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BACKGROUND: Associations between dairy intake and
body composition and cardiometabolic traits have been
inconsistently observed in epidemiological studies, and
the causal relationship remains ill-defined.

METHODS: We performed Mendelian randomization
analysis using an established genetic variant located
upstream of the lactase gene (LCT-13910 C/T,
rs4988235) associated with dairy intake as an instru-
mental variable (IV). The causal effects of dairy intake
on body composition and cardiometabolic traits (lip-
ids, glycemic traits, and inflammatory factors) were
quantified by IV estimators among 182041 partici-
pants from 18 studies.

RESULTS: Each 1 serving/day higher dairy intake was as-
sociated with higher lean mass [� (SE) � 0.117 kg
(0.035); P � 0.001], higher hemoglobin A1c [0.009%
(0.002); P � 0.001], lower LDL [�0.014 mmol/L
(0.006); P � 0.013], total cholesterol (TC) [�0.012
mmol/L (0.005); P � 0.023], and non-HDL [�0.012
mmol/L (0.005); P � 0.028]. The LCT-13910 C/T
CT � TT genotype was associated with 0.214 more
dairy servings/day (SE � 0.047; P � 0.001), 0.284 cm
higher waist circumference (SE � 0.118; P � 0.017),
0.112 kg higher lean mass (SE � 0.027; P � 3.8 �
10�5), 0.032 mmol/L lower LDL (SE � 0.009; P �
0.001), and 0.032 mmol/L lower TC (SE � 0.010; P �
0.001). Genetically higher dairy intake was associated
with increased lean mass [0.523 kg per serving/day
(0.170); P � 0.002] after correction for multiple test-
ing (0.05/18). However, we find that genetically
higher dairy intake was not associated with lipids and
glycemic traits.

CONCLUSIONS: The present study provides evidence to
support a potential causal effect of higher dairy intake on
increased lean mass among adults. Our findings suggest

that the observational associations of dairy intake with
lipids and glycemic traits may be the result of
confounding.
© 2019 American Association for Clinical Chemistry

Observational studies, in which reverse causation, resid-
ual confounding, and limited generalizability are often
nonnegligible (1 ), reported an association of dairy con-
sumption with body composition (2, 3 ). Meta-analyses
of both observational studies (4 ) and randomized con-
trolled trials (RCTs)61 (5–7 ) demonstrated that high
dairy intake in the absence of energy restriction increased
body weight. However, meta-analysis of randomized
studies showed that there were no changes in cardiometa-
bolic risk factors such as fasting glucose, insulin resis-
tance, lipids, or C-reactive protein (CRP) (8 ). In con-
trast, another meta-analysis of controlled short-term
intervention studies showed that a fermented yogurt
product was associated with a 4% decrease in total cho-
lesterol (TC) and a 5% decrease in LDL cholesterol (9 ).
Therefore, results for cardiometabolic traits are still in-
conclusive. Mendelian randomization (MR) analysis
(10–13), which is analogous to an RCT, when random-
ization to genotype takes place at conception (14 ), has
been widely used to assess potential causal associations of
lifetime variations of modifiable factors with diseases
(10, 15–20).

Previous large-scale MR analyses, adopting a well-
established genetic marker (LCT-13910 C/T, rs4988235)
as an instrumental variable (IV) for dairy intake, demon-
strated that genetically predicted high dairy intake is asso-
ciated with higher body mass index (BMI) (18 ) but
not causally related to hypertension (10 ), diabetes
(11 ), and cardiovascular diseases (12, 13 ). However,
whether dairy intake is causally associated with body
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composition and other important cardiometabolic
traits is largely unknown.

Therefore, in the current study, we performed MR
analysis among 182041 adult participants from 18 co-
horts using an established dairy intake-associated genetic
variant located near the lactase gene LCT62 to examine
the causal association of habitual dairy intake with body
composition and cardiometabolic traits such as lipids,
glycemic traits, and inflammatory factors in general
populations.

Materials and Methods

STUDY PARTICIPANTS

The study was conducted within the Mendelian Ran-
domization of Dairy Consumption Working Group,
represented here by 18 cohort studies including 182041
individuals in total. Detailed descriptions of each study
are presented in Table 1 of the Data Supplement that
accompanies the online version of this article at http://
www.clinchem.org/content/vol65/issue6. Participants
from each study provided written informed consent, and
local institutional review boards (see Table 2 in the online
Data Supplement) granted ethical approval.

DAIRY INTAKE ASSESSMENT AND OUTCOMES

Information on intake of dairy products was collected by
self-reported questionnaire in each study; detailed infor-
mation on cohort-specific data collection methods is pro-
vided in Table 3 of the online Data Supplement. Total
dairy products included skim/low fat milk, whole milk,
ice cream, yogurt, cottage/ricotta cheese, cream cheese,
other cheese, and cream. The primary outcomes are body
composition (body fat percentage, waist circumference,
waist to hip ratio, lean mass, and fat mass), cardiometa-
bolic traits [lipids: HDL cholesterol, LDL cholesterol,
TC, total triglyceride (TG), non-HDL cholesterol, and
apolipoprotein B (apoB)], glycemic traits [fasting glu-
cose, hemoglobin A1c (HbA1c), fasting insulin, insulin
resistance, and insulin sensitivity], and inflammatory fac-
tors [regular CRP and high-sensitivity CRP (hsCRP)] at
baseline or during follow-up. Detailed information on
the outcome measure for each study is reported in Table
4 of the online Data Supplement.

SINGLE-NUCLEOTIDE POLYMORPHISM SELECTION AND

GENOTYPING METHODS

In the present study, we chose the widely confirmed and
extensively studied variant LCT-13910 C/T, rs4988235 as
the IV for dairy intake (11, 12, 21). The variant rs4988235,
located upstream from the LCT gene, is associated with

lactase persistence and thereby with the ability to digest lac-
tose, the primary source of carbohydrates in milk (22). The
TT and TC genotypes are associated with lactase persis-
tence, and CC is associated with nonpersistence. Therefore,
lactase persistence is a dominantly inherited genetic trait.
Most studies used direct genotype information on
rs4988235 from previously genotyped array data. When-
ever rs4988235 was not genotyped directly, we used either
(a) the HapMap II reference panel-imputed genetic infor-
mation for rs4988235 or (b) genotype information of proxy
that are in high linkage disequilibrium with rs4988235 (n �
5; r2 � 0.9). Genotyping platforms, genotype frequencies,
Hardy–Weinberg equilibrium P values, and call rates (me-
dian of 98.8%) for LCT-13910 C/T are listed in Table 5 of
the online Data Supplement.

STATISTICAL ANALYSIS

Our study tested the (a) observational associations of
dairy intake with body composition, lipids, glycemic
traits, and inflammatory factors; (b) genetic associations
of the LCT-13910 C/T, rs4988235 with dairy intake and
cardiometabolic traits under a dominant model (CC vs
CT � TT); and (c) causal effect of dairy intake on out-
comes by using the IV estimator.

A standard analysis protocol was applied to each
individual study to produce comparable results. Linear
regression was used to test the observational associa-
tions of dairy intake with cardiometabolic traits after
adjustment for age, sex, ethnicity, region, years of
follow-up, and other baseline covariates (smoking sta-
tus, physical activity, total energy intake, and alcohol
intake), as available. Linear regression was used to test
the genetic associations of LCT-13910 C/T with dairy
intake and cardiometabolic traits, respectively, after
adjustment for age, sex, ethnicity, region, and total
energy.

META-ANALYSIS AND BETWEEN-STUDY HETEROGENEITY

Meta-analyses were conducted using individual partici-
pant data in each study and then pooled � coefficients
across studies using random-effects or fixed-effects meta-
analysis. We assessed between-study heterogeneity via
Cochrane’s Q and I2 statistics (23–25). We used
random-effects meta-analysis if I2 � 0.25; otherwise,
fixed-effects models were used (26 ).

SE AND INFERENCE FOR THE IV ESTIMATOR

After meta-analysis, we used the IV estimators to quan-
tify the strength of the causal association of dairy intake
with cardiometabolic traits (Fig. 1) (27 ). The IV estima-
tor, which is identical to that derived by the widely used
2-stage least-squares method (28 ), was calculated as the �
of the regression coefficients MCM6 variant 4988235-
outcome and MCM6 variant 4988235-dairy:62 Human Genes: LCT, lactase; MCM6, minichromosome maintenance complex component 6.
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�IV �
�SNP_Outcome

�SNP_Dairy
(1)

seIV � abs��IV	�� seSNP_Dairy

�SNP_Dairy
� 2

� � seSNP_Outcome

�SNP_Outcome
� 2

(2)

Furthermore, to explore potential sources of heterogene-
ity, we conducted subgroup analysis using age of partici-
pants (�50 years and �50 years), follow-up years (�5
years and �5 years), region or country (Europe and non-
Europe), study design (cohort and cross-sectional), and
CC genotype frequency (�10% and �10%) as putative
categorical moderators. The Bonferroni correction was
conducted for multiple comparisons (P � 0.05/18 �
0.003). Statistical analyses were conducted using Stata
14.0 software. All P values reported were 2-sided.

Results

BASELINE CHARACTERISTICS OF PARTICIPATING STUDIES

Baseline characteristics of the 182041 participants from
18 studies are shown in Table 1 here and Tables 6–8 of
the online Data Supplement. A description of each study
and additional characteristics of participants are pre-
sented in Tables 1 and 6 of the online Data Supplement.
A total of 17 studies provided data for LCT-13910 C/T,
and 1 study (ARIC-AA) provided results for the proxy
single-nucleotide polymorphism rs1446585 (defined on
the basis of r2 � 0.90 with rs4988235 in individuals).

The �2 tests showed that the CCHS, CGPS, and FamHS
studies did not achieve Hardy–Weinberg equilibrium
(see Table 5 in the online Data Supplement).

OBSERVATIONAL ASSOCIATIONS OF DAIRY INTAKE WITH

CARDIOMETABOLIC TRAITS

Our meta-analysis showed that high dairy intake was sig-
nificantly associated with higher lean mass (� � 0.117 kg
per serving/day; SE � 0.035; P � 0.001), higher HbA1c

(� � 0.009% per serving/day; SE � 0.002; P � 0.001),
lower LDL (� � �0.014 mmol/L per serving/day; SE �
0.006; P � 0.013), lower TC (� � �0.012 mmol/L per
serving/day; SE � 0.005; P � 0.023), and lower non-
HDL (� � �0.012 mmol/L per serving/day; SE �
0.005; P � 0.028) (Fig. 2).

GENETIC ASSOCIATION OF THE LCT-13910 C/T WITH DAIRY

INTAKE AND CARDIOMETABOLIC TRAITS

In a dominant model, we found that the LCT-13910
C/T CT � TT genotype was significantly associated
with 0.214 more dairy servings/day (� � 0.214 serving/
day; SE � 0.047; P � 6.8 � 10�6). We pooled the
genetic association with cardiometabolic traits from 18
studies using fixed- or random-effects meta-analysis and
found that the LCT-13910 C/T CT � TT genotype
was significantly associated with 0.284 cm higher
waist circumference (� � 0.284; SE � 0.118; P �
0.017), 0.112 kg higher lean mass (� � 0.112; SE �
0.027; P � 3.8 � 10�5), 0.032 mmol/L lower LDL
(� � �0.032 mmol/L per serving/day; SE � 0.009;

Fig. 1. A schematic description of a Mendelian randomization analysis.
MR can be used to test the hypothesis that exposure (dairy intake) causes outcomes (cardiometabolic traits). Three assumptions of MR:
(a) genetic variants must be associated with dairy intake; (b) genetic variants must not be associated with confounders; and (c) genetic
variants must influence cardiometabolic traits only through dairy intake, not through other pathways. The IV estimator was used to
quantify the strength of the causal association of dairy intake with cardiometabolic traits using LCT-13910 C/T as an IV.

Dairy Intake and Cardiometabolic Traits
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P � 0.001), and 0.032 mmol/L lower TC (� �
�0.032 mmol/L per serving/day; SE � 0.010; P �
0.001) (Fig. 3).

IV ESTIMATED CAUSALITY BETWEEN DAIRY INTAKE AND

CARDIOMETABOLIC TRAITS

Fig. 3 presents the genetic association with cardiometabolic
traits and the IV estimated causal effects of dairy intake on
cardiometabolic traits. Genetically determined higher dairy
intake was associated with increased waist circumference
(� � 1.327 cm per serving/day; SE � 0.623; P � 0.020),
increased lean mass (� � 0.523 kg per serving/day; SE �
0.170; P � 0.002), decreased LDL (� � �0.150 mmol/L
per serving/day; SE � 0.053; P � 0.005), and decreased TC
(� � �0.150 mmol/L per serving/day; SE � 0.057; P �
0.008). After correction for multiple testing, MR associa-
tion of dairy intake with lean mass remained significant at
P � 0.002 (0.05/18) (Fig. 3).

We further conducted stratified analyses of esti-
mated causality by age, follow-up years, study design,
ethnic group, and CC genotype frequency (Table 2). We
observed significant MR associations of genetically deter-
mined higher dairy intake only on LDL and TC in stud-
ies with a patient mean age of �50 years and studies with
follow-up time �5 years.

Discussion

In thus far the largest MR analysis study, including
182041 adults from 18 cohorts, our results support a
causal relationship between higher dairy intake and in-
creased lean mass. In addition, our findings imply that
the observational associations of dairy intake with lipids
and glycemic traits could be the result of confounding.

In our well-powered study, we individually analyzed
182041 individuals and provided strong evidence that
high dairy intake was causally associated with higher lean
mass. Results from our observational analyses and our
MR analyses were highly consistent, both suggesting
higher lean mass in those with high intake of dairy prod-
ucts. In line with our findings, a previous meta-analysis of
RCTs showed that dairy consumption increased lean
mass (5 ). Several mechanisms might be responsible for
the impact of dairy intake on the regulation of lean mass.
First, increased protein intake from dairy products may
promote maintenance of lean mass (7 ). Second, the hor-
mone estrone found in dairy products may promote in-
creases in body weight (18, 29, 30 ). Third, higher intake
of dairy foods is associated with higher plasma insulin-
like growth factor 1, which may contribute to weight gain
(18, 31 ). However, future research is needed to further

Fig. 2. Association between dairy intake and cardiometabolic traits among 182041 participants from 18 studies.
Linear regression was used to test the association of dairy intake (serving/day) with cardiometabolic traits after adjustment of sex, ethnicity, region, years of
follow-up, and other baseline covariates if available (age, smoking status, physical activity, total energy intake, and alcohol intake) in each study. We pooled�

coefficients across studies using random-effects (I2 ≥ 25%) or fixed-effects (I2 < 25%) meta-analyses based on the heterogeneity between studies.

Dairy Intake and Cardiometabolic Traits

Clinical Chemistry 65:6 (2019) 755



illustrate the precise mechanisms of dairy products on
body composition in the context of energy restriction.

By using the LCT-13910 C/T as an instrument for
dairy intake, our MR results indicated that higher dairy
intake is marginally associated with decreased circulating
concentrations of TC and LDL. In contrast, observa-
tional evidence from Mediterranean, Danish, and Amer-
ican populations suggested that milk intake was not
associated with lipids (12, 13 ). However, our meta-
analysis of observational studies showed that high dairy
intake was significantly associated with lower LDL and
TC. Such observations are supported by previous meta-
analysis of controlled short-term intervention studies us-
ing a probiotic milk product, in which the fermented
yogurt product was associated with a 4% decrease in TC
and a 5% decrease in LDL cholesterol (9 ). Thus, it is
possible that intake of probiotic milk products, fer-
mented yogurt especially, drives the beneficial effect of
intake of dairy products on lipid levels. It is worth noting
that using the LCT-13910 C/T as an IV of dairy intake in
general, rather than milk intake specifically, complicates
the interpretation of our results. Previous studies indicate
that the association between this genetic variant and dairy

intake is specific to milk (1 ), possibly because of probi-
otics in some nonmilk dairy products (such as yogurt and
fermented milk) that may facilitate the digestion of lac-
tose and/or differences in lactose concentration. In the
current study, the use of total dairy products including
skim/low fat milk, whole milk, ice cream, yogurt, cot-
tage/ricotta cheese, cream cheese, other cheese, and
cream may largely attenuate our findings. Future study
on the causal relationship between dairy-specific product
and lipids is needed.

We did not find a causal association between dairy
intake and glycemic traits such as fasting glucose, insulin,
insulin sensitivity, and insulin resistance. Likewise, pre-
vious MR analyses demonstrated genetically high milk
intake also did not influence plasma concentrations of
glucose (12, 13 ). Our findings were also supported by a
3-week randomized crossover study indicating that both
whole milk and skim milk did not affect fasting glucose
or insulin in healthy adults (32 ). Our MR results may
potentially explain the nonsignificant causal effect of
high milk intake on risk of type 2 diabetes (11 ). How-
ever, previous MR analysis observed a significant sex dif-
ference in genetic association with fasting glucose (13 ),

Fig. 3. Genetic association and estimated causality between dairy intake and cardiometabolic traits.
The LCT-13910 C/T located in upstream of the lactase (LCT) gene was selected as an instrumental variable. The MR estimate was computed from
the ratio of the coefficient of the association between the LCT-13910 C/T and cardiometabolic traits to that of the association between the
LCT-13910 C/T and dairy intake. This IV estimate reflects the potential causal effect of dairy intake on BMI. We pooled � coefficients across
studies using random-effects (I2 ≥ 25%) or fixed-effects (I2 < 25%) meta-analyses based on the heterogeneity between studies.
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in which the T allele was significantly associated with
lower fasting glucose in women but not in men. The
association in women in which the T allele was associated
with higher milk intake is inversely associated with fast-
ing glucose (13 ). Further RCTs or MR investigations are
needed to explore whether there is a true sex difference in
genetic association of LCT-13910 C/T, rs4988235 with
fasting glucose and whether milk intake may modulate
such genetic association.

Several strengths of the current study merit consid-
eration. First, in the present consortium-based effort in-
volving 18 studies, we used a standardized analysis plan,
which is less likely to be affected by publication bias than
meta-analyses based on published reports. The large sam-
ple size allowed us to assess the consistency of associations
across several studies and to gain sufficient power for
conclusive estimation of causal effect. Second, the
lactase-persistent variant is a well-established genetic
marker for dairy intake, with solid biological basis and,
therefore, a valid IV for dairy intake (10–12, 18 ). The
instrument for carrying out this MR study has largely
prevented potentially distorting influences. Our findings
are of great benefit for future decision-making upon the
development of novel behavioral interventions.

Furthermore, our MR results for lipids showed a
suggestive causal effect of dairy consumption on improv-
ing lipids. This finding was supported by the results of a
previous multicenter, randomized double-blind study
among hypercholesterolemic patients demonstrating
that consumption of dairy product favorably changed the
lipid profile by reducing TC and LDL cholesterol (33 ).

Despite the convincing concept of MR analysis, several
limitations have to be considered while interpreting our re-
sults. First, the MR study added to established study designs
such as RCT without the ability to fully replace them. Sec-
ond, we could not exclude the possibility of pleiotropic ef-
fects of the LCT genotype (a gene affects �2 apparently
unrelated phenotypic traits). However, to our knowledge,
no pleiotropic effect has been reported previously. This ge-
netic variant is specific to milk, or at least has a stronger
association with milk (1); therefore, the use of total dairy
products may largely attenuate our findings. Furthermore,
the associations of LCT genotype with lactase persistence
and milk intake vary across populations. Although the LCT-
13910 C/T is highly associated with lactase persistence and
dairy intake in northern European populations, its associa-
tion with dairy intake is not universal (34). Other single-
nucleotide polymorphisms, including MCM6 rs3754686 at
intron 15, occur more frequently in some global regions
(35) and, therefore, represent plausible alternatives in di-
verse cohorts. Hence, bias from population stratification is
deemed likely. Finally, differences in definition of total dairy
products between studies might lead to the heterogeneity
observed in some analyses and dilute the association.

In summary, the present study suggests a causal ef-
fect of higher dairy intake on increased lean mass. Our
findings also suggest that the observational associations
of dairy intake with lipids and glycemic traits could be the
result of confounding. Our results emphasize that high
intake of dairy may promote the maintenance of lean
mass.
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