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Abstract

We aim at constructing a timetable that minimizes average perceived passenger travel

time, which, in addition to the in-train and transfer times, includes the adaption time

(waiting time at the origin station). Adaption time minimization allows us to avoid strict

frequency regularity constraints and, at the same time, to ensure regular connections

between passengers’ origins and destinations. Besides considering safety restrictions (i.e.,

headway times, overtaking and crossing constraints), passenger routing, based on origin-

destination demand pairs, must be taken into account when building the timetable.

This problem can be modelled as an extension of a Periodic Event Scheduling Problem

(PESP) formulation, but cannot be directly solved by a general-purpose solver for our

real-size instances. In this paper, we propose a heuristic approach consisting of two

phases that are executed iteratively. First, we solve a simplified timetabling model, and

determine an ideal timetable that minimizes the average perceived passenger travel time

but neglects safety restrictions. Then, a Lagrangian-based heuristic makes the timetable

feasible by modifying train departure and arrival times as little as possible. The obtained

feasible timetable is then evaluated to compute the resulting average perceived passenger

travel time, and a feedback is sent to the Lagrangian-based heuristic so as to possibly

improve the obtained timetable from the passenger perspective, while still respecting

safety constraints. We have tested the proposed iterative heuristic approach on real-life

instances of Netherlands Railways, showing that it converges to a feasible timetable very

close to the ideal one.
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1 Introduction

Recent years have seen an increased attention to environmental pollution in terms of carbon

dioxide and nitrogen emissions. Road transportation is responsible for the majority of these

emissions [CBS, PBL, RIVM, WUR, 2019]. Combining this with the high levels of congestion

on the streets, a shift towards public transportation is desired. However, currently many

trains are full, in particular in rush hours, so more capacity is needed. This leads to a higher

number of trains on the tracks. The problem of designing a good railway timetable with

limited infrastructure resources is a challenging problem. Increasing the frequencies of trains

makes it even more complicated to find a good timetable. In a good timetable, travel options

for passengers are spread regularly over time, so passengers can travel whenever they like and

do not have to wait a long time. However, when infrastructure resources become limiting to

accommodate all trains, this regularity of train services cannot always be realised. In such

a situation, trade-offs have to be made between having a regular service or having increased

waiting times. Furthermore, improving the level of service on one part of the network often

implies a decreased level of service on other parts of the network.

In this paper, we aim at constructing a timetable that minimizes average perceived

passenger travel time, and that can be safely operated on a given infrastructural network.

The perceived travel time does not only consist of the time a passenger actually travels,

but also includes adaption time. Adaption time is the time difference between the desired

moment of departure and the actual departure time. That means, if a passengers would like

to depart at :40, and can depart only at :50, the adaption time is 10 minutes. As is common

in many European countries, we compute a periodic timetable, i.e., a timetable for a base

period that is repeated throughout the day.

We consider infrastructure constraints on a macroscopic level. That is, we consider

railway stations with a number of tracks connecting them. In macroscopic timetabling,

headway constraints impose a minimum time difference between trains that share part of the

tracks to avoid crossings and overtakings that are not possible due to the infrastructure and

to enforce a minimum safety distance between trains running on the same track.

Many timetabling approaches impose an upper time limit on transfer times and regu-

larity of services by additional constraints. Instead of using these strict constraints, we omit

them, since our objective, the minimization of the perceived travel time of passengers, will

penalize long transfer times and waiting times at origin stations. In particular, adaption time

minimization allows to effectively synchronize trains at stations based on passenger demand.

Furthermore we allow to cancel planned trains if that leads to a better objective value.
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We define the Passenger-Oriented Timetabling (POT) problem as follows: Given an

infrastructure network with stations and tracks connecting them, and a line plan, specifying

line routes, stopping patterns and frequencies: find a timetable including all or a subset of

the trains that satisfies the headway restrictions induced by the infrastructure network and

minimizes average perceived travel time, where we assume that passengers will travel on

shortest route according to perceived travel time.

POT can be formulated as a mixed-integer linear program combining a periodic event

scheduling model with an approach for modelling average perceived travel time including

adaption time as developed in Polinder et al. [2020] for strategic timetabling. However, the

resulting model is very difficult to solve. Therefore, in this paper we propose an iterative

approach that combines (extended versions of) two existing approaches. First, we compute

an ideal timetable, that is: a timetable that does not need to respect infrastructure restric-

tions, using the method proposed in Polinder et al. [2020] for strategic timetabling. Secondly,

we transform this ideal timetable into a feasible timetable, that is: make it satisfy the in-

frastructure restrictions, using an extension of the Lagrangian heuristic (LH) proposed in

Cacchiani et al. [2010] with the goal to find a timetable that stays as close as possible to the

ideal timetable, but satisfies the infrastructure restrictions. In a next step, we compare the

resulting timetable to the ideal timetable and evaluate how the changes influence the quality

of the timetable. Based on this, we provide feedback to the Lagrangian heuristic to improve

the quality of the newly found timetable.

Our contribution in this paper is threefold: First, we define the POT problem, which

calls for determining a timetable that minimizes the average perceived travel time (that

includes the adaption time) and satisfies safety restrictions. Second, we propose an iterative

approach to POT that extends and combines an integer programming approach to find an

ideal (but possibly infeasible) timetable with a Lagrangian heuristic to repair this timetable

to feasibility, and employs feedback from the former to the latter to improve the timetable

from the passenger perspective. Third, we demonstrate our approach on three case studies

on the Dutch railway network. We show that our algorithmic approach performs better

than the alternative of directly incorporating headway restrictions in the integer program for

timetabling, and that it converges to a feasible timetable very close to the ideal one.

The remainder of this paper is organized as follows. In Section 2, we give an overview

on research that is related to and relevant for this study. In Section 3 we introduce and

define the POT problem in detail. Afterwards, we describe our iterative approach to solve

this problem in Section 4. We test our approach on three case studies on the Dutch railway

network in Section 5. Finally, the paper is concluded in Section 6.
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2 Related Work

Timetabling with PESP. The problem of finding a train timetable is extensively studied

in the literature. Often, the timetabling problems are modelled as the problem of assigning

times to nodes (‘events’) in a graph (‘event-activity network’) where arcs (‘activities’) repre-

sent the time constraints. This formulation makes periodic timetabling a special case of the

Periodic Event Scheduling Problem (PESP, Serafini and Ukovich [1989]), which can be used

for various applications with periodically recurring events. Details how PESP can be applied

in railway timetabling problems can be found in Odijk [1996], Peeters [2003]. An overview

on what can be included in a PESP framework regarding periodic timetabling can be found

in Liebchen and Möhring [2007].

Essentially, PEPS is a feasibility problem, as its task is to find a feasible solution, satisfy-

ing a set of restrictions. Several approaches exist to solve PESP, for example using constraint

programming [Schrijver and Steenbeek, 1993] or by transforming PESP into a SAT formula-

tion [Großmann et al., 2012]. PESP is known to be NP-hard [Serafini and Ukovich, 1989],

although for real-life instances feasible solutions can often be found in a short time by the

aforementioned approaches.

Often PESP is extended by an objective function that is to be optimized (cf. Peeters

[2003], Liebchen [2008], Caimi et al. [2017]). These objective functions can cover a num-

ber of subjects, like optimizing the customer satisfaction, minimizing the costs of the op-

erator, finding a timetable that is as close as possible to an infeasible input timetable, or

computing a delay-resistant timetable [Cacchiani and Toth, 2012, Lusby et al., 2018]. The

optimisation version of PESP is normally much more computationally challenging than solv-

ing the feasibility problem. Approaches to solve such problems cover various techniques,

like integer-programming [Liebchen, 2008, Nachtigall, 1994, Liebchen and Peeters, 2009], a

modulo-simplex heuristic [Nachtigall and Opitz, 2008] or combining machine-learning with a

SAT formulation [Matos et al., 2018]. In our paper, we employ a PESP-based model for the

first phase of our approach, in which the ideal timetable is computed based on the average

perceived travel time.

Timetabling based on time-space graphs. Time-space graphs constitute an alternative

graph-based modelling approach to event-activity networks. In these approaches, time is

discretized, and a time-expanded network is used:nodes correspond to events at specific time

instants, and a path in the graph corresponds to a timetable. In time-space graph models,

variables represent the choice of arcs (or paths) of this graph. Approaches based on these

kind of models have mainly been used for aperiodic timetabling, although recent works have

shown their effectiveness for periodic timetabling as well [Martin-Iradi and Ropke, 2019,

Zhang et al., 2019].
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An advantage of time-space graph models is that constraints on running and dwelling

times of a single train are directly embedded within the definition of the graph: only arcs

corresponding to feasible running or dwelling times are added. In addition, computing a

timetable for a single train corresponds to solving a shortest path problem, and can be

efficiently done by dynamic programming algorithms. Time-space graph models easily allow

the option of not scheduling some trains by assigning them a dummy path: this is particularly

useful when a feasible solution containing all trains does not exist, for example in highly

congested networks. The drawback of these models is the size of the graph that can be

extremely large for practical instances. For this reason, most approaches in this category

solve the timetabling problem heuristically by decomposing it through column generation or

Lagrangian relaxation, i.e., trains are scheduled in sequence. As a consequence, it is difficult

to handle constraints that involve multiple trains.

Several works propose models based on time-space graphs. Brännlund et al. [1998] ap-

ply Lagrangian relaxation of infrastructure constraints, and propose a heuristic algorithm

based on this relaxation that uses subgradient optimization and bundle methods. A similar

approach is developed in Caprara et al. [2002] for timetabling on a corridor: safety restric-

tions are relaxed in a Lagrangian way, and near-optimal multipliers are obtained through

a subgradient optimization procedure. Cacchiani et al. [2010] extend the time-space graph

based approach from Caprara et al. [2002] to insert freight trains into an existing aperi-

odic timetable, staying as close as possible to given ideal timetables for the freight trains.

Cacchiani et al. [2008] and Martin-Iradi and Ropke [2019] propose column-generation based

methods for models in which variables represent paths in the time-space graph. Zhang et al.

[2019] propose a multi-commodity network flow model for periodic timetabling, and apply La-

grangian relaxation and Alternating Direction Method of Multipliers. Recently Ait-Ali et al.

[2020] present a bundle method based on a disaggregate approach, where the optimisation is

performed with separate dual information for each train.

In our paper, we extend the heuristic from Cacchiani et al. [2010] to deal with periodic

timetabling, and use it in the second phase of our approach, to make a given ideal timetable

feasible.

Passenger-centric objective functions. There are several approaches to measure the

quality of a timetable from the viewpoint of the passengers, and, as shown in Hartleb et al.

[2019], the choice of evaluation approach will have an impact on which timetables are con-

sidered to be ‘good’ and ‘optimal’.

A common approach in OR approaches to timetabling is to minimize the total passenger

travel time. The most simple models for measuring and optimizing travel time within a

PESP approach minimize a function over the weighted durations of the activities in the

timetabling instance, where weights represent the number of passengers using that activity
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(cf. Peeters [2003]). This relies on the assumption that it is a priori known on which activities

passengers travel.

Schmidt and Schöbel [2015] propose a mixed-integer linear programming model that

integrates (aperiodic) timetabling and passenger routing. Borndörfer et al. [2017] provide

a similar, PESP-based model for the periodic case and study the impact of different rout-

ing assumptions.As PESP is already a challenging problem in itself, the integration of this

problem with passenger routing makes it even more difficult to find good solutions. Schiewe

and Schöbel [2019] propose an ‘applicable’ approach that relies on (heuristic) preprocessing

and bound generation. Other approaches [Lübbe, 2009, Siebert and Goerigk, 2013] solve the

problem iteratively: first passengers are routed through the network. Based on these fixed

routes a timetable is computed. Then passengers are rerouted based on the timetable. This

is repeated until a stopping criterium is met.

Martin-Iradi and Ropke [2019] propose a time-space-graph-based approach to find pe-

riodic timetables minimizing passenger travel time, and include frequency constraints to

guarantee that trains of the same line are spread along the cycle time. In a column gen-

eration approach that is designed to minimize the travel times of the trains, each feasible

solution found during the process is evaluated with respect to the passenger travel time, and

the best solution is kept. In Farina [2019], the same problem as in Martin-Iradi and Ropke

[2019] is considered and modelled on a time-space graph, and a Large Neighbourhood Search

algorithm is proposed.

The above-mentioned approaches have in common that they evaluate timetables based

on the assumption that every passenger will choose the shortest route (with respect to (per-

ceived) travel time) towards his destination, just as we do. It is well understood in transport

modelling, however, that not all passengers will choose the shortest route [de Dios Ortúzar

and Willumsen, 2011]. Instead, in transport modelling discrete choice models are used to

describe how passengers distribute over different route options. Hartleb and Schmidt [2019]

investigate how to integrate passenger distribution models instead of routing along shortest

routes into PESP.

Including adaption time into passenger-centric objectives. Besides the travel time

between departure at the origin and arrival at the destination, also the number of travel

options between origin and destination and their timing play a crucial rule in evaluating

timetables from a passenger perspective [de Dios Ortúzar and Willumsen, 2011]. E.g., a

timetable with four travel options between origin and destination, offered every fifteen min-

utes, would most likely be preferred to a timetable where there is just one such option (or

four, all departing at the same time), even if in the latter case the travel time is slightly

shorter.

Focusing solely on passenger travel time, measured from departure at the origin in the
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evaluation of a timetable, neglects the effect that the spread of travel options over time has on

the quality of a timetable. This can be overcome by including adaption time in the objective

function, while making an assumption on the distribution of ‘desired departure times’ of

passengers over time.

There are several publications on timetabling on lines and corridors, where adaption

time is explicitly included in the objective function. Often, ‘adaption time’ is called ‘waiting

time’ in this context. We use the term ‘adaption time’ throughout this literature review,

also when referring to literature where the authors use the term ‘waiting time’, to avoid

confusion with the waiting time at transfers. For single rail rapid transit lines, Barrena

et al. [2014b] and Barrena et al. [2014a] propose, respectively, an exact and an adaptive large

neighborhood search minimizing adaption time. A single rail line is also considered in Zhu

et al. [2017], where a bi-level model is proposed: the upper level model determines the train

headway times to minimize the total passenger perceived costs (given by adaption time, in-

vehicle time and penalty costs associated with arriving at the destination outside the desired

interval), while the lower level determines passenger arrival times at their origin stations. A

genetic algorithm is used to solve it. Yin et al. [2017] proposed an integrated approach to

determine train schedules and speed profiles with the aim of minimizing energy consumption

and passenger adaption time. A Lagrangian based algorithm is developed for solving it for

a bidirectional urban metro line. A rail corridor is considered in Niu et al. [2015], where a

quadratic model to determine train timetables based on given time-varying passenger demand

data is proposed. It aims at minimizing the total adaption time at stations, and is solved by

GAMS [GAMS] for a high-speed rail line.

Wang et al. [2015] propose a very detailed event-driven model for timetabling on urban

networks with the objective to minimize a weighted sum of travel time (including adaption

time) and energy consumption. Their solution approach is based on sequential quadratic

programming and a genetic algorithm, and tested on a small network with two cyclic lines

with the Matlab optimization toolbox [The Mathworks].

Instead of including adaption time into the objective function, Gattermann et al. [2016]

group passengers into time slices, and add a penalty to the objective function if passengers

do not depart in the respective time slice. They propose a (non-linear) PESP-based math-

ematical programming formulation, and transfer it to a SAT formulation to solve it. While

the model allows to group passengers into (predefined) time slices and penalize deviation

from the respective time slice, a heuristic to including adaption time, in the numerical ex-

periments reported in Gattermann et al. [2016] however, only one time slice (that spans the

whole period) is used.

Polinder et al. [2020] consider timetabling in the strategic railway planning phase. Like

in the POT problem, they aim at finding a periodic timetable that minimizes perceived travel

time (a weighted sum of in-train, transfer, and adaption time and transfer penalties) under
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the assumption that passenger demand is uniformly distributed over the period. However, in

contrast to the POT problem, they do not consider infrastructure constraints, arguing that

these are not relevant in the strategic planning phase. In this paper, we use the approach

developed in Polinder et al. [2020] for strategic timetabling to compute an ideal timetable in

the first phase of our solution approach. It is therefore described in more detail in Section 4.2.

Compared to the existing literature on passenger timetabling, we include the adaption

time minimization in the objective, instead of having strict regularity constraints in order to

gain flexibility. In addition, we consider a railway large network while most works tackle the

problem on a single line or corridor.

3 Problem Description

3.1 Input

The timetable that is to be designed is based on three items: First, the infrastructure network

on which the trains operate. Second, an origin-destination matrix representing passenger

demand. Third, a line plan that specifies line routes and frequencies.

We consider an infrastructure network on which the trains have to be operated. There are

generally three levels of detail on which such a network can be considered: the macroscopic,

mesoscopic and microscopic level [Radtke, 2014, Goverde et al., 2016]. As usual in tactical

planning, we consider the infrastructure on the macroscopic level [Radtke, 2014, Chapter 3.3].

That means, the network contains the stations, a number of tracks between the stations,

estimated driving and dwell times, and headway times between consecutive trains. Further

details like block sections and signalling systems are not important at the tactical planning

stage and can be included in a later planning stage [Radtke, 2014, Chapter 3.4].

Passenger demand is given in the form of an origin-destination matrix OD. For each

OD-pair k ∈ OD, the corresponding matrix entry dk represents the number of passengers

who want to travel from the origin to the destination in one period.

A line plan specifies a set of train lines that are to be operated on the given infrastructure

network. Each train line consists of a route through this network, a list of stations where the

train stops (a stopping pattern) and a frequency that specifies how often the line is operated

per hour. We assume that all lines are operated in both directions. Note that in the line

planning phase, no timetable is known yet. Therefore, while line planning can take into

account constraints on the infrastructure utilization, and on eligible frequencies, it is not

ensured that there exists a feasible timetable where all trains specified in the line plan can

be operated. Therefore, we allow our method to cancel trains if necessary.
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3.2 Passenger-oriented timetabling

Based on the infrastructure network, the demand encoded in the OD-matrix OD, and the

line plan, the passenger-oriented timetabling (POT) problem can be summarized as

Minimise
∑
k∈OD

dk ·Rk(π) (3.1)

Such that TimetablingRestrictions(π) (3.2)

RoutingRestrictionsk(π) ∀ k ∈ OD. (3.3)

Here, π is the timetable, dk is the demand for OD-pair k and Rk(π) is the average perceived

travel time for the passengers of OD-pair k.

We aim at finding a timetable π that is operationally feasible (as ensured in con-

straints 3.2) and integrate the routing of passengers through the network (constraint (3.3))

such that the average perceived travel time (objective (3.1)) is minimized. The timetabling

restrictions 3.2 can be formulated as standard PESP constraints, with the particularity that

synchronization constraints and upper bounds on transfer times are not included. See Sec-

tion 3.2.2 for details.

Constraints (3.3) are auxiliary constraints that compute passenger routes according to

shortest perceived travel times in the timetable, to be able to evaluate the timetable with

respect to total perceived travel time in the objective (3.1). The modelling of these constraints

and the objective is described in Section 3.2.3.

By optimizing with respect to total perceived travel time, which includes the adaption

time, we are able to exclude synchronisation constraints and upper bounds on transfer times

from our modelling, and thus trade-off the synchronization on different part of the network

in our model. This is illustrated in the following section, using an example from Polinder

et al. [2020].

3.2.1 Example

The inclusion of adaption time in the objective function allows us to trade-off regularity of the

timetable on different lines and dwelling times of trains at intermediate stations. This is best

illustrated through an example taken from Polinder et al. [2020]. There are three stations

S1, S2, S3 and two train lines; L1 and L2. L1 visits all three stations (with a frequency of

two trains per hour), and L2 only visits S2 and S3 (with a frequency of one train per hour).

If we consider only passengers traveling from S1 to S2 and S3, an optimal timetable spreads

train departures evenly over time, so that every 30 minutes a train departs from S1, and the

average waiting time at S1 is 15 minutes. Unnecessary dwelling time at S2 should be avoided

to keep in-train times for passengers to S3 low, leading to a departure of L1-trains every 30
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minutes from S2. However, in order to optimize the timetable for passengers from S2 to S3,

trains from S2 should depart every 20 minutes. Depending on passenger numbers for the

different OD-pairs and the weighing factor for the adaption time, we would thus trade-off the

three factors: regularity on the first part of the network, regularity on the second part of the

network, and dwell time at S2. The three options are visualized in Figure 1.

S1

S2

S3

30 30

15 1530

(a) S1 → S2 synchronised

S1

S2

S3

40 20

20 20 20

(b) S2 → S3 synchronised

S1

S2

S3

30 30

20 20 20

(c) All synchronised with addi-
tional dwell time at S2

Figure 1: Time space diagrams for different synchronisation options (taken from Polinder
et al. [2020])

3.2.2 Timetabling restrictions

In this section we describe the modeling of the constraints (3.2), for which we use the periodic-

event scheduling approach, first described by Serafini and Ukovich [1989] which is very com-

mon in periodic railway timetabling.

The timetabling constraints are formulated based on the line plan and the infrastructure

network. More precisely, the line plan defines a set of events V , the departures and arrivals

of the trains at stations, which need to be scheduled. As we consider a periodic timetable,

these events are periodic, i.e., they re-occur every time period. The event times have to

satisfy several restrictions to form a feasible timetable. There are minimum driving times

between stations, constraining the arrival time of a train to the preceding departure time.

Furthermore, in stations we have minimum dwell times to let passengers board and alight.

We also have minimum transfer times to make connections between trains. Additional re-

strictions can be added to ensure a safe operation of trains, given the infrastructure network.

In macroscopic timetabling, a safe operation is ensured through headway restrictions upon

departure and arrival at stations. Headway restrictions ensure that a minimum time between

two consecutive trains is respected upon departure and arrival at a station, in order to avoid

collisions. We also consider overtaking constraints, ensuring a minimum headway time is

respected on tracks between stations, when the headway constraints only are not enough to
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prevent overtakings. Finally, crossing constraints ensure that if two trains use a track in

opposite directions, they can do this safely, without meeting each other halfway.

In periodic timetabling, the restrictions are often referred to as activities. All activities

are stated between pairs of events. The set of activities is denoted by A. The events V and

activities A together can be visualized as an Event-Activity Network (EAN).

A periodic timetable is an assignment of times in to events, i.e., it can be denoted as

π : V 7→ {0, 1, . . . , T − 1}. A commonly used model for periodic railway timetabling on a

macroscopic level is the Periodic Event Scheduling Problem (PESP) [Serafini and Ukovich,

1989]. The task in PESP is to assign arrival and departure times to the events V , i.e., find

a timetable π : V 7→ {0, 1, . . . , T − 1}, fulfilling periodic time constraints of the form

(πj − πi − `ij mod T ) + `ij ∈ [`ij , uij ] ∀ (i, j) ∈ A, (3.4)

where `ij , uij model lower and upper bounds on the time difference between events i and j,

and T is the cycle period of the timetable. This can be reformulated for use in an integer

linear program as

πj − πi + Tpij ∈ [`ij , uij ] ∀ (i, j) ∈ A, (3.5)

where pij is a binary variable denoting the modulo operator, i.e., a shift from one cycle to the

next. All aforementioned activities can be formulated as a PESP-constraint. An overview

of other activities that can be formulated in a PESP context can be found in Liebchen and

Möhring [2007], Kroon et al. [2014].

As mentioned in Section 1, we do not impose upper bounds on transfer times. However,

each PESP-constraint requires an upper bound. We deal with this by setting for such (i, j) ∈
A the upper bound to uij = `ij + T − 1. Due to this, all time differences between events i

and j are possible, i.e., there is no operational restriction. When for example πj = πi + 2

and `ij = 3, the time difference between events i and j is two minutes, but also any multiple

of T minutes can be added (due to the Tpij term in (3.5)). In this case, the transfer time is

not 2 minutes, but 62 (when T = 60), since `ij = 3 en uij = 62. By this way of modelling,

the proper transfer times for passengers can be determined. The same principle holds when

upper bounds of, for example, trip and dwell times are omitted. In this way, no operational

restrictions are added. In section 4, when our model is explained, these transfer activities are

used to determine the correct passenger paths and their perceived duration.

3.2.3 Passenger route choice and evaluation of the timetable

In constraints (3.3) we model that each passenger will choose a route that minimizes his

perceived travel time. We model this following the approach outlined in Polinder et al. [2020]

for strategic timetabling.
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The perceived travel time of a passenger consists of the following components:

Adaption time This is the time difference between the desired departure time of the pas-

senger and the moment the train departs that brings him to his destination. The

adaption time is weighted by a factor γw.

In-train time This is the time the passenger actually spends in the train, both when the

train is driving and when it dwells at a station.

Transfer time This is the time a passenger has to spend on some station to transfer from

one train to another. The transfer time is weighted by a factor γs.

Transfer penalty If the passenger needs to transfer from one train to another, a penalty of

γt is added for each transfer. This is done to model the fact that passengers in general

do not like to have a transfer [de Keizer et al., 2015].

Note that while the adaption time depends both on the chosen route and on the desired

departure time of the passenger, in-train time, transfer time, and transfer penalty are char-

acteristics of the route. We therefore refer to the weighted sum of these as perceived route

length in the remainder of this paper.

To evaluate the timetable, we follow the approach described in Polinder et al. [2020] and

assume that passenger demand per OD-pair is distributed uniformly over the period. I.e.,

every time unit (in our model: every minute) dk
T passengers would like to depart from the

origin station of OD-pair k to travel to the destination station of OD-pair k. The rationale

behind this assumption is that the timetable is usually constructed a number of years to

six months before the actual day of operation, and we cannot expect that time-dependent

demand is known accurately.

To compute the average perceived travel time for an OD-pair k, Rk(π), we group pas-

sengers according to their desired average adaption time and the routes they would take

correspondingly. This allows us to compute in-train time, transfer time, transfer penalty and

average adaption time per route and weigh it with the corresponding passenger number, to

obtain Rk(π) as a weighted average. If, due to train cancellations, there is no route from

origin to destination of OD-pair k, we set Rk(π) := M , where M is a (high) penalty value. In

the remainder of this paper, we refer to dk ·Rk(π) as the evaluation contribution of OD-pair

k ∈ OD.

To evaluate the timetable we sum up the evaluation contributions of the OD-pairs and

obtain ∑
k∈OD

dk ·Rk(π, Yk) (3.6)

which we use as objective function (3.1) in our problem.
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We now explain the grouping of passengers in more detail: We precompute a set of routes

Rk for each OD-pair k ∈ OD as paths in the event-activity network. The set of routes is

computed based on the line plan and contains routes that could be a reasonable option for

OD-pair k. We denote the set of all first departure events on routes for OD-pair k as the set

of relevant departure events for OD-pair k, V k.

Note that which route from Rk a passenger of OD-pair k takes, depends on the desired

departure time of the passenger, the time at which the first departure events of the routes

are scheduled, and the perceived route lengths. In particular, if, based on a timetable, for

each OD-pair we divide the period into time slices according to the scheduled times of the

relevant departure events, we know that passengers arriving in the same time slice will choose

the same route. We can therefore group the passengers of OD-pair k into |V k| groups.

Based on the assumption that passenger demand is uniformly distributed over time, the

number of passengers in the group associated with relevant departure event v is proportional

to the time that has passed since the previous departure event v′. It can be computed as
dk
T · (πv − πv′). Based on the assumption of uniformly distributed arrivals, the average time

between desired departure and πv is
(πv−πv′ )

2 . (Note that the average adaption time of the

group could be longer: in case that the route starting with event v has a high perceived

length, the passengers from this group may decide to take a later-departing route.)

The above-made considerations allow us to compute the total adaption time for a given

timetable. To integrate these calculations into a mathematical program that determines and

evaluates the timetable simultaneously we compute the values Akv which denote the number

of minutes before event v in which no other departure of a route towards the destination of

OD-pair k takes place, as

Akv := min
v′∈V k

{
πv − πv′ + Tαv,v′

}
, ∀ v ∈ V k, (3.7)

where binary variables αv,v′ account for a shift from one cycle to the next, similar to the

modulo operator pij in (3.5). Then the number of passengers in the group associated with

relevant departure event v is given as dk
T ·A

k
v and the average time between desired departure

and πv for members of this group is Ak
v
2 .

The perceived duration of the shortest route r for passengers in the group associated

with relevant departure event v can be modelled as

Akv
2

+ min
v′∈V k

min
r∈Rk

v′

{
γw ·

(
πv′ − πv + Tαv,v′

)
+ Yr

}
. (3.8)

Here, the first expression corresponds to the adaption time of passengers in the group. As

mentioned before, passengers can choose to have a longer adaption time by waiting for a later

departure v′. This is modelled by the first term in the minimum. The second term, Yr, is the
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perceived route length of route r, starting with departure event v′. Note that the perceived

duration Yr of such a route is now dependent on the timetable but has to be calculated as

the (weighted) sum of the duration of the activities used in the route.

3.3 Lower bound and excess evaluation contribution

Based on minimum drive, dwell, and transfer times and penalties, we can compute lower

bounds on perceived route lengths. Furthermore, by predetermining routes for each OD-pair,

we can compute a lower bound on the total adaption time of one OD-pair, by assuming that

departure times for this OD-pair are perfectly synchronized. The sum of the lower bound

for perceived route length for an OD-pair, multiplied with the number of passenger for this

OD-pair, and the lower bound on adaption time, gives us a lower bound on the OD-pair’s

perceived travel time. We refer to the difference between the evaluation contribution of an

OD-pair and the so-computed lower bound as excess evaluation contribution. The sum of

lower bounds over all OD-pairs provides us with a lower bound on the evaluation value of

the timetable.

4 Solution Approach

This section describes the algorithmic approach that we use to solve the problem. We first

outline the overall approach, before we describe the involved steps in more detail.

4.1 High-level description of the solution approach

It is possible to extend the mathematical programming formulation for strategic passenger-

oriented timetabling stated in Polinder et al. [2020] to include safety constraints (headway,

overtaking and crossing contraints) that model infrastructure requirements, by adding more

PESP-constraints. In that way, POT can be modelled as a mixed-integer (quadratic) pro-

gram. However, the incorporation of the safety restrictions leads to a strongly interconnected

event-activity network, which in itself leads to a challenging PESP problem to solve on net-

works of realistic size (cf. Goerigk and Liebchen [2017], Liebchen et al. [2008]). Combined

with the variables and constraints introduced to the model and the objective function, the

problem formulation becomes unsuitable to solve large real-world instances on general pur-

pose IP solvers.

Therefore, in this section we propose an iterative approach. A graphical overview of our

approach is shown in Figure 2. The numbers mentioned in the sequel refer to the numbers

in this figure.

In a first step, we construct an ‘ideal’ timetable (i.e., one which does not need to take

safety restrictions into account) using the solution approach for the strategic timetabling
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Figure 2: Flow diagram of our approach

problem from Polinder et al. [2020]. This approach is summarized in Section 4.2. An extension

of the Lagrangian heuristic (LH) from Cacchiani et al. [2010] is used to modify the timetable

to make it feasible with respect to infrastructure restrictions, while staying as close as possible

to the ideal timetable. As LH requires a particular structure for the objective (as outlined

in Section 4.3), a transition has to be made from one module to the next. This is done

by specifying a profit structure for each train in the line plan, that is based on the relative

importance of the trains (1). In fact, different profit structures are used, to generate a

pool of feasible timetables with LH. We detail in Section 4.3.2 how profit structures are

chosen. We evaluate all feasible timetables from the pool of timetables found with LH (2)

with the evaluation function (3.6). Based on the evaluation values, we select one or several

feasible timetables for comparison with the ideal timetable. We check for which OD-pairs

the evaluation contribution is improved became better and for which it gets worse. Based on

this, we update the profit structure (3) and rerun LH to hopefully find a better timetable.

We repeat this procedure, until no improvements are found any more. We then end with

the best found timetable (4). Each phase of the algorithm is explained in more detail below.

4.2 Make an ideal timetable

We define an ideal timetable as a timetable that minimizes average perceived travel time,

without necessarily being feasible with respect to infrastructure and safety requirements.

When removing all PESP constraints modelling infrastructure and safety requirements from

the formulation of POT (3.1)-(3.3), the corresponding event-activity network becomes much

less dense. However, for large real-world instances, general-purpose solvers may still struggle

to find an optimal (or provably good) solution in a reasonable approach of time. We therefore
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adopt the solution approach proposed in Polinder et al. [2020], which studies POT problems

without infrastructure and safety constraints in a strategic timetabling context.

We first linearise the quadratic objective and the constraints that take a minimum over

a set. Secondly, we use the proposed stepwise heuristic to construct a starting solution. This

heuristic is related to a ‘Relax-and-Fix’ heuristic [Belvaux et al., 1998, Wolsey, 1998]. In this

heuristic, only the largest OD-pairs are taken into account. Then, all variables are relaxed

to continuous variables, except for the variables related to the timetabling restrictions. This

leads to a relatively easy model to solve and it leads to a feasible timetable. After that, step

by step other variables are changed into integers, to improve the quality of the timetable.

In each step, the solution of the previous step is used as a warm start for the new step.

After the heuristic finishes, the resulting timetable is used as a warm start to solve the full

mathematical model. We use IBM Cplex to solve the various models [IBM, 2019].

4.3 Make a feasible timetable

In this section, we focus on the second phase of our solution approach. After an ideal timetable

is computed, we compute a timetable that is feasible, i.e., satisfies all the safety restrictions,

and is as similar as possible to the ideal one. A Lagrangian heuristic algorithm (LH) is used

in this second phase. It extends the method proposed in Cacchiani et al. [2010], where it has

been applied for solving a non-periodic train timetabling problem. For the sake of clarity, we

briefly describe, in Section 4.3.1, the main steps of LH, and refer to Cacchiani et al. [2010]

for further details. Then, in Section 4.3.2, we present the new features added to LH in order

to cope with additional real-world constraints.

4.3.1 Main steps of LH

LH takes as input the description of the infrastructure network, an ideal timetable, and a

profit structure. The ideal timetable contains, for every train, the desired departure and

arrival times at every visited station. In order to derive a feasible timetable, LH can change

the ideal timetable (i) by moving (earlier or later) the departure time of some trains from

their origin stations (shift) and consequently moving the arrival and departure times, at all

the stations visited by the train, by the same amount, (ii) by increasing the dwell time at

some of the visited stations (stretch) and (iii) by cancelling trains. Each of these changes is

undesirable, and thus it is penalised, but not all changes have the same importance. Clearly,

train cancellation has a deeper impact on passengers, as the line frequency is reduced or even

some OD-pairs might not have a travel option to reach their destinations. However, shift and

stretch also affect the passenger travel as they influence the adaption, in-train and transfer

times. In addition, the same change applied to different trains (e.g., intercity versus local

trains, high- versus low-frequency train lines) has different consequences. In order to obtain
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a feasible timetable that is as similar as possible to the ideal one, and also to give different

importance to the different changes, we define a profit structure. In particular, each train

is associated a train profit, a shift penalty, a stretch penalty, a maximum shift value, and a

maximum stretch value. The train profit corresponds to the importance of scheduling the

train, and is decreased by the shift penalty for every minute of shift, and by the stretch penalty

for every minute of stretch. The maximum shift and stretch values represent the bounds on

the changes of the respective type that can be applied to obtain a feasible timetable. Note

that, as in Cacchiani et al. [2010], we do not consider the option of decreasing the dwell time

at a station, nor that of increasing the train travel time between consecutive stations.

To represent the train timetabling problem, LH uses a time-space multi-graph, in which

every node corresponds to a train event, i.e., to a departure or an arrival time of a train

from/at a station along a track. Arcs represent the travel of a train between two consecutive

stations or the stop of a train at a station, and are partitioned into arc sets, one for each train.

Different trains can have different travel and dwell times, but it is also possible that two (or

more) trains have the same departure and arrival nodes: therefore, there can be multiple arcs

(of different trains) between the same nodes, i.e., we deal with a multi-graph. A path in this

time-space multi-graph corresponds to a train timetable that respects the train travel and

dwell times. An Integer Linear Programming (ILP) model based on this time-space graph

contains one binary variable for each arc, that assumes value one if the arc is selected in

the solution. In this ILP, each arc is assigned a profit that is used to obtain a timetable as

close as possible to the ideal one: the profit associated with the travel arc of a train from its

origin station to the consecutive one is given by the train profit decreased by the shift penalty

counted for every minute of shift incurred by that departure time; the profit associated with

each arc corresponding to a stop at a station is zero, if that arc corresponds to the minimum

dwell time, or is decreased by the stretch penalty counted for every minute of stretch incurred

at that station. Clearly, if a train is cancelled, no profit is obtained.

The objective of LH is to maximise the total profit of all trains. The constraints require

to select, for each train, arcs that form a path in the time-space graph, and do not conflict

with arcs selected for any other train, i.e., satisfy all safety restrictions. Obviously, the

difficulty of solving the problem comes from the latter constraints: therefore, LH applies a

Lagrangian relaxation of all these constraints. This allows us to easily compute the solution

of the relaxed problem (Lagrangian solution) by dynamic programming, since it consists of

finding, for each train, the most profitable path in the time-space graph. In order to improve

the Lagrangian multipliers associated with the relaxed constraints, LH iteratively executes a

subgradient optimization procedure, in which Lagrangian multipliers are updated and added

to the arc profits, so as to take into account the constraint violations or looseness. Meanwhile,

at each iteration of the subgradient optimization procedure, to determine a feasible timetable,

LH applies the following steps: (i) it orders trains based on their profits in the Lagrangian
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solution (Lagrangian profit), (ii) schedules one train at a time in the most profitable way

while avoiding all conflicts with the previously scheduled trains, and (iii) applies a local

search procedure that tries to find a better path for one train at a time (if it had shift,

stretch or was cancelled) by keeping all other paths as fixed, and this time considering the

original arc profits.

4.3.2 New features of LH

Adapting LH to periodic timetabling. The version of LH developed in Cacchiani et al.

[2010] is developed for a non-periodic train timetabling problem. However, it is capable

of handling a ’periodicity’ of one day: namely, in the non-periodic timetabling problem,

the timetable was repeated in the same way every day. In this work, we apply LH to a

periodic train timetabling problem, where the cycle time is one hour: in this context, beside

changing the length of the period, we need to ensure that the duration of the total shift time

window (earlier and later shift) plus the total stretch is smaller than the cycle time. If this

is not guaranteed, then we cannot uniquely define the shift or stretch penalty of an arc: for

example, a shift of one minute would not be different from a shift of sixty-one minutes. We

note that this limitation is reasonable, since usually at least two trains with the same origin

and destination stations should be scheduled in each cycle time, and thus it is not useful to

globally shift or stretch a train more than the cycle time.

Rolling stock restrictions. Another change is applied to the original LH as described

in Cacchiani et al. [2010] in order to deal with basic rolling stock constraints: in practice,

usually trains of the same line (i.e., trains with the same origin and destination stations, and

stopping at the same intermediate stations) are scheduled in “pairs”, so that when a train

is scheduled in one direction, another train is also scheduled in the opposite direction. The

reason is that, in this way, the same rolling stock (physical train) is assigned to both services,

and we also obtain a more regular timetable that has the same number of trains running in

both directions. In general, according to the line frequency, there can be more than two trains

of the same line in a period: in this case, we need to guarantee that the same number of trains

is scheduled in both directions. Since LH allows train cancellation as one of the changes that

can be applied to obtain a feasible timetable, we need to guarantee that, if a number of trains

of a line is cancelled in one direction, then the same number of trains is also cancelled in the

opposite direction. Clearly, this can be easily obtained by simply cancelling additional trains:

however, cancelling trains is highly undesirable. Therefore, we modify LH by including a new

procedure as follows. At each iteration of the subgradient optimization procedure, when a

feasible timetable has been determined and the local search procedure has been executed to

improve it, we check, for every train line, the number of trains cancelled in each direction.
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If this number is not the same in both directions, then we cancel additional trains, so that

the same number of trains are scheduled in both directions. Once all train lines have been

processed, for each train line, we try to reschedule trains in pairs by computing, for each train,

the most profitable path compatible with the previously scheduled ones: this computation

is performed by dynamic programming considering the original arc profits. Note that it is

possible to schedule previously cancelled trains thanks to the additional train cancellation

applied at the beginning of this procedure. If the same number of feasible paths is found for

both directions of a line, then the corresponding train paths are fixed in the execution of this

procedure, otherwise trains are cancelled again. Since this procedure can change the set of

scheduled trains, after executing it, we apply the local search procedure to possibly further

improve the timetable. We observe that, for the considered instances, the number of trains

per line is two or four, and thus this procedure can be executed efficiently.

Intermediate shift penalties. A final extension we developed is used for the feedback

process, that is applied after the timetables have been evaluated. In this process, LH takes as

input the infrastructure description, the ideal timetable, and a new profit structure. Beside

the possibility of updating shift and/or stretch penalties, we also include, during the feedback,

the option of penalising the shift at some intermediate stations visited by a train (so not only

at the origin station of the train). Indeed, we observed that the timetables produced by LH

sometimes show irregular departure headway times from some intermediate stations, and it

is thus useful to penalise this irregularity. To this aim, we add, for every minute of shift,

an intermediate shift penalty to the profit of each arc that corresponds to the stop of a

train at a station: based on the dwell time at the station, the departure time from that

station determines the corresponding intermediate shift. LH is then executed by considering

these additional penalties in the computation of the Lagrangian solution and of the feasible

timetable, and in the local search procedure.

Note that adding an intermediate shift penalty at a station where a train line starts, has

no effect on this specific train line, since there is no arc associated with a dwell time of this

train line at this station. However, for departing trains of this line, we do have the regular

shift penalty, but this is not penalized on an arc associated with a stop of a train.

4.4 Evaluate & update profit structure

In the remainder of this section, we describe how we provide feedback and update the profit

structures, in order to find better timetables.

We evaluate each timetable generated by LH using the evaluation function (3.6). The

best timetable according to this evaluation function after running LH is referred to as the

best pure Lagrangian (BPL) timetable. By comparing the evaluation contributions of all OD-
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pairs in the ideal timetable π and in the BPL-timetable π′, we can identify the OD-pairs for

which the evaluation contribution increased the most. We inspect the routes chosen for these

OD-pairs and the corresponding trains to find the reason of the increase. In a ‘feedback’

step, we generate a new set Ψ of updated profit structures, based on the initially chosen

profit structure S to penalise the undesired changes more. Since we are not able to predict

by how much we should penalize deviation from the ideal timetable, we use a set of penalty

values P and create several profit structures based on S and P . We proceed as follows:

1. Identify the OD-pairs for which the evaluation contribution increased the most. This

increase can be caused by high passenger numbers or by a high increase in the perceived

travel time. We refer to these OD-pairs as relevant OD-pairs in the remainder of this

section. Let O = {o1, o2, . . . , oκ} be the set of origin-stations for the relevant OD-pairs.

2. We create |O| · |P | new profit structures, one for each combination of penalty values

from P at each station. We create the corresponding profit structure as follows: for

each station oi ∈ O and for each pj ∈ P , we create a new profit structure that is based

on S, with an additional intermediate shift penalty of value pj that is assigned to all

trains passing station oi. Furthermore, all trains for which oi is an origin or terminal

station and which are relevant for the corresponding OD-pair identified in step 1, receive

shift penalty max{s(t), pj}, where s(t) is the regular shift penalty for train t in profit

structure S.

If |O| > 1, we generate additional profit structures. In these new profit structures

we apply the same principle as above, but now we apply the penalties to all pairs of

stations. That means, for each oi, oj ∈ O and for each pm, pn ∈ P , apply (intermediate)

shift penalty pm to station oi and penalty pn to station oj .

Given the set of updated profit structures Ψ, we again run LH, as outlined in Section 4.1.

Each of these profit structures leads to a new timetable which we evaluate. If any of these

timetables gives a better evaluation value, we stop the feedback process and finish with

the best timetable generated using Ψ. Else, execute steps 1 and 2 again with the original

profit structure as input, but now also identify OD-pairs as relevant for which the evaluation

contribution increased the most in the best timetable generated using the profit structures

in Ψ. The timetable that is the best after providing feedback is referred to as the best after

feedback (BF).

We underline that the intermediate shift penalty is not adopted at every intermediate

station where there are irregular departure headway times, but only at those that cause a

significant increase in the evaluation value. Indeed, it would not be effective to penalise

shifts at every station, since some changes are neededin order to get a feasible timetable.

Therefore, we aim at penalizing the changes that have most impact on the evaluation value
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of the timetable. For the same reason, we do not use the intermediate shift penalty when LH

is applied to the ideal timetable in the first round before the feedback process.

The rationale behind our feedback approach, is that adaption times have a strong influ-

ence on the evaluation value of a timetable. If LH causes a higher irregularity in the new

timetable compared to the ideal timetable, the evaluation value is likely to increase. For this

reason, we focus on the shift penalties in the feedback process. However, many alternative

strategies to provide feedback in order to reduce the evaluation contributions of OD-pairs can

be thought of, as we can update initial train profits, shift and stretch penalties, maximum

shift and maximum stretch, as well as adding intermediate shift penalties. We experimented

with different strategies on how to update profit structures before we identified this one which

was successful on our three test instances and that is presented here.

5 Case Study

In this section we perform three case studies. First, we describe the three instances in

Section 5.1. Next, in Section 5.2 we describe the parameters that are used in our approach.

In Section 5.3, we describe and discuss the obtained results. Finally, in Section 5.4 we

benchmark our iterative approach with solving the POT model as an integer program.

5.1 Instances

Here we describe the instances that we consider in more detail. Each instance is based on a

central corridor. Figure 3 displays for each instance an overview of the network, the central

corridor on which the instance is based is shown in red.

5.1.1 A2-corridor instance

The first instance we consider is the ‘A2-corridor’, which is a corridor between the stations

Eindhoven (Ehv) and Amsterdam Central (Asd). The network contains 34 stations. Fur-

thermore, five train lines are operated on this network with a frequency of two trains per

hour in both directions, so there are 20 trains in total. All of them are Intercity-lines. The

map of the corresponding network is shown in Figure 3a. We label five out of the 34 stations

because they are used in the feedback of our approach. The stations Ehv and Asd are the

ends of the central corridor, as is indicated by the red line.

In this instance, we consider 891 OD-pairs in total. The underlying event-activity net-

work (as introduced in Section 3.2.2) contains 1344 events and 1460 drive and dwell activities.

Note that these events do not only cover arrivals and departures at stations where the train

stops, it also covers departure and arrival times of stations that the train passes, as also

in these locations, consecutive trains need to satisfy the headway time of 3 minutes. To
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Figure 3: Networks of the three instances considered

build the model for constructing the ideal timetable, 376 transfer activities are included to

ensure the transfer possibilities. Note that they do not impose operational restrictions on the

timetable as explained in Section 3.2.2. For a full mathematical programming formulation

of POT, infrastructure constraints should be added. This leads to 2964 additional activities

modelling safety distances.

5.1.2 Rotterdam-Groningen instance

The second instance covers part of the 2019 line plan of Netherlands Railways [NS]. It is

centered on the line between Rotterdam (Rtd, in the South-West) and Groningen (Gn, in

the North-East). This line is marked in red in Figure 3b. All lines that share a part of their

route with the indicated line are added. Note that a consequence of this way of instance

construction is that some, but not all lines operating on the network arcs indicated in black

are included in our instance. The network contains 77 stations, of which 6 are labelled because

they occur in our description of the results. In total we have 60 trains in the network.

The underlying event-activity network of this instance contains 1664 events and 1716

drive and dwell activities. The model for constructing the ideal timetable has 1402 addi-

tional transfer activities to enable all passenger routes. In order to deal with the restrictions

modelling safety distances, 4004 additional activities are needed. There are 3810 OD-pairs.

Note that, although there are many more trains compared to the A2-corridor instance, the

number of events, as well as of drive and dwell activities, increased only slightly compared

to the A2-corridor. The reason for this is that we now have a number of trains which only

have a short route (and thus less events are needed per train line). The main increase is seen
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in the number of transfer activities, to generate all possible transfer routes, as well as in the

number of activities modelling safety distances.

5.1.3 Extended A2-corridor instance

The third instance is an extension of the A2-corridor instance. The line plan is based on

all train lines in the 2019 network of Netherlands Railways that share a part of their route

with the corridor between Amsterdam Central (Asd) and Eindhoven (Ehv). This corridor is

marked in red in Figure 3c, which also shows the remainder of the network, including the

locations of several stations that we use in the discussion of the results later on. The total

number of trains in this network is 88 and the network contains 140 stations.

This instance considers 11121 OD-pairs. The event-activity network contains 3160 events

and 3308 drive and dwell activities. Furthermore, 3592 transfer activities are added to enable

all passenger routes in the model to construct the ideal timetable. Adding the restrictions

modelling safety distances leads to 8360 additional activities.

5.2 Parameters

This section describes the parameters that we use in our experiments. First, we describe

instance parameters, as well as the parameters for the objective function. Next, we detail

the profit structure that we use for LH.

To compute an ideal timetable, an integer programming problem has to be solved. The

same has to be done for solving POT directly, as we do in Section 5.4. For this, we use a

machine with an Intel Xeon Silver 4110 2.10Ghz processor with 96 GB of RAM installed.

These mathematical programs are solved by Cplex 12.9.0 under default settings, using up to

15 parallel threads [IBM, 2019].

5.2.1 Instance & objective function parameters

In all our experiments we discretise time to minutes and use a period length of one hour,

i.e., T = 60. In each of the instances, we take a headway time of three minutes into account

between two trains leaving or entering a station. Furthermore, trains cannot overtake each

other between two stations. When trains in opposite directions have to be separated in time

when entering or leaving a station, we require this time to be at least one minute. If there

are two tracks between stations, trains in the same direction will share one track, the other

track is for the other direction. Finally, if there are four tracks available, two tracks are used

per direction. The Intercity trains use one track and the local trains use the other, the same

holds for the other direction.

The perceived travel time for the passengers consists of in-train time, transfer time, a

transfer penalty, and the adaption time. In line with Polinder et al. [2020] and de Keizer
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et al. [2015], we set γt = 20, i.e., the transfer penalty equals 20 minutes. Secondly, we use

γs = 1, i.e., transfer time weights as much as in-train time. This is done since we already

have a transfer penalty. Finally, we take γw = 3, i.e., adaption time weights three times as

much as in-train time.

If passengers no longer have a travel option when trains are cancelled, we add a penalty of

value M to the average perceived travel time of these passengers, as explained in Section 3.2.3.

In our experiments, we set this value M to be 24 · T , i.e., it equals a full day of travel time.

Finally, since the numbers in the OD-matrix are confidential, we scale all evaluation val-

ues. That is, we divide all evaluation numbers by the evaluation value of the ideal timetable,

and multiply this by 100, so the evaluation value of the ideal timetable is indexed to 100.

That means that an increase in the evaluation value by one unit means the evaluation value

is 1% higher than that of the ideal timetable.

5.2.2 Chosen profit structure

As explained in Section 4.3.1, the Lagrangian heuristic requires the specification of a profit

structure. Different profit structures can produce different timetables. As an initial profit

structure, we define the train profits based on the train type (Intercity, local, etc.) and also

on line frequencies. For the train type ‘Intercity’, we consider a base profit of 4000. For the

train type ‘local train’, the base profit is reduced by 10% to 3600. For trains that partly

operate as an Intercity and partly as a local train, the base profit is reduced by 5% (to 3800).

Then, for each pair of consecutive stations that the train visits, we identify the number of

trains that travel between the same pair of consecutive stations, and take the minimum m of

these numbers along the train route. The train profit is computed as its base profit divided

by m. As an example, if we consider a local train line, whose line frequency is two, and that

is the only train line offering a service on some part of the network, then on this part of the

network, there are only two trains and hence m = 2. Then the profit for the trains in this

line is (4000 · 0.9)/2 = 1800. If another line with frequency two is present as well on the

considered part of the network, we have m = 4 and the profit is 900.

For the shift and stretch penalties, we consider equal values for all trains, and globally

three alternative options: (1) shift penalty set to 20 and stretch penalty to 10; (2) both shift

and stretch penalty set to 15; (3) shift penalty set to 10 and stretch penalty to 20. Namely,

we assign more importance to the shift penalty in the first case, same importance to both

changes in the second case, and more importance to the stretch penalty in the third case.

Indeed, it is not known a priori whether a shift or a stretch is worse: it depends on the

location where this happens and what the influence is on the regularity of trains in general.

In addition, we want to explore a rather broad spectrum of profit structures, because it is not

a priori known which changes in the timetable have the least negative effect on the evaluation
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of the timetable according to evaluation function (3.6).

As maximum shift and maximum stretch, we also consider the same values for all trains,

and start by assigning value 5 to both of them: this means that each train can have its

departure time from its origin station up to 5 minutes earlier or 5 minutes later, and a total

stretch along its route of up to 5 minutes. Then, we also consider two other options, that

increase the possibilities of scheduling trains: maximum shift set to 10 and maximum stretch

to 5, and maximum shift set to 5 and maximum stretch to 10. Indeed, when the maximum

shift and stretch are set to small values, it might not always be possible to schedule all trains,

leading to low quality of the solutions. Overall, by combining the different shift/stretch

penalties and the maximum shift/stretch, we thus have 9 different profit structures that lead

to 9 timetables. The total number of iterations for each run of LH is set to 250 in our

experiments.

In the feedback process, we set values for the intermediate shift penalties at some stations,

as well as for the initial shift penalty of a train starting in such a station. We use values of

10, 20 and 30 for these penalties.

5.3 Results of the algorithm

We execute our timetabling approach presented in Section 4 on the three instances.

5.3.1 A2-corridor

Make an ideal timetable. Since obtaining an optimal solution is out of reach for this

instance, we use a time limit of two hours. The resulting timetable has, as mentioned earlier,

a normalized objective value of 100. All other values are reported in relation to this value.

The lower bound that is proven by CPLEX is 97% of the objective value. Hence the remaining

gap is 3%.

Figure 5a displays a time-space diagram, showing the ideal timetable between Hdr and

Ut. Hdr is in the most northern part of the network and Ut is halfway the corridor (see

Figure 3a. Time is shown on the horizontal axis, between 0 and 60, i.e., one cycle period is

displayed. Space is shown on the vertical axis, where several stations are mentioned. The

lines on the right of the figures display the number of tracks that are present. In the diagram

itself, each colored line corresponds to a train and displays at what time a train visits a given

location. The colors of the trains correspond to the colors in Figure 4, where the routes of

the five train lines in this instance are displayed.

Even though no regularity restrictions are added to the model, we see in Figure 5a that

the trains are spread over time rather regularly in this network. This is due to the inclusion

of the adaption time in the objective function. Adaption time is low, if departure times of
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Figure 4: Overview of lines in A2-corridor (taken from Polinder et al. [2020])

routes for an OD-pair are equally spaced in time. See discussion in Polinder et al. [2020].

However, the ideal timetable on the A2-corridor does not satisfy the headway restrictions.

There are two conflicts, which are indicated by red circles in Figure 5a. At one location, two

trains are scheduled at the exact same time: the light blue and dark blue trains are scheduled

at the exact same time between Ut and Asb. At another location two trains are scheduled

to cross each other in a single track area between Hdr and Sgn, where trains can only pass

each other at stations.

Make a feasible timetable. In order to make a feasible timetable, we run LH with the

nine different parameter sets specified in Section 5.2.2 for the profit, shift and stretch penalties

and bounds. This leads to nine feasible timetables, all satisfying the headway restrictions.

Note that although LH allows to cancel trains, for all nine chosen parameter sets, all trains

are scheduled. The best found timetable in this step, BPL, has an evaluation value of 100.18,

i.e., the evaluation value increased by 0.18% with respect to the ideal timetable. For this

BPL timetable, the time space diagram is shown in Figure 5b. There it can clearly be seen

that the conflicts are resolved. Trains that crossed on a single track area are now stretched

such that they pass each other at a station. Secondly, the trains that were scheduled at the

same time are now moved away from each other.

Evaluate & update profit structure. In order to provide feedback, we follow the ap-

proach stated in Section 4.4.

Identify OD-pairs. The first step is to identify the OD-pairs for which the evaluation

contribution worsened the most. In order to do so, and to investigate the differences between
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the ideal timetable π and the best found feasible timetable BPL, we compare the timetables

with respect to the excess evaluation contribution (for the definition, see Section 3.3) of each

individual OD-pair in Figure 6.
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Figure 6: A2-corridor: ideal timetable vs BPL-timetable.

In Figure 6a, we see the difference in excess evaluation contribution for individual OD-

pairs between timetables π and BPL. Each OD-pair is represented by a star, the stars are

sorted from left to right according to the excess evaluation contribution of the corresponding

OD-pair in the ideal timetable. As can be seen, for many OD-pairs the excess evaluation

contribution is small in the ideal timetable, for only a few OD-pairs it is large. In this instance,

the latter correspond to OD-pairs which have a high demand and a small irregularity in their

departure pattern: recall that the evaluation contribution is weighted by the number of

passengers, i.e., a large increase for only a few passengers can count less than a small increase

for many passengers. The vertical coordinate indicates the difference in evaluation value

between π and BPL. In particular, if a star lies above 0, the evaluation contribution of the

OD-pair has increased after applying LH. But there are also some OD-pairs which have a

lower evaluation contribution after applying LH, these can be found below 0. Two OD-pairs

are labelled in the figure, these are the OD-pairs with the highest increase in perceived travel

time that clearly stand out and on which we base the feedback. As can be seen, the OD-

pair Ut-Asd has an excess evaluation contribution of 0.38 in the ideal timetable, and that

evaluation contribution now increased to 0.47 in the BPL-timetable, due to a more irregular

departure pattern at Ut.

In Figure 6b we see a different visualization of the differences between π and BPL with

respect to the evaluation contribution. All 891 OD-pairs are shown on the horizontal axis
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sorted by their corresponding increase in evaluation contribution. As can be seen well in this

figure, there are many OD-pairs for which the evaluation contribution hardly changed, only

for a minority there are major changes. Hence, also in this figure it can be seen that the BPL

timetable is very close to the ideal one, and only few OD-pairs were subject to an increase

in perceived travel time.

Update profit structure. Two OD-pairs are identified as relevant: Ut-Asd and Ut-

Asa. These two OD-pairs have the same set of travel options, as the trains from Ut to Asd

first pass Asa (see Figure 3a). In fact, Asa is the only station where the trains from Ut

to Asd stop. Passengers on these OD-pairs can choose from six different trains. Thus, to

minimise adaption time upon departure in Ut, the headway times between consecutive trains

would be 10 minutes, in that case the trains would be perfectly spread over time. In the

ideal timetable we have headway times of 12 minutes (2 times) and 9 minutes (4 times), as

is visible in Figure 5a. That means that in the ideal timetable the trains are not spread

equally over time, and this causes the excess evaluation contribution of the relevant OD-pairs

in the ideal timetable to be relatively large, in particular because these adaption times are

weighted with the (high) passenger numbers. In the BPL-timetable, the departure pattern

in Ut becomes even less regular. The headway times now are 15 minutes (twice), 9 minutes

(twice) and 6 minutes (twice), see Figure 5b.

Based on these observations, we add intermediate shift penalties at Ut as described

in Section 4.4, to improve the timetable for Ut-Asd and Ut-Asa. We start with the profit

structure leading to the BPL timetable, and generate three new profit structures using values

of 10, 20 and 30 as penalty values. Ut is intermediate station to 20 trains where these are

added as intermediate shift penalties. No trains start their journey in Ut so no regular shift

penalties have to be updated. We run LH with the three new profit structures and evaluate

the resulting timetables. Unfortunately, in this case, none of these timetables give an overall

improvement.

Identify OD-pairs. In all of the three timetables obtained using the updated profit

structures, we see that the OD-pairs Ut-Asd and Ut-Asa are not improved, in fact, for the OD-

pairs in the other direction (Asd-Ut and Asa-Ut) the situation becomes worse compared to the

BPL timetable. The regularity at Asd (and in line with that also at Asa) is lost. Therefore,

we identify these two OD-pairs as the new OD-pairs to provide additional feedback.

Update profit structure. As described in Section 4.4 we modify the initial profit

structure that was used to find the BPL timetable and add shift penalty values at Ut and

Asd. Asd is intermediate station to 8 trains, and for 2 trains the start station. This leads

to 12 new profit structures: 3 for adding the three different penalty values 10, 20, and 30 at
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Asd and 9 for the combinations of Ut and Asd. Note that a shift penalty at Asd can also

improve the timetable at Ut, since these two stations are close to each other and there is only

one stop in between.

Evaluation. After evaluating the 12 additional timetables, we find that the best eval-

uation value among the 12 created timetables now is 100.10, which is an improvement with

respect to the BPL timetable. The time space diagram for this timetable is shown in Fig-

ure 5c. Note the improved regularity between Ut and Asd. The best timetable is found in

the second feedback-iteration, and we refer to it as the Best after feedback (BF).

We now extend Figure 6 by adding blue stars, showing the evaluation contributions in the

BF-timetable. Note that the OD-pairs Ut-Asa and Ut-Asd improve in the second iteration,

as the blue stars representing these OD-pairs are now on the horizontal axis (the indicated

arrows show the link between the two red and the corresponding blue stars). However, there

are also some OD-pairs for which the perceived travel time increases in comparison to the BPL

timetable. This is best seen in Figure 7b. Here, the same red line as in Figure 6b is shown.

Now, the excess evaluation contributions for the OD-pairs in the timetable after feedback are

added in blue. It is visible that some OD-pairs for who the evaluation contribution did not

change in the BPL timetable are now changed: for some the perceived travel time decreases,

but for others it increases.
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Figure 7: A2-corridor: Timetable comparisons after feedback.

Summary. A summary of the progress of our approach on the A2-corridor is given in

Table 1. The table displays the evaluation values for the best timetables found in the steps of

the algorithm. The last row of the table shows the lower bound that is found by CPLEX when
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solving the integer programming model for finding an ideal timetable, which is, of course,

also a lower bound on the objective value of a feasible timetable.

Timetable
Evaluation

value

Ideal 100
Best Pure Lagrangian 100.18
Feedback step 1 (FB-1) 100.23
Feedback step 2 (FB-2) 100.10

Lower bound 97.00

Table 1: Evaluation values for A2-corridor

A visual summary of our approach is displayed in Figure 8. Here, the evaluation values of

all computed timetables are displayed. The horizontal axis displays the step in the algorithm.

The vertical axis shows the evaluation value of the timetable. First, the evaluation value of

the ideal timetable is shown at the bottom left. Then, the blue lines and dots link this

evaluation value to the evaluation values of the nine timetables computed by LH. Next, the

red lines and dots display the values of the timetables computed during the feedback process.

The evaluation values of the three timetables computed in the first and second feedback step

(FB-1 and FB-2) are shown, with lines linking this evaluation value to the evaluation value

of the BPL timetable. It is clearly visible that the evaluation value of the BF timetable is

lower than that of the BPL timetable.
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5.3.2 Rotterdam-Groningen instance

Make an ideal timetable. Since this instance is more challenging than the previous one,

we set a time limit of 4 hours to solve the model for constructing the ideal timetable. The

best solution that we find within the time limit has a normalized objective value 100. The

lower bound that is proven by CPLEX is 92.69% of the objective value, hence the remaining

gap is 7.31%.

The ideal timetable is shown in terms of time-space diagrams in Figure 9 for two corridors

that play a role in the description of the results: Rotterdam (Rtd) to Utrecht (Ut) and Leiden

Central (Ledn) to The Hague Central (Gvc). See Figure 3b for the location of the stations.

The ideal timetable does not satisfy the headway restrictions on the two mentioned

corridors. For example, between stations Gd and Wd, two trains are scheduled at the exact

same time on the same track and hence do not satisfy the headway restrictions (see the circled

area in Figure 9a). Also on the other corridor violations of the headway restrictions occur.

For example, two trains from the same direction arrive in Gvc at the same time, while there

is only one track available for them, so the headway restriction upon arrival of two trains is

not satisfied (see Figure 9b).

Make a feasible timetable. In order to find a timetable that is feasible with respect

to current infrastructure, we run LH with the standard parameters. In seven out of the

nine resulting timetables, all trains are scheduled. In two of them, two trains are cancelled.

However, also in these timetables there are still travel options for all passengers. The best

evaluated timetable has an evaluation value of 100.59 and has all trains scheduled. The time

space diagrams for this BPL-timetable on the two aforementioned corridors are displayed in

Figures 9c and 9d, which clearly show that the conflicts are resolved.

Evaluate & update profit structure.

Identify OD-pairs. In order to investigate the differences between the ideal timetable

π and the BPL-timetable, we make the same plots as for the previous instance, showing the

differences in evaluation contribution per OD-pair. Figure 10a displays each OD-pair as a star,

where the excess evaluation contribution to the ideal timetable is the horizontal coordinate

and the increase in evaluation contribution is the vertical coordinate. These increases in the

evaluation contribution are summarised in Figure 10b, where all 3810 OD-pairs are shown on

the horizontal axis, sorted by their corresponding increase in evaluation contribution. Note

that for many OD-pairs the evaluation contribution does not change.

In the BPL-timetable, there are three OD-pairs that stand out, as is indicated in Fig-

ure 10a: Ledn-Laa and Ledn-Gvc are two OD-pairs that have very similar routes, they have
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Figure 10: Rotterdam-Groningen: Ideal timetable vs BPL-timetable.

the same origin and their destinations are close to each other, see also Figure 3b. The corre-

sponding excess evaluation contributions increased by +0.056 and +0.044 respectively with

respect to the ideal timetable. The third OD-pair for which the evaluation value increased

significantly is Rtd-Ut, its excess evaluation contribution increased by +0.050 with respect

to the ideal timetable. This OD-pair is located on a different part of the network than the

other two OD-pairs.

Update profit structure. The origin stations for the aforementioned OD-pairs are

Ledn and Rtd. At both of these stations, the regularity of departure times has worsened when

shifting from the ideal to the BPL-timetable. Therefore, we make new profit structures, based

on the one leading to the BPL-timetable, where we add the intermediate shift penalties of

values 10, 20 and 30 to Ledn and Rtd. Ledn is intermediate station for 8 trains and no

relevant trains start their journey in Ledn. Rtd is for no train an intermediate station,

instead, 6 trains start their journey there so we update the regular shift penalty. This leads

to 15 new profit structures: 3 with the penalty only at Ledn, 3 with the penalty only at Rtd,

and 9 for all combinations.

Evaluation. We run LH on these new profit structures and evaluate the resulting

timetables. We find the best timetable to have an evaluation value of 100.55. This timetable

is referred to as the best after feedback (BF).

Like for the previous instance, we extend Figure 10 by plotting the evaluation contributions

of the OD-pairs in the BF-timetable, in order to get insight into the differences with respect

to the BPL-timetable. The result is displayed in Figure 11. Figure 11a shows for each OD-
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pair the increases in evaluation contribution with respect to the ideal timetable. The red

stars correspond to the BPL-timetable, and the newly added red blue stars correspond to the

BF-timetable. To increase visibility, we connected the red and blue stars which correspond

to the relevant OD-pairs. As can be seen in this figure, the evaluation contribution for the

three OD-pairs is improved. The increase in evaluation contribution with respect to the ideal

timetable of Ledn-Laa reduces to −0.001, i.e., the timetable for this OD-pair is better than

the ideal timetable. The increase in evaluation contribution for Ledn-Gvc now reduces to

+0.037 and Rtd-Ut reduces to +0.040.
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Figure 11: Rotterdam-Groningen: Timetable comparisons after feedback.

To understand how the evaluation contribution of OD-pair Ledn-Laa is improved in the

feedback step, we examine the time-space diagrams in Figures 9b–9f. In the ideal timetable

for our instance, passengers can either take a local train directly from Ledn to Laa. The

alternative is to take an Intercity train that does not stop at Laa, but travels to Gvc, where

passengers can transfer to a local train back to Laa.

In the ideal timetable, the Intercity train from Ledn arrives in Gvc at :02, and passengers

have a 5 minute transfer connection to a local train back to Laa. In the BPL-timetable

though, the Intercity train comes in four minutes later and arrives in Gvc at :06, while the

local train back to Laa is not shifted in time. A transfer time of one minute is too short

and hence passengers have to wait half an hour, thus leading to a very high evaluation value

contribution.

In the feedback, trains get an intermediate shift penalty at Ledn. This causes the

Intercity train still to arrive in Gvc later than in the ideal timetable, but earlier than in the

BPL-timetable: it now arrives at :03. Passengers can again make the connection to the local

train and we are in a similar situation as in the ideal timetable.

This illustrates how the additional penalties lead to a different timetable and how feed-
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back can be used to improve the timetable that is found.

Note that the 2019 NS line plan [NS] contains more trains between Ledn and Laa that

we did not include in our instance (see Section 5.1.2). The observed effect is thus particular

to our instance and would not be observed in the actual Dutch network.

Summary. Table 2 summarizes the results of our approach on the Rotterdam-Groningen

instance. The evaluation values are displayed for each step in our algorithm.

Timetable
Evaluation

value

Ideal 100
Best Pure Lagrangian (BPL) 100.59
Feedback step 1 (FB-1) 100.55

Lower bound 92.69

Table 2: Evaluation values for Rotterdam-Groningen instance

Also for this instance, we summarize the evaluation values found in the different steps

of the algorithm in Figure 12. On the left, we see the evaluation value of the ideal timetable.

Right of it, we see the evaluation values of the nine timetables found by the Lagrangian

heuristic. Two lines are drawn with a dash-dotted line, these correspond to the timetables

where some trains are cancelled. We observe that cancelling trains does not automatically

lead to bad timetables, as long as all OD-pairs can still travel. This is because the cancelling

of trains gives us more freedom to schedule other trains.

5.3.3 Extended A2-corridor

Make an ideal timetable. Also for this instance, we use a time limit of four hours to

solve the model for constructing the ideal timetable. Normalizing the best timetable to an

evaluation value of 100, the best lower bound is 93.00, i.e., the remaining gap is 7.0%.

Time-space diagrams displaying the ideal timetable are shown in Figure 13 for three

corridors in the network: Arnhem (Ah) to Nijmegen (Nm), Amsterdam Central (Asd) to

Schiphol (Shl) and Zaandam (Zd) to Utrecht (Ut). See Figure 3c for the location of these

stations. In this dense network, there are numerous conflicts between trains that have to be

resolved in the next step.

Make a feasible timetable. Using the same initial profit structures as in the earlier cases,

in the first step of LH nine feasible timetables are computed. In three of these timetables, all

trains are scheduled. In the other six, trains are cancelled in a way that causes some passen-

gers not to have a travel option any longer. This is highly undesirable and highly penalized

in the evaluation function (see Section 3.2.3). This leads to these six timetables having a bad
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Figure 12: Overview of the progress in Rotterdam-Groningen instance

evaluation value. Consequently, the feasible timetable with the best evaluation value is one in

which all trains are scheduled. Its evaluation value is 101.51. The corresponding time-space

diagrams are shown in Figure 13.

Evaluate & update profit structure.

Identify OD-pairs. As a first step, we identify the OD-pairs for which the shift from

the ideal timetable to the BPL-timetable caused a high increase in the evaluation contribution.

The changes in the evaluation contribution for each OD-pair are pictured in Figure 14, in

a similar way as in the previous two cases. We observe that for many OD-pairs there are

only few or little changes (see also Figure 14b). However, there are a few OD-pairs for which

the evaluation contribution increases significantly as is visible in Figure 14a. The highest

increase is visible for the the OD-pair Ah-Nm. Its evaluation contribution increases by

+0.062. Besides Ah-Nm, Asd-Ut (+0.045), Asd-Zd (+0.039) and Asd-Shl (+0.038) account

for the largest increases in the evaluation value.

And indeed, inspecting the timetable differences (see the supporting time-space diagrams

in Figure 13), we see that departure and arrival patterns have changed at Asd, trains now

sometimes depart in a less regular pattern. Also the pattern of departures at Ah is less regular

in the BPL-timetable than in the ideal timetable (compare also Figures 13a and 13d).
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Figure 14: Extended A2-corridor: Ideal timetable vs BPL-timetable.

Update profit structure. As prescribed in our approach from Section 4.4, we update

the profit structure for trains at the stations Ah and Asd with penalty 10, 20, or 30, leading

two 15 new profit structures (3 for the shift penalties at Asd, 3 for the shift penalties at Ah,

and 9 for the combinations).

Evaluation. We run LH with the new profit structures and obtain 15 new timetables.

When evaluating these solutions, we find an improved timetable with an evaluation value of

101.28, i.e., a reduction of 0.23 with respect to the BPL-timetable. This new timetable is

referred to as the BF-timetable.

Figure 15 displays the new evaluation contributions, both for the BPL-timetable and

BF-timetable. The red stars correspond again to the increase in evaluation contribution

when comparing the ideal timetable with the BPL-timetable. The blue stars show the same

result when comparing the ideal timetable with the BF-timetable. The OD-pairs that had

a high increase in evaluation contribution now improved significantly: the increase in eval-

uation contribution for Ah-Nm reduced from +0.062 to 0 (see also the time space diagram

in Figure 13g). For Asd-Ut, the increase in evaluation contribution reduced from +0.045 to

+0.014 and for Asd-Zd it reduced from +0.039 to +0.027. The increase for Asd-Shl remained

the same. The improvements for the first three mentioned OD-pairs are shown by means of

arrows in Figure 15a.

Although the overall evaluation value of the new timetable improved and the contribu-

tions of the aforementioned three OD-pairs improved as well, now other OD-pairs have a

higher evaluation contribution, as already indicated in Figure 15b. An improvement for some

OD-pairs can indeed imply a worsening for others. In the BF-timetable, there is an OD-pair
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Figure 15: Extended A2-corridor: Timetable comparisons after feedback.

(Hlm-Asd) which now has an excess contribution which is similar to that of Ah-Nm in the

BPL-timetable.

Summary. Table 3 summarizes the main results of our approach on the extended A2-

corridor instance in terms of evaluation values for each of the steps.

Timetable
Evaluation

value

Ideal 100
Best Pure Lagrangian (BPL) 101.51
Feedback step 1 (FB-1) 101.28

Lower bound 93.00

Table 3: Evaluation values for extended A2-corridor instance

A visual summary of the computations is shown in Figure 16. For each computed

timetable, the evaluation value is plotted. On the left the evaluation value of the ideal

timetable is shown. Next, the results of the timetables after running LH are indicated by the

blue dots and lines. If in some timetable not all trains are scheduled, this is indicated by the

dash-dotted line. As can be seen, many timetables have a bad evaluation value, they are not

even visible in the figure. The reason for this is that in these timetables not all passengers

have a travel option. In red, the evaluation values of the timetables after feedback are shown.

Again, we use dash-dotted lines for the timetables where not all trains are scheduled.
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Figure 16: Overview of the progress in the extended A2-corridor instance

5.4 Comparison to a benchmark approach

In order to further evaluate our approach to solving POT, we compare it to the benchmark

approach of modeling POT as a mixed-integer linear program. To make this comparison,

we model POT as a mixed-integer linear program as described in Polinder et al. [2020],

but additionally include infrastructure capacity constraints in the there-described model for

strategic timetabling. We then solve it with the approach described in Polinder et al. [2020].

Note that the extended mixed-integer programming approach from Polinder et al. [2020] does

not allow to cancel trains, as does our model. However, since there are no trains cancelled in

any of the best timetables we found in the three considered instances, a fair comparison of

results is possible. The results are displayed in Table 4.

In this table, for each instance, the result of several approaches to find a feasible timetable

are shown. The first result is the best timetable that is obtained after computing an ideal

timetable, and then running LH. The table reports the evaluation value of the timetable in the

third column. The fourth column shows the time it took to compute this timetable. Where

the time is split up in two parts, the first number shows the time spent on computing the ideal

timetable, the other number shows the time spent on LH and feedback. Note that the time

for inspection of the timetable and adjustment of the profit structure in the feedback loop

is not included, because this is a manual process. The second result that is shown for each
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Instance Approach
Evaluation

value
Time

(hours)

A2

Ideal + LH 100.18 2 + 0.03
Ideal + LH + FB 100.10 2 + 0.11
POT

- After 2.11 hours 105.80 2.11
- After 8 hours 104.88 8

Lower bound CPLEX 97.09

Rotterdam
Groningen

Ideal + LH 100.59 4 + 0.06
Ideal + LH + FB 100.55 4 + 0.18
POT

- After 4.18 hours 105.64 4.18
- After 16 hours 103.69 16

Lower bound CPLEX 92.72

Extended A2

Ideal + LH 101.51 4 + 0.14
Ideal + LH + FB 101.28 4 + 0.49
POT

- After 4.49 hours - 4.49
- After 16 hours - 16

Lower bound CPLEX 93.00

Table 4: Benchmark results

instance is the evaluation value of the best timetable found after applying feedback. Third,

the value of the best timetable after solving the integer programming formulation for POT

including infrastructure capacity restrictions is shown. Next to the value that is obtained

when reaching the time limit, we also show the evaluation value of the best timetable found

in the time it took the iterative approach to compute the solutions listed. That means, for

the A2-corridor instance, computing an ideal timetable, running LH and including feedback

took 2.11 hours. In the same time, the full POT model found a solution of value 105.80.

Finally, we mention the lower bound as computed by CPLEX when solving the POT model

until the time limit is reached. Note that the CPLEX lower bounds are stronger than those

mentioned in Section 5.3 where we report lower bounds on the MILP model for finding the

ideal timetable, because the POT model is more restrictive and therefore, combined with a

longer computation time, a stronger lower bound is more likely.

We observe that our approach is able to find better solutions in less time, even when no

feedback is included. In particular, for the extended A2-corridor instance, we were not able

to find any feasible timetable within 16 hours using the MILP formulation for POT, while the

approach of this paper generates a reasonably good one within a bit more than two hours.
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6 Conclusion and further research

In this paper, we proposed an approach to solve the tactical timetabling problem. Hereby

we specifically focused on the quality of the timetable for the passengers.

In order to find a feasible passenger-oriented timetable for challenging real world in-

stances, for which the timetabling model itself already is challenging, we used variants of

two existing approaches. These two approaches are combined into an algorithmic framework.

First, an ideal timetable is computed, thereby neglecting infrastructure related restrictions.

Next, through a Lagrangian heuristic, this timetable is modified to obtain a feasible timetable

with respect to infrastructure. A feedback mechanism is used to improve the found solutions.

We showed that for real-life instances, based on the network operated by Netherlands

Railway, we can obtain satisfying results. Furthermore, we show that the provided feedback

indeed leads to (overall) better timetables.

Interesting further research would include the further automatisation of the feedback

procedure. Although this procedure is formalized in Section 4.4, it can still require manual

inspection of the results in order to find a good feedback option. Furthermore, it would be

interesting to investigate effects of including station capacity in our models.

Further research is needed to close the optimality gaps found in our models.
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P. Schiewe and A. Schöbel. Periodic timetabling with integrated routing: An applicable

approach. Accepted for publication in Transportation Science, 2019.
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