, it can be interpreted as a filter matching
0110, and it can be expressed as (all indices are taken modulo n, the length of the
samples)

yi = (1−xi)xi+1xi+2(1−xi+3), i = 0, 1, . . . , n−1.

An attractive property of this filter is that it can be implemented by a multilayer
perceptron using a hidden layer of n nodes and employing the ReLU activation function,
and an optional output layer also having n nodes and using the identity function as
activation. Figure 3.1 illustrates the network.

Coming up with this solution is a matter of considering a few characteristics of the
filter and leveraging on the ReLU nonlinearity to accommodate them. First, for an
output yi, if either xi or xi+3 are 1, the input to the respective ReLU unit should be

3.1 Synthetic dataset 37

xi

xi+1

xi+2

xi+3

+1

yi

-1
1
1
-1
-1

1

Hidden
layer

(ReLU)
Input layer

Output
layer

(f(x) = x)

Figure 3.1: A perfect neural network implementation for the synthetic dataset.

negative, independently of the value of the remaining bits, so that the ReLU’s output
is 0. Second, the bias unit should be set so that, if xi and xi+3 are 0 but only one of
xi+1 and xi+2 is 1, it pulls the ReLU input down to negative values (or zero) so that
the ReLU outputs 0. Finally, if xi and xi+3 are 0 and xi+1 and xi+2 are 1, then the net
sum of xi+1, xi+2, and the bias should equal 1. These conditions can be met by using
solely weights (and bias) with absolute value 1, and adjusting their signs accordingly1.

Despite being somewhat simple, this dataset contains several interesting properties.
First, it allows the construction of arbitrarily large datasets of varying input/output
widths. Second, and more importantly, the output is determined entirely and in a
well-defined manner by the input in a way that can be understood and rationalized
about. Furthermore, it even lends itself to a perfect implementation in a neural network.
This is very important in that it allows one to compare the configuration a given network

1
We note in passing that an old and gener-

ally unknown kind of feedforward neural network,
called ProdNet (Durbin & Rumelhart, 1989), could
also be used for a perfect implementation of this
filter, as illustrated in the figure to the right. This
kind of networks introduce “product units” which
compute the weighted product of their inputs, i.e.,

zh
j =

∏
i

(
ah−1

i

)wh
ij ,

where zh
i denotes the input of unit i of layer h; ah

i

the output of node i of layer h, i.e., ah
i = f(zh

i)
for an activation function f ; and wh

ij the weight
connecting node i of layer h−1 to node j of layer
h. These units, although more expressive than the
classical summation ones, lead to more difficult
training due to a more complex landscape of the
loss function, with more local minima. As a result,
they have fallen in disuse.

xi

xi+1

xi+2

xi+3

yi

1
-1
-1
1

Hidden
layer

Input
layer

Output
layer

ProdNet implementation of the filter without
using any nonlinear activation functions. Squares

denote product units, whereas circles denote
conventional summation units. Omitted links

have weight 0 and unlabeled ones have weight 1.

38 Data, processing and tools

acquires to a well-known, “perfect” one, that we understand.

3.1.2 Input/output correlations

One may note that, in the synthetic dataset described above, four consecutive input
bits fully determine one output bit. Particularly, output bit yi depends (only) on inputs
xi, xi+1, xi+2, xi+3, where the indices are taken modulo the length of the bit strings.
This means there is a dependence (or “correlation” in a general sense) between yi and
the corresponding inputs, and none with all the other inputs. This is evidenced in
Fig. 3.2.

0 5 10 15 20 25 30

input bits (xi)

0

5

10

15

20

25

30

ou
tp

u
t

b
it

s
(y
i)

−0.024

−0.016

−0.008

0.000

0.008

0.016

0.024

C
ov

(x
i ,y

i)

Figure 3.2: Covariance between input and output bits of the synthetic dataset (words of
length 32).

The figure plots the covariance (Cov (X, Y) = E [(X − E [X]) (Y − E [Y])]) between
each pair of input and output bits. The way the problem is defined gives rise to the
diagonal observed (since one output bit depends solely on four consecutive input bits,
counted from the index of the output), and the fact that the indices “wrap-around”
originates the artifact in the bottom left corner (which is the continuation of the four
input bits affecting each of the three bottom output bits).

If a trained network is evaluated with valid input words, it should produce a
covariance matrix similar to the one above, since the dependence between inputs and
outputs should also be present in the function the network has learned. The next
logical question is whether this information exists within the parameters of a network,

3.1 Synthetic dataset 39

without the need to explicitly evaluate the network to observe it. This implies somehow
interpreting the weights of the network.

A weight can be perceived as the importance a node gives to another. This means
that, in general, a node will assign larger weights to preceding nodes it deems more
important, and smaller weights to less significant ones. However, comparing weights
is not as trivial as it may seem at first sight. First, the magnitude of the weights
depends on the scale of the signal received through the preceding nodes, which may be
significantly different. For instance, if a node consistently outputs a value very close
to zero, the weights that connect that node to other nodes may be large, and, still,
the overall stimulation received by the receiving nodes will be negligible. Second, two
(or more) weights may cancel each other out, for instance, by having opposing signs
and connecting to preceding nodes that always output approximately the same values.
These weights may be irrelevant for the node they connect to, but still they may have
significantly large magnitudes.

Due to this, it is more natural to consider the total flow between two nodes of a
network, through all the possible paths connecting them. This is advantageous due to
several reasons. First, it allows the aggregation of flows that pass through different
intermediate nodes, which, to some extent, embodies the effect of weights cancelling
out. Second, by considering the complete paths connecting two nodes, one gets a better
representation of the overall strength of the connection, since, for instance, if one large
weight in a path is followed by a small one, the strength of the path will amount to
“medium”, as it should.

Aggregating all paths between a given input node and an output node can be
achieved by considering a network stripped from all nonlinearities (i.e., a “pure” linear
version of the network), providing the input node with an input of 1, and observing the
strength with which it reaches the output node.

At first sight, it may seem that considering all possible paths along all intermediate
nodes and computing their overall sum is computationally inhibiting. However, it is, in
fact, a very simple operation, which may even be carried for all input/output nodes at
once. This happens since a linear neural network can be reduced to a single layer of
weights by multiplying the network’s weight matrices. In particular, ignoring biases, for
a linear neural network of l layers of weights (l+1 layers of nodes), where wk

ij denotes
the weight connecting node i of layer k−1 to node j of layer k; ak

j the activation of
node j of layer k; and a0 and al represent, respectively, the input and output of the

40 Data, processing and tools

network, we have

a0 ≡ x

a1
j =

∑
i

a0
iw

1
ij ⇔ a1 = w1ᵀa0 = w1ᵀx

a2 = w2ᵀa1 = w2ᵀw1ᵀx

...

al =
(
w1w2 · · ·wl

)ᵀ
x.

This means the linear network can be collapsed into a single layer of weights (the
product w1w2 · · ·wl) and afterward evaluated with x = 1i for computing the propagation
activity of node i. However, evaluating the aggregation matrix independently for each
input node is unnecessary, since, in fact, the collapsed weight matrix already contains
the propagation activity for all pairs of input/output nodes, which is what we are
looking for. This procedure is used in Sec. 4.4.1 to compute the strength of the flows
of trained neural networks and compare them against the correlations of the dataset
presented above, in Fig. 3.2.

3.1.3 Instantiation for training

Based on the generation rules described in Sec. 3.1.1 we created an instance of
the synthetic dataset with n = 30 and containing 100 000 training and 100 000 testing
samples2. The train and test samples are created by generating binary strings of length
n and where each bit has a probability p of being a 1 (and 1−p of being a 0). We
used p = 0.5. These strings constitute the input samples. The output samples are
obtained by computing the images of the strings generated. This dataset is used for
the experiments carried in Chapter 4. Notice that its size (number of train and test
samples summed) represents only at most ≈ 0.02% of the dataset creatable with n = 30.
Despite this, preliminary tests showed that more massive datasets did not affect in
any significant way training. Hence, this smaller size was chosen to keep the memory
requirements of the training program small. Listing 3.1 shows an example of how such
a dataset can be created (for conciseness n = 15 is used).

Finally, note that, due to the sparsity of ones in the output, a network that is
hard-coded to output only 0’s will achieve an accuracy of 15/16 ≈ 94%. This is one
of the reasons why the training of the networks using this dataset, in Chapter 4, was
carried for so long — to allow the networks to converge to solutions where they provide

2Note that, usually, datasets are split in 80–20% or 70–30% train/test ratios, mainly due to the
scarcity of data samples. However, since we do not have this problem, we opted for a 50/50% split, in
order to have a more accurate estimation of the networks’ test loss.

3.2 Real-world datasets 41

>>> import generator as gen
>>>
>>> g = gen.Generator(seed=0)
>>> train = g.generate(n=15,p=0.5,k=10)
>>> test = g.generate(n=15,p=0.5,k=10)
>>>
>>> for x,y in zip(*train): print(x, '->', y)
...
[1 1 1 1 0 1 0 1 1 0 1 1 1 1 0] -> [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 1 1 1 1 1 0 1 0 1 0 1 1 0] -> [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 1 0 1 0 1 1 1 1 1 0 0 1 0 1] -> [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 0 0 0 0 1 0 1 0 0 0 1 0 0 0] -> [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 1 0 1 0 1 0 1 1 1] -> [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 1 0 1 0 1 1] -> [0 0 0 0 0 0 0 1 0 0 0 0 1 0 0]
[0 1 0 1 0 0 1 0 1 0 1 0 1 1 0] -> [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[1 1 1 0 1 0 1 1 0 1 0 1 1 1 1] -> [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[1 1 1 1 0 1 0 0 1 0 1 0 0 0 1] -> [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 1 1 1 0 1 0 0 1 1 1 0 1 1 1] -> [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

Listing 3.1: Example of how to create an instance of the synthetic dataset with n = 15,
p = 0.5, and containing 10 samples for the training and testing sets.

close to perfect outputs (with an accuracy of almost 100%, which a network that only
outputs 0’s is incapable of achieving).

3.2 Real-world datasets
This section introduces the real-world datasets used in Chapter 5, MNIST and

HASYv2, and describes them briefly. The usage of standard datasets is essential to
draw sensible conclusions about the generality of our results on more complex problems.

3.2.1 MNIST

The MNIST (Modified National Institute of Standards and Technology) dataset
was initially presented by LeCun, Bottou, Bengio, Haffner, et al. (1998) and is found
at http://yann.lecun.com/exdb/mnist/. It is a large database of handwritten digits,
constructed from National Institute of Standards and Technology (NIST)’s Special
Database 1 (SD-1) and Special Database 3 (SD-3)3. While SD-1 and SD-3 contain
binary images, MNIST’s images are greyscale (we will see why below). SD-3 was initially
conceived as NIST’s training set, whereas SD-1 was its test set. However, SD-3 happens
to be much “cleaner” and easier to recognize than SD-1. The reason for this is that
SD-3 was collected among Census Bureau employees, while SD-1 was collected among
high-school students. The disparity between the difficulty of the two datasets made it

3NIST’s database was published as a complete collection by Grother (1995). It was recently re-
released in a more modern file format in 2016 (see https://www.nist.gov/srd/nist-special-database-19).

http://yann.lecun.com/exdb/mnist/
https://www.nist.gov/srd/nist-special-database-19

42 Data, processing and tools

necessary to mix them, since, to draw proper conclusions from learning experiments,
the results should be independent of the particular choice of train and test sets among
the complete set of samples.

To construct MNIST, SD-1 and SD-3 were split into train and test sets. The split
was performed based on the writer of the samples so that samples from half the writers
went to the train set and samples from the other half went to the test set. This resulted
in a SD-1 train and test sets with approximately 30 000 samples each, and a SD-3
train and test sets with approximately another 30 000 samples each. This originated
MNIST’s train and test sets with approximately 60 000 samples each. However, in their
original paper, LeCun, Bottou, et al. (1998) used only a subset of 10 000 samples for
the test set (5000 from SD-1 and 5000 from SD-3). This originated the typical 60 000
train/10 000 test split used nowadays.

NIST’s samples received some processing before being merged to MNIST. The
original black and white images were size normalized to fit in a 20×20 pixel box,
while retaining their aspect ratio. The resulting images became greyscale instead of
“pure” black and white, an outcome of the anti-aliasing performed by the normalization.
Then, the images were centered in a 28×28 pixel grid. This was accomplished by
translating the 20×20 image to position its center of mass at the center of the 28×28
grid4. Figure 3.3 shows randomly selected samples from MNIST’s training set.

Figure 3.3: Sample images from MNIST train dataset.

4There are other versions of the dataset used in the experiments of LeCun, Bottou, et al. (1998),
but they are not used nowadays. We are presenting only the version that originated MNIST.

3.2 Real-world datasets 43

3.2.2 HASYv2

The HASYv2 dataset5 (Thoma, 2017) is somewhat similar to MNIST, in that both
are very low resolution handwritten datasets. However, MNIST contains only 10 classes,
whereas HASYv2 contains 369, including Arabic numerals (0–9), Latin characters (a–z,
A–Z), and many other mathematical symbols (e.g., α, x, ·, . . .). For the complete list
of classes of the dataset, refer to (Thoma, 2017, Tables VI to XIV). Moreover, while
MNIST is greyscale, HASYv2 is “pure” black and white.

HASYv2 is derived from the Handwriting Recognition Toolkit (HWRT), first used
and described by Thoma (2014). HWRT is an online recognition dataset that does
not store samples as images but instead as point-sequences. HWRT (and consequently
HASYv2) are merged datasets. Almost 92% of HWRT comes from Detexify6, while
the remaining recordings come from Write Math7. The goal of both projects is to
allow users to identify LATEX commands in situations where the users know the glyph
of the symbol they want (its “shape”), but do not know the particular name of the
LATEX command that generates it. After being collected, the recordings were manually
inspected to remove unreasonable symbols (Thoma, 2017). HWRT and HASYv2 have
the same recordings and number of classes; HASYv2 is the result of rendering HWRT
into 32×32 pixel boxes, to simplify its usage.

It has the peculiarity that, in some cases, similar images belong to different classes.
This situation arises due to HASYv2’s author making the distinction between the
meaning of symbol and glyph. He defines a symbol as an atomic semantic entity with a
given visual appearance, whereas a glyph is a single typesetting entity. Thus (Thoma,
2017),

• Two different symbols can have the same glyph. For instance, the symbols
generated by the LATEX commands \sum and \Sigma both render to ∑ but have
different semantics, and hence are different symbols.

• Two different glyphs can have the same semantic meaning. For example, both
\phi (φ) and \varphi (ϕ) represent the small Greek letter “phi”. As a result, even
though they have the same meaning, since they have different visual appearances,
they are different symbols.

However, note that there is not a direct mapping between symbols and LATEX commands.
As an example, the LATEX commands \alpha (α) and \upalpha (α)8 render to different

5https://zenodo.org/record/259444
6http://detexify.kirelabs.org/
7http://write-math.com/
8These are the unslanted variants of the Greek lowercase letters, which can be found, for instance,

in the upgreek LATEX package. It is conventional to use unslanted letters for uppercase Greek, and
slanted letters for lowercase Greek (Knuth, 1986, p. 434).

https://zenodo.org/record/259444
http://detexify.kirelabs.org/
http://write-math.com/

44 Data, processing and tools

glyphs. Nevertheless, they have the same semantic meaning and are hand-drawn the
same way. Consequently, they are the same symbol.

The HASYv2 dataset contains around 168 000 black and white images of size 32×32,
each labeled with one of 369 labels. Figure 3.4 shows some samples of the dataset.

Figure 3.4: Sample images from HASYv2 train dataset (reverse color).

The dataset is unbalanced. The ten classes with most recordings represent around
16% of the dataset. Figure 3.5 plots the distribution of the samples.

0 500 1000 1500 2000 2500 3000 3500

number of train samples available

0

50

100

150

200

250

n
u

m
b

er
of

cl
as

se
s

0 50 100 150 200 250 300 350

number of test samples available

0

50

100

150

200

250

n
u

m
b

er
of

cl
as

se
s

Figure 3.5: Distribution of the HASYv2 samples among classes.

To load the dataset we used the script hasy_tools.py9, which is developed and
maintained by HASYv2’s author. We used the train/test split that the tool provides.

9https://github.com/MartinThoma/HASY/blob/master/hasy_tools.py

https://github.com/MartinThoma/HASY/blob/master/hasy_tools.py

3.3 Data pipeline 45

However, note that during development we found a possible source of errors in the
script. It sets the random number generators of both Python and NumPy to a fixed
value, which may affect the results of the experiments made with it (since different test
runs will lead to the same results). The error was fixed in the local installations used in
this work, and the author of the package was notified of the error. Nevertheless, at the
time of writing, the error has not yet been fixed upstream.

3.3 Data pipeline
In this section we present the architecture of the programs developed and used to

carry our training experiments, as well as the most important frameworks used by them.
We start by looking into the overall architecture of the solution and its components
in Sec. 3.3.1. Then, in Sec. 3.3.2 we present the main frameworks/libraries used with
them, and in Sec. 3.3.3 we briefly discuss the fundamental differences between two of
them, TensorFlow and PyTorch. Finally, in Sec. 3.3.4, we present the specifications of
the machines and versions of the software used.

3.3.1 Architecture

The architecture conceived is organized into three main entities: a storage server,
workers, and clients. The architecture is depicted in Fig. 3.6. The idea is to have a
storage server that is contacted by both workers and clients to store and retrieve results,
respectively. The workers are machines where training experiments are carried, usually
having significant processing power. The clients are typically less powerful machines,
such as laptops, where the results of the experiments are analyzed. However, one should
note that the actual separation between the three entities is, to a large extent, only
conceptual. At some point, a machine typically used as a worker may be used to process
some of the results, functioning as a client, or vice-versa. Moreover, as will be seen in
Sec. 3.3.1.1, the machine currently being used as the storage server also functions as a
worker. The three entities are discussed in more detail in the sections that follow.

46 Data, processing and tools

Storage
server

Worker 1

...

Worker M

Client 1

...

Client N

Figure 3.6: Data pipeline architecture. Workers contact a storage server to deposit results
of training. Clients contact the storage server to retrieve the training results to process and
analyze them.

3.3.1.1 Storage server

The storage server is the machine responsible for storing the results of the training
experiments. It is a node running a Docker container10 of a Postgres Database manage-
ment system (DBMS). The container is based on the official Postgres image11. The
database system is used to store the results of the experiments alongside other metadata
associated with them, for instance, the learning rate used, or the configuration of the
network trained. There are two main databases used for this purpose, one used for
the experiments with the synthetic dataset, another for the remaining tests, with the
real-world datasets. The former is significantly more structured than the latter, since it
was designed to accommodate more variable test scenarios.

Access to the storage server is mediated through the methods of the class Com found
in file com.py12. The class holds configurations to access the server and handles the
establishment of a connection between the contacting peer (a worker or client) and the
server automatically. In case the peer cannot reach the storage server directly (due to,
for instance, firewall restrictions), the connection is automatically routed through a
Secure Shell (SSH) tunnel using a known host as a proxy (this is also done automatically,
and it is particularly useful for clients connecting the storate server from outside campus
and without a Virtual private network (VPN) configured). The class implements a
context manager (meant to be used with Python’s with statement) to achieve this
behavior in a transparent manner. An example is given in List. 3.2.

The schemas of the databases are presented in Figs. 3.7 and 3.8, for the experiments
involving the synthetic and the real-world datasets, respectively. The database for

10https://www.docker.com/
11https://hub.docker.com/_/postgres
12https://github.com/rj-jesus/msc-thesis/blob/master/postgres/com.py

https://www.docker.com/
https://hub.docker.com/_/postgres
https://github.com/rj-jesus/msc-thesis/blob/master/postgres/com.py

3.3 Data pipeline 47

>>> from com import Com
>>>
>>> with Com() as com:
>>> # Use `com' to access the database.
>>> # Internally, the connection may be routed
>>> # through a SSH tunnel automatically.
>>> # The simplest method, `get', is used for direct
>>> # `SELECT' SQL statements, e.g.,
>>> results = com.get(f"""
... SELECT ...
... FROM ...
... WHERE ...
... """,
>>> to_dict=True)
>>>
>>> for result in results:
>>> # ...

Listing 3.2: Example of how to create a connection to the storage server using the class Com.

the experiments involving the synthetic dataset is overall more complex than the
database for the experiments with the real-world datasets. This is mainly due to
the unpredictability of the experiments that we wanted to carry with the synthetic
dataset, which was used during an early exploratory stage of the work (Chap. 4). The
experiments involving the real-world datasets were more targeted, which led to the need
of a less complex database.

The actual machine used as the host for the storage container changed as time
passed by. This happened mainly due to changes to the infrastructure where the storage
server and the workers were kept. It started as an instance of a Proxmox Virtual
Environment13, but soon moved to an instance of an OpenStack platform14. However, it
has since been moved to a bare-metal server, which is also used as the main worker node
(this was done due to storage space constraints, and to reduce the cost of input/output
operations when running training experiments).

From the point of view of both the workers and the clients, changing the storage
server is a matter of updating the IP address of the machine in com.py and its access
credentials. Currently, the workers use only the storage container on the bare-metal
server to deposit results. In contrast, clients use both the container on bare-metal and
the one on the OpenStack instance, the former for more recent and the latter for older
results. The results in the Proxmox container were migrated to OpenStack’s, since the
Proxmox environment was completely dismantled.

Even though this varies considerably, our typical test runs each occupies approxi-
mately 1 GB in disk space. The largest culprit for this substantial size is us periodically

13https://www.proxmox.com/
14https://www.openstack.org/

https://github.com/rj-jesus/msc-thesis/blob/master/postgres/com.py
https://www.proxmox.com/
https://www.openstack.org/

48 Data, processing and tools

Datasets
id n p train-size test-size description

DatasetParts
data-id part-id Xtrain Ytrain Xtest Ytest

Initializations
id description weights

Configurations
id n hs f-loss activations optimizer batch-size learning-rate seed data-id init-id epsilon floatx

Runs
conf-id iter weights biases loss mse-train-mean mse-train-squared mse-test mse-test-round

Figure 3.7: Schema of the database used for the experiments with the synthetic dataset.

Bag
bag-id description parameters config

BagItem
item-id bag-id batch weights results

Figure 3.8: Schema of the database used for the experiments with the real-world datasets.

collecting the values of the weights of a network along its training. However, this is
rarely something that we can avoid, since analysing them is a core part of this work.

3.3.1.2 Workers

The workers are machines where training experiments are carried and whose results
are stored in the storage server. They are typically servers with reasonable computational
power. However, there is nothing stopping an ordinary laptop or “budget” computer
from being used as a worker. As long as it reports the results of training to the storage

3.3 Data pipeline 49

server, it qualifies as a worker in this architecture. The general organization of workers
is depicted in Fig. 3.9.

Storage
server

Worker 1

· · ·

Worker M

CPU0 CPU1 . . .

GPU0 GPU1 . . .

Process 1

Process 2
.
.
.

CPU0 CPU1 . . .

Process 1

Process 2
.
.
.

Figure 3.9: Simplified organization of workers. A worker is a computing node with processing
units (CPUs and possibly GPUs), that typically runs training processes in parallel. They
report their results to the storage server (Sec. 3.3.1.1).

As the figure shows, the workers are heterogeneous systems. They all have processing
units, but some may only have central processors (CPUs), whereas others may also
include Graphics processing units (GPUs). They must also have to have a connection
to the storage server, which may be running under the same operating system, on the
same hypervisor, on the same local network, or even on different networks.

The access between the workers and the storage server is mediated by a class defined
in com.py, as seen in Sec. 3.3.1.1. This allows the standardization of the results so
that different workers (with different hardware or software characteristics) report their
results in a consistent manner. This is crucial to the clients, since this way they do
not have to worry about the peculiarities that the workers may have. Moreover, by
concentrating their results on a single, well-known machine, the workers simplify to
great lengths the operation of the clients. However, this incurs performance costs mainly
related to IO. Typically, the workers report training results every epoch or with some
other periodicity (in the number of iterations). This causes training to be halted until
the transference of the results is completed.

This penalty is minimized by running multiple training processes in parallel. This
way, while a process is blocked waiting for its IO operation to conclude, others are still
running, competing for CPU, and making use of the machine’s processing resources.
The downside to doing this is that more RAM is used than what would be strictly

https://github.com/rj-jesus/msc-thesis/blob/master/postgres/com.py

50 Data, processing and tools

required. This happens primarily since each process will have its own neural network
model and its copy of the dataset in memory. The latter, avoiding the replication of
the dataset, could be circumvented by using, for instance, shared memory. However,
doing so was never really required — every machine/instance always had more than
enough RAM available. The resources’ bottleneck always lied with processing power
and storage space, not lack of RAM.

Similarly to what happened with the storage server, the main worker units have
also changed throughout time. Initially, we used two instances in Proxmox. These
were not particularly performant, mainly since the Proxmox’s bare-metal servers were
outdated and not configured to pass through their CPUs nor their flags. This changed
when our research group’s cloud infrastructure moved to OpenStack. The two instances
on Proxmox were discontinued, and two new ones were created on OpenStack, which
was configured to pass through the hosts CPUs (exposing the extensions they support).
This accounted for a significant boost in performance. More recently, the research group
acquired a new computing node, which included a GPU installed. This machine was
left as a bare-metal server used for particularly computation-intensive tests of the group
— it was not added to OpenStack. This machine is currently used as the primary worker
unit for the experiments carried, as well as the storage server. The two instances on
OpenStack are used sparingly when a large number of training tests has to be run in a
short amount of time (to parallelize the multiple runs).

As an aside, when the bare-metal server was bought, its GPU (GeForce RTX 2080)
was very recent. It used the recent (at the time) CUDA 10.0, which TensorFlow did not
support in its stable branch. Due to this, and to make the most out of the computational
power of the machine, TensorFlow and most of its GPU-related dependencies were
compiled specifically targeting the architecture of the machine and its CUDA Compute
Capabilities.

3.3.1.3 Clients

The clients are machines that connect to the storage server with the purpose of
processing data. They are highly heterogeneous, but this is usually a non-issue since
they access and process the data independently. The most commonly used clients are
laptops where results are analyzed. However, in some situations, more capable machines
(typically used as workers) have been used to carry some more complex processing.

Most programs run by clients are written in Python and make extensive use of the
“canonical” scientific libraries NumPy15 and SciPy16. The rest are written in C and use

15https://numpy.org/
16https://www.scipy.org/scipylib/index.html

https://numpy.org/
https://www.scipy.org/scipylib/index.html

3.3 Data pipeline 51

libraries such as GNU GSL17. For data visualization purposes, the main libraries used
were Matplotlib18 and, sporadically, Seaborn19 (which is to some extent a front-end
to Matplotlib). This setup proved robust and flexible enough for all the experiments
carried.

3.3.2 The frameworks used and the choice of Python

In this work, Python20 was chosen as the primary programming language for creating
our neural network models and training them, since it is the de facto language for
research in artificial neural networks and deep learning. This happens mainly due
to its outstanding library support in many respects, from general-purpose scientific
libraries such as NumPy and SciPy, to the libraries targeting deep learning, for instance,
TensorFlow21, Keras22, and PyTorch23. To further see this, consider Fig. 3.10, which
plots the ranking of various deep learning frameworks published at Towards Data
Science24 based on a number of factors, including online job listings, Google search
volume, ArXiv articles, GitHub activity, among others. Aside from being open source,
all the libraries (apart from one) work with Python25. Even though some of them have
bindings for other languages too, the supremacy of Python in this regard makes it the
language of choice.

Figure 3.10 also shows that the indisputable winner framework is TensorFlow, with
Keras coming in second and PyTorch in third. These are the three main frameworks
used in this work when training with neural networks. We use Keras with its TensorFlow
backend as the primary framework with which to express and train the models. We
resort to PyTorch when Keras is not flexible enough to carry some experiments as easily.
Below we carry a more extensive discussion on the Keras & TensorFlow versus PyTorch
topic.

17GNU Scientific Library, https://www.gnu.org/software/gsl/.
18https://matplotlib.org/
19https://seaborn.pydata.org/
20https://www.python.org/
21https://www.tensorflow.org/
22https://keras.io/
23https://pytorch.org/
24https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
25The exception is Deep Learning for Java (DL4J), which, unsurprisingly, works with Java.

https://www.gnu.org/software/gsl/
https://matplotlib.org/
https://seaborn.pydata.org/
https://www.python.org/
https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

52 Data, processing and tools

TensorFlow

K
eras

PyTorch

Caffe

T
heano

M
XN

ET

CN
T

K

D
eepLearning4J

Caffe2

Chainer

FastAI

Framework

0

20

40

60

80

100

S
co

re

96.77

51.55

22.72

17.15
12.02

8.37
4.89 3.65 2.71 1.18 1.06

Figure 3.10: Deep learning frameworks ranking, as computed at https://towardsdatascience.
com/deep-learning-framework-power-scores-2018-23607ddf297a.

3.3.3 TensorFlow vs PyTorch

The main framework used throughout this work to implement and train neural
networks was TensorFlow (Martín Abadi et al., 2015), through its Keras (Chollet et al.,
2015) API. However, PyTorch (Paszke et al., 2017) was also sporadically used when
carrying several tests, due to it allowing a more straightforward implementation of
several operations. This section discusses a few of the differences between TensorFlow
and PyTorch, in the hope of enlightening readers about when using one may be more
beneficial than using the other.

In a way, both PyTorch and TensorFlow are similar, particularly in that in both
frameworks, the user defines a neural network model as a computational graph that
represent the computations carried in the network, and uses automatic differentiation
techniques (provided by the framework) to compute and apply the gradients according
to some optimization strategy. The main difference between the two lies in the kind of
graphs they build. TensorFlow uses static computational graphs, whereas PyTorch uses
dynamic ones. Before continuing, a brief description of what a computational graph is
and what it does is due.

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

3.3 Data pipeline 53

3.3.3.1 Backpropagation, Computation graphs and Automatic differentiation
algorithms

In order to be able to discuss the main differences between TensorFlow and PyTorch,
in this section we provide a very brief review on backpropagation, computation graphs,
and automatic differentiation. The latter two are core components for carrying the
backpropagation algorithm efficiently. Baydin, Pearlmutter, Radul, and Siskind (2018)
provides a thorough review of these topics targeted towards machine learning.

To grasp the idea behind backpropagation, consider the derivatives of the loss
function of a multilayer perceptron (Sec. 2.3.3) with respect to its weights. Let J denote
the loss function being minimized; wk

ij the weight connecting node i of layer k − 1 to
node j of layer k; zk

j the total input that node j of layer k receives prior to activation,
i.e., zk

j =
∑

i

ak−1
i wk

ij + bk
j ; ak

j the activation of node j of layer k, i.e., ak
j = f

(
zk

j

)
for an

activation function f (a0 denotes the input, a0 ≡ x); and, finally, bk
j the bias of node j

of layer k. Then, by using the chain rule of calculus, for a link in the output layer of a
network with l layers of weights (l+1 of nodes) we have

∂J

∂wl
ij

=
∂zl

j

∂wl
ij

∂al
j

∂zl
j

∂J

∂al
j

= al−1
i

∂al
j

∂zl
j

∂J

∂al
j

.

Meanwhile, for links in the hidden layers we have

∂J

∂wh
ij

=
∂zh

j

∂wh
ij

∂ah
j

∂zh
j

∂J

∂ah
j

=
∂zh

j

∂wh
ij

∂ah
j

∂zh
j

∑
k

∂zh+1
k

∂ah
j

∂ah+1
k

∂zh+1
k

∂J

∂ah+1
k

= ah−1
i

∂ah
j

∂zh
j

∑
k

wh+1
jk

∂ah+1
k

∂zh+1
k

∂J

∂ah+1
k

.

These expressions show that the derivatives of the loss with respect to each weight can
be computed based on partial results computed during the forward pass of an input
through the network (e.g., the values zk

i or ak
i) and, perhaps more importantly, based on

results obtained during the backward pass itself. For instance, notice how determining
∂J

∂ah
j

, which is necessary for evaluating ∂J

∂wh
ij

, is achieved using the derivatives of the loss

with respect to the activation of the succeeding layer, i.e., ∂J

∂ah+1
k

. This is the core of

backpropagation. However, to carry these computations efficiently, new structures and
methods had to be developed, namely, computational graphs and autodiff techniques.

54 Data, processing and tools

There does not seem to be a single, reference description of computational
graphs (Goodfellow et al., 2016, Sec. 6.5.1). Here we present the definition given
by DyNet26 (Neubig et al., 2017), that describe a computational graph as “a symbolic
representation of a complex computation that can both be executed and differentiated
using autodiff algorithms”.

Generally, a computational graph is (usually) a directed and acyclic graph where
edges represent data dependencies, and nodes are variables that may be of scalar,
matrix, or tensor type (among others). A node with an incoming edge is a function of
that edge’s tail node. The nodes represent the successive chaining of functions of the
initial input nodes. These functions typically include the binary arithmetic operations,
the unary sign switch, and elementary functions such as the exponential, the logarithm,
and the trigonometric functions. The main feature of these graphs is that the nodes,
aside from storing the actual value of their computation, also record its derivatives with
respect to their inputs, which allows the gradient of the function the graph implements
to be computed by the chain rule by working backward, since

(f ◦ g)′(x) = f ′(g(x))g′(x).

This feature is, in fact, the core idea of automatic differentiation (also called autodiff,
or, sometimes, autograd), where, in essence, the computation of a particular function
that results from the composition of other “elementary” functions is augmented with the
calculation of various derivatives. Then, combining the derivatives of the constituent
operations following the chain rule, one obtains the derivative of the overall composition.

Note that automatic differentiation is not the same as other forms of computing
derivatives “automatically” (i.e., by means of a computer). Other methods include
(i) manually working out derivatives and coding them; (ii) numerical differentiation
using finite difference approximations; and (iii) symbolic differentiation using expression
manipulation (typically in computer algebra systems) (Baydin et al., 2018). However,
all these methods pose problems related with their scalability or efficiency.

Computational graphs and automatic differentiation are the foundational components
used to implement the backpropagation algorithm, even though they are frequently
overlooked.

3.3.3.2 TensorFlow’s static and PyTorch’s dynamic graphs

We now continue the discussion about TensorFlow’s static and PyTorch’s dynamic
computational graphs, and the implications of the difference. The difference between

26https://github.com/clab/dynet, a neural network library developed primarily by Carnegie Mellon
University.

https://github.com/clab/dynet

3.3 Data pipeline 55

the two essentially means that, in TensorFlow, a computation graph is defined once
and executed over and over again, using a mechanism typically called placeholders
to provide different input data to the graph (which is the only thing changing across
different iterations). Meanwhile, in PyTorch, a new computation graph is defined every
forward pass.

Each methodology has its own merits. On the one hand, static graphs allow for lots
of optimization since, due to their static nature, the framework has the freedom to, for
instance, merge graph operations or decide upon strategies to distribute the graph across
different machines/computing nodes. Most of these optimizations are only reasonable
in a context where the graph is not expected to change frequently, since otherwise, the
(expensive) optimization procedures have to be repeatedly run, consuming a significant
amount of time. This effect is quite similar to the idea of compiling a program with
the optimization flags active — usually, the program will take significantly longer to
compile with the flags. However, the added cost is typically amortized over the course
of many executions of the program (which hopefully will run a lot faster). On the other
hand, this potential efficiency comes at a cost for the framework’s user. In essence,
most of the operations that are to be carried have to be present in the graph during all
time, which makes the resulting programs more rigid/static. This inflexibility becomes
troublesome when one wants, for instance, to carry different operations of the graph
inside a loop, depending on the input data or some other factor. In contrast, with a
dynamic graph (which is built every iteration), one can come up with a much more
natural (and clean) solution.

Moreover, one has to be careful when trying to achieve “dynamic behavior” with
TensorFlow’s static graphs. As a very crude example, on one occasion during this work,
we experimented with a variety of weight update strategies. To achieve the behavior
we desired, in some situations, we kept adding nodes to TensorFlow’s graphs based
on the operations we wanted to happen. While this achieves the desired goals, there
are two blatant issues with this method. First and foremost, TensorFlow’s graphs are
append-only, which means that one cannot remove operations after adding them without
going through great lengths. Moreover, despite unused nodes not being processed (not
wasting CPU time), they do take memory, and after adding thousands of nodes, it adds
up. Another major problem is that, since there are constantly more and more operations
in the graph, and the graph is being recompiled at each iteration, the additional nodes
cause the compilations to take increasingly longer time to terminate.

There are ways to circumvent this, for instance, using a base graph and a per-iteration
copy graph to be used and dispensed. However, at some point, one realizes that for
situations like this, it is just far simpler to use a more flexible solution such as the kind
PyTorch provides. With the latter framework, details such as these are much more

56 Data, processing and tools

hidden away from the user (the programmer). The graphs are implicitly built on a
per-iteration basis, which is significantly more comfortable to work with. Finally, notice
that even though computationally-wise the approach using dynamic graphs may seem
(and is) less efficient than the static graph approach, one should not decide which to
use based solely on execution time. In practice, for this kind of problems where one
does not seek “a commercial, heavily optimized product”, one must also consider the
time it takes to implement the desired solution. In many cases, it may turn out that
it is much more reasonable to write a more transparent and natural solution than the
fastest one. In research, we feel it is paramount to minimize the time from idea to test,
and, ultimately, to the analysis of the test’s results.

3.3.4 Computing nodes

The specifications of the computing nodes are presented in Tab. 3.1. The machine
most recently used as both storage server and main worker node is the one named jake.
It runs bare-metal and includes an AMD Ryzen™ Threadripper™ 2920X at 3.5 GHz
and a Nvidia GeForce RTX 2080.

Hostname
(hypervisor)

Function CPU GPU CPUs RAM

hometree
(OpenStack)

Storage Intel® Xeon®

Processor E5-2620 v4
— 8 16 GB

neytiri-1
(OpenStack)

Worker Intel® Xeon®

Processor E5-2620 v4
— 32 32 GB

neytiri-2
(OpenStack)

Worker Intel® Xeon®

Processor E5-2620 v4
— 32 32 GB

jake
(bare-metal)

Storage
and

Worker

AMD Ryzen™

Threadripper™ 2920X
Nvidia GeForce

RTX 2080
(8 GB RAM)

24 32 GB

Table 3.1: Physical specifications of the computing nodes in use.

Meanwhile, the versions of the software being used are expressed in Tab. 3.2. Versions
of other libraries used (e.g., NumPy or SciPy) are not shown since they have much
more stable APIs and are typically pulled automatically when installing other packages.
All computing nodes run Ubuntu 18.04 LTS. They also use Python 3.6, which is the
most recent version on Ubuntu’s repositories at the time of writing.

3.3 Data pipeline 57

Hostname Operating
system

Postgre-
SQL

CUDA
Toolkit

Python Keras Tensor-
Flow

PyTorch

hometree Ubuntu
18.04 LTS

10.8 — — — — —

neytiri-1 Ubuntu
18.04 LTS

— — 3.6 2.2 1.11 1.1

neytiri-2 Ubuntu
18.04 LTS

— — 3.6 2.2 1.11 1.1

jake Ubuntu
18.04 LTS

11.3 10.0 3.6 2.2 1.12 1.1

Table 3.2: Versions of the main software used in the computing nodes.

Note, however, that the programs developed should run on more recent versions of
the software used too, since, in general, only conventional methods were used.

4 Probing the learning process

The beginning of knowledge is the discovery of something we do not
understand.

— Frank Herbert

probing, verb: to make a searching exploratory investigation

This chapter intends to unveil some of the processes happening during the training
of a neural network. It describes an exploration stage of the work we performed, where
our primary goal was not to study a particular behavior known/chosen a priori, but
to obtain some intuition about what is going on. The synthetic dataset was used to
this end, providing a straightforward yet nontrivial problem that can be understood
and reasoned about easily. Moreover, knowing how a neural network can implement
it perfectly allows us to establish a base/reference architecture that is known to have
the capacity to represent the problem successfully. As a result, in case of unsuccessful
training, one can dismiss the possibility of having a network that is just too small or
“unfit” for the problem.

The chapter is organized as follows. We start by presenting, in Sec. 4.1, the reference
network architecture used and parameters with which most of the experiments of this
chapter were carried. In Sec. 4.2 we present the training results obtained with these
settings. In Secs. 4.3 and 4.4 we vary the output activation function and interpret the
changes that these modification causes in the organization of the network, respectively.
Then, in Sec. 4.5, we carry a few tests where we vary learning parameters such as the
learning rate and batch size used, and observe that a network’s initial configuration of
weights determines, to a great extent, the shape of its loss function. Finally, in Sec. 4.6,
we briefly evaluate the similarity between learning trajectories.

59

60 Probing the learning process

4.1 Base settings of the training experiments
Given the general complexity of neural networks as well as the sheer amount of

(hyper)parameters involved in their specification and training, it is impossible to test
all the possible combinations of parameters. Even if it was feasible, doing so would
not be advisable, since it would not provide easily human-understandable value. One
should try to simplify and isolate all conditions as much as possible, in order to make
the most sense out of the observations made. To this end, this section presents the
reference settings under which the tests presented in this chapter were performed.

4.1.1 The network

The base architecture used throughout this chapter is a multilayer perceptron with
a single hidden layer of 100 nodes. Due to the choice of the dataset used for training
(discussed in Sec 4.1.2) both the input and output layers have size 30. Having the ideal
implementation that was presented in Sec. 3.1.1 in mind, the hidden layer uses the
ReLU activation function. Figure 4.1 shows a diagram of the resulting architecture.

...

...

...

30

100

30

Hidden
layer

(ReLU)
Input layer

Output
layer

(f(x) = x)

Figure 4.1: Base architecture of the networks trained (bias units have been omitted).

Notice that even though the ideal implementation strictly requires only 30 nodes in

4.2 Training results obtained with the reference parameters 61

the hidden layer, the reference architecture has around three times more nodes. This
over-sizing was done to allow for other organizations to emerge and to ease training.
This approach goes in agreement with the general notion of training neural networks
that are far larger (i.e., having much higher representational capacity) than what a
given problem demands (Zhang, Bengio, Hardt, Recht, & Vinyals, 2017).

4.1.2 Dataset and training parameters

We use the synthetic dataset described in Sec. 3.1.3 due to the reasons explained
throughout Sec. 3.1. We recall that the size of the input and output samples of the
dataset we created is 30 bits, which is why the reference architecture of Sec. 4.1.1 uses
30 input and output nodes. The remaining training parameters (hyperparameters) used
are: (i) learning rate (lr) of 0.01; (ii) batch size (bs) of 128 samples; (iii) Mean squared
error (MSE) loss function; and (iv) SGD as optimizer. These are typical values/choices,
usually the defaults of the frameworks used. In general, each test in the sections of this
chapter vary either one of these parameters, or elements of the architecture. Moreover,
unless otherwise stated, all loss function curves shown are for the test set (i.e., they
represent the test loss).

In general, this chapter avoids summaries of results. They represent an aggregated
view of many networks (i.e., test runs resulting from different initial conditions), and the
condensation of information may hide relevant traits in the behavior of some networks,
which may be important to gain an intuition about features of the processes unfolding
during their training. Notwithstanding this, they are still used whenever appropriate.

4.2 Training results obtained with the reference parameters
Figure 4.2 shows the test loss function resulting from the training of 64 different

training runs with the base settings presented in Sec. 4.1. The training lasted for 107

iterations (an iteration is a step/update of the learning procedure), so that the test loss
of all networks fell close to the machine’s epsilon (around 10−7 for the 32-bit float type
used).

The fact that all networks reached this level (slightly above 10−7) in the test
set shows that the dataset has an appropriate size to avoid overfitting (the training
set is sufficiently representative to eliminate the case of overfitting). Moreover, the
architecture is large enough to ease training and avoid that the networks get stacked
at a poor minimum. Notwithstanding this, as is visible in the figure, some networks
spend a significant amount of time at what seems to be a plateau/set of plateaus
before eventually finding their way to a “good” minimum. Figure 4.3 summarizes the

62 Probing the learning process

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E
(t

es
t)

Figure 4.2: Test loss resulting from different test runs using the reference parameters presented
in Sec. 4.1. 64 independent runs are plotted.

percentage of the networks previously shown in Fig. 4.2 that have reached a particular
loss value by a given training iteration.

It illustrates that, as expected, it takes increasingly more time to reach lower loss
values. Furthermore, it shows there is a large gap between reaching a loss below 10−5

and reaching a loss below 10−6. It also shows that, initially, the loss measured by the
networks decreases substantially, but then progress is slowed down considerably. This
is a known behavior exhibited by stochastic gradient descent methods (Bottou, Curtis,
& Nocedal, 2018, Sec. 3.3).

More surprisingly, if the outputs of the network are binarized (set to 0 or 1 if smaller
or larger than 0.5, respectively), something more interesting is observable. Notice that
this is just a different way of interpreting the networks’ outputs. Training itself is not
changed at all. In fact, this experiment was conducted with the values already gathered
from training the previous networks. Figure 4.4 shows the results.

By binarizing the outputs — which essentially turns the MSE into the “bit error rate”
of the network — a peculiar trend in the learning process is revealed. As happened in
the previous case (when using a network’s outputs “unchanged”), there is a gap in the
time it takes to improve from below 10−2 to below 10−3. However, suddenly, improving
from below 10−3 to below 10−6 happens over the course of a very small number of
iterations.

4.2 Training results obtained with the reference parameters 63

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

0.0

0.2

0.4

0.6

0.8

1.0

P
(M

S
E
<
ε)

ε = 10−2

ε = 10−3

ε = 10−4

ε = 10−5

ε = 10−6

Figure 4.3: Distribution of the networks of Fig. 4.2 that have reached a certain test loss value
ε by a given iteration.

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

0.0

0.2

0.4

0.6

0.8

1.0

P
(M

S
E
<
ε)

ε = 10−2

ε = 10−3

ε = 10−4

ε = 10−5

ε = 10−6

Figure 4.4: Distribution of the networks of Fig. 4.2 that have reached a certain test loss value
ε by a given iteration, after their output is binarized to 0 and 1.

This behavior suggests that a network’s weights experience a “phase transition”
where they evolve from being poorly coordinated to being highly organized. In other

64 Probing the learning process

words, it appears that during a significant amount of training time, a network keeps
providing inconsistent outputs. However, all of a sudden, its weights find concordance,
which allows it to give proper outputs consistently. The major surprise arises due to
this transition happening so fast.

4.3 Varying the output activation function
The reference curves presented in Fig. 4.2 showed that the evolution of the loss

function varies widely among different training instances. A possible explanation for
this contrasting behavior may lie in the activation function employed in the output layer.
While the ideal implementation does use the identity activation (f(x) = x) in the output
layer, this function may be too “unrestricted”. By not having their outputs limited to
reasonable values, the networks that use this function may be more susceptible to poor
initializations that, for instance, cause few output nodes to start with substantially
large values.

In this section, we consider the usage of an alternative, commonly used activation
function in the output layer, the logistic sigmoid function, σ(x) = 1/(1+e−x). Its output
is limited to the range]0, 1[, which means that it cannot implement the filter perfectly
(but it should be able to do so to any desirable accuracy, at least as far as the machine’s
precision allows it to). The ideal implementation will not apply to this activation
function, as discussed later in Sec. 4.4.2. Notwithstanding these concerns, it may still
help training by limiting the networks’ outputs to a reasonable interval. Figure 4.5
plots the test loss of 64 sigmoid output networks trained alongside the loss curves of the
linear output networks that were presented previously (to allow for easier comparison).

The difference shown by the loss function of the two architectures is evident. On the
one hand, the sigmoid output networks are much more “well-behaved” than the reference
networks (which use linear output activation). On the other hand, they train to worse
loss values than the linear output networks do. This dichotomous behavior happens
most likely due to two main reasons. The first one relates to our initial argument about
the range of the sigmoid activation function. By limiting the range of a network’s
outputs between zero and one, the per output node error of the sigmoid networks will
never grow too large, which causes the loss function to not vary too much. The second
relates to the derivative of the sigmoid function. Since σ′(x) ∈]0, 1/4] — in opposition
to the derivative of the identity function, which is one everywhere — the updates that
the sigmoid networks undergo are in general smaller than those of the networks with
linear output activation.

Despite the apparent slower learning showed by the sigmoid networks, it is once

4.3 Varying the output activation function 65

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E
(t

es
t)

linear output layer
(reference architecture)

sigmoid output layer

Figure 4.5: Training of different networks employing the sigmoid activation function in the
output layer, alongside the training of the networks of Fig. 4.2. 64 test runs for each output
activation function are plotted.

again interesting to consider the “bit error rate” of these networks, and compare it
against that of the networks having an identity output layer. Figure 4.6 shows these
results.

The binarization confirms that the sigmoid networks are training successfully.
Nonetheless, unlike the networks with linear output, they do not seem to show the
phase transition that was visible in Fig. 4.4, at least as evidently/markedly as the linear
output networks did. This transition, for the networks with linear output activation,
is observable in Fig. 4.6 by the sharp fall that the bit error rate exhibits (almost like
raindrops). These sharp decreases are not observable in the sigmoid output networks,
as Fig. 4.7 further confirms.

Finally, another unusual feature of the plot of Fig. 4.6 is the horizontal lines visible
near its bottom (for instance, between a MSE of 0 and 10−6). They arise due to the bit
error rate taking only discrete values (in other words, it is only possible to incorrectly
label a finite number of bits, which means that the overall error may also only take a
discrete set of values). This characteristic becomes especially evident at such a small
scale, like the one the figure includes between 0 and 10−6. By computing by hand the
bit error rate for a small number of errors (e.g., 0, 1, 2, etc.) and considering that there
are 100 000 samples in the test set, each having 30 bits, one obtains the exact level of
the bottom horizontal lines. Table 4.1 provides these values. Notice that the bit error

66 Probing the learning process

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

0

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E
(t

es
t)

sigmoid
linear output layer

sigmoid output layer

Figure 4.6: Result of binarizing the outputs of the networks of Fig. 4.5.

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

0.0

0.2

0.4

0.6

0.8

1.0

P
(M

S
E
<
ε)

ε = 10−2

ε = 10−3

ε = 10−4

ε = 10−5

ε = 10−6

Figure 4.7: Distribution of the networks of Fig. 4.5 with sigmoid output layer that have
reached a certain test loss value ε by a given iteration, after their output is binarized to 0 and
1. Notice that the transition across loss levels is much less sharp than the transition observed
in Fig. 4.4 for networks with linear output layer.

4.4 Inspecting a network’s configuration of weights 67

rate calculated matches the height of the four bottom horizontal lines perfectly.

errors MSE
(“bit error rate”)

0 0
1 3.33× 10−7

2 6.67× 10−7

3 1.00× 10−6

Table 4.1: Bit error rate for a small number of errors. The BER computed matches the four
bottom horizontal lines of Fig. 4.6.

4.4 Inspecting a network’s configuration of weights
The previous section presented two different network architectures, both showing

signs of successful training. The networks having linear activation function in the output
layer seem to be less “well-behaved” than those having sigmoid, but the loss function
of the former reaches lower levels than the latter. Despite this contrasting behavior,
both kinds of networks show approximately the same discrimination ability, as shown
by the binarization/rounding procedure. One interesting question that arises at this
point lies with understanding how these two kinds of networks are implementing their
solution to the filter problem (in which the dataset is based), or whether it is possible
to do so altogether. This is the primary goal of this section. As we will see below, in
general we cannot say precisely the organization the networks should come to in neither
case, mainly because there are many equivalent solutions. What we can do is try to
understand the roles that their nodes are playing in the organization that they have
acquired, and, given the architecture of the networks, consider how reasonable they are.

We are already familiar with the ideal implementation proposed in Sec. 3.1.1, which
the architecture with linear activation in the output is capable of implementing. Despite
this, note that the implementation suggested is not the only perfect solution possible
given this architecture. As an example, consider a network that uses two hidden nodes
(instead of one) for each group of four consecutive input bits. Then, the respective
output node connects to the two hidden units with a weight of 0.5 for each. Essentially,
in this case, two hidden nodes are recognizing the same four-bit pattern, and the
respective output node aggregates these hidden nodes’ results. The same idea could be
applied to 3, 4, 5, . . . , hidden nodes.

Meanwhile, the networks using sigmoid in the output layer should lead to a funda-
mentally different implementation. In the ideal implementation, the hidden nodes are
responsible for identifying the patterns. Due to this, the value leaving each hidden node

68 Probing the learning process

will be 1 if the four bits connecting to it do match the pattern, and 0 otherwise. If this
value is used as input to a sigmoid, even if multiplied by the weight of the connection
linking the hidden node and output node, the sigmoid will only output a value in [0.5, 1[
or]0, 0.5], depending on the sign and magnitude of the weight (and we want 0 and 1 as
the outputs of the networks).

4.4.1 Input/output strengths

In Sec. 3.1.2 we saw that in the synthetic dataset, one output bit is correlated with
four input bits, which is evident since one output bit depends only on four specific,
consecutive input bits. It is sensible to assume that trained networks show similar
input/output dependence. Further, this should happen irrespectively of the output
activation function used, i.e., both linear and sigmoid output networks should show
some relation between specific four input nodes and one output node.

A possible way of verifying this presumption is achieved by considering the “aggre-
gated strength” of the paths of a network connecting input to output nodes (through
intermediary hidden nodes). In essence, the strength of these paths gives an idea about
the overall sensibility an output has to an input node. For a linear neural network (i.e.,
a network without nonlinear activation functions) this is sometimes called the total end
to end propagation of activity (Saxe, McClelland, & Ganguli, 2014). It is defined as the
sum of the product of weights along all paths connecting an input to an output node.
As we saw in Sec. 3.1.2, a possible way of computing it at once for all input/output
pairs of nodes is achieved by successively multiplying the matrices of weights of each
layer, i.e.1

wTot =
(
w1w2 · · ·wNl

)ᵀ
.

Figure 4.8 shows the strengths measured for networks with linear and sigmoid output
activations.

Scale aside, the figure shows remarkable resemblances with the correlation matrix
of Fig. 3.2, presented in Sec. 3.1.2, and where the correlation between input and output
variables had been computed from the dataset alone. These results suggest that the
organization of a network (i.e., its weights) evolves to increase the aggregated strength
of the most meaningful input/output connections. Moreover, two different architectures
lead to similar strengths (once again, ignoring their scale, which must be related to the
particular activation functions of the networks), which are themselves similar to the
correlations computed directly from the dataset. This resemblance suggests a simple,
yet interesting, connection between the dataset and the configuration of weights learned

1wk is the weight matrix of layer k (where an entry wk
ij denotes the weight connecting node i of

layer k − 1 to node j of layer k).

4.4 Inspecting a network’s configuration of weights 69

0 5 10 15 20 25

input node (xi)

0

5

10

15

20

25

ou
tp

u
t

n
o

d
e

(y
i)

−1.2

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

stren
gth

(a) Network with linear output activation.

0 5 10 15 20 25

input node (xi)

0

5

10

15

20

25

ou
tp

u
t

n
o

d
e

(y
i)

−8

−6

−4

−2

0

2

4

6

8

stren
gth

(b) Network with sigmoid output activation.

Figure 4.8: Propagation of activity (“overall connection strength”) matrices for networks
employing linear and sigmoid functions in the output layer. A single network is shown for
each architecture, but other test runs show the same results. Notice how, scale aside, these
matrices are very similar to one another and to the correlation matrix presented in Fig. 3.2.

by a network. Despite the two architectures showing approximately the same behavior
(except for the scale), can we infer more about their internal organization solely from
looking at their configuration?

4.4.2 Layer-wise correlations of weights

Instead of considering the overall, end-to-end strength of the paths linking an
input to an output node, one may try to compartmentalize and conceive a way of
computing correlations2 between weights of a particular layer of a network. Computing
the correlation of a more restricted set of weights should provide a more detailed
description of the organization of a network (enlightening us about the roles played by
its nodes).

We know from the formulation of the dataset that groups of four consecutive input
bits are correlated, but inputs that are further apart are not. To group nodes that
should have similar roles in a network, we may exploit the previous observation and
conceive a “distance” property between pairs of nodes of a network. Given the structure
of the dataset, the distance may be written as the difference between the indices of two
nodes in their layers. For two nodes belonging to the same layer or layers of the same
size, this results in

dist (ni, nj) =

min (j − i, N + i− j) if j ≥ i

dist (nj, ni) otherwise
,

2Here “correlation” is used in a broad sense, such as a non-obvious, general association between
two variables.

70 Probing the learning process

where N is the number of nodes of the layer/layers that the nodes ni and nj belong to.
The second branch of the expression serves to ensure that we carry the main

computation, in the first branch, with j ≥ i. The min function in the first branch is
used to allow counting the nodes as if they “wrap-around” (e.g., we want the distance
between the first and the last nodes to be equal to 1, instead of n − 1). This small
tweak is important since the dataset itself is written as if the bits in the input samples
wrap-around, and we want our distance function to simulate the same behavior.

(1)

(6)

(2), (5)

(3)

(4)

L0 L1 L2

Figure 4.9: Paths of length two through
layers. The numbers refer to the enumer-
ation to the left. Black dots represent
endpoints of the path, while grey dots an
intermediate hop.

Consider now the different ways of traveling
through the layers of a three-layered network
using a single intermediate layer. We can start
at layer 0 (L0), go to layer 1 (L1), and back
to L0, which we write as L0–L1–L0. In total,
there are six ways of constructing such paths
of length two, which we illustrate in Fig. 4.9
to the right, namely:

1. L0–L1–L0;
2. L0–L1–L2;
3. L1–L0–L1;
4. L1–L2–L1;
5. L2–L1–L03;
6. L2–L1–L2.
Finally, for each type of path we will compute the covariance of the weights in those

paths that start and end in nodes at a given distance from each other. As an example,
consider the path L0–L1–L2 and its endpoint nodes at a distance of two. Let nl

i denote
the node i of layer l, wl

ij the weight that links node i of layer l − 1 to node j of layer l,
and N l the number of nodes of layer l. Then, the correlation of the nodes in this type
of path (L0–L1–L2) at distance two is〈

1
N1

∑
k

w1
ikw

2
kj −

1
N1N1

∑
k

w1
ik

∑
k

w2
kj

〉
{

i, j : dist(n0
i , n2

j) = 2
}.

The general idea of the expression is to compute the correlation between nodes of
two layers (the endpoints of each path), which are at a certain distance. The correlation
is measured by the weights that connect the nodes through an intermediate layer (the
middle layer in the path). Figure 4.10 plots these correlations for each possible distance
and for each path.

For the networks with linear output activation, the results for the path L0–L1–L0
suggest that these networks are following the ideal implementation. First, one can see

3As will be seen, this is the same as L0–L1–L2.

4.4 Inspecting a network’s configuration of weights 71

0 2 4 6 8 10 12 14 16

distance between nodes

−0.015

−0.010

−0.005

0.000

0.005

0.010
co

rr

L0 — L1 — L0

L0 — L1 — L2

L2 — L1 — L2

0 10 20 30 40 50

distance between nodes

L1 — L0 — L1

L1 — L2 — L1

(a) Network using a linear function in the output layer.

0 2 4 6 8 10 12 14 16

distance between nodes

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

co
rr

L0 — L1 — L0

L0 — L1 — L2

L2 — L1 — L2

0 10 20 30 40 50

distance between nodes

L1 — L0 — L1

L1 — L2 — L1

(b) Network using a sigmoid function in the output layer.

Figure 4.10: Correlation of nodes at a certain distance for each possible path. The results are
presented for a single network of each kind, but they are typical. Other test runs show the
same behavior, but they were omitted for clarity.

that the nodes of the first layer are correlated up to a distance of 3, while for larger
distances the correlation is close to 0. These results agree with the ideal implementation,
since in it the input sequence 0110 is identified by an hidden node connected (solely)
to four consecutive input nodes (which means that, as we are observing, weights
participating in these funnels are correlated, whereas other weights are not). Moreover,
the sign of the correlations in this path tells us even more about the organization of
these networks. We can see that weights connecting nodes that are at a distance of
one or two are negatively correlated, whereas weights connecting nodes at a distance of
3 are positively correlated. This agrees with the ideal implementation, since, in each
funnel, two of the three possible pairs of weights at a distance of one have opposing
signs, resulting in overall negative correlation. Similarly, for a distance of two, the two
possible pairs of weights of a filter have opposing sings, resulting in negative correlation.
Finally, the single pair of weights of a funnel at a distance of three have the same sign,
which results in positive correlation.

72 Probing the learning process

In path L2–L1–L2 one can also see that nodes of the last layer (L2) are mostly
uncorrelated. This behavior also agrees with the ideal implementation — in it, one
hidden node does not influence more than one output node, no matter their distance.
Meanwhile, the correlations of the nodes belonging to the path L0–L1–L2 show what
we already saw in Fig. 4.8a — once again, up to a distance of 3, the correlation of the
nodes varies (with its sign matching that shown in Fig. 4.8a), but it stays close to 0
for larger distances. The plots for the other two paths, L1–L0–L1 and L1–L2–L1 show
correlations very close to 0 for all distances, but this is expected since the hidden nodes
do not have any meaningful spatial arrangement (they could be permuted without this
affecting the network), which makes the distance property we used unsuited to group
them. Overall, these results suggest that the organization acquired by the networks
with linear output activation is similar to that of the ideal implementation.

Finally, the networks with sigmoid output activation (Fig. 4.10b) show apparent
similarities with the linear output activation networks if one ignores the difference of
scale (which is related to the particular activation function used). The major exception
is found for the path L2–L1–L2, which agrees with our previous observation that, in the
sigmoid output networks, the output layer plays a different role than in the linear output
networks. In the sigmoid output networks, the last layer plays an active role identifying
the 0110 pattern, whereas in the ideal implementation (and the linear output networks)
the hidden layer is the sole responsible for doing this (and the output layer is a bypass).
Considering these results, it seems that, in the sigmoid networks, nodes in the hidden
layer do combine the information of few input nodes (as the correlations for the path
L0–L1–L0 show), but their values are themselves combined in the output layer, to fully
identify the relevant pattern. Due to this, close nodes (i.e., with a distance less than
four) in the output layer may share the partial computations that some hidden nodes
made.

4.5 Trajectories followed during training
We saw in previous sections what typical loss function curves look like (Secs. 4.2

and 4.3) and verified to some degree that these networks acquire organizations that we
can mostly understand (Sec. 4.4). Meanwhile, we also saw that the loss function of the
networks with linear output activation shows much more erratic behavior than that of
the sigmoid output networks. We considered some reasons why this may happen, for
instance, the difference in scale of the derivatives of the identity and sigmoid functions.
It seems worthwhile to try to further pinpoint what affects the variability of the linear
output activation networks.

4.5 Trajectories followed during training 73

A first question one may pose is whether initializing a network with the configuration
of weights that another network has at some point during its training causes the learning
trajectories of the two networks to be different (i.e., to “diverge”). Figure 4.11 shows
the results of this experiment.

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E
(t

es
t)

−2 −1 0 1 2

×104 + 4×106

42

44

46

48

50

52
×10−7 + 1.41×10−3

original

variants

Figure 4.11: Training of 64 different networks, employing linear activation in the output layer,
and using as initialization the weights that a reference network (plotted in solid blue line)
had at the iteration marked by the symbol ?. The inset plots a zoom of the main plot, but it
only shows 4 variants (of the 64 possible) for clarity.

Interestingly, the learning trajectories seem more stable than what one could initially
expect. The figure shows 64 different networks initialized with the configuration a
reference network (plotted in solid blue line) had at iteration 2× 106 (marked by the star
?). Surprisingly, the loss curve of these networks overlaps perfectly (at the macroscopic
level of the plot) with the curve of the reference network. This behavior suggests
that, by the time the configuration of weights of the reference network is collected,
the minimum to which it will converge (or, at least, its quality) is already determined,
alongside the trajectory it follows towards it.

A big part of this apparent stability may lie in the dataset itself, which is possibly
simple enough to allow that after some initial training, the learning trajectories get, to
a large extent, fixed. On the other hand, the stochasticity of the learning algorithm
should lead the network through different trajectories in the weight space (the inset in
Fig. 4.11 confirms that, at a small scale, this is in fact what happens). The strangest

74 Probing the learning process

part of this experiment is that the loss function of all the networks pass through the
same plateaus, for the same amount of time, and fall at the same instants.

During the training of a neural network, two primary hyperparameters affect the
stability and speed of training — the batch size and the learning rate. Can they be
used to cause deviations in the learning trajectories of the networks of Fig. 4.11, more
so than the microscopic variations seen in the zoomed region?

4.5.1 Varying the batch size

Figure 4.12 shows the test loss of different networks initialized with a reference
initial configuration (the weights of a reference network, at the iteration marked by
the star), and trained with varying batch sizes. Five different instances of training are
plotted for each batch size.

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E

original (bs = 128)

bs = 1

bs = 2

bs = 4

bs = 8

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E

Figure 4.12: Training of different networks using different batch sizes. The networks were
initialized with the weights the reference network (of their plot) had at the iteration marked
by the star. Different plots concern different reference networks (the top left is the same as in
Fig. 4.11). Five test runs are plotted for each batch size.

These results suggest that, in these networks, the batch size can only affect the speed
with which the networks reach their minimum, but cannot change its quality. Moreover,

4.5 Trajectories followed during training 75

the paths taken by the networks to reach their minimum seem to be very similar, with
the loss curve exhibiting consistently the same shape. It is also interesting to note that,
as expected, smaller batch sizes cause small instabilities that are particularly visible at
the bottom of the plots by the “noise” visible in some of the curves.

In Sec. 4.6 we will return to these results, to further analyze whether these networks
are following different trajectories (in their space of parameters) that happen to have
the same loss, or if their trajectories are actually the same.

4.5.2 Varying the learning rate

In Sec. 4.5.1 we considered the effect of the batch size regarding the stability of
learning trajectories. This section carries a similar test, but for varying learning rates.
Fig. 4.13 presents these results.

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E

original (lr = 0.01)

lr = 0.02

lr = 0.05

lr = 0.10

lr = 0.20

lr = 0.50

lr = 1.00

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E

Figure 4.13: Training of different networks using different learning rates. The networks were
initialized with the weights the reference network (of their plot) had at the iteration marked
by the star. Different plots concern different reference networks (the top left is the same as in
Fig. 4.11). Five test runs are plotted for each learning rate.

The conclusions are similar — once again, the learning rate only seems to affect
the speed with which a minimum is reached, but not its quality. Furthermore, the

76 Probing the learning process

minimum seems to be very similar for networks sharing the same initial configuration —
which suggests that the quality of the minimum reached is highly dependent on the
initialization. Moreover, it is possible to observe that networks trained with larger
learning rates reach the minimum sooner than those trained with lower learning rates,
with the time taken to do so being proportional to the learning rate used. This relation
is expected since, by taking larger steps, the minimum will be reached proportionally
faster.

These results also suggest that if the training of the networks of Fig. 4.2 lasted longer
(for instance, ten times longer), then a loss level below 10−7 should have been reached.
Coincidently, for the larger learning rates used, we can also observe the “instabilities”
(the noise) that arise once the loss falls below 10−6.

It seems that neither the batch size nor the learning rate are capable of significantly
altering the paths the networks follow towards the minima that they reach. Remember
that, so far, we have been considering networks that were initialized with the config-
uration of weights of a network (the “reference” network) after it was trained for a
number of iterations. We know from Fig. 4.2 that completely unrelated test runs (i.e.,
networks whose initial configurations have no connection) lead to different loss curves.
Perhaps we can only observe such behavior by initializing networks with configurations
of weights of the reference network that resulted from less training than we have been
using thus far.

4.5.3 Varying the initialization point

The last variable that we still need to experiment with is the point at which we
collect the configuration of weights of the reference network to initialize other networks.
With this in mind, Fig. 4.14 shows the evolution of the loss function of different networks
when they share the same initial configuration, collected from the same “reference”
network, but at different points in time.

It shows that the overall shape of the loss curve of two networks is significantly
determined simply by initializing the networks with the same initial configuration (even
prior to any training). Notice from Fig. 4.2 that the overall shape of the loss of networks
starting with different initial configurations is quite variable. This variability disappears
simply by fixing the initial configuration, which suggests the existence of a connection
between the initial configuration of weights of a network and its evolution along time
(i.e., training). This link between the initial weight configuration of a network and the
effectiveness of its learning will be the focus of further research in Chapter 5, where we
look for a more concrete explanation and motivation for its existence.

4.6 Similarity between learning trajectories 77

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E

original

init. at 0

init. at 10 000

init. at 125 000

init. at 250 000

init. at 500 000

init. at 1 000 000

init. at 2 000 000

Figure 4.14: Training of different networks varying the instant when the weights of the
reference networks are collected and used to initialize the child networks.

4.6 Similarity between learning trajectories
In Sec. 4.5 we saw that the quality of the minima reached by different instances

of networks, initialized with the same initial configuration, seems to be highly similar.
We also saw that the learning trajectories the networks follow in their weight space
seem related, since their loss curve shows the same overall shape. This section presents
few preliminary tests we carried about the actual similarity of the trajectories of the
networks. To get an initial feeling of the trajectories followed by networks that share
the same initial configuration of weights (which we typically call “correlated networks”),
consider Fig. 4.15.

It shows the mean of the weights (and biases) of the networks of Fig. 4.12 (top left)
along training4. With the exception of the curves for a batch size of 1, the means of
the weights follow the shape of the reference network somewhat closely. Furthermore,
as expected, as the batch size increases, the shape of the curves gets closer and closer
to the reference curve (since larger batches lead to better estimates of the gradient).
Notice that even though the networks trained with smaller batch sizes suffer larger
displacements in their trajectories, they do not necessarily train to better minima, as
we observed in Fig. 4.12. Finally, note that the dents in the figure, around iterations

4In the figure we have also included curves for networks trained with larger batch sizes to evidence
that for larger batch sizes, the curves get closer to the reference.

78 Probing the learning process

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

iteration ×107

−0.0115

−0.0110

−0.0105

−0.0100

−0.0095

−0.0090

〈w
〉

original (bs = 128)

bs = 1

bs = 2

bs = 4

bs = 8

bs = 16

bs = 32

Figure 4.15: Mean of the weights along training of networks sharing the same initialization,
for varying batch sizes. The networks considered are the ones shown in Fig. 4.12, top left,
alongside curves for networks trained with larger batch sizes. Five independent test runs are
shown for each batch size.

0.28× 107 and 0.82× 107, happen at the same time that the loss curves fall sharply
(observable in Fig. 4.12, top left), and that by doubling the batch size used to train
the networks, their mean curves get closer to the reference curve by approximately half
their initial distance.

4.6.1 Distance between uncorrelated trajectories

The similarity of trajectories will be mostly evaluated based on the Euclidean
distance (i.e., `2-norm) of the configurations of two networks along training. However,
since we have no reasonable scale for this value, before considering the distance of
trajectories of networks that have the same initialization (i.e., “correlated trajectories”),
it is sensible to consider the distance of uncorrelated trajectories. This serves mainly to
establish a baseline value for comparison purposes.

Figure 4.16 shows the Euclidean distance between networks whose initial configu-
rations are unrelated. It shows that, initially, the trajectories seem to approach each
other, but this only lasts a few iterations. Afterward, they get further and further apart,
until stabilizing at a distance between 18.5 and 19.

4.6 Similarity between learning trajectories 79

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
M

S
E

run 1

run 2

run 3

run 4

0.0 0.2 0.4 0.6 0.8 1.0

iteration ×107

12

13

14

15

16

17

18

19

20

` 2
n

or
m runs 1 and 2

runs 1 and 3

runs 1 and 4

runs 2 and 3

runs 2 and 4

runs 3 and 4

Figure 4.16: Distance between unrelated networks trajectories. (left) test loss of the networks
considered. (right) `2-norm of the difference of two test runs’ weights.

4.6.2 Distance between correlated trajectories

Figure 4.17 shows the distance between correlated trajectories of networks trained
with varying batch sizes (but starting with the same configuration, the point shown in
Fig. 4.11).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

iteration ×107

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

` 2
n

or
m

bs = 1

bs = 2

bs = 4

bs = 8

bs = 16

bs = 32

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

iteration ×107

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4.17: Distance between correlated trajectories for varying batch sizes. The distance
is measured as the `2-norm between the reference network, trained with batch size 128 and
portrayed in Fig. 4.11, and other networks initialized with the configuration of the reference
network and trained with the batch sizes specified in the figure. The loss of these curves for
batch sizes of 1–8 has been shown in Fig. 4.12. Networks trained with larger batch sizes do
not show noticeably different losses than those trained with batch size of 8. Five different
networks are shown for each batch size (the lines overlap).

First, we will focus on interpreting the results for batch sizes greater than one
(Fig. 4.17, right). For these values, the plot shows that, whenever the loss function
falls sharply (around iterations 2.8× 106 and 8.2× 106), there is a significant increase
in the distance between the trajectories. However, soon after, the distance decreases
considerably again. This behavior suggests that the networks fall in the loss landscape
at slightly different instants in time but to approximately the same minimum. The

80 Probing the learning process

peaks appear since, even if the networks fall at only slightly different iterations, this
tiny difference is enough to cause a significant difference in their positions (especially if
the fall is deep). Meanwhile, while the networks are in the plateaus (between iterations
2× 106 and 2.8× 106, and 3× 106 and 8.2× 106), they seem to be getting further apart
at a steady pace, suggesting that they are approximately on the same trajectory, but
traveling at different velocities (caused by the usage of different batch sizes between
them). This effect is particularly visible between iterations 3× 106 and 8.2× 106, where
the distance between the trajectories of the networks is increasing linearly. Moreover,
the slope of the lines seems to be inversely proportional to the batch size. Around
iteration 8.4× 106, the networks seem to reach a minimum, since, from that time
onwards, their distance does not change.

The only networks that, at a glance, do not seem to show the same behavior are
the ones trained with a batch size of 1. However, the difference in their behavior can
be explained by the early drop in the loss function that they experience (exhibited in
Fig. 4.12). It happens at around iteration 6.4× 106, which is consistent with the jump
in the distance observed in Fig. 4.17. It seems that training these networks with a
batch size of 1 has allowed them to converge to different minima than the networks
trained with larger batch sizes. This idea is supported by the observation that once
the reference network falls to its own minimum at around iteration 8.2× 106, instead
of lowering as happened in the other cases, the distance between it and the networks
trained with batch size one increases. As a result, this seems indicative that the minima
of the networks are different, despite them being of similar quality, as Fig 4.12 showed.

5 Effect of the initial configuration of
weights on artificial neural networks

Perfection is achieved, not when there is nothing more to add, but when
there is nothing left to take away.

— Antoine de Saint-Exupéry

effect, noun: power to bring about a result

Using the synthetic dataset, Chapter 4 explored some aspects of the training process
of neural networks and the structure arising in their configuration of weights. Among
other things, we saw that, for the networks considered there, weights along paths
connecting pairs of related input/output nodes show much larger combined strength
than unrelated pairs (Sec. 4.4.1). We also saw that, given the way the dataset is
constructed, one could use local correlations to infer, to some extent, the organization
that the weights of trained networks acquire (Sec. 4.4.2). Perhaps even more valuable
towards the contents of the present chapter, we also observed the initial configuration
of weights of a network markedly influencing its training (Sec. 4.5 and, specifically,
Sec. 4.5.3). The main objective of this chapter is to explore the reasons behind the
effect the initial configuration of weights seems to have in the training and functioning
of a network. Alongside studying these effects, we also propose and test a few novel
initialization strategies.

The chapter is organized as follows. In Sec. 5.1 we present the reference network
architecture and other training parameters, such as learning rate and batch size, used
for the tests carried in this chapter. Then, in Sec. 5.2 we present a few results with
initialization strategies of our design. Afterward, in Secs. 5.3 and 5.4, motivated by
observations we made while working on the strategies of Sec. 5.2, we explore the
connections between the initial and final configurations of weights of neural networks.

81

82 Effect of the initial configuration of weights on artificial neural networks

Finally, in Sec. 5.5 we present a initialization strategy based on the findings we made
throughout the chapter.

5.1 Reference settings
In the spirit of the work presented in the previous chapter, most of the results shown

here are based on a reference network architecture and two datasets. The architecture is
a Multilayer perceptron (MLP) with two hidden-layers, based on a sample configuration
provided by Keras and available at their repository1. The difference between the
architecture used in this work and the one they make available is that the one used
by us does not include dropout as regularization strategy and uses vanilla Stochastic
gradient descent (SGD), instead of RMSprop. The reason behind these changes is
seeking a simpler architecture: we are much more interested in understanding the
mechanisms of the learning processes than in carrying the most effective/efficient
training. Figure 5.1 shows the architecture of the network.

The two datasets used for training are MNIST and HASYv2, which were presented
in Secs. 3.2.1 and 3.2.2, respectively. The same base architecture is used irrespectively
of the particular dataset used for training. The only differences are the number of
nodes in the input and output layers, which are automatically adjusted to the particular
dataset used. The networks trained with MNIST use 784 input and 10 output nodes,
whereas the networks trained with the HASYv2 use 1024 input and 369 output nodes.

In most cases, training is carried for a very long time, typically 100 or 1000 epochs
(far into the overfitting regime). This approach is followed so that long-lasting effects
can manifest. The remaining hyperparameters used, unless otherwise stated, are (i)
learning rate of 0.1; (ii) batch size of 128 samples; and (iii) categorical cross-entropy loss
function. These are common values that were found to work well. As stated previously,
notice that, in general, these parameters are not tuned towards the fastest training
possible. In fact, they are particularly conservative for the networks trained with the
MNIST dataset (where a learning rate of 1, for example, could be used successfully).
We followed this approach to keep all settings as simple as possible, and to allow the
usage of the same hyperparameters on both datasets (MNIST and HASYv2).

1https://raw.githubusercontent.com/keras-team/keras/master/examples/mnist_mlp.py. Accessed
2019-11-05.

https://raw.githubusercontent.com/keras-team/keras/master/examples/mnist_mlp.py

5.2 Preliminary tests with initialization strategies 83

...

...

...

...

784 or 1024

512 512

10 or 369

Input layer
Hidden
layer 1
(ReLU)

Hidden
layer 2
(ReLU)

Output
layer

(softmax)

Figure 5.1: Base architecture of the networks trained (bias units have been omitted). 784
input and 10 output nodes are used when training with MNIST, whereas 1024 input and 369
output nodes are used for the HASYv2 dataset.

5.2 Preliminary tests with initialization strategies
In this section we experiment with initialization strategies inspired by ideas we

developed while working on Chapter 4. Our rationale is that, by combining our findings
about the strength and correlations of the input/output paths with existing initialization
methods, we may improve them. After having tested them, we conclude that these
ideas may be worth pursuing. However, we acknowledge that while developing them
we found an interesting feature of the learning process (which we study in more detail
from Sec. 5.3 onwards), that ultimately carried us away from further developing the
initialization strategies presented in the current section.

5.2.1 Lightning-based initialization

We start by considering a simple initialization strategy based on the Lightning
initialization of Pircher et al. (2018), which was previously presented in Sec. 2.5.4. To
summarize, the lightning initialization involves choosing a number of end-to-end paths

84 Effect of the initial configuration of weights on artificial neural networks

along the network (from input to output nodes), setting the weights along these paths
with nonzero values, and the remaining weights to zero.

The variation of the Lightning initialization proposed here is based on creating a
certain number of input-output paths per output node, initializing the weights along
the paths with a fixed value, and the remaining weights to zero. The paths are created
as follows. For each output node, we rank the input nodes according to the correlation2

they show with the output node. A number of the top-scoring input nodes are connected
to the output node by, for each input node selected, setting the weights of a random
path connecting it to the output node, through nodes of the intermediate hidden layers,
with a fixed value. The remaining weights are set to zero. The intermediate nodes in
the hidden layers are chosen from “bands”, one for each output node, so that situations
where random paths cross at an intermediate node may only arise for paths that lead
to the same output node. The number of input nodes per output node (i.e., the number
of paths created per output node) and the initial value with which the weights are
initialized are parameters of the strategy. Algorithm 5.1 provides pseudocode for the
procedure.

Figure 5.2 presents a matrix with the results of initializing networks with this
procedure for several combinations of the number of inputs chosen and initial value of
the weights. Unfortunately, it is not possible to compare our results to the Lightning
initialization (Pircher et al., 2018), since in their paper the authors have used different
network architectures and hyperparameters. Moreover, it is not clear whether the
results they report are based on the train or test datasets, and since the paper does not
reference the source code used to carry their experiments we cannot reproduce them.
Due to this, we restrict ourselves to comparing our results with the commonly used
Glorot uniform initialization (presented in Sec. 2.5.1), which we show in the first row of
the matrices plotted in the figure.

The figure shows that both parameters affect training. There is a sweet spot when
choosing 10% of the top-scoring input nodes per output node, alongside an initial weight
strength of 0.5–0.75. Near this region, there is an improvement in the train loss when
compared to the baseline, and a marginal improvement in the test loss. However, in
general, the initialization does not generalize better, since most combinations of the
parameters of the algorithm lead to a higher test loss. Furthermore, slight changes
in these parameters lead to poor training (particularly on the test set). The lack of
robustness the method shows to its parameters seems to suggest that it is not general.

This initialization scheme seems to be too “evasive”, needing significant fine-tuning in
order to be useful (otherwise, it may even behave “catastrophically”). Notwithstanding

2We used the Pearson correlation coefficient (PCC), ρX,Y = Cov (X,Y)/(σXσY), to measure the
correlation between a pair of input and output variables.

5.2 Preliminary tests with initialization strategies 85

Algorithm 5.1: Pseudocode for the lightning-based initialization
Data: List of the weight matrices (wl) of a network. A set of input (x) and

output (y) training samples (to use for computing the correlation between
input and output variables). A number k specifying the number of inputs
to choose per output node. A number s specifying the initial value (the
“strength”) with which the weights in the paths are initialized.

Result: The weight matrices w in wl are initialized according to our
lightning-based initialization with the given parameters.

1 Let ni and no denote the no. inputs and outputs of the network (respectively)
2 foreach w ∈ wl do . Initialize all weight matrices w with zero
3 w ← 0
4 end
5 for j ← 1 to no do
6 ρ← pearson-corrcoef(x, y, j) . Compute the PCC between all inputs and the

j-th output. ρ will be a vector of size ni where
its i-th entry contains the PCC between the
input i and output j

7 I ← rank(ρ, k) . Select the set of k top-scoring inputs based on the absolute
value of their correlation with the output

8 foreach i ∈ I do . Create one path at a time (each starting in node i)
9 foreach w ∈ wl do . Create the path layer by layer

10 Let nr denote the no. nodes to the right of the layer of weights w
(hence, if w is the last layer, nr = no)

11 if w is the last layer then . Choose a node o connected to node i
whose link we will initialize. If w is the
last layer of weights, that node is j

12 o← j
13 else . Otherwise, choose it at random from the j-th group of nodes, so that

the same node o may only be used in different paths if they lead to
the same output node. The groups are assigned sequentially, e.g., if
nr = 512 and there are four output nodes (no = 4), the first group
will be {1, 2, . . . , 128}, the second {129, 130, . . . , 256}, and so on

14 o← rand((j − 1) · bnr/noc+ 1, j · bnr/noc)
15 end
16 wio ← s . Set the weight chosen with the desired initial value
17 i← o .We will use the node o that we chose in the current layer as

the starting node in the next (to avoid breaking the path)
18 end
19 end
20 end

86 Effect of the initial configuration of weights on artificial neural networks

0.01
0.05

0.10
0.50

0.75
1.00

1.25
1.50

1.75
2.00

2.50
3.00

strength of the paths

glorot u

1

2

5

10

20

50

%
to

p
co

rr
el

at
ed

in
p

u
ts

u
se

d
p

er
ou

tp
u

t
n

o
d

e

0.0006

0
.0

0
1

6

0
.0

0
1

5

0
.0

0
1

4

0
.0

0
1

0

0
.0

0
0

9

0
.0

0
0

9

0
.0

0
1

0

0
.0

0
1

5

0
.0

0
1

6

0
.0

0
1

8

0
.0

0
4

5

0
.0

1
3

6

0
.0

0
1

3

0
.0

0
1

4

0
.0

0
1

0

0
.0

0
0

5

0
.0

0
0

4

0
.0

0
0

6

0
.0

0
0

6

0
.0

0
0

7

0
.0

0
1

1

0
.0

0
2

1

0
.0

1
3

9

0
.0

6
8

4

0
.0

0
1

1

0
.0

0
1

2

0
.0

0
0

5

0
.0

0
0

4

0
.0

0
0

4

0
.0

0
0

4

0
.0

0
0

5

0
.0

0
1

2

0
.0

0
8

4

0
.0

2
8

0

0
.0

8
8

7

0
.6

2
7

3

0
.0

0
1

2

0
.0

0
0

8

0
.0

0
0

5

0
.0

0
0

4

0
.0

0
0

4

0
.0

0
0

9

0
.0

0
4

9

0
.0

2
4

9

0
.0

7
4

7

0
.0

8
8

7

1
.4

5

1
.1

6

0
.0

0
1

3

0
.0

0
0

7

0
.0

0
0

5

0
.0

0
0

5

0
.0

0
0

9

0
.0

0
8

0

0
.0

5
1

5

0
.0

9
3

2

0
.9

2
4

9

4
.6

4

1
1

.7
9

8
.5

3

0
.0

0
1

2

0
.0

0
0

6

0
.0

0
0

4

1
1

.6
2

5
.8

1

1
1

.6
1

1
1

.7
6

1
4

.2
3

1
4

.1
9

1
4

.1
6

1
4

.5
1

1
4

.4
8

0.01
0.05

0.10
0.50

0.75
1.00

1.25
1.50

1.75
2.00

2.50
3.00

strength of the paths

0.0744

0
.1

4
0

3

0
.1

4
3

9

0
.1

3
3

8

0
.1

2
9

6

0
.1

2
2

6

0
.1

2
2

2

0
.1

3
2

3

0
.1

5
8

9

0
.1

5
4

3

0
.1

6
6

3

0
.1

8
8

7

0
.2

2
4

5

0
.1

2
1

7

0
.1

1
6

5

0
.1

0
8

4

0
.0

9
7

3

0
.0

9
0

5

0
.0

9
3

8

0
.1

0
2

4

0
.1

0
8

6

0
.1

1
3

8

0
.1

2
6

9

0
.1

8
0

0

0
.2

5
6

6

0
.1

1
0

1

0
.0

9
7

0

0
.0

8
8

4

0
.0

7
7

1

0
.0

7
6

6

0
.0

7
7

5

0
.0

8
1

5

0
.0

9
8

6

0
.1

2
4

1

0
.1

6
7

7

0
.2

9
0

2

0
.8

0
2

9

0
.1

0
1

0

0
.0

9
0

5

0
.0

8
4

2

0
.0

7
4

0

0
.0

7
4

1

0
.0

8
0

6

0
.1

0
6

3

0
.1

5
0

7

0
.2

2
6

5

0
.2

7
4

7

1
.5

2

1
.2

7

0
.0

9
8

2

0
.0

8
7

7

0
.0

8
2

5

0
.0

7
5

2

0
.0

8
5

8

0
.1

2
0

3

0
.1

9
9

3

0
.2

7
1

7

1
.0

9

4
.7

0

1
1

.8
1

8
.5

3

0
.0

9
6

3

0
.0

8
7

6

0
.0

8
1

6

1
1

.6
4

5
.8

9

1
1

.6
5

1
1

.7
8

1
4

.2
2

1
4

.1
9

1
4

.1
8

1
4

.5
2

1
4

.4
8

0.0001

0.0005

0.001

0.005
0.01

0.1 1 10 15

Log loss (train)

0.
05

0.
07

5

0.
1

0.
5

1 10 15

Log loss (test)

Figure 5.2: Error obtained with our lightning-based initialization for several combinations
of parameters. Training lasted for 100 epochs on the MNIST dataset. Each cell shows the
average of five independent runs. The left figure shows the training error, whereas the right
one shows the test. The first row on both figures (labeled glorot_u in the left) contains the
baseline result obtained with Glorot’s uniform initialization.

its downfalls, this strategy inspired us to pursue a more conservative procedure that
borrows ideas from it (e.g., the notion of bands) and merges them into a typical “fully
random initialization”. This new strategy is described in the section that follows.

5.2.2 The Dense Sliced Initialization

This section presents the Dense Sliced Initialization (DSI). The idea of this strategy
is to densely initialize end-to-end bands (or “slices”) in a network according to a typical
random initialization, and set the remaining weights (i.e., weights that connect nodes
that belong to different bands) to zero. In other words, the weights that connect nodes
belonging to the same band/slice are initialized with random weights, but the remaining
connections (between bands) are set to zero.

The method works as follows. The nodes in each hidden layer are divided into n
groups (the number of bands desired), which are labeled 1 to n. The set of groups
having the same label (at different layers) is called a slice. The weights connecting
groups of nodes in consecutive layers that are part of the same slice are initialized with
random values from some distribution. The remaining weights (the ones that connect
groups with different labels) are initialized with zero. Then, a random output class is

5.2 Preliminary tests with initialization strategies 87

assigned to each slice. The slice’s nodes of the last hidden layer are connected to the
assigned output node with random weights, whereas the remaining weights (connecting
to other output nodes) are set to zero. Finally, a random selection of the input nodes is
connected to the slice in a similar fashion. These nodes are either sampled uniformly
(at random) or are sampled with probability proportional to the correlation they show
with the output node the slice connects to3. Figure 5.3 illustrates the procedure, and
Alg. 5.2 provides pseudocode for it.

Input layer
Hidden
layer 1

Hidden
layer 2

Output
layer

Slice 1

Slice 2

Slice 3

Figure 5.3: The dense sliced initialization. Conceptually, this strategy separates the nodes of
a network up to the first hidden layer into slices (in the figure we show three). The weights
connecting nodes that belong to the same slice are initialized with random values, in a similar
manner to a typical random initialization. The remaining weights (that connect nodes that
belong to different slices) are initialized with zero (they were omitted in the figure for clarity).
Finally, a random group of input nodes is selected for each slice and connected to it.

The rationale behind this strategy is that random initializations may create con-
flicting paths of information within the network. The learning algorithm must solve
these inconsistencies before it can start working on a proper solution. Creating confined
regions within the network that start mostly independent from each other (the slices)
may help during the early stages of training since they should reduce the amount of

3Similarly to Sec. 5.2.1, we have used PCC to measure the correlation between input and output
nodes.

88 Effect of the initial configuration of weights on artificial neural networks

Algorithm 5.2: Pseudocode for the dense sliced initialization
Data: List of the weight matrices (wl) of a network. A number k specifying the

number of inputs to connect per slice. A number n specifying the number
of slices to create.

Result: The weight matrices w in wl are initialized according to the dense sliced
initialization with the given parameters.

1 Let ni and no denote the no. inputs and outputs of the network (respectively)
2 foreach w ∈ wl do . Initialize all weight matrices w with zero
3 w ← 0
4 end
5 for i← 1 to n do . Initialize one slice at a time
6 if i ≤ no then . Choose the output node that is assigned to the slice. The first

no slices are assigned sequentially, so that as as long as n ≥ no,
each slice gets assigned a different output with certainty

7 o← i
8 else . The remaining slices get assigned a random output
9 o← choose(no)

10 end
11 si ← choose(ni, k) . Choose k input nodes to connect to the slice (i.e., whose

weights are going to be initialized with nonzero values).
The input nodes may be sampled uniformly as we are doing
here, or based on their correlation with the output node o

12 foreach w ∈ wl do . Create the slice by initializing its weights layer by layer
13 Let nl denote the number of nodes to the left of the layer of weights w

and nr the no. nodes to the right (in the first iteration nl = ni, and in
the last nr = no)

14 if w is the last layer then . Choose the nodes of the layer to the right of
w that belong to this slice. If w is the last
layer of weights, the only such node is o

15 so ← {o}
16 else . Otherwise, choose the nodes sequentially. E.g., if nr = 512 and there are

eight slices (n = 8), the first slice gets nodes {1, 2, . . . , 64}, the second
gets {65, 66, . . . , 128}, and so on. To simplify, we wrote the expression
below assuming nr ≡ 0 mod n. If that is not the case, the “extra”
nodes can be assigned to different slices sequentially or at random.

17 so ← {(i− 1) · bnr/nc+ 1, (i− 1) · bnr/nc+ 2, · · · , i · bnr/nc}
18 end

. Initialize the weights connecting the nodes in si and so by drawing them from a
uniform distribution so that they have a variance of 2/(|si|+ |so|)

19 foreach ı̂ ∈ si do
20 foreach ô ∈ so do
21 wı̂ô ∼ U

(
−
√

6/ (|si|+ |so|),
√

6/ (|si|+ |so|)
)

22 end
23 end
24 si ← so . The nodes that were to the right of the current matrix of weights

(those in so) are the ones that are to the left of the next matrix (in si)
25 end
26 end

5.2 Preliminary tests with initialization strategies 89

conflicting flows, as well as the effort required to eliminate them. In essence, the idea is
to remove from the learning algorithm the burden of resolving the conflicting flows, at
the expense of a possibly less complex/rich initial configuration.

Figures 5.4 and 5.5 show the loss obtained for networks initialized with the dense
sliced initialization, for a combination of the number of slices used and the number of
inputs connected to each slice. The reference initialization strategy, Glorot uniform
initialization, is shown in the first row of the plots.

16 32 64 128
256

512

no. slices

glorot u

10

20

40

80

160

320

640

n
o.

sl
ic

e
in

p
u

ts

0.00055

0.00044 0.00043 0.00037 0.00035 0.00034 0.00035

0.00044 0.00044 0.00038 0.00036 0.00034 0.00037

0.00038 0.00044 0.00037 0.00036 0.00033 0.00037

0.00039 0.00044 0.00038 0.00042 0.00033 0.00037

0.00044 0.00045 0.00043 0.00041 0.00032 0.00038

0.00044 0.00039 0.00044 0.00036 0.00032 0.00031

0.00044 0.00043 0.00037 0.00040 0.00037 0.00031

16 32 64 128
256

512

no. slices

0.0744

0.0771 0.0723 0.0704 0.0698 0.0718 0.0774

0.0751 0.0720 0.0735 0.0696 0.0738 0.0781

0.0740 0.0753 0.0766 0.0746 0.0744 0.0790

0.0766 0.0742 0.0736 0.0758 0.0740 0.0780

0.0769 0.0764 0.0761 0.0750 0.0772 0.0781

0.0781 0.0783 0.0745 0.0747 0.0789 0.0783

0.0774 0.0763 0.0742 0.0749 0.0767 0.0784

0.00029

0.00035

0.0004

0.00045

0.0005

0.00055

0.0006

Log loss (train)

0.
06

8

0.
07

0.
07

2

0.
07

4

0.
07

6

0.
07

8

0.
08

Log loss (test)

Figure 5.4: Error obtained with the dense sliced initialization for several combinations of
parameters and when input nodes are sampled with probability proportional to the correlation
they show with the output. Training lasted for 100 epochs on the MNIST dataset. Each cell
shows the average of five independent runs. The left figure shows the train loss, whereas the
right figure shows the test loss. The first row on each matrix shows the baseline loss obtained
with Glorot’s uniform initialization.

Two main parameters of the algorithm were tested, the number of slices and the
number of inputs provided to each slice. The algorithm seems mostly robust with respect
to both these parameters, since all configurations achieve somewhat comparable train
loss (which is always smaller than the baseline train loss, with the improvements ranging
from 20 to 45%). However, in general the strategy does not seem to lead to significantly
better generalization, since the best test loss values obtained are comparable to the
baseline. Moreover, it seems that sampling input nodes uniformly to connect to the
slices leads to comparable (even marginally better) results than sampling them based
on their correlation with the output of the slice. Overall, the algorithm shows good
results and looks like a promising technique to consider in future research.

90 Effect of the initial configuration of weights on artificial neural networks

16 32 64 128
256

512

no. slices

glorot u

10

20

40

80

160

320

640

n
o.

sl
ic

e
in

p
u

ts

0.00055

0.00044 0.00043 0.00036 0.00034 0.00032 0.00043

0.00038 0.00043 0.00042 0.00039 0.00037 0.00041

0.00038 0.00037 0.00036 0.00033 0.00037 0.00030

0.00038 0.00038 0.00036 0.00035 0.00032 0.00036

0.00038 0.00038 0.00041 0.00039 0.00031 0.00029

0.00038 0.00043 0.00036 0.00039 0.00037 0.00041

0.00044 0.00038 0.00037 0.00034 0.00037 0.00031

16 32 64 128
256

512

no. slices

0.0744

0.0761 0.0748 0.0716 0.0725 0.0717 0.0749

0.0746 0.0744 0.0732 0.0699 0.0695 0.0759

0.0740 0.0732 0.0751 0.0738 0.0746 0.0747

0.0758 0.0740 0.0744 0.0735 0.0720 0.0751

0.0753 0.0759 0.0741 0.0739 0.0751 0.0784

0.0781 0.0734 0.0743 0.0730 0.0749 0.0775

0.0792 0.0729 0.0756 0.0744 0.0738 0.0776

0.00029

0.00035

0.0004

0.00045

0.0005

0.00055

0.0006

Log loss (train)

0.
06

8

0.
07

0.
07

2

0.
07

4

0.
07

6

0.
07

8

0.
08

Log loss (test)

Figure 5.5: Error obtained with the dense sliced initialization for several combinations of
parameters and when input nodes are sampled uniformly. Refer to Fig. 5.4 for the conditions
of this experiment and the meaning of the figure (the difference between the two figures is that,
in the present one, the input nodes connected to each slice are sampled uniformly, whereas in
Fig. 5.4 they are sampled with probability proportional to their correlation with the output).

5.3 Inspecting a network’s initial configuration of weights
In the previous chapter, in Sec. 4.5, we saw that the initial configuration of weights of

a network seems to be capable of shaping its training to a significant degree. Furthermore,
while working on the strategies previously presented, in Secs. 5.2.1 and 5.2.2, we observed
a trend in training, which will be discussed in the following sections, that was not
all that obvious to us initially — it seems that the final configuration of weights of
a network does not change that much away from the initial one. In other words, it
seems that training is, to some extent, a fine-tuning process that meticulously updates
the weights of the initial configuration. Further sections of this chapter will explore
this observation in more detail. We will observe how much the weights, after training,
differ from the initial ones, and find that the deviations are relatively small, to the
point that marks of the initial configuration of weights of a network are still perceptible
in its weights even after extensive periods of training. Moreover, the small nature of
these deviations seems to be a fingerprint of trainability — if a network is not trainable,
then it seems that it loses the traces of its initial state. These findings led us to an
initialization strategy that we present in Sec. 5.5, where we observe that when the
initial configuration of weights is arranged using samples from the training dataset, we

5.3 Inspecting a network’s initial configuration of weights 91

obtain significant improvements to the training accuracy measured, but at the expense
of worse generalization.

5.3.1 The lottery ticket hypothesis

As we stated in Sec. 2.5, and somewhat experienced firsthand throughout the
previous sections, the initial configuration of weights of a network is capable of playing
a crucial role in its training. However, as we reviewed in Sec. 2.5, the reasons making
the initialization so important are not all that clear. Nonetheless, a recent work, which
we overview below, may help to explain these reasons, at least partially.

It was recently observed by Frankle and Carbin (2019) that typically, a randomly
initialized dense neural network contains subnetworks (winning tickets) that can match
the test accuracy of the original network when trained in isolation for the same amount
of time (the Lottery Ticket Hypothesis). Importantly, these subnetworks are part of
the initialization (i.e., the initial configuration of weights and biases), instead of being a
product of the training process, meaning that they are present since the very beginning
of training, and not constructed along training. This hypothesis suggests that there are
specific structures in a random initialization that are crucial for training and to allow a
network to achieve high accuracy.

Frankle and Carbin (2019) reported consistently finding winning tickets that are
less than 10–20% the initial size of many different networks they tested, such as several
fully-connected and convolutional feed-forward architectures trained on MNIST and
CIFAR10. It has been known for a long time (e.g., Han, Pool, Tran, & Dally, 2015;
Hassibi & Stork, 1993; G. Hinton, Vinyals, & Dean, 2015; LeCun, Denker, & Solla, 1990)
that it is possible to reduce the size of trained networks to less than 10% of their initial
size without affecting their accuracy significantly (a process usually called pruning).
What had not yet been realized was that this could, in theory, be achieved prior to
any training. If one succeeds in identifying these networks (the winning tickets) before
training, one could save tremendous amounts of training time. Moreover, identifying the
important parts of a configuration of weights and pruning the rest prior to any training
should improve generalization too (by reducing the number of adjustable parameters of
the model, following Occam’s razor principle). Unfortunately, Frankle and Carbin (2019)
find the winning subnetworks only after training with the complete initial network.

These results suggest that success in training depends largely on particular patterns
existing in the initial configuration of weights of a network, but the nature or composition
of these patterns remains unclear. Further sections of this chapter explore the link
between the initial and final configurations of weights in feedforward networks, trying
to understand what happens to make these patterns so important.

92 Effect of the initial configuration of weights on artificial neural networks

5.3.2 Similarity between the initial and final configurations of weights
of a network (first impressions)

In this section, in order to start acquiring some intuition about the relations that
seem to exist between the initial and final configurations of weights of trained neural
networks, we will consider 5 networks trained for 1000 epochs on MNIST, whose loss
(and accuracy) are shown in Fig. 5.6. As the figure shows, the networks are already
clearly in overfitting, long past the point of best generalization. However, this is not a
concern to us since we are interested in observing long lasting effects of the training
process (which, as a result, are transversal to both under- and overfitting regimes). We
can see that there are two groups of networks, one that converged to a loss above 10−4,
and another that is converging slightly above a loss of 10−5.

0 200 400 600 800 1000

epochs

10−5

10−4

10−3

10−2

10−1

100

L
og

lo
ss

(t
ra

in
)

0 200 400 600 800 1000

epochs

0.05

0.10

0.15

0.20

0.25

L
og

lo
ss

(t
es

t)

0 200 400 600 800 1000

epochs

0.85

0.90

0.95

1.00

1.05

A
cc

u
ra

cy
(t

ra
in

)

run #1

run #2

run #3

run #4

run #5

0 200 400 600 800 1000

epochs

0.85

0.90

0.95

1.00

1.05

A
cc

u
ra

cy
(t

es
t)

Figure 5.6: Train (left) and test (right) loss (top) and accuracy (bottom) of five networks
trained with the MNIST dataset for 1000 epochs.

During our experiments, we initially examined the initial and final configurations of
weights of these networks by visual inspection. We did this by overlaying images of the
weight matrices of the initial and final configurations (from here on denoted wi and wf ,

5.3 Inspecting a network’s initial configuration of weights 93

respectively) of a network on top of each other and “flicking” them4. By initial weights
we mean the values of the weights of a network prior to any training. Similarly, by final
weights we refer to the values of a network’s weights once training is stopped.

Despite being a rather primitive method, this approach provided us with an initial
intuition about what, to some extent, is happening to these configurations — they are
surprisingly relatable, in that clusters of weights that appear by chance in an initial
configuration are typically clearly identifiable (and sometimes even “enhanced”) in the
final configuration. The main problem of this approach is that it does not lend itself
well to be presented on paper (e.g., this thesis). As an alternative, we will start by
looking into the distribution of the products of initial and final weights of a trained
network. This measures how many weights swap their sign during training. We observe
that the vast majority of the weights of a network conserve their sign, as Fig. 5.7 shows.

−0.5 0.0 0.5 1.0 1.5

w1
i ◦ w1

f

×10−2

0.0

0.5

1.0

1.5

F
re

q
u

en
cy

×105

layer 1

0.0 0.5 1.0

w2
i ◦ w2

f

×10−2

0

2

4

6

F
re

q
u

en
cy

×104

layer 2

CDF mean

0 2 4 6

w3
i ◦ w3

f

×10−2

0.0

0.5

1.0

F
re

q
u

en
cy

×103

layer 3

Figure 5.7: Distribution of the entrywise product (Hadamard product) of the initial and final
configurations of weights (i.e., wi ◦ wf), for run no. 1 of Fig 5.6. The results for the other
test runs follow the one presented (they are omitted for clarity). The cumulative distribution
function (CDF) of the distribution in the respective plot was normalized to span the full
y-axis.

It plots the distribution of the entrywise product (i.e., Hadamard product, ◦) between
the initial and final configurations of weights, wi ◦ wf , for each layer of weights of a
network. The products are positive if the sign a weight had prior to training is the
same it has after training, and negative otherwise. This is what happens in general,
as the figure shows. This observation comes somewhat at a surprise, since there is no
apparent reason as to why this should happen. As an aside, note that the mean of the
distribution of these products happens to be the covariance between wi and wf , i.e.,

4By flicking we mean showing the weights of the initial configuration of weights, replacing the
resulting image with one for the weights of the final configuration, going back to the initial image and
repeating continuously. E.g., consider a slideshow with two slides, each containing an image that fully
occupies it, and the user is continuously swapping between the two slides in order to try to spot the
differences between the images (akin to the effect of a thaumatrope).

94 Effect of the initial configuration of weights on artificial neural networks

E [wi ◦ wf] = Cov (wi, wf), since the distribution from which the initial configuration is
drawn is symmetrical (E [wi] = 0). Thus, the plots also show that the initial and final
configurations of weights are correlated.

Another intriguing effect observed when we flicked the initial and final configurations
of weights is that many groups of weights seem to start in a disposition that is enhanced
by training. In other words, it seems that a cluster of weights that overall starts with,
for instance, more positive values (likewise for negative values) influences nearby weights
to be positive too, as if the initial groups of coordinated weights function as seeds
that serve as “guidelines” for the training process. To observe this effect, consider the
experiment whose results are shown in Fig. 5.8.

b
ef

or
e

tr
ai

n
in

g
(s

ee
d

s)
af

te
r

tr
ai

n
in

g

se
ed

s
on

to
p

of
b

ac
kg

ro
u

n
d

Figure 5.8: Visualization of the spread of initialization seeds on five networks trained on the
HASYv2 dataset (for 100 epochs). The top row shows, in each subplot, the weights connecting
the input nodes to a randomly selected node of the first hidden layer. The weights have been
reshaped into a 32× 32 matrix to mimic the way they would connect to input samples. The
middle row shows the values of the same weights after training. The bottom row shows the
initial nonzero weights (the seeds) overlaid on top of a background given by the sign of the
final weights (brighter colors denotes positive sign, darker colors denote negative). The black
lines plot a Voronoi diagram computed by clustering the seeds and serve mainly to provide
visual guides across the different rows.

The figure plots weights that connect input nodes to randomly sampled hidden
nodes of a set of networks trained on HASYv2. Each hidden node connects to 1024
input nodes, the number of pixels of the HASYv2 inputs. During initialization, all
but 128 of these weights were set to zero. This allows one to observe how the nonzero
weights affect the zero weights. We call these nonzero weights “seeds”. Each vector of
weights connecting input nodes to a hidden node is rearranged into a 32× 32 matrix

5.4 Tuning of weights during training 95

(the shape of the input samples). A random selection of these matrices is plotted in the
top row of Fig. 5.8. The same weights are plotted beneath, in the middle row, after
100 epochs of training. It seems that, in general, seeds that are more positive or more
negative propagate their sign to nearby weights, creating regions that are tendentiously
positive or negative. To highlight this behavior, the bottom row in the figure shows the
seed weights overlaid on top of a background that takes color based on the sign of the
final weights (darker color denotes negative sign, brighter color positive). For visual
aid, the seeds were clustered into 40 clusters by the K-Means algorithm (Lloyd, 1982).
Afterward, the Voronoi diagram of the clusters’ centroids was overlaid on the images of
the figure.

These observations suggest that chance causes certain groups of weights to start
with a higher concentration of positive or negative values. These fluctuations originate
clusters of weights that happen to be good (or, at least, “better than the others”)
recognizers, or “filters”, of particular features of the dataset. As a result, instead of
creating these filters from nothing, the learning process seems to take advantage of
their natural occurrence and tune the weights appearing in these regions, so that they
become proper recognizers for the features of the dataset.

Notice that, in the experiments portrayed in Fig. 5.8, we considered only the first
layer of weights of a neural network and set around 90% of its weights to zero prior to
any training. However, the effect we are suggesting is applicable to all the layers of a
network and regardless of setting, or not, weights to zero. The effect simply becomes
more visible in the first layer of weights, since in the remaining layers it is not trivial to
define which weights “are close”. In the first layer, doing so is eased due to the fact that
nearby input pixels are correlated, and hence so should be the weights that connect to
them. Finally, setting a fraction of the weights to zero helps merely by removing the
clutter arising from otherwise showing hundreds of weights in a small area.

The idea of filters that emerge in the initialization due to small fluctuations in the
initial configuration of weights of a network, and its implications, is the primary matter
investigated in the sections that follow. Notice that this idea may also provide different
insights to the lottery ticket hypothesis. The winning tickets may simply be the weights
that happen to start, by chance, in configurations that make them better for particular
patterns present in the dataset.

5.4 Tuning of weights during training
The previous section, Sec. 5.3.2, suggested that a random initialization may create

fluctuations in the initial configuration of weights that cause particular groups of weights

96 Effect of the initial configuration of weights on artificial neural networks

to be reasonably good at identifying certain patterns of the dataset. Considering this,
one may conceive training to consist, to a large degree, of (fine-)tuning these groups
(and nearby weights) to improve the identification of patterns. The aim of this section
is to study the scale of the fine-tuning, i.e., how much the weights are typically updated
during training, and pursue ways of identifying this behavior.

5.4.1 Marking the initial configuration of weights

In moderately-sized networks, due to their large number of parameters, it becomes
challenging to identify clusters of weights whose initial and final values are similar/related.
Nonetheless, by resorting to our pattern matching capabilities, we may be capable of
doing so if we somehow imprint some characteristic (i.e., visible) mark in the initial
configuration of weights. By knowing where to look for marks, we may more easily
verify whether they are or not present after training. Moreover, it allows us to track the
mark along the training, hence enabling us to understand better what happens to the
weights of the network. We achieved this by stamping letters from the Latin alphabet
on a layer of a neural network. The idea is to introduce some clear and arbitrary pattern
on the network that can be viewed effortlessly at a macroscopic level.

If the mark is still visible after the weights suffer a considerable amount of updates,
this would suggest that training is not an abrupt process that causes the weights of a
network to drift far from their initial state, but more like a fine-tuning process, where
interesting patterns introduced by chance during the initialization are tuned to fit a
particular dataset well. Figure 5.9 shows a mosaic of initial vs. final configurations of
weights that were stamped with letters.

The stamping process was performed by considering a bitmap with the same shape
as the matrix of weights of the layer being marked. Then, we rasterized the desired
letter to the bitmap, and used it as a binary mask to clear the weights that laid outside
the trace of the letter (or vice-versa, i.e., clearing the weights that were inside the trace
of the letter) — in the figure we included cases of clearing weights inside and output a
letter. The figure shows that, in general, the letters are clearly visible after training.
Perhaps even more surprisingly, they do not affect the quality of training, in that
independently of the letter chosen (or whether a letter is present or not) the networks
train to approximately the same loss value. This is further evidenced in Fig 5.10, which
shows the training of networks both without marks and marked with the vowels A, E, I,
O, U, alongside their loss, when training lasts for as much as 1000 epochs (the networks
are long into the overfitting regime and have almost fully converged).

While being macroscopic observations, the previous figures portray that, to some
extent, randomly initialized networks do retain characteristics of their initialization along

5.4 Tuning of weights during training 97

Figure 5.9: Stamping of letters on the weights of a neural network. A pixel in an image
represents a weight of a network. Each pair of images represents a training realization where
the middle layer of weights of a network was stamped with the letter that the images show.
The left image shows the weights of the marked layer prior to training, whereas the right
image shows the same weights after. Training was carried on the HASYv2 dataset for 50
epochs. Each pair of images was normalized to the same color range, so that the same color in
the two images refers to the same numerical value. The letter Q was left out of the figure due
to its similarity with the letter O (the English alphabet contains 26 letters, the dimensions of
the image allowed showing 25).

the whole training, and transfer them into their final applications. Moreover, the effect
is sufficiently strong to allow us humans to easily identify such marks, especially if they
are deliberately embedded into the configuration of weights of a network. Furthermore,
doing so surprisingly does not seem to noticeably affect the training of the networks.

A question that may arise at this point is whether the gradient (i.e., the updates
suffered by the networks) of the marked networks shows any trace of the letters imprinted
on them. The answer seems to be negative, as Fig. 5.12 shows.

One could expect to see traces of the mark in the gradient, but the fact that we do
not may be explained by recalling that we are considering the middle layer of weights of
the network. As we mentioned previously, the way the “meaningful” groups of weights
may be constructed is unpredictable in layers that are not the first one. I.e., there
may be weights inside the letter that promote the emergence of initialization filters,
similarly to what we observed when we considered the initialization seeds in Fig. 5.8.
However, unlike what we observed in the seeds, it is unlikely that those weights are
nearby each other in the weight matrices, since they connect to nodes that have no
meaningful spatial arrangement. As a result, weights that are “far apart” may form
a group and they may be updated in unison, but the gradient itself, by showing all

98 Effect of the initial configuration of weights on artificial neural networks

0 200 400 600 800 1000

epochs

10−2

10−1

100

101

L
og

lo
ss

(t
ra

in
)

0 200 400 600 800 1000

epochs

0.5

1.0

1.5

2.0

2.5

3.0

L
og

lo
ss

(t
es

t)

Figure 5.10: Training of marked (A, E, I, O, U) and unmarked (the first subplot) networks.
Each network was trained for 1000 epochs with the HASYv2 dataset. The first set of plots
(on the top row) show the initial configuration of weights of the middle layer of the networks
trained. The same weights, after training, are plotted on the second row. Matrices showing
the same mark were scaled to the same color range. The bottom subplots show the train
(left) and test (right) loss measured during the training of these networks. The color of the
border of each weight matrix is the same used to plot its loss function. The evolution of the
network marked with A is shown in detail in Fig. 5.11 (similar results are obtained for the
other marks).

wi; t = 0
epochs

t = 1
epochs

t = 10
epochs

t = 100
epochs

wf ; t = 1000
epochs

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Figure 5.11: Evolution of the middle layer of weights of the network of Fig. 5.10 marked with
an A along training. The colors of the different subplots were scaled to the same range (so
that the same color corresponds to the same value in different subplots).

the weights in their spatial, meaningless organization, will not portray the coordinated
updates. To our eye we will mostly see “noise”.

5.4 Tuning of weights during training 99

Letter A (unseen)
∆w = wf − wi

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

∆w

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
ro

b
ab

ili
ty

d
en

si
ty

outside letter

inside letter

−0.60

−0.45

−0.30

−0.15

0.00

0.15

0.30

0.45

0.60

Figure 5.12: Distribution of the accumulated gradient (i.e., ∆w = wf − wi) of the network
of Fig. 5.10 marked with an A. The actual value of the gradient of the weights belonging to
the layer marked with the letter are plotted on the left, in the usual pixel grid form, whereas
their distribution is plotted on the right, separated into weights that started inside the letter
and those that started outside.

We further consider the distribution of the final value of the weights of a network’s
layer in relation to their initial values in Fig. 5.13. The figure shows that weights
that start with larger values tend to experience larger updates than the weights that
start closer to zero. Moreover, the sign of the updates tends to agree with the original
sign of the weights, as is observable by the tilt in the interquartile range at the plot.
Furthermore, there is a large concentration of values around the line y = x, suggesting
that a large portion of the weights are not changed at all.

These observations suggest that the initial size of a weight highly affects the scale
of the updates it undergoes during training. The reason behind this may be that, due
to their initial larger relative size, such weights are more likely to cause “impactful
fluctuations” in the initial configuration of weights of a network. Hence, they are more
likely to participate in groups of weights that are refined by the training process5.

5The effect we are trying to convey is similar to the birthday effect in sports (e.g., Helsen, Van
Winckel, & Williams, 2005). The birthday effect is related with the observation that the distribution
of the birth month of professional athletes worldwide in sports such as soccer, baseball, ice hockey,
and tennis, is skewed towards the months that make the children in a grade the oldest (typically
the beginning of the calendar year, from January to March). It is the result of a cumulative effect
over the course of many years. By being born at the beginning of the year, these athletes were the
oldest in their classes when attending school. By being the oldest, they were typically more physically
and/or emotionally developed (even if only marginally). Because of this, they were more likely to
be deemed more “talented” than their younger peers, which made them receive enhanced coaching
and training. Being favored (due to a factor that is largely based on chance, or, at least, to which
they were oblivious) increased the gap between them and their younger colleagues, perpetuating the
cycle. Over many years, this process made them into the best athletes. In essence, the effect we are
observing in neural networks, caused by the fluctuations in a network’s initial configuration of weights,
may be very similar to the effect of the birth month in athletes — chance creates a small variation,

100 Effect of the initial configuration of weights on artificial neural networks

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04 0.06 0.08

wi

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

w
f

y = x

median

interquartile range

2–98 percentile range

100

101

102

cou
n

t

Figure 5.13: Final values of the weights of the second layer of the unmarked network of
Fig. 5.10. Notice the large concentration of values around the line y = x, as well as the tilt
in the interquartile range (initially large positive weights tend to become even larger, and
likewise for negative weights).

In agreement with this idea, notice that the weights that start close to zero tend to
be updated in either the positive or negative direction. This may be explained by
them being “neutral” to the group they start at, causing them to be easily adjusted to
positive or negative values. Finally, notice that the figure also reinforces the previous
observation (in Fig. 5.7) that a large amount of the weights of a network preserve their
sign along training.

5.4.2 Untrainability and loss of initialization mark

The idea of groups of weights that by chance start in good arrangements, causing
them to identify particular patterns of the dataset better than other weights, also
allows for an easy explanation as to why smaller networks (that are still seemingly large
enough for successful training) are more difficult to train — simply, by having fewer
but it perpetuates and accumulates.

5.4 Tuning of weights during training 101

weights, the chance of such “good groups” to appear is reduced. Figure 5.14 portrays
this behavior.

0 200 400 600 800 1000

epochs

10−2

10−1

100

101

102

L
og

lo
ss

(t
ra

in
)

0 200 400 600 800 1000

epochs

0

2

4

6

8

10

12

14

16

L
og

lo
ss

(t
es

t)

Figure 5.14: Untrainability of small neural networks marked with letters. The architecture of
the networks trained is similar to the reference architecture presented in Sec. 5.1, but instead
of using 512 nodes in each hidden layer, these experiments use 256. The first set of plots (on
the top row) show the initial configuration of weights of the middle layer of the networks
trained. The same weights, after training, are plotted on the second row. The matrices have
not been scaled to the same color range, since otherwise the letters in the first row would
be unrecognizable due to the scale of the weights after training. Training lasted for 1000
epochs on the HASYv2 dataset. Notice how the marks have in general disappeared when
training stops, and the loss values “explode”/diverge. However, initially, all networks seem
to be training successfully. Moreover, as the insets show for the letter A, the marks seem to
disappear as the loss explodes.

The figure shows runs of marked networks, with smaller hidden layers (half the size
of the reference architecture in Sec. 5.1), eventually completely “diverging”, i.e., their
loss function eventually explodes to a very high value and does not lower. Moreover,
the final weights of the networks show almost no sign of the marks that were imprinted
in their initial configuration of weights (in fact, the marks seem to disappear with
the explosion of the loss). Notice that the networks are initially learning and making
progress towards a minimum. Nevertheless, they at some point seem to overshoot it and
completely diverge from their initial trajectory (never finding a reasonable one again).

Despite the smaller networks failing their training and their initialization mark

102 Effect of the initial configuration of weights on artificial neural networks

being lost, it may be a big leap to base these observations solely on the reduced
expressiveness of the initialization (i.e., the reduced number of good arrangements of
weights that may appear in the initial configuration of a network, due to the existence
of less weights). Changing the architecture of a network surely causes effects on its
own, which hinders our capacity to reason about our observations. To better relate the
initial configuration of weights of a network to its untrainability, it would be better to
incite a network to diverge, if possible, only by manipulating its initial configuration in
some sensible manner, but without otherwise changing other parameters (such as its
architecture). In some sense, we seek to reduce the variability (or expressiveness) of the
initial configuration of a network in the least intrusive manner possible.

We achieved this by reducing the number of different sets of weights that connect
the nodes of a layer to each node of the layer following. As an example, consider the
first layer of weights (i.e., the one between the input layer and the first hidden layer).
The reference architecture, for networks trained with HASYv2, has 1024 input nodes
and 512 nodes in the first hidden layer. Thus, it contains 512 sets of weights, each
consisting of the 1024 weights that connect the inputs nodes to each of the nodes of the
hidden layer. To reduce the variability of this layer we copy the weights that connect the
input nodes to one hidden node (i.e., a set of weights) to other hidden nodes. To reduce
the variability of the configuration of weights of a network as a whole, we apply the
procedure sequentially (and independently) to all its layers. The number of distinctive
sets of weights that are left in each layer controls its expressiveness, since it directly
affects the number of filters that may appear in the configuration, allowing us to test
how the presence of filters affects the trainability of a network.

Even though the procedure does not change the theoretical representational capacity
of a network in any obvious manner (meaning that backpropagation should be capable
of leading networks initialized with the procedure with the same freedom it would lead
“typically initialized” networks), as Fig. 5.15 (left) shows, it does affect the expressiveness
of a network. By using a small number of distinctive sets of weights, the respective
networks show the same divergence behavior previously observed when training smaller
networks (in Fig. 5.14). Moreover, by comparing the mean absolute deviation between
the configuration of weights of a network at step t (denoted by wt) and its initial
configuration (w0), i.e., E [|wt − w0|], we can observe that converging networks drift
much less away from their initial configuration than diverging networks.

Some insights may be extracted from these results. First, it seems that the “expres-
siveness” of a network’s initial configuration of weights is instrumental to the success of
its training. This expressiveness seems to be directly linked with the rudimentary filters
that arise by chance in a random initialization since, by reducing their number, we are
capable of inducing diverging behavior. Second, by comparing the results for the cases

5.5 The filter initialization 103

0 200 400 600 800 1000

epochs

10−2

10−1

100

101

102
L

og
lo

ss
(t

ra
in

)

div. (1,1,1) div. (2,2,3) conv. (4,4,3) conv. (512,512,369)

0 200 400 600 800 1000

epochs

0.00

0.05

0.10

0.15

0.20

0.25

m
ea

n
ab

so
lu

te
d

ev
ia

ti
on

fr
om

th
e

in
it

ia
l

co
n

fi
gu

ra
ti

on

E [|w0|]

Figure 5.15: Deviation of converging and diverging networks. Training lasted for 1000 epochs
on the HASYv2 dataset. The networks trained have the reference architecture described in
Sec. 5.1. For clarity, a single test curve is plotted for each case, but other test runs show
similar behavior. The keywords div. and conv. in the legend denote, respectively, diverging
and converging behavior. The tokens (•,•,•) denotes the number of unique sets of weights
used in each layer. Note that, in this sense, (512,512,369) is equivalent to a “fully random”
initialization.

(2,2,3) and (4,4,3) (the former showing divergence, wheres the latter convergence),
we can conclude that the expressiveness required in an initial configuration is easily
achieved with a random initialization strategy — in our experiments, as little as 4 sets
per layer are sufficient to ensure the required variability. Moreover, even very restricted
initializations (like the case (4,4,3)) show the same mean deviation from their initial
configuration as do completely random initializations (the case (512,512,369)), fur-
ther suggesting that training is, to a large degree, a fine-tuning process. Finally, it is
interesting to notice that the mean absolute deviation “explodes” at the same time that
the loss does.

5.5 The filter initialization
So far we have seen that there seem to be weights that are initialized in ways that

make them preferential for specific patterns present in a dataset. One may conceive
these groups as rough “filters” for particular features of the dataset, that the learning
process accentuates. Since these filters, being created by chance, seem to be a crucial
aspect for the success in the training of a network, as we saw previously, perhaps their
creation could be promoted deliberately in the initial configuration of weights by some
guided process. In essence, one could hope that by initializing a network with filters
somewhat more tuned towards the dataset that they will be used with, the networks
will train better.

104 Effect of the initial configuration of weights on artificial neural networks

This section presents a simple (and somewhat “naive”) strategy that seeks to achieve
this. It turns out that our strategy significantly improves training. However, it often
worsens generalization. While not useful for all scenarios due to its lack of generalization,
it suggests that initialization strategies that promote the creation of such filters may be
worth further considering.

The first question to contemplate is how to introduce meaningful features in the
initial configuration of weights. One possible idea is to use samples from the dataset
itself, particularly the training set or an “initialization set” (used solely with the purpose
of creating the filters), to somehow adjust the initial weights in a sensible way. Notice
that the difference between using the training set or an alternative third set, the
initialization set, is that in the first case, the samples used in the creation of the filters
are also used for training, whereas, in the second case, they are not used further. We
will be considering these two alternatives below. In the future, it may be interesting to
test the usage of completely uncorrelated datasets, created using for instance geometric
shapes or parts of plots of equations.

We will concentrating on initializing the first layer of weights alone, since this is
the layer interacting directly with input samples (which, due to this, is more simple to
reason about). The remaining layers are initialized with Glorot’s uniform initialization.
However, the procedure could be extended to initialize deeper layers, or, alternatively,
they could be initialized with the dense sliced initialization of Sec. 5.2.2.

The strategy is based on initializing the set of weights of each node of the first
hidden layer of a network by overlapping portions of input images on top of each other
and adding white noise to the result. More specifically, we start by assigning each node
of the first hidden layer an output class (e.g., in the case of the MNIST dataset, each
node would be assigned one digit from 0 to 9). Then, the weights connecting each of
these nodes to the input nodes (i.e., its set of weights) are reshaped into a matrix the
size of the input images, to mimic an actual pixel grid (this step is not necessary, it
is used just to simplify the explanation of how the procedure works). The resulting
matrix is divided into blocks of weights (for instance, 9× 9 blocks), and the weights
belonging to each of these blocks are initialized independently by overlapping samples of
the training/initialization set of the output class chosen for the respective hidden node.
The overlapping is performed by summing the samples chosen, after they have been
centered and normalized (i.e., instead of using directly an input sample x, we use its
z-score, z = (x− µx)/σx). After overlapping all the desired samples, the result is scaled
and some uniform noise added to it, to increase the variability of the initialization.
Through this scaling and noise addition, one may adjust the statistical properties of the
initial configuration of weights to accommodate the heuristics described in Sec. 2.5. We
have carried this last step to achieve a variance in the initial configuration of weights

5.5 The filter initialization 105

as described in Glorot’s initialization (Sec. 2.5.1), i.e., Var [w] = 2/(m+ n) (where m
and n denote the inputs and outputs of the layer of weights w, respectively). We do
this by weighting the variance of the weights resulting solely from overlapping samples
with the variance of the noise that we will be adding, so that when summed they equal
Glorot’s variance (in this sense, the larger the weight given to the variance resulting
solely from the dataset, the smaller the scale of the noise that is added). Algorithm 5.3
presents pseudocode for this procedure.

Algorithm 5.3: Pseudocode for the filter initialization
Data: A matrix of weights wm×n. A set of input (x) and output (y) samples to

use for the initialization. A number gs specifying the grid size to use as in
gs×gs. A number ns specifying the no. samples to overlap per each block.
The weight γ to give to the variance that results from overlapping
samples of the dataset.

Result: w is initialized according to the filter initialization with the given
parameters.

1 w ← 0 . Initialize all entries in w to zero
2 for j ← 1 to n do
3 c← choose(y) . Select a class c among the output classes in y
4 s ← reshape(w•j, x) . Select the submatrix of weights s that connects the

input nodes 1 to m to node j, and reshape it to the
same shape of the input samples

5 B ← divide-into-grid(s, gs) . Divide s into a set of gs×gs groups of weights
(the blocks of weights where input samples will
be overlapped)

6 foreach b ∈ B do
7 S ← sample(x, c, ns) . Choose a set of ns input samples chosen

at random and belonging to class c
8 foreach s ∈ S do
9 b← b+ (s− µs) /σs . Normalize s and accumulate the result in b

10 end
11 end
12 end
13 Γ← 2/(m+ n) . Compute the goal variance Γ of Glorot’s initialization

14 w ← w ·
√
γ · Γ/Var[w] . Scale w so that Var [w] = γ · Γ

15 u ∼ U
(
−
√

3 (1− γ) · Γ,
√

3 (1− γ) · Γ
)

. Draw random samples um×n from a
uniform distribution so that
Var[u] = (1− γ) · Γ

16 w ← w + u . Add u to w (after this, Var[w] = Γ)

This initialization strategy introduces a few parameters to consider: the shape of
the grid, the number of overlapped samples, and the scale of the noise added. Recall
that the overall idea is to facilitate the emergence of the “initialization filters”, while
still maintaining variability in the initial configuration. All these parameters try to help

106 Effect of the initial configuration of weights on artificial neural networks

achieving this goal in complementary ways. Overlapping samples allows the creation of
configurations with a broader capacity of recognizing important patterns of a class of the
dataset than using a single sample would. However, by overlapping too many samples,
we could overload the configuration (the filters could become “sluggish”), worsening
them. Employing a grid of blocks and overlapping samples separately into each of the
blocks helps to mitigate this problem, since more samples are used in constructing
the filter, as desired, but they are not all overlapped on top of each other — they
are distributed through separate regions of the set of weights. Finally, introducing
noise creates small and unpredictable irregularities (i.e., variability), which should help
increasing the spectrum of applicability of the filters. Figure 5.16 provides examples of
the initialization filters created by this procedure.

be
fo

re
 tr

ai
ni

ng
af

te
r t

ra
in

in
g

Figure 5.16: Examples of initialization filters created by the procedure described in this
section (best viewed in color). Training lasted 100 epochs on the HASYv2 dataset. The filters
resulting from the procedure are shown in the first row, while their state after training in the
second. To improve visibility, the color of the images was not normalized to the same range.

The figure shows that the filters created by this strategy are, in general, maintained
during the training of the network. They are visible (and frequently even enhanced)
once training is stopped, making it seem that the procedure provides the learning
process with a jump-start by better arranging its initial configuration. The positive
effect of our strategy can be confirmed in Fig. 5.17, where a number of combinations
of its parameters are tested and compared against the training of networks initialized
(solely) with Glorot’s uniform initialization.

The figure shows several meaningful trends. First, increasing both the grid size and
the number of overlapped samples seems to improve training. Meanwhile, the weight
of the variance that is retained from the dataset seems to cause little changes (note
that a smaller weight implies adding more noise to compensate, to achieve the variance
desired by Glorot’s initialization). In general, most of the combinations tested improve
training, sometimes to below half the error obtained with the baseline initialization

5.5 The filter initialization 107

0.01

0.02

0.03

0.04

0.05

L
og

lo
ss

(t
ra

in
)

baseline train

no. samples var. dataset grid size var. dataset grid size no. samples

1×1 3×3 5×5 7×7 9×9

grid size

1.0

1.5

2.0

2.5

3.0

3.5

L
og

lo
ss

(t
es

t)

baseline test

20 21 22 23 24

no. samples

0.7 0.8 0.9 1.0

weight of var. due to dataset

Figure 5.17: Results of training networks initialized with the Filter initialization, for a
combination of parameters. In each subplot, a single parameter is varied in the x-axis. The
color codes of the markers denote the variations of the remaining parameters (the respective
color codes are displayed in the color bars at the bottom of the figure). Each result shown
represents the mean of five independent test runs. Training was carried on the HASYv2
dataset and lasted 100 epochs. The baseline results are obtained using Glorot’s uniform
initialization. Recall that the weight of the variance of the dataset refers to the weight given
to the variance obtained solely from overlapping samples to reach the variance of Glorot’s
initialization (which means that the larger it is, the smaller the scale of the noise added).

strategy. However, interestingly, the exact opposite results are observed in the test set.
There, it seems that increasing the grid size and number of samples overlapped worsens
generalization (the weight of the variance from the dataset still does not seem to affect
training significantly). Moreover, very few results actually achieve a test loss below the
baseline, and those that do, do it only marginally.

These results suggest that the motivation behind this initialization strategy — that
perhaps by creating more suited filters one could aim for better training — was, perhaps,
too correct! By employing such filters, the networks do train better, but sadly these
gains can only be harvested for specific purposes, since the strategy spoils generalization.
Still, one should not overlook the meaning of these results. They support the idea that,
to a great extent, the learning algorithm mostly refines the solution created by the
initialization. This suffices for training because random initializations are rich enough
to contain suitable arrangements of weights that only need the fine-tuning provided by
the optimizer to be made useful.

108 Effect of the initial configuration of weights on artificial neural networks

One possible explanation for the lack of generalization of the configurations created
by our approach is that the filters already start too specific to the dataset used for
training, due to them being created from the training set. Owing to this possibility,
we now consider the alternative discussed previously, based on using samples from a
third dataset, disjoint from the training and testing sets, and to which we call the
initialization set. This approach should be worse in the training set, but better in the
testing one, since the samples used for the creation of the filters are not used in training.
This is what happens, as observed in Fig. 5.18.

0.01

0.02

0.03

0.04

0.05

L
og

lo
ss

(t
ra

in
)

baseline train

no. samples var. dataset grid size var. dataset grid size no. samples

1×1 3×3 5×5 7×7 9×9

grid size

1.48

1.50

1.52

1.54

1.56

1.58

1.60

1.62

L
og

lo
ss

(t
es

t)

baseline test

20 21 22 23 24

no. samples

0.7 0.8 0.9 1.0

weight of var. due to dataset

Figure 5.18: Results of training networks initialized with the Filter initialization, for a
combination of parameters, and using a separate dataset solely for initialization purposes.
The meaning of the figure (e.g., the legends and color codes) are the same as for Fig. 5.18.

The figure shows that using a separate initialization dataset typically still leads to
lower train loss than the baseline initialization strategy for almost all combinations of
parameters tested. However, as expected, the improvement is much less pronounced
than it was when using the training set for creating the filters. Meanwhile, and also
as expected, the use of a separate dataset does help to improve generalization. Most
of the combinations of parameters tested lead to better test losses than the baseline
initialization strategy at the end of training. Moreover, it seems that using more samples
in the procedure and smaller grid sizes leads to better generalization.

Despite the improvements to the test loss, this method still presents limitations
to its usefulness in practice. The loss we are observing is at the end of training, once

5.5 The filter initialization 109

overfitting is already in effect. As Fig. 5.19 shows, the minimum of the test loss (between
epochs 10–20) is still lower for a fully random initialization.

0 20 40 60 80 100

epochs

10−2

10−1

100

101

L
og

lo
ss

(t
ra

in
)

0 20 40 60 80 100

epochs

0.5

1.0

1.5

2.0

2.5

3.0

L
og

lo
ss

(t
es

t)

0 20 40 60 80 100

epochs

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
(t

ra
in

)

Glorot uniform initialization

Filter initialization

Filter initialization
(separate dataset)

0 20 40 60 80 100

epochs

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
(t

es
t)

Figure 5.19: Train and test errors of networks initialized with the filter initialization along
training. Training lasted 100 epochs. The mean (solid line) and standard deviation (colored
area) of 5 test runs are plotted. The parameters of the filter initialization using the training
set are a grid size of 9×9, 16 overlapped samples, and no noise added. The parameters using
a separate dataset are a grid size of 3×3, 8 overlapped samples, and a weight of 0.7 to the
variance resulting from the dataset.

Overall, the strategy shows the predicted behavior, which indicates we may be
on the right track to understanding this training phenomenon. Perhaps an approach
in-between, through finding a better compromise between the benefits of targeted filters
and the generality of randomly created ones, could provide for a more pronounced boost
on both train and (especially) test datasets, prior to overfitting. For now, it is only
possible to conjecture why patterns created by a random initialization seem to provide
more general solutions than building more appropriate filters from the dataset. The
reason behind this may simply be that random initializations are entirely fair, in that
they have no knowledge of any particular dataset or even feature. For instance, consider
that when creating filters from the dataset, more frequent patterns will contribute with
heavier weight (due to appearing more times) to the filter. This does not happen with

110 Effect of the initial configuration of weights on artificial neural networks

a random initialization, which will originate suitable arrangements of weights for all
the patterns with mostly equal probability.

Until these processes and mechanisms are better understood, it is difficult to develop
strategies that offer meaningful improvements consistently (in a large number of cases).
On a brighter side, they are fundamental, in that they govern the way neural networks
evolve (i.e., learn) and behave. Hence, understanding such phenomena should open
doors to profound improvements, or at least offer closure concerning what can and
cannot be achieved with these models.

6 Discussion and Conclusions

We may hope that machines will eventually compete with men in all purely
intellectual fields. But which are the best ones to start with?

— Alan Turing

In this thesis, we took a glance at the insides of artificial neural networks. We
relied on a toy problem to gain an intuition about the processes and mechanisms
residing inside neural networks. We achieved this by experimenting with different
parameters and confronting the results (e.g., the evolution of the loss function and the
configuration of weights) against expectations based on a reference model. We developed
and applied methods for interpreting the configurations of weights of networks, seeking
to understand their arrangements and function. Using these techniques, we found
that the configuration of weights of trained neural networks was highly linked with
the dataset we used to train the networks. The weights showed correlations found
originally in the dataset alone. We also found that, when solving the same problem,
similar (but not equal) neural network architectures may lead to fundamentally different
configurations of weights. This behavior means that the nodes in one architecture may
take fundamentally different roles in another architecture, even if the two architectures
are similar. The simple modification of the activation function of one layer is capable
of causing these variations. Finally, still within the scope of this chapter, we observed
that the initial configuration of weights is capable of conditioning the whole training
of a network. It seems that, in some problems, the quality of the minimum to which
networks converge may be highly connected to the point from where networks start
their training.

Motivated by these observations, we took a closer look into the effects the initial
configuration of weights seems to have in the training and function of neural networks.
These tests were performed with the real-world datasets MNIST and HASYv2. We

111

112 Discussion and Conclusions

started by experimenting with an initialization strategy inspired by the Lightning
initialization (Pircher et al., 2018), which we found to be highly dependent on the
parameters it uses. Looking for a less intrusive initialization strategy, we devised the
Dense Sliced initialization, which, to some extent, is a compromise between our lightning
initialization and a classic, dense initialization. It showed interesting results on MNIST.
During its development, it also revealed intriguing trends of the learning process —
the initial configuration of weights left recognizable traces on the final configuration
acquired by trained networks. We studied this observation. We started by noting that
if one initializes the first layer of weights sparsely (i.e., where most weights apart from a
small fraction are set to zero), the initially nonzero weights seem to influence the weights
close to them. Typically, the initially zero weights take the sign of the nonzero weights
adjacent to them. Afterward, we saw that if we mark the initial configuration of weights
of a network with some symbols (we did this with letters) and then train the network,
the symbols are typically clearly visible, even when one trains them for as many as a
thousand epochs. It seems that this is a necessary condition for successful training,
since if the mark does disappear, then the network does not train successfully. Based
on these findings and our understanding of the reasons behind them, we developed
the Filter initialization, which is based on increasing the number of filters arising in
the initial configuration of weights of a network. The technique acts according to
our expectations in that it improves training; however, at the same time, it worsens
generalization, limiting its applicability to a restricted set of scenarios.

6.1 Future work
The work produced in this thesis was vast, yet, due to its nature, no part of it is

ultimately finished. Instead, we believe we opened a few avenues that are worth further
investigation in the future. We believe that the work performed with the toy problem,
in Chap. 4, was fundamental to equip us with a more profound and stronger intuition
regarding the behavior of neural networks. Empowered with it, we decided to study
further the effect the initial configuration of weights has on neural networks. We believe
that the initial study we carried to understand the meaning of the configuration of
weights of a network and how it related to the toy dataset could be instrumental in
revealing meaningful connections between the dataset used to train a network and the
configuration it acquires through training. Perhaps it could prove useful in areas such
as XAI, where it could be used to explain how and why the weights of trained networks
reach a particular configuration — which would, in turn, help explain why a particular
model behaves in a certain way.

6.2 Final considerations 113

We also believe it is worth to continue the research about the effects of the initial
configuration of weights of a network. We intend to do this by developing a way of
quantifying the trace left by the initial configuration during training. After this is
done, we wish to test different settings and determine precisely the cause behind our
observations (and the extent to which they verify). If these experiments are successfully
carried, they may shed some light on the importance of the initialization of a network,
why it is so vital, and its effects on generalization — and based on this knowledge, new
and improved initialization methods may be conceived.

Finally, both the Dense sliced initialization (Sec. 5.2) and the Filter initialization
(Sec. 5.5) may be worth more investigation. On the one hand, the former method
showed compelling initial results, but the efforts made in it were put on hold due to us
focusing on other ideas. However, we believe it is an idea that may provide attractive
results if further investigated, with more datasets and different architectures. One the
other hand, the latter method, the Filter initialization, seemed to improve training but
simultaneously worsened generalization. It may be productive to understand why. If
one can determine the cause behind the reduction in generalization, perhaps one can
apply it in reverse to obtain the opposite effect — possibly worse training but with
better generalization.

6.2 Final considerations
It is undeniable that machine learning, and particularly deep learning, has come

a long way since its infancy. It has become a field truly tough to tame, a behemoth,
yet one that unquestionably affects our lives — hopefully, usually for the better. Even
though it increasingly drives more vital parts of our lives — from governing healthcare or
arbitrating credit eligibility to influencing elections — our knowledge and understanding
about the methods that are being used are still profoundly lacking. Luckily, our curiosity
and need-to-know-why are never satisfied — they keep pushing us toward trying to
learn the root causes and the simple explanations behind our real-world experiences
and observations.

In the end, we feel like we opened more doors than the ones we closed. However,
we believe this only means we improved our chances of uncovering interesting and
important features of the dynamics of neural networks — much like the meaningful
weights of an initial configuration in Chap. 5, we only need a handful of these doors to
lead us in a good trajectory.

References

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for boltzmann machines.
Cognitive science, 9 (1), 147–169.

Assael, Y., Sommerschield, T., & Prag, J. (2019). Restoring ancient text using deep learning: A case
study on greek epigraphy. In Proceedings of the 2019 conference on empirical methods in natural
language processing and the 9th international joint conference on natural language processing
(emnlp-ijcnlp) (pp. 6369–6376).

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in
machine learning: A survey. Journal of machine learning research, 18 (153).

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep
networks. In Advances in neural information processing systems (pp. 153–160).

Bottou, L. [Léon], Curtis, F. E., & Nocedal, J. (2018). Optimization methods for large-scale machine
learning. Siam Review, 60 (2), 223–311.

Breen, P. G., Foley, C. N., Boekholt, T., & Zwart, S. P. (2019). Newton vs the machine: Solving the
chaotic three-body problem using deep neural networks. arXiv preprint arXiv:1910.07291.

Buckner, C., & Garson, J. (2019). Connectionism. In E. N. Zalta (Ed.), The stanford encyclopedia of
philosophy (Fall 2019). Metaphysics Research Lab, Stanford University.

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for
practical applications. arXiv preprint arXiv:1605.07678.

Chapelle, O., & Erhan, D. (2011). Improved preconditioner for hessian free optimization. In Nips
workshop on deep learning and unsupervised feature learning (Vol. 201, 1).

Chollet, F. et al. (2015). Keras. https://keras.io. Accessed on 2019-11-04.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural
language processing (almost) from scratch. Journal of machine learning research, 12 (Aug),
2493–2537.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2 (4), 303–314.

Darken, C., & Moody, J. (1992). Towards faster stochastic gradient search. In Advances in neural
information processing systems (pp. 1009–1016).

Dean, J. (2019). The deep learning revolution and its implications for computer architecture and chip
design. arXiv preprint arXiv:1911.05289.

Deniz, C. M., Xiang, S., Hallyburton, R. S., Welbeck, A., Babb, J. S., Honig, S., . . . Chang, G. (2018).
Segmentation of the proximal femur from mr images using deep convolutional neural networks.
Scientific reports, 8 (1), 16485.

115

https://keras.io

116 References

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12 (Jul), 2121–2159.

Durbin, R., & Rumelhart, D. E. (1989). Product units: A computationally powerful and biologically
plausible extension to backpropagation networks. Neural computation, 1 (1), 133–142.

Frankle, J., & Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International conference on learning representations. Retrieved from https://
openreview.net/forum?id=rJl-b3RcF7

Funahashi, K.-I. (1989). On the approximate realization of continuous mappings by neural networks.
Neural networks, 2 (3), 183–192.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics (pp. 249–256).

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of
the fourteenth international conference on artificial intelligence and statistics (pp. 315–323).

Goh, G. (2017). Why momentum really works. Distill. doi:10.23915/distill.00006

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Grother, P. J. (1995). Nist special database 19. Handprinted forms and characters database, National
Institute of Standards and Technology.

Güler, R. A., Neverova, N., & Kokkinos, I. (2018). Densepose: Dense human pose estimation in the wild.
In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 7297–7306).

Gundersen, O. E., & Kjensmo, S. (2018). State of the art: Reproducibility in artificial intelligence. In
Thirty-second aaai conference on artificial intelligence.

Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient
neural network. In Advances in neural information processing systems (pp. 1135–1143).

Hanin, B., & Sellke, M. (2017). Approximating continuous functions by relu nets of minimal width.
arXiv preprint arXiv:1710.11278.

Hassibi, B., & Stork, D. G. (1993). Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems (pp. 164–171).

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the ieee
international conference on computer vision (pp. 2961–2969).

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the ieee international conference on
computer vision (pp. 1026–1034).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the ieee conference on computer vision and pattern recognition (pp. 770–778).

Hebb, D. (1949). The organization of behavior: A neuropsychological theory.

Helsen, W. F., Van Winckel, J., & Williams, A. M. (2005). The relative age effect in youth soccer
across europe. Journal of sports sciences, 23 (6), 629–636.

Hennessy, J. L., & Patterson, D. A. (2017). Computer architecture: A quantitative approach (6th). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

High-Level Expert Group on AI. (2019). Ethics guidelines for trustworthy ai. European Commission.
Accessed on 2019-11-24. Retrieved from https://ec.europa.eu/digital-single-market/en/news/
ethics-guidelines-trustworthy-ai

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://dx.doi.org/10.23915/distill.00006
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

117

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural
computation, 18 (7), 1527–1554.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. science, 313 (5786), 504–507.

Hinton, G., Srivastava, N., & Swersky, K. (2012). Lecture 6e. rmsprop: Divide the gradient by
a running average of its recent magnitude. Accessed on 2019-11-04. Retrieved from https :
//www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. In Nips deep
learning and representation learning workshop. Retrieved from http://arxiv.org/abs/1503.02531

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79 (8), 2554–2558.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural networks, 2 (5), 359–366.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional
networks. In Proceedings of the ieee conference on computer vision and pattern recognition
(pp. 4700–4708).

Hutson, M. (2018a). Artificial intelligence faces reproducibility crisis. American Association for the
Advancement of Science.

Hutson, M. (2018b). Has artificial intelligence become alchemy? American Association for the Advance-
ment of Science.

Jean, S., Cho, K., Memisevic, R., & Bengio, Y. (2015). On using very large target vocabulary for
neural machine translation. In Proceedings of the 53rd annual meeting of the association for
computational linguistics and the 7th international joint conference on natural language processing
(volume 1: Long papers) (pp. 1–10).

Karpathy, A. (2014). What i learned from competing against a convnet on imagenet. Accessed on
2019-11-26. Retrieved from https://karpathy.github.io/2014/09/02/what- i- learned- from-
competing-against-a-convnet-on-imagenet/

Kasparov, G. (2010). The chess master and the computer. The New York Review of Books, 57 (2),
16–19.

Kawaguchi, K., Huang, J., & Kaelbling, L. P. (2019). Effect of depth and width on local minima in
deep learning. Neural computation, 31 (7), 1462–1498.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd international
conference on learning representations, ICLR 2015, san diego, ca, usa, may 7-9, 2015, conference
track proceedings. Retrieved from http://arxiv.org/abs/1412.6980

Knuth, D. E. (1986). The texbook. Addison-Wesley Professional.

Kolmogorov, A. N. (1957). On the representation of continuous functions of many variables by
superposition of continuous functions of one variable and addition. In Doklady akademii nauk
(Vol. 114, 5, pp. 953–956). Russian Academy of Sciences.

Koren, Y. (2009). The bellkor solution to the netflix grand prize. https://www.netflixprize.com/assets/
GrandPrize2009_BPC_BellKor.pdf. Accessed on 2019-11-26.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems (pp. 1097–1105).

Kurzweil, R. (1990). The age of intelligent machines. MIT Press.

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arxiv.org/abs/1503.02531
https://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
https://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://arxiv.org/abs/1412.6980
https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf

118 References

LeCun, Y. (2019). The epistemology of deep learning. Accessed on 2019-11-12. Retrieved from https:
//video.ias.edu/sites/video/files/lecun-ias-20190222.pdf

LeCun, Y. et al. (1989). Generalization and network design strategies. In Connectionism in perspective
(Vol. 19). Citeseer.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521 (7553), 436.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D.
(1990). Handwritten digit recognition with a back-propagation network. In Advances in neural
information processing systems (pp. 396–404).

LeCun, Y., Bottou, L. [Léon], Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86 (11), 2278–2324.

LeCun, Y., Bottou, L. [Leon], Orr, G. B., & Müller, K.-R. (1998). Efficient backprop. In Neural
networks: Tricks of the trade (pp. 9–50). Springer.

LeCun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In Advances in neural
information processing systems (pp. 598–605).

Licklider, J. C. R. (1960). Man-computer symbiosis. IRE transactions on human factors in electronics,
(1), 4–11.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information theory, 28 (2),
129–137.

Martens, J. (2010). Deep learning via hessian-free optimization. In Icml (Vol. 27, pp. 735–742).

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, . . . Xiaoqiang
Zheng. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software
available from tensorflow.org. Retrieved from https://www.tensorflow.org/

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5 (4), 115–133.

Minsky, M. (1988). Society of mind. Simon and Schuster.

Minsky, M. L., & Papert, S. A. (1988). Perceptrons: Expanded edition. MIT press.

Minsky, M., & Papert, S. (1969). Perceptrons: An introduction to computational geometry. The MIT
Press.

Moravec, H. (1988). Mind children: The future of robot and human intelligence. Harvard University
Press.

Moravec, H. (1998). When will computer hardware match the human brain. Journal of evolution and
technology, 1 (1), 10.

Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Ammar, W., Anastasopoulos, A., . . . Yin, P. (2017).
Dynet: The dynamic neural network toolkit. arXiv preprint arXiv:1701.03980.

Newell, A. (1969). Perceptrons. an introduction to computational geometry. Science, 165 (3895), 780–
782. doi:10.1126/science.165.3895.780

Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge University Press.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., . . . Lerer, A. (2017). Automatic
differentiation in PyTorch. In Nips autodiff workshop.

Pircher, T., Haspel, D., & Schlücker, E. (2018). Dense neural networks as sparse graphs and the
lightning initialization. arXiv preprint arXiv:1809.08836.

https://video.ias.edu/sites/video/files/lecun-ias-20190222.pdf
https://video.ias.edu/sites/video/files/lecun-ias-20190222.pdf
https://www.tensorflow.org/
https://dx.doi.org/10.1126/science.165.3895.780

119

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4 (5), 1–17.

Raina, R., Madhavan, A., & Ng, A. Y. (2009). Large-scale deep unsupervised learning using graphics
processors. In Proceedings of the 26th annual international conference on machine learning
(pp. 873–880). ACM.

Ramachandran, P., Zoph, B., & Le, Q. V. (2018). Searching for activation functions. In 6th international
conference on learning representations, ICLR 2018, vancouver, bc, canada, april 30 - may 3,
2018, workshop track proceedings. Retrieved from https://openreview.net/forum?id=Hkuq2EkPf

Rasskin-Gutman, D. (2009). Chess metaphors: Artificial intelligence and the human mind. MIT Press.

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton project para. Cornell
Aeronautical Laboratory.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological review, 65 (6), 386.

Rumelhart, D. E., & Hintonf, G. E. (1986). Learning representations by back-propagating errors.
NATURE, 323, 9.

Rutishauser, H. (1959). Theory of gradient methods. In Refined iterative methods for computation of
the solution and the eigenvalues of self-adjoint boundary value problems (pp. 24–49). Springer.

Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Restricted boltzmann machines for collaborative
filtering. In Proceedings of the 24th international conference on machine learning (pp. 791–798).
ACM.

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2014). Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. In 2nd international conference on learning representa-
tions, ICLR 2014, banff, ab, canada, april 14-16, 2014, conference track proceedings. Retrieved
from http://arxiv.org/abs/1312.6120

Sculley, D., Snoek, J., Wiltschko, A. B., & Rahimi, A. (2018). Winner’s curse? on pace, progress,
and empirical rigor. In 6th international conference on learning representations, ICLR 2018,
vancouver, bc, canada, april 30 - may 3, 2018, workshop track proceedings. Retrieved from
https://openreview.net/forum?id=rJWF0Fywf

Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE
Access, 7, 53040–53065.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., . . . Bolton, A., et al.
(2017). Mastering the game of go without human knowledge. Nature, 550 (7676), 354.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Sun, Y. (2015). Notes on first-order methods for minimizing smooth functions. Retrieved from https:
//web.stanford.edu/class/msande318/notes/notes-first-order-smooth.pdf

Sutskever, I., Vinyals, O., & Le, Q. (2014). Sequence to sequence learning with neural networks.
Advances in NIPS.

Sutskever, I. [Ilya], Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and
momentum in deep learning. In International conference on machine learning (pp. 1139–1147).

Sutton, R. (1986). Two problems with back propagation and other steepest descent learning procedures
for networks. In Proceedings of the eighth annual conference of the cognitive science society,
1986 (pp. 823–832).

https://openreview.net/forum?id=Hkuq2EkPf
http://arxiv.org/abs/1312.6120
https://openreview.net/forum?id=rJWF0Fywf
https://web.stanford.edu/class/msande318/notes/notes-first-order-smooth.pdf
https://web.stanford.edu/class/msande318/notes/notes-first-order-smooth.pdf

120 References

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015). Going
deeper with convolutions. In Proceedings of the ieee conference on computer vision and pattern
recognition (pp. 1–9).

Thoma, M. (2014). On-line Recognition of Handwritten Mathematical Symbols (Bachelor’s Thesis,
Karlsruhe Institute of Technology, Karlsruhe, Germany). Retrieved from http : / /martin -
thoma.com/write-math

Thoma, M. (2017). The hasyv2 dataset. arXiv preprint arXiv:1701.08380.

Voosen, P. (2017). The ai detectives. American Association for the Advancement of Science.

Waldrop, M. M. (2016). More than moore. Nature, 530 (7589), 144–148.

Wang, S., & Kanwar, P. (2019). Bfloat16: The secret to high performance on cloud tpus. Google Cloud
Blog, August. Accessed on 2019-11-26. Retrieved from https://cloud.google.com/blog/products/
ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., & Girshick, R. (2019). Detectron2. https://github.com/
facebookresearch/detectron2.

Yam, J. Y., & Chow, T. W. (2000). A weight initialization method for improving training speed in
feedforward neural network. Neurocomputing, 30 (1-4), 219–232.

Yarotsky, D. (2018). Universal approximations of invariant maps by neural networks. arXiv preprint
arXiv:1804.10306.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European
conference on computer vision (pp. 818–833). Springer.

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep learning
requires rethinking generalization. In 5th international conference on learning representations,
ICLR 2017, toulon, france, april 24-26, 2017, conference track proceedings. Retrieved from
https://openreview.net/forum?id=Sy8gdB9xx

Zhou, D.-X. (2019). Universality of deep convolutional neural networks. Applied and Computational
Harmonic Analysis.

http://martin-thoma.com/write-math
http://martin-thoma.com/write-math
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://openreview.net/forum?id=Sy8gdB9xx

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Problem scope/Objectives
	Thesis organization

	Background on artificial neural networks
	Neural networks: The genesis
	The McCulloch-Pitts neuron
	Hebb's learning rule
	The Perceptron
	The first winter

	Neural networks: The second age
	Backpropagation
	The second winter
	The new era

	Contemporary neural networks
	The neurons
	The activation functions
	The multilayer perceptron
	Convolutional neural networks

	Optimization algorithms
	Gradient descent
	Momentum
	AdaGrad
	RMSProp
	Adam

	Initialization strategies
	Glorot's initialization
	He's initialization
	LeCun's initialization
	Sparse and lightning initializations

	Data, processing and tools
	Synthetic dataset
	Generation rules
	Input/output correlations
	Instantiation for training

	Real-world datasets
	MNIST
	HASYv2

	Data pipeline
	Architecture
	The frameworks used and the choice of Python
	TensorFlow vs PyTorch
	Computing nodes

	Probing the learning process
	Base settings of the training experiments
	The network
	Dataset and training parameters

	Training results obtained with the reference parameters
	Varying the output activation function
	Inspecting a network's configuration of weights
	Input/output strengths
	Layer-wise correlations of weights

	Trajectories followed during training
	Varying the batch size
	Varying the learning rate
	Varying the initialization point

	Similarity between learning trajectories
	Distance between uncorrelated trajectories
	Distance between correlated trajectories

	Effect of the initial configuration of weights on artificial neural networks
	Reference settings
	Preliminary tests with initialization strategies
	Lightning-based initialization
	The Dense Sliced Initialization

	Inspecting a network's initial configuration of weights
	The lottery ticket hypothesis
	Similarity between the initial and final configurations of weights of a network (first impressions)

	Tuning of weights during training
	Marking the initial configuration of weights
	Untrainability and loss of initialization mark

	The filter initialization

	Discussion and Conclusions
	Future work
	Final considerations

	References

