
The path programming problem and a partial path relaxation

Twan Dollevoet, Diego Pecin, Remy Spliet

Erasmus University Rotterdam

Econometric Institute

dollevoet@ese.eur.nl galindopecin@ese.eur.nl spliet@ese.eur.nl

Econometric Institute Report Series: EI-2020-04

Abstract

We introduce the class of path programming problems, which can be used to model

many known optimization problems. A path programming problem can be formulated

as a binary programming problem, for which the pricing problem can be modeled as

a shortest path problem with resource constraints when column generation is used to

solve its linear programming relaxation. Many optimization problems found in the

literature belong to this class. We provide a framework for obtaining a partial path

relaxation of a path programming problem. Like traditional path relaxations, the

partial path relaxation allows the computational complexity of the pricing problem to

be reduced, at the expense of a weaker linear programming bound. We demonstrate

the versatility of this framework by providing different examples of partial path relax-

ations for a crew scheduling problem and vehicle routing problem.

Keywords: Path programming, Partial path relaxation, Shortest path problem

with resource constraints, Column Generation

1 Introduction

We study a class of binary programming (BP) problems. We specifically consider mini-

mization problems with a very large number of variables, in which case a standard solution

approach is to use branch-and-price. That is, a branch-and-bound procedure is employed

in which lower bounds are obtained by solving the linear programming (LP) relaxation

by means of column generation. In a column generation algorithm, a so-called restricted

master problem (RMP) is initialized, which is the LP relaxation in which only a limited

number of variables is included. Next, the RMP is solved, followed by solving a so-called

pricing problem to identify new variables with negative reduced costs. If no such variables

remain, the solution to the RMP is also optimal to the LP relaxation, otherwise the new

variables are added to the RMP and we iterate.

In this paper, we specifically focus on a class of BP problems for which the pricing

problem can be modeled as a shortest path problem with resource constraints (SPPRC).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/325952972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The SPPRC was introduced in the Ph.D. thesis [15] of Desrochers in 1986. There exist

many applications in which the pricing problem is indeed modeled as an SPPRC, for

instance in crew scheduling and vehicle routing [22]. Examples include [3,4,6–8,10,13,14,

19, 24]. We impose additional limitations on the class of BP problems, and refer to the

resulting class of problems as the path programming (PP) problem. We believe that the

features of PP define the case in which it is useful to model the pricing problem of a BP

as an SPPRC.

Dror showed that the SPPRC is strongly NP-hard [18]. This justifies the often observed

behavior that column generation algorithms spend most of the computation time on solving

the pricing problem. As a result, much effort has been spent on acceleration methods such

as pricing heuristics.

Of course there are special cases of the SPPRC that are not strongly NP-hard. For

example, the shortest path problem without resources might be solved in polynomial time.

If all edge weights are positive then the classical Dijkstra algorithm can be used, while

if edge weights might be negative but the graph does not contain negative cost cycles

then the classical Bellman-Ford algorithm could be used. Furthermore, the shortest walk

problem with a single capacity constraint, i.e., load is the single resource and the total

load on the walk may not exceed some capacity, is NP-hard, although a pseudo-polynomial

time algorithm exists [19]. Here, we distinguish between paths and walks, where a path

is a walk that does not contain cycles. In the literature, a path is sometimes also referred

to as a simple path or an elementary path to highlight the fact that it does not contain

cycles.

To capitalize on the fact that some special cases of the SPPRC are easier to solve,

researchers have considered relaxations of their pricing problems. Predominantly, path

relaxations are often used in which the elementarity constraint of the SPPRC is relaxed,

see for instance [16]. Since in many cases the BP formulation prohibits the selection of

variables that correspond to paths that contain cycles, the inclusion of such variables does

not alter the optimal integer solution value of the formulation. As a result, the pricing

problem becomes easier to solve, although the LP bounds become weaker. Examples

include not only allowing any walk [12], but also eliminating k-cycles [12, 22] or ng-path

relaxation [5].

In this paper, we suggest an alternative type of relaxation, which we refer to as partial

path relaxation. The idea is to represent every path in terms of partial paths, and replace

them in the formulation of the PP problem, which requires the introduction of additional

constraints. The effect of a carefully chosen partial path relaxation will be that the integer

optimal solution value does not change, the LP bounds are weaker and the pricing problem

is easier to solve. Our work builds on the recent paper by Dollevoet et al. [17] in which

a new formulation is presented specifically for the capacitated vehicle routing problem

(CVRP), which is based on partial paths of a fixed number of arcs.

We describe a generalized version of the SPPRC, which we refer to as the GSPPRC. Its

purpose is to show the general applicability of PP problems and the partial path relaxation.

2

Nevertheless, the GSPPRC is more general than required in many applications and in the

literature a classical SPPRC is usually encountered. For the classical SPPRC we are able

to show that some of its properties provide useful benefits for the partial path relaxation.

Primarily, we show that it is always possible to reformulate a PP formulation in such a

way that the pricing problem becomes polynomially solvable.

Our contribution can be summarized as follows. We generalize the idea presented in [17]

to cover all PP problems and not just the CVRP. Moreover, we provide a framework that

allows partial paths defined differently than by simply limiting the total number of arcs

used. The result is a versatile partial path relaxation. We demonstrate its versatility by

applying the partial path relaxation to a crew scheduling problem and a vehicle routing

problem.

This paper is organized as follows. In Section 2, we provide the GSPPRC, which

we use in Section 3 to define the class of PP problems. There we also provide a binary

programming formulation of PP. In Section 4, we introduce partial resource paths which

we use in a reformulation of PP to provide a partial path relaxation. This relaxation is

valid for any choice of the set of partial resource paths, as long as it is representative of

the PP problem. In Section 5, we show that properties of the classical SPPRC provide

useful benefits for the partial path relaxation. Here we also provide generic examples of

partial path definitions and we show that a reformulation of the PP formulation always

exists with a polynomially solvable pricing problem, even when the pricing problem of

the PP formulation is NP-hard. We conclude with two examples in which we apply the

partial path relaxation. In Section 6, we provide a non-generic partial path relaxation for a

crew scheduling problem, which ensures that the resulting pricing problem is polynomially

solvable. In Section 7, we compare two different partial path relaxations of the CVRP.

Finally, we provide some concluding remarks in Section 8.

2 Generalized shortest path problem with resource con-

straints

We provide a more general definition of the SPPRC than is commonly done. This allows

us to demonstrate the wide applicability of the partial path relaxation.

Consider a directed graph G = (V,A). The vertex set V consists of a source s, a sink t

and remaining vertices V ′ = V \{s, t}. Note that our use of the word graph includes both

simple graphs and multigraphs. If an arc starts at u ∈ V and ends at v ∈ V , we refer to u

as the tail of a, and v as the head of a.

Let R be a set of resources. A resource vector is a vector y ∈ R|R| such that yr

denotes the amount of resource r ∈ R. We use resource vectors in particular to indicate

the amounts of resources at each vertex of a path in G. Denoting the power set of R|R|

by P
(
R|R|

)
, let F a : R|R| → P

(
R|R|

)
be the resource extension function over arc a ∈ A.

Given a resource vector y at the tail of arc a ∈ A, the resource extension function F a

3

provides the possibly empty domain F a(y) for a resource vector at the head of arc a.

Moreover, let S be the domain of a resource vector at the source s.

This definition of resource extension functions allows for the modeling of many types of

resource constraints. An important example of resource extension functions models load.

Consider the case of a simple graph and suppose there is a single resource: non-negative

load, which is increased by qv at every vertex v along the path, with an overall capacity

limit Q. In this case, S = {0} and F (u,v)(y) = {y + qv} ∩ [0, Q] for all arcs (u, v) ∈ A.

Another important example models time. Again consider a simple graph and suppose

there is a single resource: non-negative time, which is increased by tuv at every arc (u, v)

along the path. There are time windows [av, bv] at every vertex v along the path, which

force you to wait if you arrive before av, and disallow you to arrive after bv. In this case,

S = [as, bs] and F (u,v)(y) = {max{y + tuv, av}} ∩ [av, bv].

With resource path, we refer to an s, t-path P in G and corresponding resource vectors

for every vertex on the path. The resource vector at the source should lie in S, and the

resource vectors at each subsequent position should be feasible with respect to the resource

extension functions. In particular, for resource vectors yu and yv corresponding to the tail

u and head v of arc a on a resource path respectively, this means that yv ∈ F a(yu). We

denote by P the set of all such resource paths. If for some path P there do not exist

feasible resource vectors then the path is called resource-infeasible, otherwise it is called

resource-feasible.

With each arc a ∈ A, we associate a cost function Ca : R×R|R| → R. For a current cost

c and resource vector y at the tail of arc a, Ca(c, y) provides the new cost after traversing

arc a. The cost is initialized at Cs. Note that any vertex cost can be incorporated at the

arcs starting at that vertex, except for any cost at the sink. Therefore, we define the cost

of a resource path as the cost at the head of the last arc on the path, plus a cost Ct(y) that

depends on the resource vector y at the sink t. Note that in many applications, Ct is the

zero function. The most common example of cost functions models the accumulation of

constant arc costs ca for each arc a ∈ A. In this case Cs = 0, Ct = 0, and Ca(c, y) = c+ca.

However, like in [20], one might for instance additionally model linear vertex costs with

coefficients λ ∈ R|R| corresponding to the resources, in which case Cs = 0, Ct(y) = λT y,

and Ca(c, y) = c+ ca + λT y.

The generalized SPPRC (GSPPRC) is the problem of finding a least cost resource path

in G from source to sink. Note that the generalized shortest walk problem with resource

constraints is a relaxed version of the GSPPRC in which cycles are allowed. It is a common

observation that the SPPRC can be modeled as an SWPRC by including a resource for

every vertex v ∈ V ′ indicating whether v has been visited or not. This observation also

holds for the GSPPRC.

4

3 Path programming problem

We define the class of path programming (PP) problems, by imposing limitations on BP.

The class PP contains all BP problems for which, when solved with column generation,

the pricing problem can be modeled as a GSPPRC on a graph G = (V,A). Denote by xp

the binary decision variable of BP for p ∈ P. Here, P corresponds to the set of resource

paths in G, although technically it is sufficient for P to contain only the optimal resource

paths for any pricing problem that might be encountered. We interpret xp as indicator

of whether or not resource path p is selected, and say that a vertex v ∈ V is visited if

a resource path p is selected on which v occurs. We further limit BP by assuming that

every vertex v ∈ V ′ is visited at most once in any optimal solution. The resulting class of

problems is PP.

In Section 3.1, we illustrate that the limitations are merely for ease of exposition. We

show that the limitations do not actually exclude any of the instances of BP, showing

that PP and BP are equal. Nonetheless, we introduce these limitations to provide a new

perspective on BP problems, which help identify those cases for which the techniques

presented in this paper are useful. In Section 3.2, we provide a binary programming

formulation of PP.

3.1 Restrictiveness of path programming problems

Next, we show that the limitations, which we impose on BP to construct PP, are not

restrictive at all. Furthermore, we demonstrate how some BP problems can be modeled

as a PP problem, even though it might not seem so at first glance.

Proposition 1. PP=BP.

Proof. To see that any instance of BP is included in PP, construct a graph GBP = (V,A)

as follows. Let V = {s, t}∪V ′, where s is a source, t is a sink and additionally V ′ contains

a vertex for every variable of BP. Furthermore, let A = {(s, v) : v ∈ V ′}∪{(v, t) : v ∈ V ′},
connecting all vertices corresponding to variables to the source and sink. Represent the

reduced cost of the variable corresponding to v ∈ V ′ in the graph, for instance by assigning

the reduced cost to arc (s, v) and cost 0 to the arc (v, t). No resources are required and

Cs = Ct = 0. This graph GBP allows us to model the pricing problem of an arbitrary

instance of BP as a GSPPRC. Clearly, every variable corresponds to a path in GBP and

in every feasible solution of BP all vertices in V ′ are visited at most once. This shows

that each instance of BP is included in PP. Since by definition PP is included in BP, we

conclude that they are equal.

Obviously, using GBP to model the pricing problem of BP problems is not very helpful.

Solving the corresponding GSPPRC onGBP is algorithmically not that different from what

is done in the traditional simplex method, as it amounts to enumerating all variables and

evaluating their reduced costs. In particular, such pricing problems render the technique

5

suggested in this paper moot, and no computational gains should be expected. The reason

for this is that we do not think this construction captures the essence of being able to

represent a variable as a resource path. For instance, no feasible paths share any vertex in

V ′. Successful column generation algorithms with a GSPPRC as pricing problem, have in

common that the pricing problem is modeled using a relatively small graph, in the sense

that the number of variables is typically exponential in the number of vertices and arcs.

Next, let us comment on how to deal with seeming limitations. First, in the definition

of PP we have implicitly assumed that the pricing problem is modeled as a single GSPPRC,

meaning there is a single source and single sink. Of course there are applications in which

the pricing problem decomposes into multiple GSPPRCs, potentially each with their own

source and sink. For instance, in the case of heterogeneous fleet VRP [10] a GSPPRC

is introduced for every vehicle, for the multi-depot VRP a GSPPRC is introduced for

every depot [13] and for the time window assignment VRP a GSPPRC is introduced for

every demand scenario [26]. It is not a new insight that these multiple GSPPRCs can

be captured in one GSPPRC, where the graphs of the various GSPPRCs are merged

into one with an artificial source and sink. Of course in practice, there are usually good

reasons to keep the GSPPRCs, and their corresponding types of variables, separate. In

that case, the partial path relaxation presented in this paper could best be applied to each

type of variables separately. Also note that the class PP is straightforwardly extended to

programming problems including continuous or integer variables.

Furthermore, we assume that each vertex v ∈ V ′ is visited at most once. In many

applications, the BP includes the set partitioning constraints, which imply this. Further-

more, observe that this assumption still allows us to model a BP problem in which a vertex

is visited multiple times, as long as an upper bound v on the number of visits is known

for all v ∈ V ′. In that case, we could introduce v copies of v. If necessary, any modeling

features corresponding to multiple visits of v might be handled through resources in the

GSPPRC, or even through the direct inclusion of additional constraints in a BP formu-

lation. In practice, instance specific characteristics might allow the upper bound v to be

respected without resorting to a cumbersome process of including copies of v.

3.2 Binary programming formulation

We present a binary programming formulation of PP. Let cp be the cost coefficient of xp

for p ∈ P. Let avp be an indicator of whether resource path p visits vertex v ∈ V and for

each additional constraint h ∈ H with right hand side value bh let dhp be the corresponding

constraint coefficient of p. The binary programming formulation of the PP problem is

6

(F-PP) min
∑
p∈P

cpxp (1)

∑
p∈P

avpxp ≤ 1 ∀v ∈ V ′ (2)

∑
p∈P

dhpxp ≤ bh ∀h ∈ H (3)

xp ∈ {0, 1} ∀p ∈ P. (4)

For convenience, we explicitly include (2). Although it highlights that every vertex

v ∈ V ′ is visited at most once, it might not be necessary to include them, specifically if (3)

already enforces this implicitly. We assume that the pricing problem of the LP relaxation

of F-PP can be modeled as a GSPPRC with vertex set {s, t} ∪ V ′ where s and t are the

source and sink respectively.

4 Partial path relaxation

In Section 4.1, we define partial resource paths and use them to reformulate the path

programming problem. In Section 4.2, we provide potential refinements of the partial

path reformulation. Finally, in Section 4.3 we comment on the LP bound and pricing

problem of the partial path relaxation corresponding to the partial path reformulation.

4.1 Partial path reformulation

We define a partial resource path as a path P in G that does not necessarily start at the

source and end at the sink, and corresponding resource vectors for every vertex on the

path. Also for partial resource paths, the resource vectors should be feasible with respect

to the resource extension functions at each subsequent position on the path. This requires

us to define the set of feasible resource vectors at the first vertex on a partial resource

path, taking the role that S plays for s. Denoting such a set by Sv for v ∈ V ′, it suffices

to define Sv = R|R| for all v ∈ V ′. However, one could reduce the set of partial resource

paths by for instance defining Sv =
⋃
p∈P:v∈P (p) y

v
p , where we denote by yvp the resource

vector at vertex v and by P (p) the path of resource path p ∈ P.

Denote by P a collection of partial resource paths. Two partial resource paths p1, p2 ∈
P can be concatenated if p1 ends at the same vertex v ∈ V ′ as where p2 starts, and the

corresponding resource vectors at v are the same. We say that P represents P, if every

resource path in P can be constructed by concatenating partial resource paths in P.

Next, we provide a mixed binary linear programming formulation of PP that makes

use of variables corresponding to the partial resource paths P instead of resource paths P.

It is a reformulation of F-PP, in which we concatenate partial resource paths. We take

care that any concatenation exclusively yields a resource path, such that the reformulation

7

is valid for PP.

We introduce additional parameters to incorporate P in F-PP. Consider a partial

resource path p ∈ P and denote by P (p) the corresponding path of p. Moreover, let

Y ∈ R|R|×|V | be a corresponding resource matrix, such that Yrv is the amount of resource

r ∈ R at vertex v ∈ V , which is zero if v is not visited on P (p).

Let the parameter wvp be 1 if v ∈ V ′ is the first vertex on P (p), −1 if it is the last vertex

on P (p), and 0 otherwise. Furthermore, for every resource r ∈ R, let yvpr be Yrv if v ∈ V ′

is the first vertex on P (p), −Yrv if it is the last vertex on P (p), and 0 otherwise. Finally,

we introduce a new parameter d
h
p for each partial resource path p ∈ P, such that for every

decomposition of p ∈ P into p = (p(1), . . . , p(l)), it holds that dhp =
∑l

i=1 d
h
p(i). Note that

conceptually this can always be done, since any information on the resource path p ∈ P
required to determine the value dhp could be added as a resource in the representation of a

partial resource path. Nonetheless, in many applications, these constraint coefficients are

easily decomposed over partial paths. This is also the case for Constraints (2): We do so

by defining avp to indicate whether v ∈ V ′ is visited on partial resource path p ∈ P and

v is not the first vertex on the partial resource path. Finally, we similarly introduce the

new parameter cp for p ∈ P.

Furthermore, we introduce new continuous variables zv for v ∈ V . For v ∈ V ′, zv can

be interpreted as the position of v on its path. For notational convenience, let P(u, v) be

the set of partial resource paths which visit u and v successively. We can now reformulate

the PP problem as follows.

(
F-PP

)
min

∑
p∈P

cpxp (5)

∑
p∈P

avpxp ≤ 1 ∀v ∈ V ′ (6)

∑
p∈P

d
h
pxp≤bh ∀h ∈ H (7)

∑
p∈P

wvpxp = 0 ∀v ∈ V ′ (8)

∑
p∈P

yvprxp = 0 ∀v ∈ V ′, ∀r ∈ R (9)

zu + (|V ′|+ 1)
∑

p∈P(u,v)

xp ≤ zv+|V ′| ∀u, v ∈ V (10)

xp ∈ {0, 1} ∀p ∈ P (11)

zu ≥ 0 ∀u ∈ V. (12)

Here, (5)-(7) and (11) are the obvious counterparts of (1)-(4) respectively. Con-

straints (8) ensure that a partial resource path can only be selected that ends at a specific

vertex if also a partial resource path is selected that starts at that vertex. Moreover, (9) en-

8

sure that the resources on these partial resource paths also match. Constraints (10) are

subtour elimination constraints which ensure that the concatenation of partial resource

paths can never yield cycles in any integer solution. Finally, (11) and (12) define the

ranges of the decision variables.

We note that the parameters of each variable depend solely on the resource vectors

of the first and last node of the corresponding partial resource path. Thus, two different

partial resource paths p̄ and p̄′ might give rise to variables xp̄ and xp̄′ that are indistin-

guishable. In that case, only one of those variables needs to be included. We discuss this

issue in more detail in Section 5.2.

The next proposition states that F-PP is a valid reformulation of F-PP.

Proposition 2. If P represents P then the optimal objective value of F-PP equals that of

F-PP.

Proof. First observe that any feasible solution to F-PP consists of concatenations of partial

resource paths, due to (8) and (9). Given that P represents P, all resource paths can be

obtained using an appropriate concatenation of partial resource paths. Moreover, no such

concatenation of partial resource paths which results in a resource path p ∈ P is prohibited

by the formulation (6)-(11). Finally, the corresponding objective values are the same by

definition of cp for p ∈ P. Hence any feasible solution to F-PP corresponds to a feasible

solution to F-PP with the same objective value. To conclude that F-PP and F-PP have

the same objective value, we show that (6)-(11) are sufficient to ensure that any feasible

concatenation of partial resource paths corresponds to a resource path p ∈ P. Consider

a vertex v ∈ V ′. Recall that avp = 1 if v is included in p as an intermediate or the final

vertex. By (6) and this definition, avp = 1 for at most one selected partial resource path

p, such that v ∈ V ′ is either an intermediate or final vertex on p. By (8), if v is visited

as intermediate vertex, it cannot be visited as first vertex on any other selected partial

resource path. If otherwise v is visited as final vertex, by (8) it is also visited as first

vertex by exactly one selected partial resource path. Hence, for every vertex v ∈ V ′, if a

solution arrives at v then v is also departed from. It follows that when considering the

concatenation of partial resource paths, it must hold that vertex v is visited on a path

from source to sink, or on a cycle. However, by (10) cycles cannot occur. Therefore, every

visited vertex v ∈ V ′ is contained in a path from source to sink, which by (9) is a resource

path. We conclude that F-PP and F-PP have the same optimal objective value.

4.2 Refinements

We include the subtour elimination constraints in F-PP by introducing |V | variables and

|A| constraints (10). Other ways of including subtour elimination constraints are available

in the literature. For instance, the following can be used if all vertices must be visited in

an optimal solution. Denote by P (p) the path corresponding to p ∈ P and by δ+(S) ⊆ A
the arcs going out of S ⊆ V . The subtour elimination constraints

9

∑
p∈P:P (p)∩δ+(S) 6=∅

xp ≥ 1 ∀S ⊆ V \{t}

are a well-known alternative to prevent cycles. This alternative does not require intro-

ducing additional variables, and yields a stronger LP bound. However, it requires the

introduction of an exponential number of constraints and can only be used if all vertices

must be visited.

Subtour elimination constraints actually need not be explicitly included in the formu-

lation. To see this, we define monotonic resources. Denote by v(a) the tail of arc a ∈ A.

We say that a resource r ∈ R is monotonically increasing if for all a ∈ A and y ∈ Sv(a) it

holds that yr < min{y′r : y′ ∈ F a(y)}. Similarly, a resource is monotonically decreasing if

yr > max{y′r : y′ ∈ F a(y)}. If a resource is either monotonically increasing or decreasing,

we say it is monotonic. If at least one resource r ∈ R is monotonic, F-PP remains valid

when removing (10) and the variables z, since cycles cannot occur in this case due to (9)

for r.

Important examples of monotonic resources that are often encountered in the scientific

literature are load and time. Moreover, even in the absence of monotonic resources we can

omit (10). This is achieved by deliberately introducing an artificial monotonic resource,

although this does require the addition of constraints to (9) for the new resource.

4.3 Partial path relaxation

We refer to the LP relaxation of F-PP as a partial path relaxation. It is not only a

relaxation of F-PP, but also of F-PP. Denote by z(F-PP) the LP bound of F-PP, and

by z(F-PP) that of F-PP. The LP bound corresponding to the partial path relaxation is

weaker.

Proposition 3. If P represents P then z(F-PP) ≤ z(F-PP).

Proof. Any solution to the LP relaxation of F-PP consists of a, possibly fractional, selec-

tion of resource paths in P. Each of these resource paths p ∈ P can be represented by a

concatenation of partial resource paths from P. Selecting these partial resource paths with

the same value as with which p is selected, yields a feasible solution to the LP relaxation

of F-PP with the same objective value. Note that a partial resource paths may appear

more than once, in which case it is selected with the corresponding cumulative value. We

conclude that z(F-PP) ≤ z(F-PP).

The LP bound of F-PP might be strictly weaker, although this is dependent on the

type of partial paths that is considered. A reason for this, for example, is that a fractional

solution allows for a convex combination of several partial resource paths all ending at

the same vertex v ∈ V ′. The resulting amount of resources at v might not be attainable

using only resource paths. The corresponding increase in the feasible region could yield

a decreased LP bound. In a similar way, the concatenation of partial resource paths in a

10

xp1 = 1
4
s 1 2 3

xp2 = 1
4

s 3

xp3 = 1
23 2 1 t

Figure 1: Two reasons for weaker bounds in the partial path relaxation

fractional solution can yield cycles that are unattainable using only resource paths, also

yielding a decreased LP bound.

Both of these aspects are illustrated in Figure 1. Consider a PP problem in which all

elementary s, t-paths of at most six nodes are allowed. In the pricing problem, we can

model this by introducing one resource for the number of nodes on a path. Furthermore,

assume that in the partial path relaxation, all partial paths of at most four nodes are

allowed. The figure depicts part of a feasible solution of the partial path relaxation. Note

that the concatenation of the upper partial paths leads to a full path containing seven

nodes, and including cycles. This full path would not be possible in the LP-relaxation of

the path programming problem, but can be constructed in the LP-relaxation of the partial

path relaxation.

In general, the effect of the partial path relaxation is similar to that of the standard

path relaxations, like ng-path relaxation [5]. For standard path relaxations, the set of

resource paths is extended by including certain walks, that is, non-elementary paths in

which vertices can be visited multiple times. By doing so, cycles are allowed, where the

type of cycles depends on the type of path relaxation. Now, a reformulation is obtained

by simply replacing the original set of resource paths by the extended set that includes

walks. This can be done if the formulation enforces that every vertex is visited at most

once, in which case the integer optimal solution is not affected. Hence, this is exclusively

applicable to the problems included in PP. The result of standard path relaxations is that

the LP relaxation becomes weaker while the pricing problem typically becomes easier to

solve. These effects can also be observed for partial path relaxation. Next, we comment

in broad terms on how the pricing problem of a partial path relaxation compares to that

of F-PP.

The pricing problem of F-PP is to find a path that does not necessarily start at the

source and end at the sink. Furthermore, the dual multipliers of (8)-(10) are part of the

reduced cost. Moreover, the choice of which type of partial paths to consider obviously

affects the structure of the pricing problem.

Firstly, that a path need not start nor end at the sink does not necessarily affect the

complexity of the pricing problem. Indeed, one might decompose the pricing problem into

O(|V |2) problems, one pricing problem for each start and end vertex. If the complexity

of the pricing problem is polynomial and not dependent on the start and end vertex,

the pricing problem remains polynomially solvable. Moreover, with the advent of parallel

computing, one can solve the decomposed pricing problems in parallel if enough cores are

11

available.

Secondly, when the pricing problems are decomposed this way, the incorporation of

Constraints (8) does not affect the complexity as well. The contribution of the correspond-

ing dual multipliers to the reduced cost is constant when the start and end location of the

partial path is fixed.

Thirdly, however, the inclusion of (9) could potentially increase the complexity of

the pricing problem. Due to (9), the initial and final resource vectors of a partial path

represented by yvpr are included in the reduced costs, and become decision variables in the

pricing problem that require optimization. The exception obviously being when there are

no resources to consider.

Fourthly, note that the dual multipliers corresponding to constraints (10) can be added

to the costs of an arc in the GSPPRC. Although the addition of a multiplier for arcs might

affect the complexity of the pricing problem, this is not common and in practice it typically

does not affect algorithm design.

Finally, the choice of the type of partial paths could potentially decrease the com-

plexity of the pricing problem. An example of this is found in [17], where a partial path

relaxation for CVRP is used for which the pricing problem is polynomially solvable, while

traditionally the pricing problem is modeled as an NP-hard problem. Even if the pricing

problem of F-PP is in the same complexity class as that of F-PP, there might be other

computational gains.

5 Specific partial path relaxations

We have introduced the generalized version of the SPPRC, GSPPRC, to convey the wide

applicability of the partial path relaxation. Note that the main idea behind the partial

path relaxation is to reduce the computational effort of solving the pricing problem of F-PP

compared to that of F-PP. However, in Section 5.1 we argue that due to the generality of

GSPPRC the pricing problem of F-PP is in general still very difficult.

Fortunately, the GSPPRC is perhaps unnecessarily general for many applications.

Researchers have mostly worked with the SPPRC instead. In Section 5.2, we discuss

the SPPRC with so-called ‘classical’ resources as encountered in the literature, and derive

additional insights in the context of the partial path relaxation. The complexity of the

pricing problem is also dependent on the definition of the partial paths, and we provide

some generic examples of this in Section 5.3. Finally, in Section 5.4 we comment on

the difference in complexity of the pricing problems of F-PP and that of its partial path

relaxation.

5.1 GSPPRC is difficult

Propositions 1 and 2 illustrate the generality of our methodology. Indeed, the partial path

relaxation can be applied to every binary program for which the pricing problem can be

12

formulated as a GSPPRC as defined in Section 2. However, due to its generality, the

GSPPRC is a very difficult optimization problem. Even determining whether a path P is

resource-feasible is NP-hard.

Proposition 4. Determining for an instance of the GSPPRC whether a given path P is

resource-feasible is NP-hard.

Proof. Let an instance of Partition be given. This instance contains n positive integers

ai, for i ∈ {1, . . . , n}. Define a directed graph G = (V,A) where V = {1, . . . , n} and

A = {(i, j) : j > i}. Consider one resource and define s = 1, t = n, and S = {0, a1}.
Moreover, define

F (i,j)(y) =

{
{y, y + aj} ∩ {M} if j = n,

{y, y + aj} otherwise,

where M = 1
2

∑n
i=1 ai. Then, P = (1, 2, . . . , n) is resource-feasible if and only if the

instance of Partition is a Yes-instance. Hence, determining whether P is resource-

feasible is NP-hard.

As a result, not only is the pricing problem of F-PP very difficult, the pricing problem

of F-PP is also very difficult in general.

5.2 Classical resources

Irnich and Desaulniers describe a less general SPPRC than the GSPPRC, which they refer

to as the ‘classical’ SPPRC in [21]. It has the classical resource extension functions of the

form (in our notation)

F a(y) = [y + ta,∞) ∩ [av, bv]

where v is the head of a and ta, av, bv ∈ R|R|. Furthermore S = [as, bs]. In this case, the

resource vectors are separable by resource. For the remainder of this paper, we refer to

this ‘classical’ SPPRC simply as SPPRC.

Contrary to the case of GSPPRC, for an SPPRC it is easy to verify whether a given

path P is resource-feasible. Let P consist of the arcs (a(1), . . . , a(k)), such that the tail

of a(1) is the source s and the head of a(k) is the sink. We define ysr = min{yr : y ∈ S}
and, recursively, y

v(i+1)
r = min{yr : y ∈ F a(i)(yv(i))} with v(i) the tail and v(i + 1) the

head of a(i), for as long as F a(i)(yv(i)) 6= ∅ and i ≤ k. If and only if during the recursion

F a(i)(yv(i)) = ∅ for some i ∈ {1, . . . , k}, the path P is resource-infeasible. Using this

recursion to verify whether path P is resource-feasible requires a number of computations

that is linear in the length of P .

Next, we focus on the case that the pricing problem of F-PP is an SPPRC and addi-

tionally assume constant arc costs, i.e., we assume that Ca(c, y) = c+ ca for all a ∈ A and

that Cs = Ct = 0. We show that in this case we only require a limited number of partial

resource paths in P for any partial path relaxation. Roughly stated, it turns out that we

13

only need to consider those partial resource paths with the resource amounts at the first

resource as low or as high as possible. This does not only reduce the size of the partial

path reformulation F-PP but also means that the complexity of the pricing problem does

not suffer much from including (9) in the reformulation. Next, we make this statement

more precise.

First note that it is sufficient for the validity of F-PP to define Sv = [av, bv], for all

v ∈ V . Observe that when using this definition of Sv and the classical resource extension

functions, in the partial path relaxation F-PP we can replace equations (9) by the following

inequalities

∑
p∈P

yvprxp ≥ 0 ∀v ∈ V ′, ∀r ∈ R. (13)

Consider a partial path P in G consisting of the vertices (v(1), . . . , v(k + 1)). Define

Y (P) ⊆ R|R|×|V | as the set of feasible resource matrices corresponding to partial path

P . We say that a resource matrix Y ∈ Y (P) dominates a resource matrix Ŷ ∈ Y (P) if

Ŷrv(1) ≤ Yrv(1) and Yrv(k+1) ≤ Ŷrv(k+1) for all r ∈ R and at least one of the inequalities is

strict. Any solution to F-PP with (13) instead of (9), in which a partial resource path is

selected corresponding to P and Ŷ can be changed by replacing this partial resource path

with that using P and Y . In particular, the optimal solution value remains the same by

the assumption of constant arc costs, and the new solution is feasible. Note specifically

that it does not violate (13).

Furthermore, recall from Section 4.1 that two different partial resource paths p̄ and p̄′

might give rise to variables xp̄ and xp̄′ that are indistinguishable if the resource vectors at

the first and last vertex of p̄ and p̄′ are equal. In that case, we consider only that partial

resource path for which the resource vectors at the intermediate vertices are minimal. We

define Ỹ (P) as the set of such minimal non-dominated resource matrices for P .

In the following, we might refer to a singleton as an interval: We consider [a, a] = {a}
as an interval as well. We have the following proposition.

Proposition 5. Consider an SPPRC on the graph G and let a partial path P in G be given

with arc representation (a(1), . . . , a(k)) and vertex representation (v(1), . . . , v(k+1)). For

the set Ỹ (P) of minimal non-dominated resource matrices there are the following three

options, where the second and third option are not mutually exclusive.

1. The partial path P is resource-infeasible, so that Ỹ (P) = Y (P) = ∅.

2. There is only one minimal non-dominated resource matrix, i.e., Ỹ (P) = {Y }.

3. For all r ∈ R, there is an interval
[
ãr, b̃r

]
⊆ R such that Y ∈ Ỹ (P) if and only if

Yrv(1) ∈
[
ãr, b̃r

]
and, for all r ∈ R, i ∈ {1, . . . , k} it holds that Yrv(i+1) = Yrv(i)+t

a(i)
r .

Proof. We provide a proof by induction on the length k of the path P . For paths of length

0 the third option applies, and in particular
[
ãr, b̃r

]
=
[
a
v(1)
r , b

v(1)
r

]
. Assume now that

14

the statement holds for paths of length m. Consider any path P of length m+ 1 and let

path P ′ of length m be obtained by removing the last vertex from P , that is, by removing

vertex v(m + 2). Hence, P ′ satisfies one of the three options, which we next consider

individually.

If the first option applies to P ′, then it obviously applies to P as well.

If the second option applies to P ′, denote by Y ′ ∈ Ỹ (P ′) the only minimal non-

dominated resource matrix corresponding to P ′. If there is a resource r ∈ R such that

Y ′rv(m+1) + t
a(m+1)
r > b

v(m+2)
r , the path P is resource-infeasible and the first option applies

to P . Otherwise, consider the resource matrix Y obtained from Y ′ by setting Yrv(m+2) =

max
{
a
v(m+2)
r , Y ′rv(m+1) + t

a(m+1)
r

}
for all r ∈ R. It follows that Y ∈ Y (P), and moreover

that it dominates any other resource matrix in Y (P). Hence Ỹ (P) = {Y }, which means

that the second option applies to P .

Finally, consider the case that the third option applies to P ′, and let
[
ã′r, b̃

′
r

]
be the

interval such that Y ′ ∈ Ỹ (P ′) if and only if Y ′rv(1) ∈
[
ã′r, b̃

′
r

]
for all r ∈ R. Note that in this

case, any non-dominated resource matrix corresponding to P ′ is a minimal non-dominated

resource matrix. We next show that all three options could apply to P , but no other.

The first option applies to P in the following case. Select Y ′ ∈ Ỹ (P ′) such that the

resource amount of each resource r ∈ R is as small as possible at the initial vertex, i.e.,

Y ′rv(1) = ã′r. If there is a resource r ∈ R such that Y ′rv(m+1) + t
a(m+1)
r > b

v(m+2)
r , the path

P is resource-infeasible and the first option applies to P .

The second option applies to P in the following case. Select Y ′ ∈ Ỹ (P ′) such that the

resource amount of each resource r ∈ R is as high as possible at the initial vertex, i.e.,

Y ′rv(1) = b̃′r. If for all resources r ∈ R it holds that Y ′rv(m+1) + t
a(m+1)
r ≤ av(m+2)

r then there

is one dominating resource matrix. Indeed, for the matrix Y obtained from Y ′ by setting

Yrv(m+2) = a
v(m+2)
r for all r ∈ R it holds that Ỹ (P) = {Y }.

Otherwise the third option must apply to P as we demonstrate next. Define ãr as the

smallest amount of resource r ∈ R, for which a non-dominated resource matrix Y ′ ∈ Ỹ (P ′)

can be found that can be extended to a non-dominated resource matrix Y ∈ Ỹ (P). This

is achieved as follows.

ãr = min

x :

Y ′ ∈ Ỹ (P ′),

Y ′rv(1) = x,

Y ′rv(m+1) + t
a(m+1)
r ∈

[
a
v(m+2)
r , b

v(m+2)
r

]


Similarly, we define the largest such amount b̃r as follows.

b̃r = max

x :

Y ′ ∈ Ỹ (P ′),

Y ′rv(1) = x,

Y ′rv(m+1) + t
a(m+1)
r ∈

[
a
v(m+2)
r , b

v(m+2)
r

]


In this case ãr and b̃r are well-defined and form a non-empty interval
[
ãr, b̃r

]
. Observe

15

that for Y ′ ∈ Ỹ (P ′) with Y ′rv(1) ∈
[
ãr, b̃r

]
we can construct a Y ∈ Ỹ (P) from Y ′ by setting

Yrv(m+2) = Y ′rv(m+1) + t
a(m+1)
r for all r ∈ R. It is easily verified that Y is non-dominated.

We conclude that the third option applies to P .

The proposition follows by induction.

We have already described that in F-PP we can limit the set of variables to correspond

to partial paths and minimal non-dominated resources matrices. Using Proposition 5, it

follows that we can limit the set of variables even further. To see this, define Y ∗(P) ⊆ Ỹ (P)

as the set consisting of every minimal non-dominated resource matrix corresponding to

a resource-feasible partial path P , such that the amount of each resource at the initial

vertex is either minimal or maximal. That is, for Y ∈ Y ∗(P) it holds for every r ∈ R

that Yrv(1) = minY ′∈Ỹ (P) Y
′
rv(1) or Yrv(1) = maxY ′∈Ỹ (P) Y

′
rv(1). It immediately follows from

Proposition 5 that every Y ∈ Ỹ (P) can be written as a convex combination of the resource

matrices in Y ∗(P).

Corollary 1. Consider an SPPRC on the graph G and consider a resource-feasible partial

path P in G. It holds that conv (Y ∗(P)) = Ỹ (P).

By construction it holds that |Y ∗(P)| ≤ 2|R|, which is a constant for a fixed number

of resources. Moreover, it follows from the proof of Proposition 5 that Y ∗(P) can be

constructed in a number of computations that is linear in the length of P .

We are now able to provide an alternative reformulation of F-PP when the pricing

problem is an SPPRC with constant arc costs, which for many cases has less variables

than F-PP. We refer to this reformulation as F-PP(SPPRC). Denote by P
∗ ⊆ P the

set of partial resource paths P for which it holds that the corresponding resource matrix

Y ∈ Y ∗(P). Furthermore, denote by RFP-Paths the set of resource-feasible partial paths.

The set RFP-Paths consists of partial paths in G such that Y (P) 6= ∅, and should not be

confused with the set of partial resource paths P. Denote by P
∗
(P) ⊆ P∗, all partial re-

source paths corresponding to partial path P ∈ RFP-Paths. The alternative reformulation

is

16

(
F-PP(SPPRC)

)
min

∑
p∈P∗

cpxp (14)

∑
p∈P∗

avpxp ≤ 1 ∀v ∈ V ′ (15)

∑
p∈P∗

d
h
pxp = bh ∀h ∈ H (16)

∑
p∈P∗

wvpxp = 0 ∀v ∈ V ′ (17)

∑
p∈P∗

yvprxp ≥ 0 ∀v ∈ V ′, ∀r ∈ R (18)

∑
p∈P∗(P)

xp ∈ {0, 1} ∀P ∈ RFP-Paths (19)

xp ≥ 0 ∀p ∈ P∗. (20)

Here, (14)-(17) are the counterparts of (5)-(8), and (18) is the counterpart of (13)

which replaces (9) of F-PP for the case of SPPRC. Finally, (19) and (20) are the new

integrality conditions, which allow a convex combination of partial resource paths, as long

as the resulting combination selects partial paths binarily.

Observe that F-PP(SPPRC) uses O(|P∗|) variables as opposed to the potentially

infinite number of variables used by F-PP. Note that the binarity conditions (11) of F-PP

could also have been reduced to only O(|RFP-Paths|) binarity conditions using similar

constraints as (19). In the scientific literature, however, it is uncommon to enforce binary

conditions like (11) or (19) directly anyway. Usually, binarity conditions are enforced using

some form of Ryan/Foster branching [25], e.g., binarity of flow on an arc instead of path

selection. Finally, note that the LP relaxation of F-PP(SPPRC) is provided by (14)-(18)

and (20), which by construction has the same value as the LP bound of F-PP.

5.3 Generic partial path definitions

When deciding on the definition of the set of partial resource paths P, three things are

crucial to consider. First of all, every feasible resource path should be represented by the

partial resource paths. Secondly, one should aim for reducing the computational burden

of solving the resulting pricing problem. Thirdly, the decrease in LP bound should not

offset the gain in computation time for the pricing problem. In particular, the aim is to

reduce the computation time of the overall branch-and-price algorithm. Next, we discuss

some generic options that can always be applied.

We can define P as the set of all possible partial resource paths in the graph that

satisfy a limitation on the length, while setting Sv = [av, bv] for all v ∈ V ′. One possibility

to do so has been introduced by Dollevoet et al. [17] for the CVRP, but the main idea

17

applies here as well. We consider partial resource paths of roughly length k. Note that

not all resource paths might be represented by partial resource paths of length exactly

k. To remedy this, in [17] partial resource paths are considered of length exactly k, or at

most k if the partial resource path starts at the source. For the sake of exposition, we

propose here to consider partial resource paths of length exactly k, or at most k if the

partial resource path ends at the sink. All resource paths are represented by the set of

partial resource paths of roughly length k, and the total number of such partial resource

paths for fixed k is polynomial in |V | and |A|. Furthermore, an increase in LP bound can

be observed when k increases. The following proposition was provided by Dollevoet et

al. [17] for the case of the CVRP, but also applies in our more general case. Denote by

zk(F-PP) the LP relaxation of F-PP(SPPRC) where all feasible partial resource paths of

length exactly k are included, or at most k if it ends at the sink.

Proposition 6. For any k,m ∈ N>0 it follows that zk(F-PP) ≤ zkm(F-PP).

Proof. Consider an optimal solution x∗ to the LP relaxation using partial resource paths

of roughly length km. In order to construct a solution x′ to F-PP(SPPRC) using partial

resource paths of roughly length k, initialize x′p = 0 for all p ∈ P. Any given partial

resource path r of roughly length km can be cut into l partial resource paths p(1), . . . , p(l)

of roughly length k, where l is at most m. We now add x∗r to x′p(i) for all 1 ≤ i ≤ l.

It is easily verified that x′ is a feasible solution using exclusively partial resource paths

of roughly length k, while maintaining the same objective value. This shows that zk ≤
zkm.

Other straightforward options to limit the path length is by considering partial resource

paths of length at most k, or at least k. Note that in the former case the LP bound is

z1(F-PP), while in the latter case the LP bound is at most zk(F-PP). Both these options

are unlikely to yield computational gains over using partial resource paths of roughly

length k.

Another possibility to define partial resource paths is based on the resource matrix.

To illustrate this, consider the case where there is a monotonically increasing resource.

We refer to the difference between the amount of such a resource between two vertices on

a partial resource path as resource consumption and say that the resource consumption

between the first and last vertex on a path is the total resource consumption. Similar to

a limit on the partial path length we set Sv = [av, bv] for all v ∈ V ′ and limit resource

consumption, although placing a limit on total resource consumption analogous to a limit

of roughly length k requires some care.

Observe that in many applications, paths cannot be decomposed in partial paths with

total resource consumption exactly some given fixed value q, not even when allowing partial

paths ending at the sink with total resource consumption at most q. Instead, we suggest

the following. We consider partial paths on which the resource consumption between the

first and the semi-last vertex is at most q, while the resource consumption between the

18

first and the last vertex is strictly larger than q. Furthermore, we consider all partial

paths that end at the sink and have a total resource consumption of at most q. Every

resource path can be represented using these partial resource paths with roughly resource

consumption q. In case the resource consumption of every arc is 1, this corresponds to

considering partial resource paths of roughly length k = q + 1.

Note that for similar reasons as in the case of a limit on length, it does not seem

sensible to consider limiting the total resource consumption to at most q, or at least q.

Finally note that something similar can of course be done for monotonically decreasing

resources.

Although the above examples are generic, application specific definitions of the set of

partial resource paths P might provide more computational gains. In Section 6, we provide

a case specific example in crew scheduling. An example of partial paths of roughly length

k for the CVRP can be found in [17], which we compare to an example of partial path of

roughly resource consumption q in Section 7.

5.4 Complexity of the pricing problem

Next we comment on the difference in the complexity of the pricing problems of F-PP and

its partial path relaxation.

Proposition 7. For any problem formulated as F-PP for which the pricing problem is an

SPPRC with a fixed number of resources, there exists a partial path reformulation of which

the pricing problem is polynomially solvable in the size of the graph corresponding to the

SPPRC.

Proof. Let the set of partial resource paths P consist of all partial resource paths of roughly

length k. Consider the partial path reformulation of F-PP, denoted by F-PP(SPPRC) .

Observe that as stated in Section 5.3, the number of partial resource paths of roughly

length k is polynomial in |V | and |A|. Therefore, for a fixed number of resources,

F-PP(SPPRC) has a polynomial number of variables. Hence, the pricing problem of

F-PP(SPPRC) can be solved in polynomial time by enumeration.

The significance of Proposition 7 is that it also applies in case the pricing problem of

F-PP is strongly NP-hard. It has been proven that the SPPRC is strongly NP-hard [18].

In particular, the proof in [18] uses an SPPRC that is used to model the pricing problem

of a set partitioning formulation of the vehicle routing problem with time windows. It

is noteworthy that this set partitioning formulation coincides with F-PP and the pricing

problem of a partial path reformulation is polynomially solvable.

6 A crew scheduling example

Next, we provide an example of an optimization problem that can be modeled as a PP

problem of which the pricing problem is commonly modeled as an NP-hard SPPRC. It is

19

a crew scheduling problem found in the literature. We provide a partial path relaxation

other than the generic examples found in Section 5.3. Moreover, we show that the pricing

problem of the corresponding reformulation is polynomially solvable.

6.1 Problem description

We consider a crew scheduling problem as described in [9] for which column generation

algorithms are used in the literature as well as in practice, see e.g. [1]. Let V ′ be a set

of tasks. Each task v ∈ V ′ has a specified start time tSv and end time tEv . We define

tv = tEv − tSv as the work duration of task v.

An unlimited number of crew members is available for performing the tasks, and each

task has to be performed exactly once by one crew member. Let C be a set consisting

of pairs of tasks that can be performed consecutively. We note that a necessary, but not

sufficient, condition for a pair of tasks (u, v) to be in C, is that the end time of u is strictly

prior to the start time of v, i.e., tEu < tSv . A duty is a sequence of tasks that can be

performed consecutively by one crew member. Each duty p has a cost coefficient cp, which

consists of costs cuv for all pairs of tasks (u, v) ∈ C that are performed consecutively in

duty p, a cost csv if v ∈ V ′ is the first task in the duty, and a cost cvt if v is the last task

in the duty.

Each duty satisfies the following labour regulations. The cumulative work duration of

all tasks in a duty may not exceed W . Furthermore, a duty can have no or one break.

A break can be had between consecutive tasks in a duty, denote by CB ⊆ C all pairs of

tasks between which a break can be had. We define a duty length between two tasks as

the difference between the start time of the earliest task and the end time of the latest

task. The duty length without a break may not exceed L. If a duty contains a break, the

maximum duty length between the first task and the last task before the break is L, as

well as the maximum duty length between the first task after the break and the final task.

We assume that L ≤W < 2L. Denote by P the set of duties.

The objective is to select a set of duties of minimal cost such that each task is contained

in one of the selected duties. For the remainder of this paper, we refer to this specific

problem as the crew scheduling problem.

6.2 Path programming formulation

Next, we provide a path programming formulation for the crew scheduling problem. Let

avp indicate whether task v ∈ V ′ is included in duty p ∈ P. Furthermore, the binary

variable xp indicates whether duty p ∈ P is selected. A path programming formulation

F-PP of the crew scheduling problem is the following.

20

min
∑
p∈P

cpxp (21)

∑
p∈P

avpxp = 1 ∀v ∈ V ′ (22)

xp ∈ {0, 1} ∀p ∈ P (23)

This formulation is a common set partitioning formulation for the crew scheduling

problem. To classify this problem as a path programming problem, we demonstrate that

the pricing problem can be modeled as an SPPRC.

Consider the multigraph G = (V,A), where V = V ′ ∪{s, t}. The set of arcs A consists

of i) an arc between the source s and v for all v ∈ V ′, ii) an arc between u, v ∈ V ′ for

every (u, v) ∈ C, iii) an arc between v and the sink t for all v ∈ V ′, and iv) an additional

arc between u, v ∈ V ′ for every (u, v) ∈ CB. We denote the set of arcs of the latter type

as AB ⊆ A, and refer to them as break-arcs. Note that, for every pair in CB, two arcs are

included in G. Traversing the arc in AB corresponds to having a break, while the other

corresponds to not having a break. Note that the graph G is acyclic by construction of C.

We define three resources, R = {1, 2, 3}. The first resource corresponds to the cumula-

tive work duration. Let the initial cumulative work duration be 0, i.e., S1 = {0}. For each

arc a ∈ A, with head v ∈ V ′, we define the resource extension function for this resource

as F a1 (y) = [y1 + tv,∞) ∩ [0,W]. If the head of a is t then F a1 (y) = [y1,∞) ∩ [0,W]. This

way, traversing an arc increases the cumulative work duration with the work duration of

the task at the end of the arc.

The second resource corresponds to the duty length without a break. Let S2 = {0}.
For each arc a = (s, v) ∈ A, we define the resource extension function for this resource

as F a2 (y) = [y2 + tv,∞) ∩ [0, L]. If a = (v, t) ∈ A, we define F a2 (y) = [y2,∞) ∩ [0, L].

For a ∈ AB, we define F a2 (y) = [0, L]. Finally, for all other arcs a = (u, v) ∈ A, with

(u, v) ∈ C, we define F a2 (y) = [y2 + tEv − tEu ,∞) ∩ [0, L]. This way, the duty length is

effectively reset when a break-arc is traversed.

Finally, the third resource is used to indicate whether a break has been had. Let

S3 = {0}. For each arc a ∈ A\AB let F a3 (y) = {y3}. For arc a ∈ AB let F a3 (y) =

[y3 + 1,∞)∩ [0, 1]. This ensures that any resource-feasible s, t-path in G traverses at most

one break-arc. We now define F a(y) = F a1 (y)× F a2 (y)× F a3 (y) and S = S1 × S2 × S3.

We associate a cost to each arc a ∈ A. Finding the least cost resource path in G is an

SPPRC, which we denote by SPPRC(1).

Observe that a duty corresponds to a resource path in G. Denote by λ the dual

multipliers corresponding to (22), and let λt = 0. We model the pricing problem of (21)-

(23) as an SPPRC(1), by associating with each arc a ∈ A, with head v ∈ V , the cost

ca − λv. Finally, note that even though A is acyclic and checking whether a path is

resource feasible can be done in polynomial time, still SPPRC(1) is NP-hard.

21

Proposition 8. SPPRC(1) is NP-hard.

Proof. Let an instance of Partition be given. This instance contains n positive integers

ai, for i ∈ {1, . . . , n}, we may assume without loss of generality that
∑n

i=1 ai ≥ 2. Consider

an instance of SPPRC(1) where V ′ = {1, . . . , n}, and we denote V = {0, 1, . . . , n, n+1, n+

2}, where 0 and n+2 are the source and sink respectively, while n+1 represents a long task.

Define M = n+
∑n

i=1 ai. Let an+1 = M and an+2 = 0. Furthermore, denote tE0 = 0 and

let tSi = tEi−1 + 1 and tEi = tSi + ai for i ∈ {1, . . . , n+ 2}. Let AB = {(i, n+ 1) : 1 ≤ i ≤ n}
and A = {(i, j) : 0 ≤ i < j ≤ n + 2} ∪ AB. Furthermore, let W = M + 1

2

∑n
i=1 ai

and L = M + 1, satisfying L ≤ W < 2L. Observe that to include task n + 1, a break is

required to include more tasks. For (i, j) ∈ A, define the arc cost as cij = −aj . As a result,

any optimal solution includes task n + 1. The optimal solution value of this instance of

the SPPRC(1) is −W if and only if Partition is a Yes-instance. Hence, SPPRC(1) is

NP-hard.

We remark that SPPRC(1) can be solved in pseudo-polynomial time. This is achieved

for instance by dynamic programming in O(|A|WL), exploiting the fact that the graph is

acyclic and hence a topological ordering of the vertices can be obtained. Hence, also the

pricing problem of (21)-(23) can be solved in pseudo-polynomial time.

6.3 Partial path relaxation

We reformulate F-PP of the crew scheduling problem as follows. Let P consist of i) partial

resource paths starting at the source, not traversing any break-arc, and ii) partial resource

paths which do not start at the source, but do end at the sink, of which the first arc is a

break-arc. Effectively, this means that P consists of partial paths before or after the start

of the break, and in the reformulation, constraints are included to concatenate such partial

paths at the start of the break. Note that it is sufficient to set Sv = [0,W]× [L]×{0} for

all v ∈ V ′. The partial path reformulation F-PP is

(
F-PP

)
min

∑
p∈P

cpxp (24)

∑
p∈P

avpxp = 1 ∀v ∈ V ′ (25)

∑
p∈P

wvpxp = 0 ∀v ∈ V ′ (26)

∑
p∈P

yvp1xp ≥ 0 ∀v ∈ V ′ (27)

xp ∈ {0, 1} ∀p ∈ P. (28)

Observe that the first resource, corresponding to cumulative work duration is mono-

tonic, so no subtour elimination constraints are required. Furthermore, only for this

22

resource are constraints of the type (27) required. By definition of P, the analogue of (27)

for the second resource, duty length without a break, is in some sense equivalent with

(26), while for the third resource the analogue of (27) are trivially satisfied.

We conclude this example by showing that the pricing problem of the reformula-

tion (24)-(28) is polynomially solvable.

Proposition 9. The pricing problem of (24)-(28) is polynomially solvable.

Proof. Denote by λ, µ and π the dual multipliers of (25)-(27) respectively. First consider

a partial path p ∈ P of type i), starting at the source. Denoting by v the last vertex on

partial resource path p, the reduced costs are

cp −
∑
u∈V ′

λuaup − µv − πvyvp1.

We can generate this type of partial resource path with a minimal reduced cost as

follows. Consider every pair of potential starting task u and ending task v, for u, v ∈ V ′,
such that the duty length satisfies tEv − tSu ≤ L. Any path in G′ = (V,A\AB) starting with

arc (s, u) and ending at vertex v or with arc (v, t), satisfies the duty length constraint as

well as the cumulative work duration constraint, since L ≤W . Moreover, it does not use a

break. To each arc a ∈ A, with tail v ∈ V , assign cost ca− λv. A minimal reduced partial

resource path of this type can now be found by solving a shortest path problem without

resources for every suitable pair of tasks. Since πv ≥ 0, it is optimal to choose yvp1 as large

as possible, and thus equal to minus the cumulative work duration on the path. Note that

because there are O(|V ′|2) candidate pairs, and a shortest path problem without resource

constraints on an acyclic graph can be solved in polynomial time, we can find the minimal

reduced cost partial resource path of this type in polynomial time.

By a similar construction, also for a partial resource path of type ii), starting with a

break arc and ending at the depot, the minimal reduced cost partial resource path can

be found by solving at most O(|V ′|2) shortest path problems without resource constraints

on an acyclic graph. We conclude that the pricing problem of (24)-(28) is polynomially

solvable.

7 A vehicle routing example

In this section, we provide another example of a partial path relaxation. We consider the

CVRP, for which a partial path relaxation is provided in [17]. Here, we consider a very

similar partial path reformulation and refer to it as a p-step formulation. The partial path

formulation uses partial paths of roughly length p. In this example we numerically compare

the LP bounds and computation time of the p-step formulation, with another partial path

relaxation of roughly resource consumption q. Although the pricing problem of the latter

is pseudo-polynomially solvable instead of polynomially, like the pricing problem of the

p-step formulation, there might still be computational advantages.

23

7.1 Problem description

Consider a simple graph G = (V,A) such that V = V ′ ∪ {s, t} and A consists of all arc

(s, v), (u, v) and (v, t) for all u, v ∈ V ′. The set V ′ represents a set of customers and s and

t are the starting and ending depot respectively. Associated with each customer v ∈ V ′ is

a demand 0 ≤ qv, and we define qs = qt = 0. An unlimited number of vehicles is available

for satisfying demand. A vehicle traverses a path from s to t, referred to as a route, and

satisfies demand of all customers on the route. The cumulative demand of all customers

on the route may not exceed the vehicle capacity Q, and we assume that qv ≤ Q for all

v ∈ V ′. We denote the set of all such routes as P. With each arc (u, v) ∈ A we associate

a cost cuv ≥ 0, which is incurred when a vehicle traverses that arc. The capacitated

vehicle routing problem (CVRP) is the problem of finding routes that together satisfy the

demands of all customers at minimal total costs.

7.2 Path programming formulation

Next, we provide a path programming formulation for the CVRP. Let cp denote the cost

of a route p ∈ P, and let avp indicate whether customer v ∈ V ′ is included on route

p. Furthermore, the binary variable xp indicates whether route p ∈ P is selected. With

these parameter and variable definitions, formulation (21)-(23) is a path programming

formulation of the CVRP. This formulation is a common set partitioning formulation of

the CVRP, of which the pricing problem is modeled as the following SPPRC.

Consider the graph G defined in Section 7.1. We introduce the single resource of non-

negative load, by defining S = {0} and F (u,v)(y) = {y+ qv}∩ [0, Q] for all arcs (u, v) ∈ A.

We associate a cost with every arc a ∈ A. Finding the least cost resource path in G is an

SPPRC, which we denote by SPPRC(2).

Similar to before, we observe that a route corresponds to a resource path in G, denote

by λ the dual multipliers corresponding to the set partitioning constraints (22), and let

λt = 0. We model the pricing problem of (21)-(23) as an SPPRC(2), by associating

with each arc a ∈ A with head v ∈ V the cost ca − λv. It is considered well-known

that SPPRC(2), also known as the elementary shortest path problem with a capacity

constraint, is NP-hard.

7.3 Partial path relaxations

Recall from Section 5.3 that a partial resource path of roughly resource consumption q, is

the following. It is a partial resource path such that i) the resource consumption between

the first and the semi-last vertex is at most q, while the resource consumption between

the first and the last vertex is strictly larger than q, or ii) it ends at the sink and has a

total resource consumption of at most q. For the CVRP, we refer to a partial resource

path of roughly resource consumption q as a q-step. Furthermore, we set Sv = [0, Q] for

all v ∈ V ′. Similarly, a p-step is defined as a partial resource path of roughly length p.

24

Denote by P the set of all q-steps, and by yvp1 the resource parameter corresponding

to the single monotonic resource, load. With these definitions, formulation (24)-(28) is

a partial path reformulation of the CVRP, which we refer to as the q-step formulation.

Replacing P in (24)-(28) by the set of all p-steps, we obtain a formulation equivalent to

the p-step formulation of [17].

Next, we compare the p-step formulation and the q-step formulation. The compu-

tational complexity of the pricing problems and the LP bounds are of primary interest.

Note that the pricing problem of the p-step formulation is polynomially solvable, see [17].

However, for the pricing problem of the q-step problem, no polynomial time algorithm is

known. Still, next we provide numerical experiments in which stronger LP bounds are

achieved with the q-step formulation in less computation time.

To compute the LP bounds of the p-step and q-step formulation, we make use of the

column generation algorithm presented in [23]. More specifically, we use the same code

that was used to perform the numerical experiments in [23] to solve previously unsolved

instances of the CVRP. We make slight modifications to generate p-steps and q-steps

instead of full paths. Similar to the algorithm presented in [17], we solve the pricing

problem by solving an SPPRC using a labeling algorithm for each of the O(|V ′|2) pairs

of start and end vertices. This experiment is performed on a single core of an Intel Xeon

CPU W-2123 3.60 GHz with 64 GB RAM running Microsoft Windows 10.

Table 1 provides the LP bounds of the p-step formulation (LP bound p) and q-step

formulation (LP bound q) for varying values of p and q, as well as the corresponding time

in seconds to compute the LP bounds (Time(s) p and Time(s) q). We use well-known

benchmark instances [2, 11]. For ease of exposition, we parametrize the values of p and

q. In particular, per instance we determine an upper bound on p, the maximum number

of customers that fit in one vehicle, and use as upper bound on q the vehicle capacity Q.

Using a percentage α, we compute p as α times the upper bound, rounded, plus one, and

compute q as α times the upper bound rounded. In the six rightmost columns of Table 1,

the first row shows the used percentages.

First note that we do not display the results for 0% and 100% in Table 1. For these

cases the LP bounds of the p-step formulation and q-step formulation are by definition

equal. We also remark that the lowest computation times in our experiments are always

observed for one of these cases. For 0% it could be expected that computation times are

low, because partial resource paths consist of one arc. For 100% we conjecture that low

computation times are observed for the following reasons. The used code was originally

designed to construct full paths, and employs techniques that are known to reduce com-

putation time in that case, see [23]. Another reason is that the pricing algorithms solve

O(|V ′|2) SPPRCs. In practice, for 100%, there is only one relevant SPPRC that needs to

be solved, namely that from source to sink, which reduces computation time. In [17], for

the p-step formulation it is demonstrated that parallellization can be used to reduce the

computation time of the column generation algorithm for intermediate cases but not for

the case of 100%.

25

Table 1: This table provides lower bounds and computation time in seconds for benchmark
instances using the p-step formulation and the q-step formulation. The six rightmost
columns correspond to the different values of p and q, defined as a percentage of an upper
bound, where the percentage is provided in the top row.

Instance Statistic 20% 40% 60% 80% 90% 95%

A-n39-k6 LP bound p 764.0 785.1 806.7 806.7 806.7 806.7
q 759.1 764.6 780.7 796.4 801.8 806.5

Time(s) p 2.5 24.3 18.5 29.6 35.1 47.2
q 8.8 20.0 2.0 6.6 8.0 9.5

A-n44-k6 LP bound p 882.5 910.9 927.1 927.1 927.1 927.1
q 861.4 875.2 897.4 912.0 919.5 926.9

Time(s) p 3.9 30.1 14.4 33.2 75.2 81.4
q 12.3 22.8 3.8 8.3 9.4 11.3

A-n45-k6 LP bound p 853.6 900.3 929.3 929.3 929.3 929.3
q 846.0 843.2 868.1 899.4 913.1 929.0

Time(s) p 5.6 32.8 50.5 188.1 350.8 400.2
q 14.7 43.5 3.3 10.5 14.4 12.6

A-n45-k7 LP bound p 1073.6 1111.2 1124.7 1124.7 1124.7 1124.7
q 1058.0 1071.4 1095.2 1108.8 1114.4 1124.3

Time(s) p 3.8 48.3 24.8 46.7 36.7 36.8
q 13.2 27.9 3.1 8.7 8.9 10.2

A-n46-k7 LP bound p 860.1 898.9 904.6 904.6 904.6 904.6
q 850.4 856.1 872.1 885.3 900.7 904.2

Time(s) p 5.1 88.8 31.4 72.3 41.3 92.1
q 14.9 35.7 5.2 6.7 7.3 9.1

A-n48-k7 LP bound p 1005.5 1045.9 1051.6 1053.1 1053.1 1053.1
q 992.7 1001.2 1022.2 1039.8 1047.9 1050.5

Time(s) p 4.4 32.8 61.4 169.4 230.8 200.4
q 16.8 40.6 5.0 7.8 14.5 17.7

E-n23-k3 LP bound p 541.4 545.4 550.6 559.2 565.2 565.2
q 541.0 542.0 552.0 556.3 562.2 563.5

Time(s) p 4.7 10.6 11.2 20.7 17.7 23.1
q 96.9 185.4 42.4 105.7 116.8 182.0

E-n30-k3 LP bound p 457.6 467.0 480.5 480.9 480.9 480.9
q 457.8 457.1 460.6 468.6 476.3 479.2

Time(s) p 1.4 44.4 61.2 308.6 880.0 810.6
q 8.2 41.2 9.4 10.8 15.7 28.1

E-n33-k4 LP bound p 802.1 812.2 819.5 820.9 820.9 820.9
q 788.1 791.8 801.5 810.3 815.3 818.1

Time(s) p 4.2 26.0 50.2 80.4 165.1 186.3
q 45.2 109.4 28.3 65.8 89.3 74.0

E-n51-k5 LP bound p 503.6 511.8 516.6 517.1 517.1 517.1
q 500.2 503.3 510.0 512.4 514.1 516.8

Time(s) p 11.1 220.8 51.8 256.9 199.4 576.1
q 37.2 105.3 21.5 47.4 60.6 57.2

26

We mainly wish to point out the following observation from Table 1. The q-step

formulation sometimes achieves stronger bounds in less computation time. This is for

example the case for instance A-n39-k6, when comparing p at 20% and q at 60%. This is

interesting since the pricing problem of the p-step formulation can be solved in polynomial

time, while for the q-step formulation we do not know of a polynomial time algorithm.

Also note that the LP bounds of the p-step formulation increase faster for low percentages

α than the LP bounds of the q-step formulation. This is due to the fact that the strongest

bounds are obtained when a solution to either formulation makes use of routes with a

cumulative demand close to the capacity. For q-step formulations such routes are obtained

for the case close to 100%, while for the p-step formulation they are obtained for the case

of a lower percentage.

8 Conclusions

The partial path relaxation is a framework which has many applications. A careful design

allows a reduction of the computational complexity of a pricing problem, or indeed of

computing the LP bound, at the expense of a weaker LP bound. We have shown that if the

pricing problem of the path programming formulation is an SPPRC, a generic partial path

relaxation always exists for which the pricing problem can be solved in polynomial time.

In the future, application specific path programming relaxations might be constructed to

attain more computational gains.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] E. Abbink, M. Fischetti, L. Kroon, G. Timmer, and M. Vromans. Reinventing crew

scheduling at Netherlands Railways. Interfaces, 35(1):393–401, Oct 2005.

[2] P. Augerat, J. M. Belenguer, E. Benavent, A. Corberán, D. Naddef, and G. Rinaldi.

Computational results with a branch and cut code for the capacitated vehicle routing

problem. Technical Report 949-M, Université Joseph Fourier, Grenoble, France, 1995.

[3] L. Bach, M. Gendreau, and S. Wøhlk. Freight railway operator timetabling and engine

scheduling. European Journal of Operational Research, 241(2):309 – 319, 2015.

[4] R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehi-

cle routing problem based on the set partitioning formulation with additional cuts.

Mathematical Programming, 115:351–385, 2008.

27

[5] R. Baldacci, A. Mingozzi, and R. Roberti. New route relaxation and pricing strategies

for the vehicle routing problem. Operations Research, 59(5):1269–1283, 2011.

[6] E. Bartolini, J.-F. Cordeau, and G. Laporte. Improved lower bounds and exact algo-

rithm for the capacitated arc routing problem. Mathematical Programming, 137:409–

452, 2013.

[7] M. R. Bussieck, T. Winter, and U. T. Zimmermann. Discrete optimization in public

rail transport. Mathematical Programming, 79:415–444, 1997.

[8] V. Cacchiani, A. Caprara, and P. Toth. Solving a real-world train-unit assignment

problem. Mathematical Programming, 124:207–231, 2010.

[9] A. Caprara, M. Fischetti, P. Toth, D. Vigo, and P. L. Guida. Algorithms for railway

crew management. Mathematical Programming, 79(1-3):125–141, Oct 1997.

[10] E. Choi and D.-W. Tcha. A column generation approach to the heterogeneous fleet

vehicle routing problem. Computers & Operations Research, 34(7):2080–2095, 2007.

[11] N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching problem. Op-

erational Research Quarterly, 20:309–318, 1969.

[12] N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms for the vehicle rout-

ing problem, based on spanning tree and shortest path relaxations. Mathematical

Programming, 20(1):255–282, Dec 1981.

[13] C. Contardo and R. Martinelli. A new exact algorithm for the multi-depot vehicle

routing problem under capacity and route length constraints. Discrete Optimization,

12:129–146, 2014.

[14] G. Desaulniers, F. Errico, S. Irnich, and M. Schneider. Exact algorithms for electric

vehicle-routing problems with time windows. Operations Research, 64(6):1388–1405,

2016.

[15] M. Desrochers. La fabrication d’horaires de travail pour les conducteurs d’autobus

par une méthode de génération de colonnes. PhD thesis, 1986.

[16] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the

vehicle routing problem with time windows. Operations Research, 40(2):342–354, Apr

1992.

[17] T. Dollevoet, P. Munari, and R. Spliet. A p-step formulation of the capacitated vehicle

routing problem. Technical Report EI-2020-01, Econometric Institute, 2019.

[18] M. Dror. Note on the complexity of the shortest path models for column generation

in VRPTW. Operations Research, 42(5):977–978, 1994.

28

[19] R. Fukasawa, H. Longo, J. Lysgaard, M. P. d. Aragão, M. Reis, E. Uchoa, and

R. F. Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing

problem. Mathematical Programming, 106(3):491–511, May 2006.

[20] I. Ioachim, S. Glinas, F. Soumis, and J. Desrosiers. A dynamic programming al-

gorithm for the shortest path problem with time windows and linear node costs.

Networks, 31(3):193–204, 1998.

[21] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In

G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors, Column Generation, chap-

ter 2, pages 33–65. Springer, New York, 2005.

[22] S. Irnich and D. Villeneuve. The shortest-path problem with resource constraints

and k-cycle elimination for k ≥ 3. INFORMS Journal on Computing, 18(3):391–406,

2006.

[23] D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa. Improved branch-cut-and-price for

capacitated vehicle routing. Mathematical Programming Computation, 9(1):61–100,

Mar 2017.

[24] D. Potthoff, D. Huisman, and G. Desaulniers. Column generation with dynamic duty

selection for railway crew rescheduling. Transportation Science, 44(4):493–505, 2010.

[25] D. M. Ryan and B. A. Foster. An integer programming approach to scheduling. In

A. Wren, editor, Computer Scheduling of Public Transport: Urban Passenger Vehicle

and Crew Scheduling, chapter 17, pages 269–280. North Holland, 1981.

[26] R. Spliet and A. F. Gabor. The time window assignment vehicle routing problem.

Transportation Science, 49(4):721–731, 2015.

29

